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Zusammenfassung

Der Dilatationsoperator der
N = 4 Super Yang-Mills Theorie
und Integrabilitat

Der Dilatationsoperator mifit Skalendimensionen von lokalen Operatoren in einer konfor-
men Feldtheorie. In dieser Dissertation betrachten wir ihn am Beispiel der maximal super-
symmetrischen Eichtheorie in vier Raumzeit-Dimensionen. Wir entwicken und erweitern
Techniken um den Dilatationsoperator abzuleiten, zu untersuchen und anzuwenden. Diese
Werkzeuge sind ideal geeignet um Prézisionstests der dynamischen AdS/CFT-Vermutung
anzustellen. Insbesondere wurden er im Zusammenhang mit Stringtheorie auf dem plane-
waves Hintergrund (ebenfrontige planare Wellen) und dem Thema spinning strings erfol-
greich angewendet.

Wir konstruieren den Dilatationsoperator ausschlieSlich mittels algebraischer Metho-
den: Indem wir die Symmetriealgebra und strukturelle Eigenschaften von Feynman-Dia-
grammen ausniitzen, konnen wir aufwendige, feldtheoretische Berechnungen auf héheren
Schleifen umgehen. Auf diese Weise erhalten wir den kompletten ein-schleifen Dilata-
tionsoperator und die planare drei-schleifen Deformation in einem interessanten Untersek-
tor. Diese Resultate erlauben es uns auf das Thema Integrabilitat in vier-dimensionalen
planaren Eichtheorien einzugehen: Wir beweisen, dafi der komplette Dilatationsopera-
tor auf einer Schleife integrabel ist, und prasentieren den dazugehdrigen Bethe-Ansatz.
Weiterhin argumentieren wir, dafl die Integrabilitat sich bis drei Schleifen und dariiber
hinaus fortsetzt. Unter der Annahme der Integrabilitat konstruieren wir schliellich ein
neuartiges Spinketten-Modell auf fiinf Schleifen und schlagen einen Bethe-Ansatz vor, der
sogar auf beliebig vielen Schleifen giiltig sein mag!

Wir veranschaulichen den Nutzen unserer Methoden in zahlreichen Beispielen und
stellen zwei wichtige Anwendungen im Rahmen der AdS/CFT-Korrespondenz vor: Wir
leiten aus dem Dilatationsoperator den Hamiltonoperator der plane-wave String-Feld-
theorie her und berechnen damit die Energieverschiebung auf dem Torus. Weiterhin
wenden wir den Bethe-Ansatz an, um Skalendimensionen von Operatoren mit groflen
Quantenzahlen zu finden. Der Vergleich mit der Energie von spinning strings Konfigura-
tionen zeigt eine erstaunliche Ubereinstimmung.
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Abstract

The dilatation generator measures the scaling dimensions of local operators in a con-
formal field theory. In this thesis we consider the example of maximally supersymmetric
gauge theory in four dimensions and develop and extend techniques to derive, investigate
and apply the dilatation operator. These tools are perfectly suited for precision tests of
the dynamical AdS/CFT conjecture. In particular, they have been successfully applied
in the context of strings on plane waves and spinning strings.

We construct the dilatation operator by purely algebraic means: Relying on the sym-
metry algebra and structural properties of Feynman diagrams we are able to bypass
involved, higher-loop field theory computations. In this way we obtain the complete
one-loop dilatation operator and the planar, three-loop deformation in an interesting
subsector. These results allow us to address the issue of integrability within a planar
four-dimensional gauge theory: We prove that the complete dilatation generator is inte-
grable at one-loop and present the corresponding Bethe ansatz. We furthermore argue
that integrability extends to three-loops and beyond. Assuming that it holds indeed, we
finally construct a novel spin chain model at five-loops and propose a Bethe ansatz which
might be valid at arbitrary loop-order!

We illustrate the use of our technology in several examples and also present two key
applications for the AdS/CFT correspondence: We derive the plane-waves string field
theory Hamiltonian from the dilatation operator and compute the energy shift on the
torus. Furthermore, we use the Bethe ansatz to find scaling dimensions of operators with
large quantum numbers. A comparison to the energy of spinning strings shows an intricate
functional agreement.



Contents

[_Qvervievl
[l Field Theory and Symmetry

L1 A =4 Super Yane-Mills Theorsl . . . . . o o o oo
L2 The Quantum Theorst . . . . . . . . . . . .
L3 The Ganee Groud . . . . . . . . . .
L4 The t Hooft Limifl . . . . . . . . . . . . . . . .

[L.7 _ Hichest-Weight Modules and Representationd . . . . . . . . . . .. .. ..
[1.8 Unitarity and Multiplet Shortenined . . . . . . . . . . . . . . ... .. ...
[L.9 _The Field-Strength Mu]‘rip]eﬂ .........................

[L10 Correlation Functiond . . . . . . . . . .. ...

[2__ The Dilatation Operatod
.1 Scaling Dimensiond . . . . . . ...

R4 The su(?) Quarter-BPS Sectod . . . . . . . . . .

