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Abstract

We discuss a new class of non-renormalization theorems in N = 4 and N = 2 Super-Yang-Mills

theory, obtained by using a superspace which makes a lower dimensional subgroup of the full

supersymmetry manifest. Certain Wilson loops (and Wilson lines) belong to the chiral ring of

the lower dimensional supersymmetry algebra, and their expectation values can be computed

exactly.
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1 Introduction

In four dimensional theories with extended supersymmetry, it is simple to make an N = 1
subgroup of the supersymmetries manifest and possible, albeit more complicated, to make
N = 2 manifest using harmonic superspace. The advantages of an off-shell formulation
which make as much supersymmetry as possible manifest include demonstrations of non-
renormalization theorems as well as calculational efficiency.

In the following, we will make supersymmetries other than N = 1 manifest, but
not by using a harmonic superspace. Instead, we will make use of the fact that four-
dimensional extended supersymmetry algebras have lower-dimensional subalgebras with
four supercharges and an associated superspace which is a dimensional reduction of the
familiar four-dimensional N = 1 superspace. By a lower dimensional subalgebra, we
mean a subalgebra which does not include momenta in all four directions. Despite the
simplicity of the lower dimensional superspace, a useful part of the full supersymmetry
which does not belong to four dimensional N = 1 is realized off-shell.

One of the general features of such lower dimensional superspaces is that certain
kinetic terms (in directions transverse to the superspace) appear in a superpotential rather
than a Kähler potential. Furthermore gauge connections in these directions are bottom
components of chiral superfields. As usual, supersymmetry leads to strong constraints
on the holomorphic sector involving chiral superfields, which does not include gauge
connections and kinetic terms in the usual four-dimensional N = 1 formalism.

In the case of N = 4 super Yang-Mills theory, the lower dimensional superspace
formalism which we will use makes certain supersymmetries manifest which are not ac-
cessible to either N = 1 superspace or even N = 2 harmonic superspace. Specifically,
we will express the N = 4 theory in terms of N = 4, d = 1 superspace. This will allow
us to prove and extend a non-renormalization theorem for BPS Wilson loops which was
conjectured in [1]. A more detailed discussion appeared in [2].

In the case of four dimensional N = 2 super Yang-Mills theories, we will use N = 2,
d = 3 superspace to obtain exact results for expectation values of straight BPS Wilson
lines with scalar components of hypermultiplets at the endpoints. These expectation
values are non-trivial on the Higgs branch, and can be expressed exactly in terms of
expectation values of local operators parameterizing the Higgs branch [3].

2 Warming up: A free N = 2, d = 4 hypermultiplet

in N = 2, d = 3 superspace

The first example of supersymmetric action written using lower dimensional superspace
appeared in [4]. Since then, this formalism has been applied to many supersymmetric
theories in various different contexts [5, 6, 7, 8, 9, 10, 11]. We now describe a very simple
example, in which a free N = 2 hypermultiplet in four dimensions is described by an
action in N = 2, d = 3 superspace.

In the absence of central extensions, the N = 2, d = 4 supersymmetry algebra is

{Qiα, Q̄j
β̇} = 2σµ

αβ̇
Pµδ

j
i , {Qiα, Qjβ} = {Q̄i

α̇, Qj

β̇
} = 0 , (2.1)
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where i = 1, 2. Defining

Qα ≡
1

2
(Q1α + Q̄1

α̇) + i
1

2
(Q2α + Q̄2

α̇) , (2.2)

one finds an N = 2, d = 3 subalgebra,

{Qα, Q̄β} = 2σM
αβPM M = 0, 1, 3

{Qα, Qβ} = {Q̄α, Q̄β} = 0 . (2.3)

A four-dimensional N = 2 theory can be written in terms of the associated N = 2, d = 3
superspace. This superspace is equivalent to the dimensional reduction of the familiar
N = 1, d = 4, and is spanned by x0, x1, x3, θ, θ̄. The N = 2, d = 3 superfields necessary
to describe a N = 2, d = 4 theory have the general form F (x0, x1, x3, θ, θ̄|x2), where the
spatial coordinate x2 transverse to the superspace should be thought of as a continuous
index labeling an infinite number of N = 2, d = 3 superfields.

