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Abstract

We consider a class of space-times for which the essential part of Einstein’s equa-

tions can be written as a wave map equation. The domain is not the standard one,

but the target is hyperbolic space. One ends up with a 1+1 nonlinear wave equa-

tion, where the space variable belongs to the circle and the time variable belongs

to the positive real numbers. The main objective of this paper is to analyze the

asymptotics of solutions to these equations as t → ∞. For each point in time, the

solution defines a loop in hyperbolic space, and the first result is that the length

of this loop tends to 0 as t−1/2 as t → ∞. In other words, the solution in some

sense becomes spatially homogeneous. However, the asymptotic behavior need

not be similar to that of spatially homogeneous solutions to the equations. The

orbits of such solutions are either a point or a geodesic in the hyperbolic plane.

In the nonhomogeneous case, one gets the following asymptotic behavior in the

upper half-plane (after applying an isometry of hyperbolic space if necessary):

(1) The solution converges to a point.

(2) The solution converges to the origin on the boundary along a straight line

(which need not be perpendicular to the boundary).

(3) The solution goes to infinity along a curve y = const.

(4) The solution oscillates around a circle inside the upper half-plane.

Thus, even though the solutions become spatially homogeneous in the sense that

the spatial variations die out, the asymptotic behavior may be radically different

from anything observed for spatially homogeneous solutions of the equations.

This analysis can then be applied to draw conclusions concerning the associated

class of space-times. For instance, one obtains the leading-order behavior of the

functions appearing in the metric, and one can conclude future causal geodesic

completeness. c© 2004 Wiley Periodicals, Inc.

1 Introduction

Let us first give a brief background to the problem. In the study of the expand-

ing direction of cosmological space-times, the results obtained so far can roughly

be divided into small data results and results obtained for situations with symme-

try. The small data results without symmetry are often very difficult to prove, but

as opposed to cases when one has imposed symmetry conditions, one does get

conclusions for an open set of initial data. On the other hand, these results con-

cern initial data close to known solutions, and what one obtains is typically that the

perturbed solutions decay to the known ones.
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In a way, the study of situations with symmetry is a complementary approach.

In some sense, one considers an empty set of initial data, but on the other hand, one

need not start with initial data close to something known. Thus, there is the pos-

sibility that one may observe some unexpected nonlinear behavior. The symmetry

classes for which one can describe the asymptotics in detail consist mainly of spa-

tially homogeneous solutions. However, even in this case, one gets quite interesting

behavior, especially if one also considers the direction towards the singularity. In

fact, this case is not completely understood at this time. In this paper, we consider

the so-called Gowdy space-times. These admit a two-dimensional group of isome-

tries acting on spatial Cauchy surfaces, so that the equations one ends up with are

a system of nonlinear wave equations in 1 + 1 dimensions. This class has received

considerable attention, probably due to the fact that it is on the borderline; it is not

trivial to analyze it, but the set of equations is manageable.

The Gowdy vacuum space-times were first introduced in [3] (see also [2]), and

in [4] the fundamental questions concerning global existence were answered. The

following conditions can be used to define a member of this class:

• It is a time-orientable, globally hyperbolic, vacuum Lorentz manifold.

• It has compact spatial Cauchy surfaces.

• There is a smooth effective group action of U (1) × U (1) on the Cauchy

surfaces under which the metric is invariant.

• The twist constants vanish.

Let us explain the terminology. A group action of a Lie group G on a manifold

M is effective if gp = p for all p ∈ M implies g = e. Due to the existence of

the symmetries, we get two Killing fields. Let us call them X and Y . The twist

constants are defined by

κX = εαβγ δ XαY β∇γ X δ and κY = εαβγ δ XαY β∇γ Y δ .

The fact that they are constants is due to the field equations. By the existence of

the effective group action, one can draw the conclusion that the spatial Cauchy

surfaces have topology T
3, S

3, S
2 × S

1, or a Lens space. In all the cases except

T
3, the twist constants have to vanish. However, in the case of T

3 they need not

vanish, and the condition that they vanish is the most unnatural of the ones on the

list above. Since one only expects there to be a causally geodesically complete

direction in the T
3 case, and since the equations are much more complicated when

the twist constants are not 0, we will only consider the Gowdy T
3-case.

We refer the interested reader to [2, 3] for a proof of these statements. In [2],

the symmetries are imposed on initial data, which is perhaps somewhat more nat-

ural. We will take the Gowdy vacuum space-times on R+ × T
3 to be metrics of

the form (1.1). This is in fact not quite true (see [2, pp. 116–117]); we have set

some constants to 0. However, the mentioned class is a natural subclass, and the

discrepancy should not cause any major difficulties.
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The subject of this paper is the asymptotic behavior of metrics of the form

g = t−1/2eλ/2(−dt2 + dθ2)

+ t
[
eP dσ 2 + 2eP Q dσ dδ + (eP Q2 + e−P)dδ2

]
as t → ∞.

(1.1)

Here t ∈ R+ = (0,∞), (θ, σ, δ) are coordinates on T
3 and P , and Q and λ are

functions of (t, θ). The evolution equations become

Ptt + 1

t
Pt − Pθθ − e2P

(
Q2

t − Q2
θ

) = 0 ,(1.2)

Qtt + 1

t
Qt − Qθθ + 2(Pt Qt − Pθ Qθ ) = 0 ,(1.3)

and the constraints

λt = t
[
P2

t + P2
θ + e2P(Q2

t + Q2
θ )

]
,(1.4)

λθ = 2t (Pθ Pt + e2P Qθ Qt) .(1.5)

Obviously, the constraints are decoupled from the evolution equations except for

the condition on P and Q implied by (1.5). The procedure for constructing a metric

is thus to choose initial data for P and Q and their time derivatives such that there

is a λ satisfying (1.5). One then solves (1.2)–(1.3) after which (1.4) determines λ

up to a constant. Finally, one can check that (1.5) holds for all time. Consequently,

the equations of interest are the two nonlinear coupled wave equations (1.2)–(1.3).

In this parametrization, the expanding direction corresponds to t → ∞, and our

main concern will be the asymptotics of solutions to (1.2)–(1.3) as t → ∞.

Equations (1.2)–(1.3) can be interpreted as a wave map equation. In fact, let

(1.6) g0 = −dt2 + dθ2 + t2 dφ2

be a metric on R+ × T
2, and let

(1.7) g1 = d P2 + e2P d Q2

be a metric on R
2. Then (1.2)–(1.3) are the wave map equations for a map from

(R+ × T
2, g0) to (R2, g1), which is independent of the φ-variable on T

2. Note that

(R2, g1) is isometric to the upper half-plane H = {(x, y) ∈ R
2 : y > 0} with

the metric gH = (dx2 + dy2)/y2 under the isometry (Q, P) �→ (Q, e−P). One

important consequence of this is that isometries of the hyperbolic plane map solu-

tions of (1.2)–(1.3) to solutions. Another important consequence is the existence

of certain conserved quantities, which we will write down in a moment. It will be

convenient to carry out the analysis in the (P, Q)–variables, but the conclusions

take their most natural form in the (x, y)–variables. For this reason we will use the

different variables in parallel.

The starting point of this paper was the numerical studies carried out by Beverly

Berger and Vincent Moncrief; see [1]. One object they considered was

(1.8) l(t) =
∫
S1

√
P2

θ + e2P Q2
θ dθ .
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This is the length of the closed curve in hyperbolic space defined by P and Q for

a fixed time t . Their studies indicated that it should decay as t−1/2. This statement

can then be interpreted as saying that the solution becomes more and more spatially

homogeneous. In fact, they observed that

(1.9) H = 1

2

∫
S1

[
P2

t + P2
θ + e2P(Q2

t + Q2
θ )

]
dθ

decays as 1/t . Note that this implies that l(t) ≤ K t−1/2, where l is defined by

(1.8). In this paper we prove the following:

THEOREM 1.1 Consider a solution to (1.2)–(1.3). Then there is a T ≥ 1 and a K

such that for all t ≥ T , the energy H defined by (1.9) satisfies

(1.10) H(t) ≤ K

t
.

REMARK The analogous statement is true for more general classes of equations

than (1.2)–(1.3); see Theorem 7.1. Below, we will use the letter K to denote some

constant whose value is of no importance, and we will in general assume t ≥ 1 in

the estimates we write down. In part, the latter is due to the fact that we are only

interested in the future, but if we have an estimate H ≤ K1/t , we in some cases

also wish to be able to bound H in terms of K1, whence the bound t ≥ 1 is natural.

PROOF: This follows from Theorem 7.1. �

Furthermore, in most cases studied numerically, the analysis suggested that

given a solution to (1.2) and (1.3), one can find a spatially homogeneous solu-

tion to the equations such that the difference between the solution one started with

and the spatially homogeneous solution decays to 0 in the supremum norm. It turns

out that this is not always true.

In order to discuss the asymptotics, we need to introduce some terminology.

Consider a solution to (1.2)–(1.3). Then we have the following constants:

A =
∫
S1

{
2Q(t Qt)e

2P − 2(t Pt)
}
dθ ,(1.11)

B =
∫
S1

e2P(t Qt)dθ ,(1.12)

C =
∫
S1

{
(t Qt)(1 − e2P Q2) + 2Q(t Pt)

}
dθ .(1.13)

As has been mentioned, (1.2)–(1.3) can be given a Lagrangian formulation. Since

the Lagrangian is invariant under the isometries of the hyperbolic space, we get

conserved quantities due to Noether’s theorem. Thus, for example, the fact that
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A is constant is a consequence of the fact that dilations are isometries of the up-

per half-plane, and the conservation of B follows from the fact that translations

in Q are isometries. Of course, one can check that A, B, and C are constants by

differentiating with respect to time and using the equations. When one maps a so-

lution to a solution by an isometry of the hyperbolic plane, the constants generally

change. However, there is one combination, A2 + 4BC , that is unchanged, and

this object will play an important role in the analysis. We will also use the notation

α = A/(2π), β = B/(2π), γ = C/(2π), and

(1.14) δ =
√

|α2 + 4βγ |
2

.

In the spatially homogeneous case

(1.15) α2 + 4βγ = 4t2
(
P2

t + e2P Q2
t

)
.

Thus, spatially homogeneous solutions to (1.2)–(1.3) satisfy A2 + 4BC ≥ 0 with

equality if and only if the solution is trivial; that is, P and Q are constants. How-

ever, if A0, B0, C0 ∈ R, there are solutions whose (A, B, C) equal (A0, B0, C0);

see (6.9)–(6.10). Thus no matter what the value of A2 + 4BC is, one can find non-

trivial data that yield this value. It turns out that the asymptotics are very different

depending on whether A2 + 4BC is positive, zero, or negative. If A2 + 4BC > 0,

then the solution qualitatively behaves like a spatially homogeneous solution, but

not if the opposite inequality holds. In fact, we have the following:

THEOREM 1.2 Consider a solution to (1.2)–(1.3). Let x = (x, y) = (Q, e−P), and

let dH be the metric induced by the Riemannian metric gH . Then there is a K , a

T > 0, and a curve � such that

dH (x(t, θ), �) ≤ K t−1/2 for all t ≥ T .