R.5_Field Theoretic Considerationd . . . . . . . . .. ... ... ... .. ...

iii

iii

13

15
15
19
22
24
25
28
29
31
33
34
36



vi Contents

E One-Looa 71
B.1__The Form of the Dilatation Generatod . . . . . . . . .. . . ... .. ... 71

3.2 The Fermionic su(1.1) x wu(1[1) Subsectod . ... ... 74
B3 The Lifttopan(2. 204 . . . . . .. ... 79
B.4  The Bosonic sau(1.1) Subsectod . . . . . . . . . . ... 80
B.5  Planar Spectrum . . . . o o. oo e 81

4 Integrabilityl 95

W1 Inteerable Spin Chaind . . . . . . . . . . . . . ... 95
W2  OneLoop Inteerabilitsd . . . .« . o v oo e 101
W3  The Aleebraic Bethe Ansatd . . . . . o o v v oo 105
W4 Spectrumd . . ..o 113
k5 The Thermodynamic Timifl . . . . . . .o 115
L6 Stringing Spind . . . . ... 118
If,_lﬂ_igher-Looml 125
5.1 _The su(2[3) Bighth-BPS Sectod . . . . . . . . ... ... ... ....... 125
B2 TreeLevel . . . . . . 129
oo L. L 130

Bd Two-LOopd . . . o oo 134

s ThreeLoopd . . o . o 138
6 Spectrumd . . . ... 139

Iﬁ_%gher-Loon Integrabilityl 149
1

Higher-Loop Spin Chaind . . . . . . . .. .. ... ... ... ... ... .. 149
6.2__The su(2) Sector at Higher-Loopd . . . . . . . . . ... ... ... ..... 154
6.3 Spectriml . . . . 161
6.4 Lone-Ranee Bethe Ansatd . . . . . . . . o o o 165

6.5 Stringing Spins at Higher Loopd . . . . . . . . . .o 171
|__Conclusiond 177
[ OutlooX 181

[A_An Exampld 185
A1 Non-Planar Applicatiol . . . . . v o oo 185
A2 Planar Applicatiol . . . . . . ..o 186

IB__Spinors in Various Dimensiond 189

B.1_Four Dimensiond . . . . . . . . 189
B2 Six Dimensiond . . . . . . . ... 189
B3 Ten Dimensiond . . . . . . . . . ... 190

IC_SYM in Ten Dimensionsd 191

IC. 1 Ten-Dimensional Ganege Theorv in Supersnacd . . . . . . o o oo 191

IC.2__Ten-Dimensional Gange Theory in Componentd . . . . .. ... ... ... 192
I3 A =4 SYM from Ten Dimensiond . . . . .« . oot 193




Contents

ID_The Algebra 1(2,2]4)
ID.1_Commutation Relationd . . . . . .. .. ... ... ...

D2 Tabel

D3 The O

vadratic Casimid . . . . . . . .. .

ID.4_The Oscillator Representationl . . . . . . . o vovovv v

Referenced

vil

195
195
196
197
197

201
201
201
202
202
203

205
205
205
206
207



viii



Introduction

Probably the two most important advances in the deeper understanding of our world
in terms of theoretical physics were made at the beginning of the twentieth century: The
theory of general relativity and quantum mechanics. On the one hand, Einstein’s theory of
general relativity (GR) has replaced Newton’s theory of gravity and, in its original form, is
still the most accurate theory to describe forces between massive bodies. It brought about
a major change in the notion of space and time. Both were unified into spacetime which,
in addition, is curved by the masses that propagate on it. Two of the most important
conceptual improvements of GR are symmetry and locality. The symmetry of GR is called
diffeomorphism-invariance and allows to label points of spacetime in an arbitrary way, the
equations of GR do not depend on this. Furthermore, GR is a local field theory, there
is no action at a distance, but instead, just like in Maxwell’s Electrodynamics, forces are
mediated by a field.

On the other hand, there is Quantum Mechanics. It proposes a completely new notion
of particles and forces, both of which should be considered as two manifestations of the
same object. It also departed from a deterministic weltanschauung; a measurement is
inevitably probabilistic and moreover must be considered as an action which influences
the outcome of future measurements. Many aspects of quantum mechanics seem odd at
first and second sight and truly make sense only in a quantum field theory (QFT). QFT
introduced the notion of particle creation and annihilation, an essential element for local
interactions. The price that has to be paid are spurious divergencies due to particles
being created and annihilated at the same place and instant. It required some effort to
understand, reqularise and renormalise the divergencies in order to obtain finite, physical
results.

The first fully consistent physical QFT was Quantum Electrodynamics (QED), the
quantum counterpart of Electrodynamics. A guiding principle in the construction of
QED is, again, symmetry. Here, the symmetry is given by gauge transformations; they
allow to change some unphysical degrees of freedom of the theory by an arbitrary amount.
Consequently, QED is termed a gauge theory and, in particular, it has an Abelian U(1)
gauge group. Amplitudes in QED can be expanded in a coupling constant g related to the
fundamental charge of an electron. This perturbative treatment leads to Feynman dia-
grams which describe interactions in a rather intuitive fashion. Besides electromagnetism,
two other interactions between particles have been observed in particle accelerators: the
weak and the strong interactions. Let us discuss the second kind. The strong nuclear
force is responsible for the binding of nucleons to nuclei, which would otherwise disperse
due to their electromagnetic charge. One of the earlier candidates for a description of
these interactions was a string theory, a theory of string-like extended objects instead of
point-like particles. It explained some qualitative aspects of particle (excitation) spectra
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correctly; yet, soon it was found that it embodies some insurmountable theoretical as well
as phenomenological shortcomings and interest in it declined.

In the meantime, an alternative description of strong (and weak) interactions had
emerged. Like QED, it is based on a gauge theory, the so-called Quantum Chromody-
namics (QCD). The gauge group for strong interactions is SU(3), which may, for instance,
be inferred indirectly from the spectrum of hadrons. Here, symmetry is important for sev-
eral reasons. First of all, and even more so for QCD than for QED, symmetry is essential
for the theoretical consistency of the model. Furthermore, the particular gauge group of
QCD leads to a feature called asymptotic freedom/confinement. It implies that QCD is
effectively weak at very short distances, but becomes infinitely strong at larger dimensions
(on the scale of nucleons). On a qualitative level, this may be understood as follows: The
attraction/repulsion between two charges is mediated by flux lines. As opposed to QED,
in QCD flux lines attract each other and will form a small tube stretching between the
charges. The tube effectively behaves like a string with tension and binds the particles
irrespective of their distance. This explains why it is not possible to observe an individual
charged particle and leads us to confinement, which allows only uncharged particles to
propagate freely.