A free massless N = 2, d = 4 hypermultiplet can be built from two N = 2, d = 3
chiral multiplets Φ1(x

2) and Φ2(x
2), which are annihilated by the superspace derivative

D̄α ≡ −
∂

∂θ̄α
− iθβσµ

βα∂µ, µ = 0, 1, 3 . (2.4)

The action is

S =

∫

dx2

∫

dx0dx1dx3

[
∫

d4θ (Φ̄1Φ1 + Φ̄2Φ2) +

∫

d2θ Φ1
∂

∂X2
Φ2 + c.c.

]

. (2.5)

Note that the Kähler potential by itself only gives rise to kinetic terms in the 0, 1, 3
directions belonging to the superspace. Remarkably, the kinetic terms in the x2 direction
arise from the superpotential rather than the Kähler potential. Herein lies the advantage
of a lower dimensional superspace over the familiar N = 1, d = 4 superspace: one can
exchange Kähler terms for superpotential terms. This is a strong hint that the lower-
dimensional superspace formalism can be used to find new non-renormalization theorems.
We will now discuss two examples of non-renormalization theorems which have been found
using the lower-dimensional superspace formalism.

3 Chiral Wilson loops in N = 4 SYM

The four-dimensional N = 4 supersymmetry algebra contains a one dimensional N =
4 subalgebra containing four real supercharges. The superspace associated with this
subalgebra is equivalent to a dimensional reduction of familiar four dimensional N =
1 superspace, and is spanned by t, θ, θ̄. When writing the four-dimensional N = 4
theory in this superspace, a generic superfield has the form F (t, θ, θ̄|~x), where the spatial
coordinates ~x = x1,2,3 are continuous indices labeling an infinite number of N = 4, d = 1
superfields. The superfield content of the theory consists of chiral superfields Φi(~x) for
i = 1, 2, 3 and vector superfields V (~x). Although this is similar to the superfield content
in the more familiar N = 1, d = 4 superspace, the way component fields are distributed
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among the N = 4, d = 1 superfields is very different, as we will see shortly. The action
in N = 4, d = 1 superspace is

S =
1

g2

∫

d3x

∫

dt

{
∫

d2θ tr

[

WαW
α + ǫijk(Φi

∂

∂xj
Φk +

2

3
ΦiΦjΦk)

]

+ c.c.

+

∫

d4θ tr Ω̄ie
V Ωie

−V

}

, (3.1)

where

Ωi ≡ Φi + e−V (i∂i − Φ̄i)e
V . (3.2)

Note that the index i = 1, 2, 3 labeling chiral superfields has been “identified” with the
spatial index (similar to the identification of spatial and lie algebra indices in the ’t Hooft
Polyakov monopole). The bottom components of the chiral superfields are

Φi|θ=θ̄=0 = Ai + iX i , (3.3)

where Ai are gauge connections in the spatial directions transverse to the superspace, and
X i are three (out of the six) adjoint hermitian scalars. The rest of the adjoint scalars are
contained in the vector superfield. Under gauge transformations parameterized by chiral
superfields Λ(~x),

eV → eiΛ†

eV e−iΛ, Φi → eiΛΦie
−iΛ − eiΛi

∂

∂xi
e−iΛ . (3.4)

A special class of Wilson loops are chiral superfields in N = 4, d = 1 superspace,

W(C) ≡ trP
(

ei
∮

C
Φidxi

)

, (3.5)

which have bottom components

W(C)|θ=θ̄=0 = trP
(

ei
∮

C
(Ai+iXi)dxi

)

. (3.6)