The possibilities for � are as follows:

• If all the constants A, B, and C are 0, � is a point.

• If A2 + 4BC = 0 but the constants are not all 0, � is either a horocycle

(i.e., a circle touching the boundary) or a curve y = const.

• If A2 + 4BC > 0, � is either a circle intersecting the boundary transver-

sally or a straight line intersecting the boundary transversally.

• If A2 + 4BC < 0, � is a circle inside the upper half-plane.

REMARK We use the convention dH (x, �) = infx0∈� dH (x, x0). The circle one

obtains in the case A2 + 4BC < 0 may be degenerate, that is, a point. Note also

that since l(t) defined by (1.8) decays as t−1/2, we have

(1.16) sup
θ1,θ2∈S1

dH [x(t, θ1), x(t, θ2)] ≤ K t−1/2 .

PROOF: If all the conserved quantities are 0, the statement follows by combin-

ing Corollary 8.10, Proposition 8.11, and the decay of the energy. If A2+4BC > 0,

the statement follows from the discussion following the proof of Theorem 8.12.
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The case where A2 + 4BC = 0 but the conserved quantities are not all 0 is dis-

cussed after the statement of Theorem 8.14. Finally, the discussion following the

proof of Proposition 8.16 deals with the case A2 + 4BC < 0. �

In a generalized sense, one can thus say that the solution converges to a cir-

cle. Since there are four different kinds of circles in the upper half-plane (points,

nondegenerate circles inside the upper half-plane, circles touching the boundary,

and circles intersecting the boundary transversally), one gets the four cases above.

Concerning the case where the solution converges to a point, not that much more

remains to be said, but in the other cases, it is of interest to know how the solution

moves along the respective curves.

THEOREM 1.3 Consider a solution to (1.2)–(1.3) with A2 + 4BC > 0. Then there

is an isometry of the hyperbolic plane, a K , a T > 0, and constants c1 and c2 such

that if (Q1, P1) = (x,− ln y) is the transformed solution,

(1.17)
∥∥∥ x

y
− c1

∥∥∥
C(S1,R)

≤ K t−1/2

and

(1.18) ‖ ln y + δ ln t + c2‖C(S1,R) ≤ K t−1/2

for all t ≥ T , where δ is given by (1.14).

PROOF: See Theorem 8.12. �

Equation (1.17) says that the distance from the solution to the straight line x =
c1 y decays to 0 as t−1/2, and (1.18) shows that the solution is moving towards the

boundary of hyperbolic space along this straight line. In the spatially homogeneous

case and in the polarized case (Q = 0), the constant c1 is always 0; compare the

discussion following Lemma 8.2. The question is then if this is true in general.

By Proposition 8.13 we conclude that given c′
1, D > 0, and η > 0, there is a

solution with A2 + 4BC = D and |c1 − c′
1| ≤ η, where c1 is associated with the

solution according to (1.17). Thus, unlike the polarized and spatially homogeneous

solutions, the asymptotic curve need not be a geodesic of the hyperbolic plane.

One is then led to ask, Is there a natural characterization of solutions with c1 = 0?

Equations (1.17) and (1.18) yield a measure of how fast the solution is moving

towards the boundary. One consequence of these estimates is that if one fixes a

point inside the hyperbolic plane, the distance from this point to the solution at

time t is δ ln t up to an error that is bounded, irrespective of which θ-coordinate

one chooses. Figure 1.1 illustrates the behavior. The closed curve is supposed

to illustrate the loop. Note that if we apply an isometry to this picture, we will

typically get a circle instead of a straight line.

THEOREM 1.4 Consider a solution to (1.2)–(1.3) with A2 + 4BC = 0 but for

which not all the constants are 0. Then there is an isometry of the hyperbolic
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x

y

FIGURE 1.1. Asymptotics when α2 + 4βγ > 0.

x

y

FIGURE 1.2. Asymptotics when α2 + 4βγ = 0 but not all conserved

quantities are 0.

plane, a K , a T > 0, and constants c1 and c2 such that if (Q1, P1) = (x,− ln y) is

the transformed solution,

(1.19) ‖y − c1‖C(S1,R) ≤ K t−1/2

and

(1.20) ‖x − ln t − c2‖C(S1,R) ≤ K t−1/2

for all t ≥ T .

PROOF: See Theorem 8.14. �

Note that the conditions of the theorem are inconsistent with spatial homogene-

ity. Equation (1.19) says that the distance from the solution to the curve y = c1

decays to 0 as t−1/2, and by (1.20), the solution is diverging to infinity along this

curve. Furthermore, one can use (1.19) and (1.20) to conclude that if one fixes a

point in the hyperbolic plane, the distance from this point to the solution at time t

is 2 ln ln t up to a bounded error term. Figure 1.2 illustrates the behavior. Note that

if one applies an isometry to this picture, one typically gets a horocycle instead of

a straight line.

Let us now consider the case A2 + 4BC < 0. The first question to ask is

whether the limit circle is always a point. That this is not the case follows from

Proposition 8.17. Again, it would be of interest to characterize those solutions that

have the degenerate behavior. We still do not know how the solutions behave along
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x

y

FIGURE 1.3. Asymptotics when α2 + 4βγ < 0.

the circle; it might be that the solutions converge to a point. However, we have the

following:

THEOREM 1.5 Consider a solution to (1.2)–(1.3) such that A2 + 4BC < 0. If the

circle � obtained in Theorem 1.2 is not a point, there is a K and T > 0 and for

every t0 ≥ T a curve γt0 with the properties

γt0(R+) = � , dH [x(t, θ), γt0(t)] ≤ K t
−1/2
0 , for all t ≥ t0

and

γt0

[
t1 exp

(
2π

δ

)]
= γt0(t1) , gH (γ ′

t0
(t), γ ′

t0
(t)) = r2δ2

t2
,

where 2πr is the length of the circle � with respect to the hyperbolic metric.

REMARK We note that one can give an explicit expression for the curve γt0 ; see

Proposition 8.18.

PROOF: The conclusions of the theorem can be deduced from Proposition 8.18.

�

Consequently, the solution oscillates forever along the circle and is more or less

periodic in a logarithmic time coordinate. Observe that the solutions in this case

behave in a way unlike anything seen when studying spatially homogeneous solu-

tions to the equations; spatially homogeneous solutions are either constant or go

to the boundary along a geodesic. However, the solution becomes spatially homo-

geneous in the sense that (1.16) is satisfied. Thus solutions that become spatially

homogeneous in the limit, in the sense (1.16), need not at all behave like spatially

homogeneous solutions to the equations. Figure 1.3 illustrates the behavior.

The above information, together with some further analysis, can be used to

obtain the following result:

THEOREM 1.6 Consider a solution to (1.2)–(1.3). Then if H is given by (1.9),

there is a K , a T > 0, and a constant cH such that

(1.21) |t H(t) − cH | ≤ K

t
for all t ≥ T .

Furthermore, if cH is 0, the solution is independent of θ , and in that case, t2 H(t)

is constant.
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PROOF: Section 9 consists of a proof of this statement. �

Note that this proves that estimate (1.10) is optimal for solutions that are not

spatially homogeneous. Note furthermore that (1.21) is also optimal, in the sense

that one cannot obtain a better decay estimate that holds for all solutions to (1.2)–

(1.3). In fact, for a nontrivial spatially homogeneous solution, t2 H(t) = c0 > 0,

which makes it impossible to have anything of the form o(t−1) on the right-hand

side of (1.21).

In the end, we are interested in the metric (1.1) and thus in the behavior of the

functions P , Q, and λ. From the proofs of Theorems 1.2 through 1.5, one can

deduce the behavior of P and Q; see Proposition 8.18 and the discussion in the

paragraph preceding Lemma 8.15 for details. The leading-order behavior of λ can

interestingly enough be deduced immediately from Theorem 1.6.

THEOREM 1.7 Consider a solution to (1.2)–(1.5). Then, if the solution is not

independent of θ , there is a T > 0 and a K such that

‖λ(t, · ) − cλt‖C(S1,R) ≤ K ln t for all t ≥ T where cλ > 0.

PROOF: By (1.4)–(1.5), we have |λθ | ≤ λt . Thus

‖λ − 〈λ〉‖C(S1,R) ≤
∫
S1

|λθ |dθ ≤
∫
S1

λt dθ = 2t H(t) ≤ K .

By (1.21), we also have ∣∣∣∣〈λt〉 − cH

π

∣∣∣∣ ≤ K

t
,

where cH is positive under the assumptions of the theorem. We get the conclusion

of the theorem. �

The above statements can be obtained without any control of the sup norm of

the derivatives of P and Q. In some situations, however, it is of interest to have

such control.

PROPOSITION 1.8 Consider a solution to (1.2)–(1.3). Then

‖Pt‖C(S1,R) + ‖Pθ‖C(S1,R) + ‖eP Qt‖C(S1,R) + ‖eP Qθ‖C(S1,R) ≤ K t−1/2 .

The proof is to be found in Section 10. Using the above information, one finally

obtains the following theorem, whose proof is to be found in Section 11.

THEOREM 1.9 Consider a metric given by (1.1), where λ, P, and Q are solutions

to (1.2)–(1.5). Assume, furthermore, that the metric is not independent of θ . Let

γ : (s−, s+) → R+ × T
3 be an inextendible causal geodesic with respect to this

metric and assume that 〈γ ′, ∂t〉 < 0. Then γ is future complete.

For the case where the solution is independent of θ , we refer the reader to the

literature on spatially homogeneous solutions.



666 H. RINGSTRÖM

2 Generalities

We will formulate some of the results in a more general setting in order to give

a feeling for what the structure is that makes the argument work. We will always

consider wave maps from R+ × T
2 with the metric (1.6) that are independent of

the φ-variable, but let us for the moment assume a general target metric ḡ on R
k .

The relevant Lagrangian density is

(2.1) L = t

2
ḡαβ( f )

{− f α
t f

β
t + f α

θ f
β

θ

}
.

Assume from now on that f : R+ × S
1 → R

k satisfies the corresponding Euler-

Lagrange equations. If we define H and Ĥ by

(2.2) t H = Ĥ = t

2

∫
S1

ḡαβ

{
f α
t f

β
t + f α

θ f
β

θ

}
dθ ,

we have

(2.3)
d Ĥ

dt
= 1

t

∫
S1

L dθ and
d H

dt
= −1

t

∫
S1

ḡαβ f α
t f

β
t dθ .

This is one important consequence of the geometric setting.

Another is the following. Let

(2.4) A = t

2
ḡαβ

(
f α
t + f α

θ

)(
f

β
t + f

β

θ

)
, B = t

2
ḡαβ

(
f α
t − f α

θ

)(
f

β
t − f

β

θ

)
.

Then

(2.5) (∂t − ∂θ )A = (∂t + ∂θ )B = 1

t
L .

Most of the arguments will require more structure than this, and we will from now

on only consider metrics of the form

(2.6) ḡ =
n∑

i=1

d Pi ⊗ d Pi +
m∑

i, j=1

gi j (P)d Qi ⊗ d Q j .