A peculiarity of generic gauge theories with gauge group U(N), which we will make
heavy use of, was observed by 't Hooft [1]: He derived a relationship between the topolog-
ical structure of a Feynman graph and its N-dependence. When 1/N is interpreted as a
coupling constant, he observed that the perturbative expansion in 1/N is very similar in
nature to the perturbative genus expansion in a generic interacting string theory (string
field theory).

Not only due to their mathematical beauty, the theory of General Relativity and
Quantum Mechanics/QFT have become the foundations of modern physics, but mainly
because of the accuracy to which they describe the world. On the one hand, gravity is a
very weak force and it requires a large amount of matter to feel its effects. Consequently,
GR describes the world at very large scales. For instance, GR was first confirmed when the
aberration of light near the perimeter of the sun was investigated. On the other hand, the
remaining three forces described by QFT’s are incomparably stronger. Therefore quantum
field theories chiefly describe the microcosm. In particular, the standard model of particle
physics, the union of the above three gauge theories, has led to some non-trivial predictions
which have been confirmed with unprecedented accuracy, e.g. the electric moment of the
electron and muon.

One of the major open problems of theoretical physics is to understand what happens
when an enormous amount of matter is concentrated on a very small region of space. For
example, this situation arises at the singularity of a black hole or shortly after the big
bang. To describe such a situation, we would need to combine General Relativity with
the concepts of quantum field theory and consider quantum gravity (QG). Despite the
better part of a century of research, such a unification correctly describing our world has
not yet been found. The main obstacle for the direct construction of a quantum theory of
gravity are the divergencies mentioned above, which cannot be renormalised in this case
and render the quantum theory meaningless.

Currently, the most favoured theory for a consistent quantisation of gravity is su-
perstring theory. It is a refinement of the (bosonic) string theory found in connection
with strong interactions and involves an additional symmetry which relates fermions and
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bosons, namely supersymmetry. Supersymmetry makes string theory very appealing to
theorists: It overcomes several of the shortcomings of bosonic string theory and restricts
the form such that there are only five types of string theories (ITA,1IB,I,HO,HE), which
were, moreover, argued to be equivalent via duality. This is a very good starting point for
a theory of everything, given that string theory not only naturally incorporates gravity,
but also gauge theories, the type of theory on which the standard model is based.

With the advent of superstring theory, supersymmetry has been applied to field theo-
ries as well, giving rise to beautiful structures. One important aspect is that many of the
divergencies observed in ordinary QFT’s are absent in supersymmetric ones. Indeed, this
is the case for the unique, maximally supersymmetric gauge theory in four spacetime di-
mensions, N' = 4 super Yang-Mills theory (N' =4 SYM) [2]. This remarkable feature [3],
allows the theory to be conformally invariant, even at the quantum level! Conformal sym-
metry is a very constraining property in field theory. Most importantly, two-point and
three-point correlation functions are completely determined by the scaling dimensions and
structure constants of the involved local operators. For instance, the two-point function
of a scalar operator O of dimension D must be of the form

(0(2) O(y)) = % (1)

where M is an unphysical normalisation constant. In two dimensions, conformal symmetry
is even more powerful, it makes a theory mathematically quite tractable and leads to a
number of exciting phenomena such as integrability. Consequently, it plays a major role
in the world-sheet description of string theory and was thoroughly investigated. In four
dimensions, however, conformal invariance appeared to be more of a shortcoming at first
sight: It makes the model incompatible with particle phenomenology, which might be the
reason why N' =4 SYM was abandoned soon after its discovery.

New interest in this theory was triggered by the AdS/CFEFT correspondence. Inspired by
the studies of string/string dualities and D-branes, Maldacena conjectured that IIB string
theory on the curved background! AdSs x S® should be equivalent to NV =4 SYM [AH-]
(see [ for comprehensive reviews of the subject) and thus substantiated the gauge/string
duality proposed earlier by 't Hooft. The correspondence is supported by the well-known
fact that the symmetry groups of both theories, PSU(2,2|4), match. Consequently, the
representation theory of the superconformal algebra psu(2,2|4) [8] was investigated more
closely [9,[10], and numerous non-renormalisation theorems were derived (see e.g. [I1]).
In addition, some unexpected non-renormalisation theorems, which do not follow from
psu(2,2|4) representation theory, were found [I2]. Once thought to be somewhat boring,
it gradually became clear that conformal N' = 4 gauge theory is an extremely rich and
non-trivial theory with many hidden secrets; eventually, the correspondence has helped
in formulating the right questions to discover some of them.

Yet, the conjecture goes beyond kinematics and claims the full dynamical agreement
of both theories. For example, it predicts that the spectrum of scaling dimensions D in
the conformal gauge theory should coincide with the spectrum of energies F of string

states
{D} = {E}. (2)

IThis manifold consists of the five-sphere and the five-dimensional anti-de Sitter spacetime, which is
an equivalent of hyperbolic space but with Minkowski signature.
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Unfortunately, like many dualities, Maldacena’s conjecture is of the strong/weak type:
The weak coupling regime of gauge theory maps to the strong coupling (i.e. tensionless)
regime in string theory and vice versa. The precise correspondence is given by

R* 1 dwgs

QEMN:A:ma N N (3)

where gy is the Yang-Mills coupling constant and o is the inverse string tension.? Fur-
thermore, N is the rank of the U(N) gauge group of Yang-Mills theory, A is the effective
't Hooft coupling constant in the large N limit, g, is the topological expansion parame-
ter in string theory and R is the radius of the AdSs x S® background. It is not known
how to fully access the strong coupling regime in either theory, let alone how to rigor-
ously quantise string theory on the curved background. Therefore, the first tests of the
AdS/CFT correspondence were restricted to the infinite tension regime of string theory
which is approximated by supergravity and corresponds to the strong coupling regime on
the gauge theory side. Gauge theory instanton calculations of four-point functions of op-
erators which are protected by supersymmetry were shown to agree with the supergravity
results see e.g. [13].