The latter belong to a class of BPS Wilson loops in the N = 4 theory originally discussed
in [1]. These in turn belong to a class of “locally BPS” Wilson loops containing adjoint
scalars which were introduced in the context of AdS/CFT duality [12, 13, 14, 15]. The
loops (3.6) preserve 1/4 or 1/8 of the 16 supersymmetries of the theory, depending on
whether the path C lies in a two or three-dimensional subspace. In [1], it was conjectured
that the expectation values of 1/4 BPS loops are un-renormalized in the large N limit.
This conjecture was based on perturbative calculations as well as strong coupling results
obtained using the AdS/CFT duality. In fact one can show that both the 1/4 and 1/8
BPS loops are not renormalized, even at finite N , by using the fact that they belong to
a chiral ring with respect to N = 4, d = 1 supersymmetry. The chiral ring is constrained
by the superpotential, which in this case resembles a Chern-Simons action and has a
three-dimensional diffeomorphism invariance.

Consider a variation

Φi(~x) → Φi(~x) + ǫgi,~x[Φ] , (3.7)
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where the small parameter ǫ is a chiral superfield and gI,~x is an arbitrary functional of
chiral superfields. The equations of motion, δS = 0, which follow from this variation are

D̄2tr
(

gi,~x[Φ](e−V (~x)Ω̄i(~x)eV (~x) − Ωi(~x))
)

+ trgi,~x[Φ]
δW

δΦi(~x)
= A , (3.8)

where A is a possible anomalous term which vanishes classically. We will choose gi,~x[Φ]
to be a spatial Wilson line on a contour C~x which begins and ends at the point ~x,

gi,~x[Φ] = W (C, ~x) = P exp

(

i

∮

C~x

~Φ · d~y

)

. (3.9)

Equation (3.8) then becomes

D̄2(· · · ) = tr (W (C, ~x)ǫijkFjk(~x)) + A , (3.10)

where

Fjk = ∂jΦk − ∂kΦj + i[Φj , Φk] . (3.11)

The relation (D̄2J)|θ=θ̄=0 = [Q̄, [Q̄, J |θ=θ̄=0] implies that 〈D̄2J |θ=θ̄=0〉 = 0 in a supersym-
metric vacuum. Therefore (3.10) implies

〈

tr (W (C, ~x)ǫijkFjk(~x))|
θ=θ̄=0

〉

= 〈A|θ=θ̄=0〉 . (3.12)

It can be shown that the anomalous term vanishes [2]. This may seem surprising to
the reader expecting a non-trivial Konishi anomaly [16]. The absence of an anomaly is
related to the fact that the fermionic components of the N = 4, d = 1 chiral superfields
Φi(~x) are not of definite chirality from the point of view of the four-dimensional Lorentz
group, unlike the fermionic components of N = 1, d = 4 superfields. For A = 0, (3.12)
implies shape invariance1 of the Wilson loop expectation value, since the insertion of the
field strength Fjk generates an infinitesimal deformation of the contour C in the jk plane.

Shape invariance of the Wilson loop expectation value leads to the conclusion

〈

1

N
trP exp

(

i

∮

φ

)〉

= 1 . (3.13)

Note that because of conformal invariance, this can not be shown simply by shrinking
the Wilson loop. Instead we use the following argument. Given a Wilson-loop 1

N
trW

associated with a path C in R
3 one can smoothly deform the path within R

3 such that
it goes around C multiple times and the Wilson loop becomes 1

N
trW n for any n > 12.

Shape independence implies that the expectation value is unchanged,

〈
1

N
trW n〉 = 〈

1

N
trW 〉 . (3.14)

1This is actually a larger symmetry than diffeomorphism invariance, which does not relate knots of
different topology. Breaking shape invariance to diffeomorphism invariance would require a non-zero
anomaly.