If the matrix M(P) is defined as having entries gi j (P), we will for most arguments

also require

(2.7)

n∑
k=1

sup
x∈Rn

∣∣∣∣M−1/2(x)
∂ M

∂xk
(x)M−1/2(x)

∣∣∣∣ ≤ KM < ∞ .

By M−1/2 we mean the unique positive definite and symmetric matrix B such

that B2 = M−1. One example of metrics satisfying these conditions is (m + 1)–

dimensional hyperbolic space. This can be viewed as R
m+1 with the metric

ḡ = d P ⊗ d P + e2P

m∑
i=1

d Qi ⊗ d Qi .
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Let us for reference write down the equations corresponding to (2.6). Due to

the structure of the metric it is natural to divide the equations into two blocks. We

have

(2.8) Pi
tt + 1

t
Pi

t − Pi
θθ − 1

2

∂gkl

∂ Pi

(
Qk

t Ql
t − Qk

θ Ql
θ

) = 0

and

(2.9) ∂t

(
tgi j Q

j
t

) − ∂θ

(
tgi j Q

j

θ

) = 0 .

3 Global Existence

The arguments in this section are of course standard, but we wish to prove the

following for the sake of completeness.

THEOREM 3.1 Consider (2.8)–(2.9). Given smooth initial data given at some t0 ∈
R+, there is a unique smooth solution to these equations on all of R+.

PROOF: Let A and B be defined by (2.4) where ḡ is given by (2.6), and let

F1(u, θ) = A(u, θ − u) , F2(u, θ) = B(u, θ + u) , Ei (u) = sup
θ∈S1

Fi (u, θ) ,

and

E = E1 + E2 .

By (2.5), we have

|F1(u1, θ) − F1(u0, θ)| =
∣∣∣∣
∫ u1

u0

∂u F1(u, θ)du

∣∣∣∣ =
∣∣∣∣
∫ u1

u0

1

u
L(u, θ − u)du

∣∣∣∣
≤

∣∣∣∣
∫ u1

u0

1

2u
E(u)du

∣∣∣∣ ,
and similarly for F2. Taking the supremum over θ and then adding, we get

E(u1) ≤ E(u0) +
∣∣∣∣
∫ u1

u0

1

u
E(u)du

∣∣∣∣ .
For u1 ≥ u0, we can apply Grönwall’s lemma to obtain

(3.1) E(u1) ≤ u1

u0

E(u0) for all u1 ≥ u0.

In order to analyze the case u1 ≤ u0, define

h(u) = E(u0) −
∫ u

u0

1

v
E(v)dv .

Then

h′ = −1

u
E ≥ −1

u
h .

This implies

E(u1) ≤ u0

u1

E(u0) for all u1 ≤ u0.
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Thus E is bounded on compact subintervals of R+. Consequently, P is bounded

on such intervals, so that the metric gi j (P) is equivalent to the Euclidean metric on

R
m on compact subintervals of R+. Consequently, the sup norm of P and the first

derivatives of P and Q are bounded on compact subintervals of R+. Using this

together with energy estimates, one can control the higher-order derivatives in L2,

and thus one obtains global existence. �

Note that (3.1) gives bounds on the sup norm of the derivatives, but no decay.

After knowing that the energy decays and after having analyzed the behavior of P

and Q, one can, however, improve the argument to obtain the decay of Proposi-

tion 1.8.

4 Method

The first step in the analysis is to prove that the energy decays as 1/t . The

method to prove this is one that in principle has a wider range of applicability. For

this reason, and for reasons of exposition, we would here like to apply it to two

simple examples. The examples are linear, and in general one cannot expect the

arguments to carry over to the nonlinear case. However, it will turn out that similar

arguments work if the initial data are small. One then has to prove that the energy

converges to zero separately in order to obtain the desired decay for general initial

data in the nonlinear setting.

The starting point was the following ODE example, which was brought to our

attention by Vincent Moncrief in a talk given at the AEI. Consider the ODE

ẍ + 2aẋ + b2x = 0 ,

where a > 0 and b2 > a2. The goal is to find a decay estimate for the energy

H = 1

2
(ẋ2 + b2x2)

without solving the equation. Compute

d H

dt
= −2aẋ2 .

Thus H decreases, but we cannot even conclude that H converges to 0, even though

we know that H converges to 0 exponentially. The idea is then to introduce a

correction term

� = ax ẋ .

The function � has two important properties. The first property is

|�| =
∣∣∣∣a

b

∣∣∣∣ |bx ẋ | ≤
∣∣∣∣a

b

∣∣∣∣1

2
(ẋ2 + b2x2) =

∣∣∣∣a

b

∣∣∣∣H .

Since |a/b| < 1, there are constants c1 and c2 > 0, depending only on |a/b|, such

that

c1 H ≤ H + � ≤ c2 H .
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The second property is that

d(H + �)

dt
= −2a(H + �) .

We conclude that H ≤ K exp(−2at), which is an optimal estimate.

Let us consider the polarized Gowdy case, i.e., (1.2)–(1.3) with Q = 0. The

relevant equation is

Ptt + 1

t
Pt − Pθθ = 0 .

The natural energy is

H = 1

2

∫
S1

(
P2

t + P2
θ

)
dθ .

We have
d H

dt
= −1

t

∫
S1

P2
t dθ .

In analogy with the previous example, it seems natural to introduce a correction

�̃ = 1

2t

∫
S1

P Pt dθ .

However, this cannot be bounded in terms of H , so an argument similar to the one

given above cannot work. A more promising candidate is

� = 1

2t

∫
S1

(P − 〈P〉)Pt dθ

where we have used the notation

〈P〉 = 1

2π

∫
S1

P dθ .

Observe that∫
S1

(P − 〈P〉)2 dθ = 2π
∑
n∈Z

|an|2 ≤ 2π
∑
n∈Z

n2|an|2 =
∫
S1

P2
θ dθ

since a0 = 0. Thus

|�| ≤ 1

2t
H .

Furthermore,

d(H + �)

dt
= −1

t
(H + �) − 1

t
� − 1

2t
〈Pt〉2 ≤ −1

t
(H + �) + 1

2t2
H .

Thus

(4.1) H ≤ K

t
.
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Since 〈P〉 is a spatially homogeneous solution to the equation, and (4.1) implies

that

‖P − 〈P〉‖C(S1,R) ≤ K t−1/2 ,

we conclude that the distance from P to a spatially homogeneous solution of the

equations decays to 0 as t tends to ∞.

Observe that similar arguments can be used to prove that∑
|α|=k

∫
Td

[
(∂α∂t P)2 + |∇∂α P|2]dx ≤ Ck

t

for solutions P to

Ptt + 1

t
Pt − �P = 0 on (0,∞) × T

d .

5 Model Metrics

Let M be a smooth map from R
n into the set of symmetric and positive definite

m ×m matrices. Assume furthermore that M satisfies (2.7). In this section we wish

to write down some consequences of this condition that will be of importance later.

By K we will denote any constant whose value is of no importance. Introduce the

notation

(v,w)M(x) = TvM(x)w and |v|M(x) = [(v, v)M(x)]1/2 .

By | · |, we denote the ordinary Euclidean norm on R
k , and by |B|, where B is a

matrix, we mean

sup
|x |=1

|Bx | .

LEMMA 5.1 Consider an M as above. Then

|(v,w)M(x)| ≤ |v|M(x)|w|M(x) ,(5.1)

|v|M(x1) ≤ exp{K |x1 − x0|}|v|M(x0) ,(5.2)

∣∣∣∣Tv
∂ M

∂xk
(x)w

∣∣∣∣ ≤ K |v|M(x)|w|M(x) ,(5.3)

∣∣Tv[M(x1) − M(x0)]v
∣∣ ≤ K exp{K |x1 − x0|} |x1 − x0| |v|2M(x0)

.(5.4)

PROOF: If B is a positive definite and symmetric matric, we denote by B1/2 the

unique positive definite and symmetric matrix C such that C2 = B. Since∣∣M1/2(x)v
∣∣2 = TvM(x)v

due to the symmetry of M1/2, we conclude that (5.1) holds and that (5.3) holds due

to (2.7). In order to prove (5.2), let

(5.5) x(t) = (1 − t)x0 + t x1 .
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By (5.3), we have

d

dt

{
Tv(M ◦ x)v

} = Tv

(
∂ M

∂xk
◦ x

)
v
(
xk

1 − xk
0

) ≤ K |x1 − x0|Tv(M ◦ x)v .

We deduce that (5.2) holds. In order to prove (5.4), let x be as in (5.5). Combining

(5.2) and (5.3), we get

∣∣Tv[M(x1) − M(x0)]v
∣∣ =

∣∣∣∣
∫ 1

0

Tv
∂ M

∂xk
[x(t)](xk

1 − xk
0

)
v dt

∣∣∣∣
≤ K exp{K |x1 − x0|} |x1 − x0| |v|2M(x0)

.

Thus (5.4) holds. �

The following statements are presented here in order not to interrupt the flow

of later proofs.

LEMMA 5.2 Assume that P ∈ C∞(S1, R
n), Q ∈ C∞(S1, R

m), and that M is a

smooth function from R
n to the symmetric and positive definite m × m matrices

satisfying (2.7). Then

(5.6) ‖|Q − 〈Q〉|M◦P‖C(S1,R) ≤ K1

( ∫
S1

|Qθ |2M◦P dθ

)1/2

and

(5.7)

∫
S1

|〈Q〉|2M◦P dθ ≤ K2

∫
S1

|Q|2M◦P dθ .

The constants K1 and K2 depend on ‖P − 〈P〉‖C(S1,Rn) and on KM appearing

in (2.7).

PROOF: Using (5.2), we have∥∥|Q − 〈Q〉|2M◦P

∥∥
C(S1,R)

≤ K
∥∥|Q − 〈Q〉|2M(〈P〉)

∥∥
C(S1,R)

.

Let ek be an orthonormal basis with respect to ( · , · )M(〈P〉). Then

∥∥|Q − 〈Q〉|2M(〈P〉)
∥∥

C(S1,R)
≤

m∑
k=1

∥∥(Q − 〈Q〉, ek)
2
M(〈P〉)

∥∥
C(S1,R)

.