Despite a growing number of confirmations of the conjecture in sectors protected by
symmetry, the fundamental problem of a strong/weak duality remained. For example, the
AdS/CFT correspondence predicts that the scaling dimensions D of generic, unprotected
operators in gauge theory should scale as

D ~ /4 (4)

for large A, but how could this conjecture be tested? It was Berenstein, Maldacena and
Nastase (BMN) who proposed a limit where this generic formula may be evaded [I4]: In
addition to a large A, consider local operators with a large charge J on S°, whose scaling
dimension D is separated from the charge J by a finite amount only. More explicitly, the
limit proposed by BMN is
. ;A .

A J — o0 with N = 5 and D —J finite. (5)
In this limit, the AdSs x S® background effectively reduces to a so-called plane-wave
background [I5] on which the spectrum of string modes can be found exactly and the
theory can be quantised [I6]. Remarkably, the light-cone energy E. of a string-mode
excitation

Eo=vV1+Xn2=14+3\n*+... (6)

has a perturbative expansion at a small effective coupling constant \'. As the light-cone
energy corresponds to the combination D — J in gauge theory, suddenly the possibility of
a quantitative comparison for unprotected states had emerged! Indeed, BMN were able to
show the agreement at first order in X for a set of operators. Their seminal article [I4] has
sparked a long list of further investigations and we would like to refer the reader to [I7]
for reviews. Let us only comment on one direction of research: In its original form, the
BMN limit was proposed only for non-interacting strings and gauge theory in the planar

2The actions are inversely related to these constants, Syym ~ 1/ ggM and Sgtring ~ 1 /a/. Therefore,
quantum effects are suppressed at small gy, and small o’ in the respective theories.
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limit. Soon after the BMN proposal, it was demonstrated that also non-planar corrections
can be taken into account in gauge theory [I8,[9], they correspond to energy shifts due
to string interactions [20]. In gauge theory, the effective genus counting parameter in
the so-called double-scaling limit is go = J?/N. The first order correction in X and g3
was computed in [2IL22] and was argued to agree with string theory [2324]. This is yet
another confirmation of the AdS/CFT correspondence, but for the first time within an
interacting string theory!

In the study of the BMN correspondence, the attention has been shifted away from
lower dimensional operators to operators with a large number of constituent fields [I8[T9,
2122/25). There, the complications are mostly of a combinatorial nature. It was therefore
desirable to develop efficient methods to determine anomalous dimensions without having
to deal with artefacts of the regularisation procedure. This was done in various papers,
on the planar [T425-28 and non-planar level [T8,T921,22 29 30], extending earlier work
on protected half-BPS BIH33] and quarter-BPS operators [34]. In [B5] it was realised,
following important insights in [B6,B7], that these well-established techniques can be con-
siderably simplified and extended by considering the Dilatation Operator. The dilatation
operator ® is one of the generators of the conformal algebra and it measures the scaling
dimension D of a local operator? O

DO=DO. (7)

In general, there are many states and finding the scaling dimension is an eigenvalue
problem which requires to resolve the mixing of states. Once the dilatation operator has
been constructed, it will generate the matrix of scaling dimensions for any set of local
operators of a conformal field theory in a purely algebraic way (in App. [Al we present an
introductory example of how to apply the dilatation operator). What is more, scaling
dimensions can be obtained exactly for all gauge groups and, in particular, for the group
U(N) with finite N [38]. Even two or higher-loop calculations of anomalous dimensions,
which are generically plagued by multiple divergencies, are turned into a combinatorial
exercise! Using the dilatation operator techniques, many of the earlier case-by-case studies
of anomalous dimensions [33LB39-46] were easily confirmed [38]. They furthermore enabled
a remarkable all-genus comparison between BMN gauge theory and plane-wave string
theory [A7]. The subject of this dissertation is the construction and investigation of the
dilatation operator in N' = 4 SYM, a conformal quantum field theory, in perturbation
theory.

Classical scaling dimensions of states are easily found by counting the constituent fields
weighted by their respective scaling dimensions. It is just as straightforward to construct
the classical dilatation operator to perform this counting. Scaling dimensions in a field
theory generally receive quantum corrections, D = D(g) and consequently the dilatation
operator must receive radiative corrections ® = D(g), too. In the path integral framework
there will be no natural way to obtain quantum corrections to the dilatation operator;
we will have to derive them from correlators, for example from two-point functions. Now
what is the benefit in considering the dilatation operator if a conventional calculation
uses two-point correlators as well? There are two major advantages: Firstly, the dilatation
generator is computed once and for all, while a two-point function will have to be evaluated

3To avoid confusion, we will later speak of ‘states’ instead of local operators.
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for each pair of states (unless one makes use of some effective vertex e.g. [2122]). Secondly,
the dilatation operator computes only the scaling dimension D(g). The two-point function
also includes a contribution M (g) from the normalisation of states. These two quantities
will have to be disentangled before the scaling dimension can be read off from the two-point
function (). Here, a complicating issue is that in general the normalisation coefficient
M (g) obtained in field theory is divergent.

A radiative correction to the dilatation operator in the context of N' = 4 SYM has
first been computed in [AR,B5].# This one-loop correction was restricted to the sector of
states composed from the six scalar fields of the theory only, the so-called s0(6) subsector,
on which the one-loop dilatation operator closes.