2Deforming to n=0 can not be done in a smooth way without introducing a cusp.
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Furthermore, there are relations amongst the variables trW n of the form

trW n(C) =
∑

trW q(C)trW p(C) · · · , (3.15)

such that trW n for n = 1, . . . , 2N2 form a complete independent set. This follows from
the fact that W is an N × N matrix with complex entries and no constraints. Note
that, unlike the usual Wilson loop, the chiral Wilson loop is not the trace of a unitary
matrix because the exponent involves both hermitian and anti-hermitian parts. Since
these Wilson loops belong to a chiral ring, the expectation values factorize,

〈
1

N
trW n 1

N
trW m〉 = 〈

1

N
trW n〉〈

1

N
trW m〉 . (3.16)

The relations (3.15) amongst the 1
N

trW n, together with factorization (3.16) and shape
independence (3.14) are solved by 〈 1

N
trW n〉 = 1

N
trMn, where M is an N × N matrix

satisfying trMn = trM . One set of solutions are the projection matrices which satisfy
Mn = M . However the only solution of trMn = trM which is smoothly related to the
weak coupling result, 〈 1

N
trW n〉|g=0 = 1, corresponds to M = I such that 〈 1

N
trW n〉 = 1.

These results can be trivially extended to maximally supersymmetric Yang-Mills in
3, 5 and 6 dimensions, by using a four supercharge superspace with dimension 0, 2 and 3
respectively. In these cases the gauge coupling is dimensionful and the result (3.13) can
be extracted from shape invariance either by shrinking the Wilson loop in 3 dimensions,
or expanding it in 5 and 6 dimensions. In 7-dimensional maximally supersymmetric
Yang-Mills, one encounters a non-trivial generalized Konishi anomaly3, while in higher
dimensions d > 7, there is no four-supercharge subalgebra of dimension d − 3 so our
formalism is not applicable.

4 Chiral Wilson lines in N = 2 SYM

A similar non-renormalization theorem applies to Wilson lines in four dimensional N = 2
Yang-Mills theories, and is obtained by using N = 2, d = 3 superspace. In terms of this
superspace, the N = 2, d = 4 vector multiplet is comprised of vector superfields V (x2)
and adjoint chiral superfields Φ(x2), where the superspace spans x0, x1, x3, θ, θ̄. However
unlike the usual N = 1, d = 4 superspace formulation, V contains only the components
A0,1,3 of the gauge connections while A2 is contained in Φ. The two adjoint hermitian
scalars X, Y are split between V and Φ. The bottom component of Φ is A2 + iX. As
discussed previously, hypermultiplets of N = 2, d = 4 are comprised of pairs N = 2,
d = 3 chiral superfields Q1(x2) and Q2(x

2).
If there are hypermultiplets in the fundamental representation, we can define a chiral

Wilson lines extended in the x2 direction, of the form

Qm
1 (0)P exp

(

i

∫ X2

0

dx2Φ

)

Qn
2 (X2) , (4.1)

3This anomaly is important for a Dijkgraff-Vafa conjecture proposed in [10] via the arguments of [17].
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where m and n are flavor indices. The bottom component belongs to the N = 2, d = 3
chiral ring. The properties of the chiral ring are determined by the superpotential, which
is

W =

∫

dx2Q̃i(
∂

∂x2
− iΦ)Qi . (4.2)

In the absence of a Konishi anomaly,

∂

∂X2
〈Qm

1 (0)P exp

(

i

∫ X2

0

dx2Φ

)

Qn
2 (X2)

∣

∣

∣

∣

∣

θ=θ̄=0

〉

= 〈Qm
1 (0)P exp

(

i

∫ X2

0

dx2Φ

)

δW

δQn
1 (X2)

∣

∣

∣

∣

∣

θ=θ̄=0

〉 = 0 . (4.3)

Expectation values of this particular class of Wilson line have no dependence on the
length of the Wilson line. Since the scalar components of Qm

i belong to N = 2, d = 4
hypermultiplets, these expectation values are equivalent to expectation values of local
operators parameterizing the Higgs branch. These results are readily generalized to
eight supercharge Yang-Mills theories in 1, 2 and 3 dimensions. In five dimensions one
encounters a Konishi anomaly, while for dimension d > 5 a four supercharge d − 1
dimensional subalgebra does not exist.
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