Note that ∫
S1

(Q − 〈Q〉, ek)M(〈P〉) dθ = 0 ,
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since Q is the only object in this expression depending on θ . Consequently, there

is a θk ∈ S
1 such that (Q(θk) − 〈Q〉, ek)M(〈P〉) = 0. Thus∥∥(Q − 〈Q〉, ek)

2
M(〈P〉)

∥∥
C(S1,R)

≤ 2

∫
S1

∣∣(Qθ , ek)M(〈P〉)(Q − 〈Q〉, ek)M(〈P〉)
∣∣dθ

≤ 2

[ ∫
S1

(Qθ , ek)
2
M(〈P〉) dθ

]1/2[ ∫
S1

(Q − 〈Q〉, ek)
2
M(〈P〉) dθ

]1/2

≤ 2

[ ∫
S1

|Qθ |2M(〈P〉) dθ

]1/2[ ∫
S1

|Q − 〈Q〉|2M(〈P〉) dθ

]1/2

≤ K
∥∥|Q − 〈Q〉|2M◦P

∥∥1/2

C(S1,R)

[ ∫
S1

|Qθ |2M◦P dθ

]1/2

,

where we have used (5.2) again in the last step. Combining the above inequalities

we obtain (5.6). Observe that the constants depend only on ‖P − 〈P〉‖C(S1,Rn) and

KM . Using (5.2) and Hölder’s inequality, we estimate∫
S1

T〈Q〉(M ◦ P)〈Q〉dθ ≤ K T〈Q〉M(〈P〉)〈Q〉

= K
∣∣(〈M1/2(〈P〉)Q〉

∣∣2

≤ K

[
1

2π

∫
S1

|M1/2(〈P〉)Q|dθ

]2

≤ K

∫
S1

|M1/2(〈P〉)Q|2 dθ ≤ K

∫
S1

T Q(M ◦ P)Q dθ .

The lemma follows. �

6 Small Data

Consider the energy H defined by (2.2) when the metric ḡ is given by (2.6).

Then the following holds:

THEOREM 6.1 Consider a metric of the form (2.6) satisfying (2.7). Then there is

an η > 0 such that for functions P ∈ C∞(R+×S
1, R

n) and Q ∈ C∞(R+×S
1, R

m)

solving (2.8) and (2.9) and satisfying H(t0) ≤ η for some t0 ∈ R+, there is a K

such that

H(t) ≤ K

t
for all t ≥ t0.
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Here H is defined by (2.2).

PROOF: Note that H is decreasing due to (2.3) so that H(t) ≤ η for all t ≥ t0.

Furthermore,

(6.1) ‖P − 〈P〉‖C(S1,Rn) ≤ K H 1/2 ≤ Kη1/2 for all t ≥ t0.

Below, the constants in most estimates depend on the sup norm of P − 〈P〉, but as

the estimates are only of interest to the future of a given time, this is not a problem.

Note also that all the constants below that depend on this sup norm decay with

the sup norm. Thus if we assume η ≤ 1, we can use the same constants for all

solutions in the regions where H ≤ 1.

We use the method presented in Section 4. The main point is thus to construct

suitable corrections. Due to the structure of the metric, it is natural to divide these

corrections into two parts. Consider

�P = 1

2t

n∑
i=1

∫
S1

(Pi − 〈Pi 〉)Pi
t dθ .

Since the metric is of the form (2.6), we can argue as in Section 4 in order to obtain

|�P | ≤ K

t
H .

Let us compute, using (2.8),

d�P

dt
= −1

t
�P + 1

2t

∫
S1

|Pt |2 dθ − π

t
|〈Pt〉|2

+ 1

2t

n∑
i=1

∫
S1

(Pi − 〈Pi 〉)
[
−1

t
Pi

t + Pi
θθ + 1

2

∂gkl

∂ Pi
(Qk

t Ql
t − Qk

θ Ql
θ )

]
dθ .

Consider the integrand of the last term. The terms involving Pi
t /t yield −�P/t ,

and the terms involving Pi
θθ we integrate partially. We thus get the estimate

d�P

dt
≤ −2

t
�P + 1

2t

∫
S1

[|Pt |2 − |Pθ |2
]
dθ

+ 1

2t

n∑
i=1

∫
S1

(Pi − 〈Pi 〉)1

2

∂gkl

∂ Pi

(
Qk

t Ql
t − Qk

θ Ql
θ

)
dθ .

Combining (2.7), (5.3), and (6.1), we get the conclusion that the last term can be

estimated by K H 3/2/t . Thus

(6.2)
d�P

dt
≤ −2

t
�P + 1

2t

∫
S1

[|Pt |2 − |Pθ |2
]
dθ + K

t
H 3/2 .
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Let

�Q = 1

2t

∫
S1

gi j (〈P〉)(Qi − 〈Qi 〉)Q
j
t dθ .

Observe that by (5.1), (5.2), (5.6), and (6.1),

|�Q| ≤ 1

2t

∫
S1

|(Q−〈Q〉, Qt)M◦〈P〉|dθ ≤ K

t

∫
S1

|Q−〈Q〉|M◦P |Qt |M◦P dθ ≤ K

t
H ,

where we used Hölder’s inequality in the last step. Let us compute

d�Q

dt
= −1

t
�Q + 1

2t

∫
S1

∂gi j

∂ Pk
(〈P〉)〈Pk

t 〉(Qi − 〈Qi 〉)Q
j
t dθ

+ 1

2t

∫
S1

gjk(〈P〉)Q
j
t Qk

t dθ − π

t
gjk(〈P〉)〈Q

j
t 〉〈Qk

t 〉

+ 1

2t

∫
S1

gjk(〈P〉)(Q j − 〈Q j 〉)Qk
tt dθ .

(6.3)

Note here that the term which only involves averages has a sign. This is the reason

for using gi j (〈P〉) in the definition of �Q instead of gi j (P). Observe that |〈Pk
t 〉| ≤

K H 1/2 due to Hölder’s inequality. Combining this with (5.2), (5.3), (5.6), and

(6.1), we get

(6.4)

∣∣∣∣ 1

2t

∫
S1

∂gi j

∂ Pk
(〈P〉)〈Pk

t 〉(Qi − 〈Qi 〉)Q
j
t dθ

∣∣∣∣ ≤ K

t
H 3/2 .

Using (2.9), we get

1

2t

∫
S1

gjk(〈P〉)(Q j − 〈Q j 〉)Qk
tt dθ

= 1

2t

∫
S1

gjk(〈P〉)(Q j − 〈Q j 〉)

·
[
−1

t
Qk

t + Qk
θθ − gki ∂gio

∂ Pl

(
Pl

t Qo
t − Pl

θ Qo
θ

)]
dθ

= −1

t
�Q − 1

2t

∫
S1

gjk(〈P〉)Q
j

θ Qk
θ dθ

− 1

2t

∫
S1

gjk(〈P〉)(Q j − 〈Q j 〉)vk dθ .

(6.5)
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where we have introduced the notation

vk = gki ∂gio

∂ Pl

(
Pl

t Qo
t − Pl

θ Qo
θ

)
.

By (5.1), (5.2), (5.6), and (6.1), we have

(6.6)

∣∣∣∣ 1

2t

∫
S1

gjk(〈P〉)(Q j − 〈Q j 〉)vk dθ

∣∣∣∣ ≤ K

t
H 1/2

∫
S1

(
gjk(P)vkv j

)1/2
dθ .

Let us use the notation that bi j are the components of M−1/2 and bi j are the

components of M1/2. Then (gjk(P)v jvk)1/2 coincides with the Euclidean norm of

the vector with components

bil ∂gi j

∂ Pk

[
Pk

t Q
j
t − Pk

θ Q
j

θ

] = bil ∂gi j

∂ Pk
b jo

[
Pk

t bor Qr
t − Pk

θ bor Qr
θ

]
.

Due to (2.7), we thus get(
gjkv

jvk
)1/2 ≤ K

[|Pt |2 + |Pθ |2 + |Qt |2M◦P + |Qθ |2M◦P

]
.

Combining this with (6.5) and (6.6), we get

1

2t

∫
S1

gjk(〈P〉)(Q j − 〈Q j 〉)Qk
tt dθ ≤

− 1

t
�Q − 1

2t

∫
S1

gjk(〈P〉)Q
j

θ Qk
θ dθ + K

t
H 3/2 .

Combining this with (6.3) and (6.4), we get

d�Q

dt
≤ −2

t
�Q + 1

2t

∫
S1

gjk(〈P〉)[Q
j
t Qk

t − Q
j

θ Qk
θ

]
dθ + K

t
H 3/2 ,

where we have discarded the term in (6.3) that involves only averages. This is not

quite what we want. We would prefer to have gjk(P) instead of gjk(〈P〉). Using

(5.4) and (6.1), we can, however, conclude that changing 〈P〉 to P does not cost us

more than K H 3/2/t . Thus

(6.7)
d�Q

dt
≤ −2

t
�Q + 1

2t

∫
S1

gjk(P)
[
Q

j
t Qk

t − Q
j

θ Qk
θ

]
dθ + K

t
H 3/2 .

Letting � = �P + �Q and using (6.2), (6.7), and (2.3), we get

(6.8)
d(H + �)

dt
≤ −1

t
(H + �) − 1

t
� + K

t
H 3/2 .

Assuming η ≤ 1 and only considering the solution for t ≥ t0, the constant K is

independent of the sup norm of P−〈P〉. Since |�| ≤ K H/t , we can assume |�|/H

to be as small as we wish by waiting long enough. With the notation E = H + �
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and assuming η to be small enough, we get the conclusion that there is a 1 > δ > 0

and a T > 0 such that

dE

dt
≤ −δ

t
E and E > 0 for all t ≥ T .

Thus

E(t) ≤
(

T

t

)δ

E(T ) for all t ≥ T .

Since

|�(t)| ≤ K

t
E and

∣∣∣∣ H 3/2

t

∣∣∣∣ ≤ K

t δ/2

E

t
for t ≥ T ′ big enough,

we get
dE

dt
≤ −1

t

[
1 − K

t δ/2

]
E for t ≥ T ′.

The theorem follows. �

For the remainder of this section, we will only consider solutions to (1.2)–

(1.3). In order to prove that the circles obtained as the limit curves in the case

A2 + 4BC < 0 are not all points, it is necessary to consider families of solutions

to (1.2) and (1.3) and to have constants that are the same for all the members of the

family. In particular, we will be interested in the following family: Let p0, A0, B0,

C0 ∈ R, and t0 > 0. Then

Q(t0, θ) = 1

t
1/2
0

cos θ , P(t0, θ) = p0 , Qt(t0, θ) = B0e−2p0

2π t0
,(6.9)

Pt(t0, θ) = − 1

4π t0
A0 + 1

4π t
1/2
0

[
2C0 − 2B0e−2p0 + B0

t0

]
cos θ ,(6.10)

yield A = A0, B = B0, and C = C0. Furthermore, it is clear that there is a smooth

function λ such that

λθ = 2t0
(
Pθ Pt + e2P Qθ Qt

)
at t0.

Consider initial data of this form. Assume that P = (p0, A0, B0, C0) are fixed

constants, and consider the family of solutions obtained by varying t0. We will

use the notation P(P, t0) and Q(P, t0) to denote the solution to (1.2) and (1.3)

found by specifying initial data as in (6.9) and (6.10). Furthermore, we will use

P(P, t0; t, θ) to denote the solution evaluated at (t, θ), and similarly H(P, t0; t).

We have

lim
t0→∞

t0 H(P, t0; t0) = π

2
e2p0 + 1

8π

(
C0 − B0e−2p0

)2 = cH (P) .