However, there is nothing special about the scalar fields, except maybe their conceptual
simplicity. Generic local operators can as well consist of fermions or gauge fields (in
the guise of a field strength). What is more, we can also apply an arbitrary number
of (covariant) derivatives to the basic constituent fields. In principle, one could now
compute the one-loop dilatation operator for all fields (we shall denote a generic field
with derivatives by the symbol W). This is feasible, but certainly much more involved
than the calculations for the s0(6) subsector due to infinitely many types of fields WV and a
complicated structure of spacetime indices in the expected conformal two-point function,
see e.g. [B0L28,49].

In B8] a different approach to obtain contributions to the dilatation generator has
been proposed: Just as in field theory, all contributing diagrams to a two-point function
are written down. The most complicated part of their computation is to evaluate the
spacetime integrals due to vertices of the Feynman diagram. Nevertheless, the structural
result of the integrals is known; it is some power of the distance |x —y|* of the local oper-
ators multiplied to some function f(e) of the regulator.” The power a can be inferred by
matching dimensions, but the function f(€) is a genuine result of the integral. The crucial
idea is not to compute the function, but to assume the most general singular behaviour
when the regulator is removed, e.g. f(€) = c¢_1/e + co + c1e + ... . This allows to write
down the contributions to the dilatation operator in terms of the unknown coefficients cy.
Now one can investigate the structure of the dilatation generator to simplify and combine
the contributions. Usually, it turns out that there are only a few independent coefficients
which actually contribute to anomalous dimensions. The proposed trick is to make use of
known results or other constraints to determine these coefficients.

To derive the complete one-loop dilatation operator, it is useful to consider its sym-
metry. A common practice in physics is to derive some result only for one component of a
multiplet of objects; symmetry will then ensure that the result applies to all components
of the same multiplet. The same simplification can be applied to the one-loop dilatation
operator: It was shown in [B] that superconformal symmetry considerably reduces the
number of independent coefficients to just a single infinite sequence. This sequence was
subsequently evaluated in field theory. Furthermore, it was conjectured that this last
step might be unnecessary and making full use the symmetry algebra would constrain
the complete one-loop dilatation operator uniquely up to an overall constant (the coupling
constant). This is indeed the case as we shall prove in this work. Put differently, su-

“Note that the correction is precisely given by the effective vertices found earlier in [T9ET].
For integrals with open spacetime indices the result is a linear combination of such terms with
spacetime indices on (z — y), or 7,,.
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perconformal symmetry and some basic facts from field theory (i.e. the generic structure
of a one-loop contribution) completely determine all two-point functions at the one-loop
level! To outline the form of the dilatation operator, let us just note that the radiative
correction acts on two fields at a time. The contribution ;5 from a pair of fields depends
on their ‘total spin’® j; it is proportional to the harmonic number

D1y ~h(j) =)

k=0

: (8)

| =

Inspired by the strongly constraining nature of the superconformal algebra at one-loop,
it is natural to expect it to be very powerful at higher-loops as well. This is a very exciting
prospect, since direct higher-loop computations are exceedingly labourious and not much
is known beyond the one-loop level. Although one might think that one-loop accuracy
is sufficient for many purposes, one should keep in mind that it is only the first non-
trivial order. Easily one can imagine some unexpected behaviour at next-to-leading order
and, indeed, we shall encounter an example of a mismatch starting only at three-loops.
Furthermore, taken that the one-loop dilatation operator is completely constrained, there
is hardly any freedom for the quantum theory to decide in either direction. Therefore,
a one-loop computation does not provide much information about the quantum theory
itself.

The trick of writing down the most general structure for the dilatation operator with a
number of undetermined coefficients can be used at higher-loops as well. We will, however,
not try to generalise the complete dilatation operator to higher-loops. The derivation of
the one-loop computation depends heavily on a particular feature of perturbation theory
which allows us to restrict to classical superconformal invariance. Unfortunately, it does
not apply at higher-loops and we would be left with a very large number of independent
coefficients to be fixed. To obtain some higher-loop results with as little work as possible,
we may restrict to a subsector. The s0(6) subsector of scalar fields, however, is not
suitable, there will be mixing with states involving fermions and other fields; only at
one-loop it happens to be closed. To proceed to higher-loops, one could therefore restrict
to an even smaller subsector. This so-called su(2) subsector consists of only two charged
scalar fields (which we shall denote by Z and ¢) and charge conservation protects the
states from mixing with more general states. Here we can derive the two-loop dilatation
operator by employing some known results without performing a full-fledged two-loop
field theory computation [38].

We cannot go much further at the moment because there are no known results besides
a few basic facts from representation theory. Symmetry is not very constraining in the
su(2) sector because the dilatation operator is abelian and not part of a bigger algebra.
A better choice is the su(2|3) subsector: It consists of only five fields and the symmetry
algebra includes the dilatation generator. These properties make it both, convenient to
handle and sufficiently constraining. Furthermore, not only the dilatation generator, but
also the other generators of the algebra receive radiative corrections, a generic feature of
the higher-loop algebra. In [B1] this subsector was investigated in the planar limit and

5The total spin is a quantity of the representation theory of the superconformal symmetry similar to
the total spin of the rotation group.
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up to three-loops with an astonishing result: Although there are hundreds of independent
coefficients at three-loops, closure of the symmetry algebra

[30(9),In(9)} = Fhn Ir(9) 9)

constrains nearly all of them in such a way that only a handful remain. Moreover, all
of them can be related to symmetries of the defining equations. Again, symmetry in
combination with basic field theory provides a unique answer.

Spectral studies of all the above radiative corrections to the dilatation operator reveal
a property with tremendous importance: One finds a huge amount of pairs of states O
whose scaling dimensions are exactly degenerate in the planar limit

D, =D_. (10)

This would not be remarkable if there was an obvious symmetry to relate those states.
This symmetry, however, cannot be superconformal symmetry (or any subalgebra) for
two reasons. Firstly, the degeneracy is actually broken by non-planar corrections while
superconformal symmetry is exact. Secondly, the degenerate states have a different parity
which is preserved by superconformal transformations. Here, as in the remainder of
this thesis, parity refers to complex conjugation of the SU(N) gauge group. To explain
the degeneracy we need some generator Q which inverts parity and commutes with the
dilatation generator.

This curiosity of the spectrum is merely the tip of an iceberg; it will turn out that the
conjectured generator Q is part of an infinite set of commuting charges due to integrability.
Integrability of a planar gauge theory will be the other major topic of this dissertation.
The statement of integrability is equivalent to the existence of an unlimited number of
commuting scalar charges Q,

[Qm Qs] - [37 Qr] = 0. (11)

The planar dilatation operator 6® = ¢?Q, is related to the second charge Q,. It turns
out that the odd charges are parity odd, therefore the existence of the charge Q@ = Oj
explains the pairing of states. Only a few states have no partner and are unpaired.

Integrable structures play a crucial role in two dimensional field theories. One of the
many intriguing features of two-dimensional CFT’s is that they are intimately connected
to integrable 240 dimensional lattice models in statistical mechanics or, equivalently, to
141 dimensional quantum spin chains. The infinite set of charges is directly related to
the infinite-dimensional conformal (Virasoro) algebra in D = 2. Given the huge success in
understanding CFT’s in two dimensions, one might hope that at least some of the aspects
allowing their treatment might fruitfully reappear in four dimensions. One might wonder
about standard no-go theorems that seem to suggest that integrability can never exist
above D = 2. These may be potentially bypassed by the fact that there appears to be a
hidden ‘two-dimensionality’ in U(N) gauge theory when we look at it at large N where
Feynman diagrams can be classified in terms of two-dimensional surfaces.

The first signs of integrability in N/ = 4 gauge theory were discovered by Minahan
and Zarembo [E8]. They found that the planar one-loop dilatation operator in the s0(6)
sector is isomorphic to the Hamiltonian of a s0(6) integrable quantum spin chain. The
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analogy between planar gauge theory and spin chains is as follows: In the strict large N
limit, the structure of traces within local operators cannot be changed and therefore we
may consider each trace individually or, for simplicity, only single-trace states. We then
interpret the trace as a cyclic spin chain and the fields within the trace are the spin
sites. For example, the su(2) sector with two fields Z, ¢ maps directly to the Heisenberg
spin chain, in which the spin at each site can either point up (Z) or down (¢). For
the s0(6) sector one considers a more general spin chain for which the spin can point
in six distinct abstract directions. The spin chain Hamiltonian alias the planar one-loop
dilatation generator acts on the spin chain and returns a linear combination of states. The
action is of a nearest-neighbour type, it can only modify two adjacent spins at a time.
Likewise the higher charges Q, act on r adjacent spins and are therefore local (along the
spin chain).

Integrable spin chains had appeared before in four-dimensional gauge theories through
the pioneering work of Lipatov on high energy scattering in planar QCD [52]. The model
was subsequently identified as a Heisenberg s[(2) spin chain of non-compact spin zero
[B3]. More recently, and physically closely related to the present study, further integrable
structures were discovered in the computation of planar one-loop anomalous dimensions
of various types of operators in QCD [B4] (see also the review [55]).”

The full symmetry algebra of SYM is neither s0(6) nor sl(2), but the full supercon-
formal algebra psu(2,2|4). If the discovered integrable structures are not accidental, we
should expect that the so(6) results of 8] and the s[(2) results suggested from one-loop
QCD BABS] (see also E3,ET]) can be combined and ‘lifted’ to a full psu(2, 2|4) super spin
chain. Indirect evidence can be obtained by the investigation of the spectrum of anoma-
lous dimensions. As we have mentioned above, the occurrence of pairs of states hints
at the existence of at least one conserved charge. Indeed, the spectrum of the complete
one-loop planar dilatation operator displays many such pairs. Obviously, they are found
in the s0(6) and s[(2) subsectors where integrability is manifest, but also generic states do
pair up. Subsequently, it was shown in [A8] that the complete one-loop planar dilatation
operator is isomorphic to a psu(2,2|4) supersymmetric spin chain.

Integrability is not merely an academic issue, for it opens the gates for very precise tests
of the AdS/CFT correspondence. It is no longer necessary to compute and diagonalise
the matrix of anomalous dimensions. Instead, one may use the Bethe ansatz (c.f. [59] for a
pedagogical introduction) to obtain the one-loop anomalous dimensions directly [48,58].
In the thermodynamic limit of very long spin chains, which is practically inaccessible
by conventional methods, the algebraic Bethe equations turn into integral equations.
With the Bethe ansatz at hand, it became possible to compute anomalous dimensions of
operators with large spin quantum numbers [60).

Via the AdS/CFT correspondence, these states correspond to highly spinning string
configurations. Even though quantisation of string theory on AdSs; x S° is an open
problem, these spinning strings can be treated in a classical fashion, c.f. [61162], when
interested in the leading large spin behaviour. It was shown by Frolov and Tseytlin [6364]
that quantum (1/ \/X) corrections in the string theory sigma model are suppressed by
powers of 1/J, where J is a large spin on the five-sphere S®. In direct analogy to the

"While QCD is surely not a conformally invariant quantum field theory [56], it still behaves like one
as far as one-loop anomalous dimensions are concerned.
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plane-wave limit, one obtains an effective coupling constant

A

)\,:ﬁ.