LEMMA 6.2 Let P be fixed. Consider the family of solutions to (1.2)–(1.3) obtained

by varying t0 in (6.9)–(6.10). Then there is a tP such that, with notation as above,

H(P, t0; t) ≤ 2cH (P)

t
for all t ≥ t0 ≥ tP ≥ 1.
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PROOF: There is a tP,1 such that H(P, t0; t) ≤ 1 for all t ≥ t0 ≥ tP,1. Since

the constants appearing in the arguments presented in this section only depend on

the size of H , we thus have

dE(P, t0; t)

dt
≤ −1

t
E(P, t0; t) − 1

t
�(P, t0; t) + ε(P, t0; t) ,

where E = H + �,

|�(P, t0; t)| ≤ K

t
H(P, t0; t) and |ε(P, t0; t)| ≤ K

t
H 3/2(P, t0; t) ,

and the inequalities hold for t ≥ t0 ≥ tP,1 with constants independent of (P, t0).

We can thus choose a tP,2 ≥ tP,1 such that

H(P, t0; t) ≤ 2E(P, t0; t) and
dE(P, t0; t)

dt
≤ − 1

2t
E(P, t0; t)

for all t ≥ t0 ≥ tP,2. Thus

E(P, t0; t) ≤
(

t0

t

)1/2

E(P, t0; t0) for t ≥ t0 ≥ tP,2.

We conclude that

dE(P, t0; t)

dt
≤

[
−1

t
+ K

t2
+ K

t5/4
t

1/4
0 E1/2(P, t0; t0)

]
E(P, t0; t) ,

whence

E(P, t0; t) ≤ t0E(P, t0; t0)

t
exp

[
K

t0
+ KE1/2(P, t0; t0)

]
.

Since t times the right-hand side tends to cH (P) as t0 → ∞, the lemma follows.

�

7 Large Data

Let us prove that the above asymptotic behavior is true for general initial data.

THEOREM 7.1 Consider a metric of the form (2.6) satisfying (2.7). If

P ∈ C∞(R+ × S
1, R

n) and Q ∈ C∞(R+ × S
1, R

m)

are solutions to (2.8) and (2.9), then

H(t) ≤ K

t

for all t ≥ t0 and some t0 > 0. Here H is defined by (2.2).

PROOF: Note that H is bounded to the future due to (2.3) so that even though

most constants depend on the sup norm of P − 〈P〉, this will be bounded for the

entire future. Due to (2.3), we conclude that

(7.1)
1

t

∫
S1

[|Pt |2 + |Qt |2M◦P ]dθ ∈ L1([t0,∞)) for any t0 > 0.
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Note also that by applying (5.7) with Q replaced by Qt , we have

∫
S1

|〈Qt〉|2M◦P dθ ≤ K

∫
S1

|Qt |2M◦P dθ

so that

1

t

∫
S1

|〈Qt〉|2M◦P dθ and
1

t

∫
S1

(Qt , 〈Qt〉)M◦P dθ

are both L1([t0,∞)) for t0 > 0. By “· · · ” we will below denote things that con-

verge as t → ∞. Consider

∫ t

t0

1

s

∫
S1

[−|Qt |2M◦P + |Qθ |2M◦P

]
dθ ds

=
∫ t

t0

1

s

∫
S1

[−(Qt − 〈Qt〉, Qt)M◦P + |Qθ |2M◦P

]
dθ ds + · · ·

=
[
−1

s

∫
S1

(Q − 〈Q〉, Qt)M◦P dθ

]t

t0

+
∫ t

t0

∫
S1

[
∂t

(
1

s
gi j (P)Qi

t

)
− ∂θ

(
1

s
gi j (P)Qi

θ

)]
(Q j − 〈Q j 〉)dθ ds + · · ·

= −
∫ t

t0

2

s2

∫
S1

(Q − 〈Q〉, Qt)M◦P dθ ds + · · · = · · · ,

where we used (2.9) in the second-to-last inequality. We have also made use of

estimates such as (5.6) and the fact that we know H to be bounded. We conclude

that

1

t

∫
S1

|Qθ |2M◦P dθ ∈ L1([t0,∞)) for all t0 > 0.

Due to (7.1) and Hölder’s inequality, we conclude that (1/t)|〈Pt〉|2 is in L1([t0,∞))

so that

1

t

∫
S1

〈Pt〉 · Pt dθ ∈ L1([t0,∞)) .
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Consequently,

∫ t

t0

1

s

∫
S1

[−|Pt |2 + |Pθ |2
]
dθ ds

=
∫ t

t0

1

s

∫
S1

[−(Pt − 〈Pt〉) · Pt + |Pθ |2
]
dθ ds + · · ·

=
[
−1

s

∫
S1

(P − 〈P〉) · Pt dθ

]t

t0

−
∫ t

t0

1

s2

∫
S1

Pt · (P − 〈P〉)dθ ds

+
∫ t

t0

1

s

∫
S1

[Ptt − Pθθ ] · (P − 〈P〉)dθ ds + · · ·

= −
∫ t

t0

1

s2

∫
S1

Pt · (P − 〈P〉)dθ ds

+
∫ t

t0

1

2s

∫
S1

∂gkl

∂ Pi

(
Qk

t Ql
t − Qk

θ Ql
θ

)
(Pi − 〈Pi 〉)dθ ds + · · · ,

where we have used the fact that H is bounded to the future and (2.8). Observe

that∣∣∣∣ 1

2s

∫
S1

∂gkl

∂ Pi

(
Qk

t Ql
t − Qk

θ Ql
θ

)
(Pi − 〈Pi 〉)dθ

∣∣∣∣ ≤ K

s

∫
S1

[|Qt |2M◦P + |Qθ |2M◦P

]
dθ

due to (5.3) and the fact that the sup norm of P −〈P〉 is bounded to the future. We

conclude that ∫ t

t0

1

s

∫
S1

[−|Pt |2 + |Pθ |2
]
dθ ds

converges as t → ∞. Consequently,

1

t

∫
S1

|Pθ |2 dθ ∈ L1([t0,∞))

so that

1

t
H ∈ L1([t0,∞)) .

Since H is monotonically decaying, we conclude that it converges to 0. Combining

this with Theorem 6.1, we get the conclusion of the theorem. �
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8 Behavior of the Mean Values

From now on, we will only consider solutions to (1.2)–(1.3). The main point

in the analysis of the behavior of the mean values is to interpret (1.11)–(1.13) as

ODEs for the mean values. A first step in this direction is taken by the following

lemma.

LEMMA 8.1 Consider a solution to (1.2)–(1.3). Then

t〈Pt〉 = β〈Q〉 − α

2
+ 1

2π

∫
S1

te2P(Q − 〈Q〉)Qt dθ ,(8.1)

te〈P〉〈Qt〉 = βe−〈P〉 − 1

2π
e〈P〉

∫
S1

(e2P−2〈P〉 − 1)t Qt dθ ,(8.2)

and

t〈Qt〉 = γ + α〈Q〉 − β〈Q〉2 + t

π

∫
S1

(〈Q〉 − Q)Pt dθ(8.3)

+ t

2π

∫
S1

e2P Qt(Q − 〈Q〉)2 dθ .

PROOF: Observe that∫
S1

Q(t Qt)e
2P dθ = B〈Q〉 +

∫
S1

te2P(Q − 〈Q〉)Qt dθ

so that (1.11) implies (8.1). Furthermore,∫
S1

e2P Q2(t Qt)dθ =
∫
S1

e2Pt Qt Q(Q − 〈Q〉)dθ + 〈Q〉
(

A

2
+ t

∫
S1

Pt dθ

)

= 〈Q〉
(

A

2
+ t

∫
S1

Pt dθ

)
− B〈Q〉2 + 〈Q〉

(
A

2
+ t

∫
S1

Pt dθ

)

+
∫
S1

e2Pt Qt(Q − 〈Q〉)2 dθ

= 〈Q〉(A + 2t

∫
S1

Pt dθ) − B〈Q〉2 +
∫
S1

e2Pt Qt(Q − 〈Q〉)2 dθ .

Combining this with (1.13) yields (8.3). Finally, (8.2) is a reformulation of (1.12)

obtained by multiplying by e−〈P〉/(2π) and proceeding similarly to the above. �

It will turn out to be easier to analyze these equations for certain combinations

of the constants than for others. Since the constants change when one applies an
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isometry of the hyperbolic plane, it is natural to try to find an isometry that yields

equations that are as simple as possible.

LEMMA 8.2 Consider a solution to (1.2)–(1.3). If A2 + 4BC > 0, there is an

isometry such that if A1, B1, and C1 are the constants of the transformed solution,

then A1 = −√
A2 + 4BC and B1 = C1 = 0. If A2 + 4BC = 0, there is an

isometry such that the constants of the transformed solution are A1 = B1 = 0 and

C1 = 4π or C1 = 0.

REMARK In the case A2 + 4BC < 0, one cannot achieve B = 0, since A2 + 4BC

is invariant under the isometries.

PROOF: Let us give a list of isometries and how the constants change.

Translation:

(Q, P) �→ (Q + �, P) yields (A, B, C) �→ (A + 2�B, B, C − �A − �2 B) .

Dilation:

(Q, P) �→ (ηQ, P − ln η) yields (A, B, C) �→
(

A,
1

η
B, ηC

)
.

Inversion:

(Q, e−P) �→
(

− Q

Q2 + e−2P
,

e−P

Q2 + e−2P

)
yields (A, B, C) �→ −(A, C, B) .

The above isometries generate all the orientation-preserving isometries of the hy-

perbolic plane. To get all the isometries, one only needs to add a reflection:

(Q, P) �→ (−Q, P) yields (A, B, C) �→ (A,−B,−C) .

One can compute explicitly that all the above transformations leave the expression

A2 + 4BC invariant.

Let us assume that B �= 0. One obtains B = 0 by carrying out a translation by

� = −A/(2B)+√
A2 + 4BC/(2B) and then an inversion. If A2 +4BC > 0, one

can make the C-constant 0 by the translation � = B/
√

A2 + 4BC . This yields

the form given in the statement of the lemma. If A2 + 4BC = 0, we can use a

reflection and dilation, if necessary, to obtain the desired form.

If B = 0 and A2 +4BC = 0, one applies a dilation and reflection as above, and

if B = 0 and A2 + 4BC > 0, one first makes a translation to set the C-constant

to 0, and then one makes an inversion, if necessary, to get the right sign on the

A-constant. �

Let us apply the above lemma to the spatially homogeneous solutions. In that

case, either A2 + 4BC > 0 or the solution is constant due to (1.15). Thus, in

the nontrivial case, there is an isometry such that the transformed solution has

B1 = C1 = 0 and A1 < 0. However, this implies that Q1 = 0 in the spatially

homogeneous case. In other words, all spatially homogeneous solutions to (1.2)–

(1.3) can be obtained by applying the isometries of the hyperbolic plane to the
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polarized (Q = 0) spatially homogeneous solutions. In particular, all nontrivial

spatially homogeneous solutions follow geodesics of the hyperbolic plane.

The starting point for the analysis is the following.

LEMMA 8.3 Consider a solution to (1.2)–(1.3) with B �= 0. Assume H(t) ≤ K1/t

for t ≥ T ≥ 1. If A2 + 4BC ≥ 0, then 〈Q〉 is bounded and 〈P〉 is bounded from

below for t ≥ T . If A2 + 4BC < 0, 〈P〉 and 〈Q〉 are both bounded for t ≥ T . The

bounds depend only on the constants A, B, C, and K1.

PROOF: Multiply (8.3) with e〈P〉 and eliminate te〈P〉〈Qt〉 by using (8.2). After

some rearrangements one obtains∣∣∣∣β
{

e−〈P〉 + e〈P〉
[(

〈Q〉 − α

2β

)2

− α2 + 4βγ

4β2

]}∣∣∣∣ ≤ K ,

where K depends only on K1. In the case A2 + 4BC < 0, this implies first of

all that 〈P〉 is bounded and then that 〈Q〉 is bounded. The lemma follows in this

particular case. Concerning the remaining case, if |〈Q〉 − α/(2β)| ≥ δ/|β|, where

δ is defined by (1.14), both terms within the curly brackets have the same sign,

whence we get a bound on 〈P〉 from below when this inequality is satisfied. This

then implies a bound on 〈Q〉. Combining the bound on 〈Q〉 with the inequality, we

get a bound on 〈P〉 from below. �

LEMMA 8.4 Fix P = (p0, A0, B0, C0) with B0 �= 0. Consider the family of so-

lutions determined by (P, t0) by giving initial data as in (6.9) and (6.10). With

notation as in Lemma 6.2, there are constants c〈Q〉(P) and c〈P〉,l(P) such that

|〈Q〉(P, t0; t)| ≤ c〈Q〉(P) and 〈P〉(P, t0; t) ≥ c〈P〉,l(P)

for all t ≥ t0 ≥ tP . If A2 + 4BC < 0, one also has such a uniform bound on

〈P(P, t0; t)〉 from above.

PROOF: This follows by combining Lemma 8.3 with Lemma 6.2. �

LEMMA 8.5 Consider a solution to (1.2)–(1.3). Then there is a T such that

g = 〈Pt〉2 + e2〈P〉〈Qt〉2 ≤ K

t2
for t ≥ T ,

where the first equality defines g.

REMARK Note that the estimate H ≤ K/t combined with Hölder’s inequality only

yields g ≤ K/t . The added decay obtained in this lemma is crucial to everything

that follows.

PROOF: If B = 0, then (8.1) implies that

〈Pt〉2 ≤ K

t2
.

If B �= 0, then the same statement holds due to the fact that 〈Q〉 is bounded in that

case; compare Lemma 8.3. Consider (8.2). The second term on the right-hand side
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is always bounded. The first term is also bounded, regardless of whether B = 0,

due to Lemma 8.3. The lemma follows. �

LEMMA 8.6 Fix P = (p0, A0, B0, C0). Consider the family of solutions deter-

mined by (P, t0) by giving initial data as in (6.9) and (6.10). With notation as in

Lemma 6.2, there is a constant cg(P) such that

g(P, t0; t) ≤ cg(P)

t2
for all t ≥ t0 ≥ tP .

The essential technical tools in the analysis are the following two lemmas.

LEMMA 8.7 Consider a solution to (1.2)–(1.3) and let f ∈ C∞(R+, R) satisfy

| f | ≤ K and | ft | ≤ K

t1/2
for t ≥ T .

Then, if t ≥ t0 ≥ T ,∫ t

t0

f

[
〈Pt〉 − β

s
〈Q〉 + α

2s

]
ds = O

(
t
−1/2
0

)
.

PROOF: Consider ∫ t

t0

f

∫
S1

e2P(Q − 〈Q〉)Qt dθ ds .

Observe that ∫
S1

e2P(Q − 〈Q〉)〈Qt〉dθ = O(t−3/2)

due to Lemma 8.5 and H ≤ K/t . Consequently,∫
S1

e2P(Q − 〈Q〉)Qt dθ =
∫
S1

e2P(Q − 〈Q〉)(Qt − 〈Qt〉)dθ + O(t−3/2) .

Thus ∫ t

t0

f

∫
S1

e2P(Q − 〈Q〉)Qt dθ ds

= 1

2

∫ t

t0

f

∫
S1

e2P∂t(Q − 〈Q〉)2 dθ ds + O(t
−1/2
0 )

=
[

1

2

∫
S1

f e2P(Q − 〈Q〉)2 dθ

]t

t0

−
∫ t

t0

∫
S1

(
f Pt + 1

2
ft

)
e2P(Q − 〈Q〉)2 dθ ds + O

(
t
−1/2
0

)

= O
(
t
−1/2
0

)
.
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Inserting this in (8.1) we get the conclusion of the lemma. �

LEMMA 8.8 Consider a solution to (1.2)–(1.3) and let f ∈ C∞(R+, R) satisfy

(8.4) |e−〈P〉 f | ≤ K and |e−〈P〉 ft | ≤ K

t1/2
for t ≥ T .

Then, if t ≥ t0 ≥ T ,

(8.5)

∫ t

t0

f

[
2〈Qt〉 − γ

s
− α

s
〈Q〉 + β

s
〈Q〉2 − β

s
e−2〈P〉

]
ds = O

(
t
−1/2
0

)
.

PROOF: Consider (8.3). Observe that the last term on the right-hand side is

O(t−3/2) if we multiply by f/t , due to (8.4). Consider now the second-to-last

term. Dividing by t and integrating in time, we obtain

1

π

∫ t

t0

f

∫
S1

(〈Q〉 − Q)Pt dθ ds

= 1

π

∫ t

t0

f

∫
S1

(〈Q〉 − Q)(Pt − 〈Pt〉)dθ ds + O
(
t
−1/2
0

)

=
[

1

π

∫
S1

f (〈Q〉 − Q)(P − 〈P〉)dθ

]t

t0

− 1

π

∫ t

t0

∫
S1

[ f (〈Qt〉 − Qt) + ft(〈Q〉 − Q)](P − 〈P〉)dθ ds + O
(
t
−1/2
0

)

= 1

π

∫ t

t0

f

∫
S1

Qt(P − 〈P〉)dθ ds + O
(
t
−1/2
0

)
,

where we have used (8.4) and Lemma 8.5. Due to (8.2) we have, by Taylor-

expanding exp[2P − 2〈P〉] − 1,

(8.6) 〈Qt〉 = β

t
e−2〈P〉 − 1

π

∫
S1

(P − 〈P〉)Qt dθ + O
(
e−〈P〉t−3/2

)
,

whence

1

π

∫ t

t0

f

∫
S1

Qt(P − 〈P〉)dθ ds =
∫ t

t0

f

[
−〈Qt〉 + β

s
e−2〈P〉

]
ds + O

(
t
−1/2
0

)
.

Inserting this information in (8.3), we obtain (8.5). �

It will be of interest to apply the two above lemmas to families of solutions to

(1.2)–(1.3). What one wants to know in such a situation is that the constant hidden

in O(t
−1/2
0 ) can be chosen to be the same for the entire family. Assume that the
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family is parametrized by a parameter r . Assume furthermore that for t ≥ t0 ≥ 1,

there are functions f (r; · ) such that the following estimates hold:

| f (r; t)| ≤ K1, | ft(r; t)| ≤ K2t−1/2, H(r; t) ≤ K3t−1, g(r; t) ≤ K4t−2,

for all t ≥ t0 with constants K1 through K4 independent of r . Then one can

convince oneself that one can use the same constant in Lemma 8.7 for the entire

family. The statement concerning Lemma 8.8 is similar.

LEMMA 8.9 Consider a solution to (1.2)–(1.3). Then if t > t0 ≥ 1

(8.7)

∫ t

t0

[
〈Pt〉 − β

s
〈Q〉 + α

2s

]
ds = O

(
t
−1/2
0

)
.

PROOF: Apply Lemma 8.7 with f = 1. �

COROLLARY 8.10 Consider a solution to (1.2)–(1.3). If B = 0 there is a constant

cP and a T > 0 such that

〈P〉 + α

2
ln t − cP = O(t−1/2) for all t ≥ T .

PROPOSITION 8.11 Consider a solution to (1.2)–(1.3). If B = 0, then there is a

constant cQ and a T > 0 such that for t ≥ T ,∣∣∣∣e〈P〉
(

〈Q〉 + γ

α

)
− cQ

∣∣∣∣ ≤ K t−1/2 if α �= 0(8.8)

and ∣∣∣∣〈Q〉 − γ

2
ln t − cQ

∣∣∣∣ ≤ K t−1/2 if α = 0 .(8.9)

REMARK The case β = α = 0 and γ �= 0 cannot occur in the spatially homoge-

neous case.

PROOF: Let f = t−α/2. Then (8.4) is satisfied due to Corollary 8.10. Lem-

ma 8.8 then yields∫ t

t0

[
s−α/2〈Qt〉 − α

2s
s−α/2〈Q〉 − γ

2s
s−α/2

]
ds = O

(
t
−1/2
0

)
,

since β = 0. Since the first two terms in the integrand can be written as the

derivative of s−α/2〈Q〉, we get the conclusion that there is a c such that∣∣∣∣t−α/2〈Q〉 + γ

α
t−α/2 − c

∣∣∣∣ ≤ K t−1/2 if α �= 0.

If α = 0, we get (8.9). Combining this with Corollary 8.10, we obtain the conclu-

sion of the proposition. �
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THEOREM 8.12 Consider a solution to (1.2)–(1.3) with A2 + 4BC > 0. Then

there is an isometry of the hyperbolic plane such that if (Q1, P1) is the transformed

solution,

(8.10)
∥∥P1 − δ ln t − cP

∥∥
C(S1,R)

+
∥∥eP1 Q1 − c1

∥∥
C(S1,R)

≤ K t−1/2 ,

where δ is given by (1.14).

PROOF: The theorem follows by combining Lemma 8.2, Corollary 8.10, Propo-

sition 8.11, and the decay of the energy. �

Note that if one lets x1 = (x1, y1) = (Q1, e−P1), then the distance from (x1, y1)

to the line �, defined by x = c1 y, with respect to the hyperbolic metric tends to 0

as t−1/2. In fact, if x = (x, y) = (c1 y1, y1) and γ (s) = (sx + (1 − s)x1, y1), then

γ joins x and x1 and the length of γ with respect to the hyperbolic metric decays

as t−1/2 due to Theorem 8.12. Thus dH (x1, �) ≤ K t−1/2. Since this estimate is

invariant under isometries, we get the statement of Theorem 1.2 in the case that

A2 + 4BC > 0.

The question remains to what values c1 may converge.

PROPOSITION 8.13 Let A0, c′
1, η ∈ R with −A0, η > 0. Then there is a solution

to (1.2)–(1.3) with (A, B, C) = (A0, 0, 0) such that if c1 is the constant appearing

in (8.10), |c1 − c′
1| ≤ η.