(12)
What makes the low-energy spinning string configurations very appealing is that their
energies permit an expansion in integer powers of X' around X' = 0 [65]. Just as in the
case of the plane-wave/BMN limit one can now compare to perturbative gauge theory in
a quantitative fashion. It was found that indeed string energies and gauge theory scaling
dimensions agree at first order in A" [66,67]. Moreover, the comparison is not based on
a single number, but on a function of the ratio of two spins. Except in a few special
cases, this function is very non-trivial; it involves solving equations of elliptic or even
hyperelliptic integrals. The agreement can also be extended to the commuting charges
in (), c.f. [6870]. These are merely tests of the spinning string correspondence and
there have been two recent proposals to prove the equivalence of classical string theory
and perturbative gauge theory in the thermodynamic limit. The proposal of Kruczenski is
based on comparing the string Hamiltonian to the dilatation operator [[TH73] (see also the
related work [74]) while Kazakov, Marshakov, Minahan and Zarembo find a representation
of string theory in terms of integral equations and compare them to the Bethe ansatz [75].
For a review of the topic of spinning strings please refer to [76].

We have argued that integrability of the planar gauge theory is, on the one hand,
an interesting theoretical aspect of N' = 4 SYM and, on the other hand, it allows for
precision tests of the AdS/CFT correspondence. So far, however, integrability is only
a firm result at the one-loop level. At higher-loops, it may seem to be inhibited for
the following simple reason: The Hamiltonian of an integrable spin chain is usually of
nearest-neighbour type (as for one-loop gauge theories) or, at least, involves only two,
non-neighbouring spins at a time (as for the Haldane-Shastry and Inozemtsev integrable
spin chains [I7[78]). This structure may appear to be required by the elastic scattering
properties in integrable models. In contrast, higher-loop corrections to the dilatation
generator require interactions of more than two fields. Moreover, the number of fields is
not even conserved in general (as in the su(2|3) subsector). Nevertheless, there are two
major reasons to believe in higher-loop integrability: Firstly, the observation of pairing
of states in the spectrum of anomalous dimensions has been shown to extend to at least
three-loops in the su(2|3) subsector [BI] (see [[9] for the related issue of integrability in
the BMN matrix model)

Dy(g) =D_(9). (13)

At one-loop this degeneracy is explained by integrability, but there is no obvious reason
why it should extend to higher-loops unless integrability does.® Moreover, it is possible to
construct a four-loop correction in the su(2) sector with this property [B8,&T]. Secondly,
one might interpret the AdS/CFT correspondence as one important indication of the
validity of integrability: The classical world sheet theory, highly non-trivial due to the
curved AdSs x S° background, is integrable [82-84] (for the simpler but related case of
plane-wave backgrounds see also [85,86] ).

8Pairing may appear to be a weaker statement, but there are some indications that it is sufficient to
ensure integrability, see e.g. [RO,BY].
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It seems that spin chains with interactions of many spins or dynamic spin chains with
a fluctuating number of spin sites have not been considered so far.” Yet, their apparent
existence BY[TIRIET] is fascinating. The novelty of such a model, however, comes along
with a lack of technology to investigate it. For instance, we neither know how to construct
higher commuting charges or even prove integrability, nor is there an equivalent of the
Bethe ansatz to push the comparison with spinning strings to higher loops.

A first step to overcome those difficulties has been taken by Serban and Staudacher
who found a way to match the Inozemtsev integrable spin chain [{8] to the three-loop
results in gauge theory [87]. The Bethe ansatz for the Inozemtsev spin can thus be
used to obtain exact planar three-loop anomalous dimensions in gauge theory. They
have furthermore pushed the successful comparison of [66] to higher-loops and found that
the agreement persists at two-loops. The agreement was subsequently generalised to a
matching of integral equations or Hamiltonians in [75,[72].

However, at three-loops the string theory prediction turned out not to agree with gauge
theory. This parallels a discrepancy starting at three-loops which has been observed earlier
in the near plane-wave/BMN correspondence [88]. These puzzles have not been resolved
at the time this work was written and we shall comment on some possible explanations,
such as an order of limits problem and wrapping interactions, in the main text. Here we
mention only one, even if unlikely: The AdS/CFT correspondence might not be exact
after all. Irrespective of the final word on this issue, we have learned that it is not always
sufficient to restrict to the leading, one-loop order, but there are interesting and relevant
effects to be found at higher-loops.

To deepen our understanding of the string/gauge correspondence, whether or not
exact, it would be useful to know the quantitative difference. Unfortunately, starting at
four-loops, the Inozemtsev spin chain has a scaling behaviour in the thermodynamic limit
which does not agree with the one of string theory; consequently it makes no sense to
compare beyond three-loops. However, there is a proposal for an integrable spin chain
with the correct scaling behaviour even at four-loops [8I]. In [R9] a Bethe ansatz is
presented which accurately reproduces the spectrum of the four-loop (and even five-loop)
spin chain. What is more, the Bethe ansatz has a natural generalisation to all-loops, which
incidentally reproduces the BMN energy formula (). In principle, this allows to compute
scaling dimensions as a true function of the coupling constant'® and thus overcome some
of the handicaps of perturbation theory. One may hope that the ansatz gives some insight
into gauge theory away from the weak coupling regime.

Note added: This work is based on the author’s PhD thesis, which was submitted to
Humboldt University, Berlin.

9The higher charges of an integrable spin chain are indeed of non-nearest neighbour type. Nevertheless,
they cannot yield higher-loop corrections because they commute among themselves, whereas the higher-
loop corrections in general do not.

10The ansatz cannot deal with short states correctly, it should only be trusted when the number of
constituent fields is larger than the loop order.
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Overview

This thesis is organised as follows: The main text is divided into six chapters, in the

first two we investigate generic aspects of the dilatation operator and in the remaining
four we will explicitly construct one-loop and higher-loop corrections and investigate their
integrability.

m

B

)

We start by presenting the N/ = 4 supersymmetric field theory and review some useful
results concerning the representation theory of the superconformal algebra psu(2,2|4)
on which we will base the investigations of the following chapters.