PROOF: We first need to modify the initial data (6.9)–(6.10) slightly. Let A0 <

0 and p0, q0 ∈ R be arbitrary. Define B0 = 0 and C0 = q0 A0. Performing a

translation of the corresponding initial data (6.9)–(6.10) by q0, one obtains

Q(t0, θ) = q0 + 1

t
1/2
0

cos θ , P(t0, θ) = p0 , Qt(t0, θ) = 0 ,(8.11)

Pt(t0, θ) = − 1

4π t0
A0 + q0 A0

2π t
1/2
0

cos θ .(8.12)

The corresponding family of solutions will have (A, B, C) = (A0, 0, 0). Let Q =
(A0, p0, q0), and denote a solution to (1.2)–(1.3) with the initial data (8.11)–(8.12)

by P(Q, t0; t, θ), etc. Observe that the family has been obtained by a translation

of the standard family we have been considering and that the energy is invariant

under translations. Thus, we can apply Lemma 6.2 to obtain the existence of a tQ
such that

H(Q, t0; t) ≤ K (Q)

t

for all t ≥ t0 ≥ tQ ≥ 1. Due to this, the fact that (8.1) and (8.2) hold and the fact

that β = 0 for this family, we obtain

t2
[〈Pt(Q, t0; t)〉2 + exp

(
2〈P(Q, t0; t)〉)〈Qt(Q, t0; t)〉2

] ≤ K (Q)
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for all t ≥ t0 ≥ tQ ≥ 1. By the argument presented after the proof of Lemma 8.8,

we can apply Lemma 8.7 for f = 1 and obtain an estimate which is uniform in the

sense that ∣∣∣∣
∫ t

t0

[
〈Pt(Q, t0; s)〉 + α

2s

]
ds

∣∣∣∣ ≤ K (Q)t
−1/2
0

for all t ≥ t0 ≥ tQ ≥ 1. Thus

(8.13)

∣∣∣∣〈P(Q, t0; t)〉 − p0 + α

2
ln

t

t0

∣∣∣∣ ≤ K (Q)t
−1/2
0 .

Define

f (Q, t0; t) = exp

(
p0 − α

2
ln

t

t0

)
.

Then

exp
[−〈P(Q, t0; t)〉]| f (Q, t0; t)| ≤ exp

[
K (Q)t

−1/2
0

]
and

exp
[−〈P(Q, t0; t)〉]| ft(Q, t0; t)| ≤ |α|

2t
exp

[
K (Q)t

−1/2
0

]
.

As was observed after its proof, one can apply Lemma 8.8 with f as above and

obtain uniform estimates in the sense that∣∣∣∣
∫ t

t0

f (Q, t0; s)

[
〈Qt(Q, t0; s)〉 − α

2s
〈Q(Q, t0; s)〉

]
ds

∣∣∣∣ ≤ K (Q)t
−1/2
0

for t ≥ t0 ≥ tQ ≥ 1. Thus∣∣ f (Q, t0; t)〈Q(Q, t0; t)〉 − ep0q0

∣∣ ≤ K (Q)t
−1/2
0 .

Combining this with (8.13), we get∣∣exp[〈P(Q, t0; t)〉]〈Q(Q, t0; t)〉 − ep0q0

∣∣ ≤ K (Q)t
−1/2
0 .

By choosing p0 and q0 so that ep0q0 = c′
1 and letting t0 be big enough, we obtain

the conclusion of the proposition. �

Similarly to the proof of Theorem 8.12, we have the following:

THEOREM 8.14 Consider a solution to (1.2)–(1.3) with A2 + 4BC = 0 but for

which not all the constants are 0. Then there is an isometry of the hyperbolic plane

such that if (Q1, P1) is the transformed solution,

‖P1 − cP‖C(S1,R) + ‖Q1 − ln t − cQ‖C(S1,R) ≤ K t−1/2 .

We deduce from this theorem that the distance from the solution (x1, y1) =
(Q1, e−P1) to the curve y = const decays to 0 as t−1/2 with respect to the hyperbolic

metric. The corresponding statement in Theorem 1.2 follows.

For the sake of completeness, let us say something about how P and Q behave

after undoing the isometries in Theorems 8.12 and 8.14. Consider first the proof of

Lemma 8.2. In order to obtain (A, B, C) = (0, 0, 4π) in the case A2 + 4BC = 0,

one has to carry out the following operations (assuming B was not 0 to start with):
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first a translation, then an inversion, then a dilation, and finally, if necessary, a

reflection. Let us reverse this procedure. We begin by taking a solution with the

asymptotics as given in Theorem 8.14 and to start with, we carry out a dilation and

possibly a reflection. The asymptotics one then obtains are

(8.14) ‖P1 − cP‖C(S1,R) + ‖Q1 − c0 ln t − cQ‖C(S1,R) ≤ K t−1/2 .

Here c0 can be any nonzero number. Then one should carry out an inversion. Let

P0 = cP , Q0 = c0 ln t + cQ , and

(8.15)
(
Q2, e−P2

) =
(

− Q1

Q2
1 + e−2P1

,
e−P1

Q2
1 + e−2P1

)
.

Due to (8.14), we have

Q2 + Q0

Q2
0 + e−2P0

= O[(ln t)−2t−1/2]

and

e−P2 − e−P0

Q2
0 + e−2P0

= O[(ln t)−2t−1/2] .

Thus

P2 − P0 − ln
[
Q2

0 + e−2P0
] = ln

eP1(Q2
1 + e−2P1)

eP0(Q2
0 + e−2P0)

= ln[1 + O(t−1/2)] = O(t−1/2) .

Finally, one should carry out a translation. Let us consider the case A2+4BC >

0 and B �= 0. Then one has to perform a translation, an inversion, and finally a

nonzero translation in order to obtain the asymptotics formulated in Theorem 8.12.

In order to undo these operations, we therefore first have to carry out a nonzero

translation. We then obtain∥∥P1 − δ ln t − cP

∥∥
C(S1,R)

+
∥∥eP1(Q1 − cQ) − c1

∥∥
C(S1,R)

≤ K t−1/2 ,

where cQ �= 0. Introduce P0 = δ ln t + cP , Q0 = cQ + c1e−P0 , and (Q2, P2) by

(8.15). We obtain

Q2 + Q0

Q2
0 + e−2P0

= O(t−δ−1/2)

due to the fact that δ > 0 and Q0 converges to a nonzero value. Furthermore,

e−P2 − e−P0

Q2
0 + e−2P0

= O(t−δ−1/2)

so that

P2 − P0 − ln
(
Q2

0 + e−2P0
) = ln

eP1(Q2
1 + e−2P1)

eP0(Q2
0 + e−2P0)

= ln[1 + O(t−1/2)] = O(t−1/2) .
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Thus we obtain the behavior in the cases B �= 0 and A2+4BC ≥ 0. It is interesting

to note that one can use (8.7) and (8.16) below to find the leading-order behavior

of the solution in these cases. However, it is quite difficult, particularly in the case

A2 + 4BC = 0. In a sense, it is perhaps not so surprising, since, for example, if

A2 + 4BC = 0 and B �= 0, then the asymptotics are that P and Q approach the

boundary of hyperbolic space along a horocycle.

LEMMA 8.15 Consider a solution to (1.2)–(1.3). If B �= 0, then there is a T > 0

such that for t ≥ t0 ≥ T ,

(8.16)

∫ t

t0

[
2〈Qt〉+

β

s

{(
〈Q〉− α

2β

)2

− α2 + 4βγ

4β2

}
− β

s
e−2〈P〉

]
ds = O

(
t
−1/2
0

)
.

PROOF: Due to Lemma 8.3, we know that 〈P〉 is bounded from below. Thus

we can apply Lemma 8.8 with f = 1 to obtain the conclusion of the lemma. �

Before we state the next proposition, it seems natural to give some intuition

motivating the result. Consider (8.7) and (8.16). Assuming the error terms to be 0,

one gets ∫ t

t0

[
〈Pt〉 − β

s

(
〈Q〉 − α

2β

)]
ds = 0

and similarly for 〈Qt〉. Introducing u = 〈Q〉 − α/(2β) and v = 〈P〉, and differen-

tiating the above-mentioned equations, one obtains

v̇ = β

t
u and 2u̇ = β

t

{
e−2v + α2 + 4βγ

4β2
− u2

}
.

If we change time coordinates so that 2t u̇/β = u′ and assume (α2+4βγ )/(4β2) =
−1, we get the equations

(8.17) u′ = e−2v − 1 − u2 and v′ = 2u .

Solutions to these equations have the property that

(8.18) u2ev + ev + e−v = const .

In fact, one can prove that if u and v are solutions to (8.17) that are nontrivial, there

is a v0 > 0 and a τ0 such that the solution can be written

[u(τ ), v(τ )] =(
sinh v0 sin 2(τ − τ0)

cosh v0 − sinh v0 cos 2(τ − τ0)
, ln[cosh v0 − sinh v0 cos 2(τ − τ0)]

)
.

In reality, we do have error terms that have to be dealt with. However, it is

natural to try to prove that an analogue of the conserved quantity (8.18) converges

to some value as t tends to ∞.
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PROPOSITION 8.16 Consider a solution to (1.2)–(1.3). Assume that A2 + 4BC <

0. Then there is a constant cN and a T > 0 such that for t ≥ T(
〈Q〉 − α

2β

)2

e〈P〉 − α2 + 4βγ

4β2
e〈P〉 + e−〈P〉 − cN = O(t−1/2) .

PROOF: Consider∫ t

t0

∂s

[(
〈Q〉 − α

2β

)2

e〈P〉 − α2 + 4βγ

4β2
e〈P〉 + e−〈P〉

]
ds .

Due to Lemma 8.3 we know that 〈P〉 and 〈Q〉 are bounded. Due to Lemma 8.5, any

f = h(〈P〉, 〈Q〉) for h ∈ C∞(R2, R) can thus be used when applying Lemma 8.7

and 8.8. We get ∫ t

t0

e〈P〉〈Pt〉ds =
∫ t

t0

β

s
e〈P〉

(
〈Q〉 − α

2β

)
ds + O

(
t
−1/2
0

)
,

∫ t

t0

e−〈P〉〈Pt〉ds =
∫ t

t0

β

s
e−〈P〉

(
〈Q〉 − α

2β

)
ds + O

(
t
−1/2
0

)
,

∫ t

t0

(
〈Q〉 − α

2β

)2

e〈P〉〈Pt〉ds =
∫ t

t0

β

s

(
〈Q〉 − α

2β

)3

e〈P〉ds + O](t
−1/2
0

)
,

and

2

∫ t

t0

(
〈Q〉 − α

2β

)
e〈P〉〈Qt〉ds =

−
∫ t

t0

(
〈Q〉− α

2β

)
e〈P〉 β

s

[(
〈Q〉− α

2β

)2

− α2 + 4βγ

4β2
−e−2〈P〉

]
ds + O

(
t
−1/2
0

)
.

Combining these observations, we get the conclusion of the proposition. �

Observe that the transformation (Q, P) �→ (Q, e−P) takes the curve in the

statement of Proposition 8.16 to a circle. From the estimates it follows that the

distance from the solution to this curve decays as t−1/2, and the statement in The-

orem 1.2 concerning the case A2 + 4BC < 0 follows.