We will then investigate some scaling dimensions and introduce the dilatation operator
as a means to measure them. Most of the chapter is devoted to the discussion of various
aspects of the dilatation operator and its structure. These include the behaviour in
perturbation theory and how one can consistently restrict to certain subsectors of
states in order to reduce complexity. From an explicit and a conceptual computation
of two-point functions in a subsector we shall learn about the structure of quantum
corrections to the dilatation generator. Finally, we will investigate the planar limit
and introduce some notation.

Having laid the foundations, we will now turn towards explicit algebraic constructions.
In this chapter we will derive the complete one-loop dilatation operator of NV = 4 SYM.
The derivation is similar to the one presented in the article [50], but here we improve
it by replacing the field theory calculations by algebraic constraints.

Next, we introduce the notion of integrability and a framework to investigate integrable
quantum spin chains. We will then prove the integrability of the just derived dilatation
generator in the planar limit. We extend the results of the article [58] by a proof
of a Yang-Baxter equation. This allows us to write down the Bethe ansatz for the
corresponding supersymmetric quantum spin chain.

At this point, the investigations of one-loop scaling dimensions is complete and we
proceed to higher-loops. For simplicity we will restrict to a subsector with finitely
many fields and the planar limit. We demand the closure of the pertinent symmetry
algebra, determine its most general three-loop deformations [21] and find an essentially
unique result. An interesting aspect of the deformations is that they do not conserve
the number of component fields within a state.

In the final chapter we consider integrability at higher-loops and argue why it should
apply to planar N' = 4 SYM. We will then construct deformations to the Heisenberg
spin chain to model higher-loop interactions; they turn out to be unique even at five-
loops. Finally, we present an all-loop Bethe ansatz which reproduces the energies of
this model.
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The developed techniques are illustrated by several sample calculations at various places in
the text. In particular, we will present two important computations of scaling dimensions
in the context of the AdS/CFEFT correspondence. In Sec. B we shall compute the genus-
one energy shift of two-excitation BMN operators to be compared to strings on plane
waves. The agreement represents the first dynamical test including string interactions. In
Sec. we consider classical spinning strings on AdSs; x S® and compare them to states
with a large spin of s0(6) to find an intricate functional agreement.

We then conclude and present a list of interesting open questions. To expand on the
main text we present some miscellaneous aspects in the appendices:

An example to illustrate the application of the dilatation operator, at finite /N or in
the planar limit.

Spinor identities in four, six and ten dimensions.

BE B

A short review of the ten-dimensional supersymmetric gauge theory, either in super-
space or in components.

The algebra u(2,2[4), its commutation relations and the oscillator representation.

B 8

Some Mathematica functions to deal with planar interactions in the su(2) subsector
which can be used in the application and construction of the dilatation operator.

=

The harmonic action to compute one-loop scaling dimensions in a more convenient
fashion than by using the abstract formula ().
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Chapter 1

Field Theory and Symmetry

In this chapter we will discuss various, loosely interrelated aspects of N = 4 super
Yang-Mills theory, the superconformal algebra and its representation theory. We lay the
foundations for the investigations of the following chapters and introduce our notation,
conventions as well as important ideas.

We will start with a review of classical N’ =4 SYM in Sec. [T and its path-integral
quantisation in Sec. [[2 In the following two sections we consider the gauge group (a
generic group in Sec. or a group of large rank in Sec. [[4) in a quantum field theory.
In Sec. we introduce the superconformal algebra, a central object of this thesis. The
remainder of this chapter deals with representation theory. Firstly, we present our notion
of fields and local operators and relate it to the algebra in Sec. [CO. In Sec. [CATY we
consider generic highest-weight modules and special properties of multiplets close the
unitarity bounds. The multiplet of fields and the current multiplet is investigated in
Sec. [LAICTT Finally, in Sec. [CTA we review correlation functions in a conformal field
theory.

1.1 AN = 4 Super Yang-Mills Theory

We start by defining the field theory on which we will focus in this work, N =4
maximally supersymmetric gauge theory in four dimensions [2].! It consists of a covariant
derivative D constructed from the gauge field A, four spinors ¥ as well as six scalars
@ to match the number of bosonic and fermionic on-shell degrees of freedom. We will
collectively refer to the fields by the symbol W 2

Wi = Dy, Woo, U2, D). (1.1)
Our index conventions are as follows: Greek letters refer to spacetime so(4) = su(2) xsu(2)
symmetry.® Spacetime vector indices p, v, ... take four values, spinor indices «, 3, ... of
one su(2) and spinor indices @&, 3, ... of the other su(2) take values 1,2. Latin indices

Tt is convenient to derive the four-dimensional theory with N' = 4 supersymmetry from a ten-
dimensional theory with A" = 1 supersymmetry. In App. [d we shall present this ancestor theory.

20f course, the covariant derivative D is not a field. Instead of the gauge field A, we shall place it
here so that all ‘fields” YW have uniform gauge transformation properties.

3As we are dealing with algebras only, global issues such as the difference between a group and its
double covering need not concern us.
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signature | n** 9™  spacetime sym. internal sym.
physical | (3,1) (6,0) s((2,C) su(4)
Euclidian | (4,0) (5,1)  sp(1) x sp(1) s((2,H)
Minkowski, non-compact | (3,1) (4,2) s((2,C) su(2,2)
maximally non-comapct | (2,2) (3,3) sl(2,R) x sl(2,R) sl(4,R)
complex 6 sl(2,C) xsl(2,C) sl(4,C)

Table 1.2: Possible signatures of spacetime, internal space and symmetry algebras.

be