At this point it becomes clear why we have insisted on obtaining uniform esti-

mates. The function

(8.19)

(
〈Q〉 − α

2β

)2

e〈P〉 − α2 + 4βγ

4β2
e〈P〉 + e−〈P〉

has a minimum 2|δ/β|, where δ is given by (1.14), achieved for

〈Q〉 = α

2β
and 〈P〉 = − ln

∣∣∣∣ δ

β

∣∣∣∣ .
If cN equals this minimum value, 〈P〉 and 〈Q〉 have to converge to the correspond-

ing values. Since we have no control over cN , one can then ask the question
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whether cN always corresponds to the minimum value. That this is not the case

follows from the following proposition:

PROPOSITION 8.17 Fix P = (p0, A0, B0, C0) with A2
0 + 4B0C0 < 0. Consider

the family of solutions determined by (P, t0) by giving initial data as in (6.9) and

(6.10). With notation as in Lemma 6.2, there are constants cl(P) and cN (P, t0) ≥ 0

such that∣∣∣∣
(

〈Q〉 − α

2β

)2

e〈P〉 − α2 + 4βγ

4β2
e〈P〉 + e−〈P〉 − cN (P, t0)

∣∣∣∣ ≤ cl(P)t−1/2

for t ≥ t0 ≥ tP ≥ 1, where we have omitted the argument (P, t0; t) for the sake of

brevity.

PROOF: First recall the observations following the proof of Lemma 8.8. The

parameter in this case is the starting time t0. The proposition follows by going

through the proof of Proposition 8.16 and keeping these observations in mind. �

By the above proposition we can, given B1 and C1 with B1C1 < 0, c ≥
2|C1/B1|1/2, and η > 0, find a solution with (A, B, C) = (0, B1, C1) such that

|c − cN | ≤ η by varying p0 and the starting time t0. In this way, we can control

the length of the circle with respect to the hyperbolic metric to which the solution

asymptotes. Consider a solution with A2 + 4BC < 0. By the proof of Lemma 8.2,

we can carry out a translation of it so that the transformed solution has A-constant

A1 = 0. Thus there is no restriction in assuming A1 = 0. What the above observa-

tions say is that there are basically no restrictions on what the length of the circle

with respect to the hyperbolic metric might be.

Let us try to describe how the solution behaves when the circle is nontrivial.

Assume that cN > 2|δ/β|. Introduce the variables

(u, v) =
[
δe〈P〉

β
− βcN

2δ
, e〈P〉

(
〈Q〉 − α

2β

)]
.

Observe that

u2 + v2 = −1 + β2c2
N

4δ2
+ O(t−1/2) .

Let

rN =
(

−1 + β2c2
N

4δ2

)1/2

and define

(ũ, ṽ) = rN [sin(δ ln t + φ0), cos(δ ln t + φ0)] ,

where φ0 has been chosen so that u = T(u, v) is parallel to ũ = T(ũ, ṽ) when

t = t0.

PROPOSITION 8.18 Consider a solution to (1.2)–(1.3) such that A2 + 4BC < 0.

Assume that the cN associated with this solution satisfies cN > 2|δ/β|. Let T ≥ 1
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be great enough that u2 + v2 > 0 for all t ≥ T . Let t0 ≥ T and assume, with

notation as above, φ0 to be such that u and ũ are parallel for t = t0. Then∥∥∥∥P − ln

[
β2cN

2δ2
+ β

δ
rN sin(δ ln t + φ0)

]∥∥∥∥
C(S1,R)

≤ K t
−1/2
0

and ∥∥∥∥Q − α

2β
− rN cos(δ ln t + φ0)

β2cN

2δ2 + β

δ
rN sin(δ ln t + φ0)

∥∥∥∥
C(S1,R)

≤ K t
−1/2
0

for t ≥ t0, where K depends only on T and the initial data.

PROOF: Let

� =
(

cos ξ − sin ξ

sin ξ cos ξ

)

where ξ(t) = δ ln t + φ0. If

A = δ

t

(
0 1

−1 0

)
,

then �′ = −A�. Observe also that [A,�] = 0. For t ≥ t0,

�(t)(u − ũ)(t) − �(t0)(u − ũ)(t0) =
∫ t

t0

[−A�(u − ũ) + �(u − ũ)′]ds

=
∫ t

t0

(−A�u + �u′)ds ,

(8.20)

since ũ′ = Aũ. Observe that we can apply Lemma 8.7 and 8.8 if f is given by f =
h(sin ξ, cos ξ, 〈P〉, 〈Q〉) for an arbitrary h ∈ C∞(R4, R) if t ≥ 1. Consequently,

we have ∫ t

t0

�u′ ds =
∫ t

t0

�v ds + O
(
t
−1/2
0

)
,

with v = T(v1, v2), where

v1 = δ

β
e〈P〉 β

s

(
〈Q〉 − α

2β

)
= δ

s
v ,

and

v2 = β

s
e〈P〉(〈Q〉 − α

2β
)2 − e〈P〉 β

2s

{(
〈Q〉 − α

2β

)2

− α2 + 4βγ

4β2
− e−2〈P〉

}

= β

2s

{
e〈P〉

(
〈Q〉 − α

2β

)2

− δ2

β2
e〈P〉 + e−〈P〉

}

= β

2s

(
cN − 2

δ2

β2
e〈P〉

)
+ O(s−3/2)

= −δ

s
u + O(s−3/2) .
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Consequently,∫ t

t0

�u′ ds =
∫ t

t0

�v ds + O
(
t
−1/2
0

) =
∫ t

t0

�[Au + O(s−3/2)]ds + O
(
t
−1/2
0

)
.

Combining this with (8.20), we get the conclusion that

�(t)(u − ũ)(t) − �(t0)(u − ũ)(t0) = O
(
t
−1/2
0

)
.

Since φ0 has been chosen so that (u − ũ)(t0) = O(t
−1/2
0 ) and since � ∈ SO(2), we

get the conclusion that

‖u(t) − ũ(t)‖ ≤ K t
−1/2
0 for all t ≥ t0.

This can be used to derive the conclusion of the proposition. �

9 Asymptotic Behavior of the Energy

Up to this point, we have only an estimate of the energy H , but with the infor-

mation obtained in the previous section, we can do better.

PROPOSITION 9.1 Consider a solution to (1.2)–(1.3). Then there is a constant

cH ≥ 0 and a T > 0 such that for all t ≥ T ,

|t H(t) − cH | ≤ K

t
.

PROOF: Compute

d(t H)

dt
= 1

2

∫
S1

[
P2

θ − P2
t + e2P(Q2

θ − Q2
t )

]
dθ .

Using the fact that A is a conserved quantity, we compute∫ t

t0

∫
S1

e2P
(
Q2

θ − Q2
t

)
dθ ds

=
∫ t

t0

∫
S1

[
−∂t

(
e2P Q Qt

)

+ e2P Q

(
Qtt + 1

s
Qt + 2Pt Qt − Qθθ − 2Pθ Qθ

)

− 1

s
e2P Q Qt

]
dθ ds

= −
[

A

2s
+

∫
S1

Pt dθ

]t

t0

−
∫ t

t0

[
A

2s2
+ 1

s

∫
S1

Pt dθ

]
ds .
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Thus, for t ≥ t0 ≥ T , ∣∣∣∣
∫ t

t0

∫
S1

e2P(Q2
θ − Q2

t )dθ ds

∣∣∣∣ ≤ K t−1
0 .

Note that ∫ t

t0

∫
S1

Pt〈Pt〉dθ ds =
∫ t

t0

2π〈Pt〉2 ds = O
(
t−1
0

)
,

so that ∫ t

t0

∫
S1

(
P2

θ − P2
t

)
dθ ds

=
∫ t

t0

∫
S1

[
P2

θ − Pt(Pt − 〈Pt〉)
]
dθ ds + O

(
t−1
0

)

=
[
−

∫
S1

(P − 〈P〉)Pt dθ

]t

t0

+
∫ t

t0

∫
S1

[
−1

s
Pt + e2P

(
Q2

t − Q2
θ

)]
(P − 〈P〉)dθ ds + O

(
t−1
0

)

=
∫ t

t0

∫
S1

e2P
(
Q2

t − Q2
θ

)
(P − 〈P〉)dθ ds + O

(
t−1
0

)
.

Let us compute, for t ≥ t0 ≥ T ,

∫ t

t0

∫
S1

e2P
(
Q2

t − Q2
θ

)
(P − 〈P〉)dθ ds

=
∫ t

t0

∫
S1

e2P
[
Qt∂t(Q − 〈Q〉) − Q2

θ

]
(P − 〈P〉)dθ ds + O

(
t−1
0

)

=
∫ t

t0

∫
S1

[
∂t

{
e2P Qt(Q − 〈Q〉)(P − 〈P〉)}

− ∂t

(
e2P Qt

)
(Q − 〈Q〉)(P − 〈P〉) − e2P Qt(Q − 〈Q〉)(Pt − 〈Pt〉)

+ ∂θ

(
e2P Qθ

)
(Q − 〈Q〉)(P − 〈P〉) + e2P Qθ (Q − 〈Q〉)Pθ

]
dθ ds

+ O
(
t−1
0

)
.

Observe that the terms involving ∂t(e
2P Qt) and ∂θ (e

2P Qθ ) can be neglected due

to (1.3) and the decay of the energy. The first term in the integrand can be ignored

as well. The part of the third term in the integrand arising from 〈Pt〉 can also be

neglected. Finally, replacing Qt with Qt −〈Qt〉 and e2P with e2〈P〉 causes no harm.
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Thus,∫ t

t0

∫
S1

e2P
(
Q2

t − Q2
θ

)
(P − 〈P〉)dθ ds

= 1

2

∫ t

t0

∫
S1

e2〈P〉[∂θ (Q − 〈Q〉)2 Pθ − ∂t(Q − 〈Q〉)2 Pt

]
dθ ds + O

(
t−1
0

)

= 1

2

∫ t

t0

∫
S1

[
e2〈P〉(Q − 〈Q〉)2(Ptt − Pθθ ) − ∂t

{
e2〈P〉(Q − 〈Q〉)2 Pt

}
+ 2〈Pt〉e2〈P〉(Q − 〈Q〉)2 Pt

]
dθ ds + O

(
t−1
0

)
= O

(
t−1
0

)
.

The proposition follows. �

In order to prove that if t2 H(t) is bounded, then the solution is independent of

the θ-variable, we need to prove the following technical lemma:

LEMMA 9.2 Consider a solution to (1.2)–(1.3). If t2 H is bounded, then

(9.1) lim
t→∞

[t2 H(t) − tψ(t)] = 0 ,

where

ψ = π t
(〈Pt〉2 + e2〈P〉〈Qt〉2

)
.

PROOF: Going through the proof of Theorem 6.1, one can see that

d(H + �)

dt
= −1

t
(H + �) − 1

t
� − 1

t2
ψ + ε ,

where

|ε| ≤ K

t
H 3/2 .

Introducing E = t2(H + �) and assuming t to be big enough, we thus have

(9.2)
dE

dt
= 1

t
E − ψ + ε1 + ε2

where

|ε1| ≤ K
E

t2
and |ε2| ≤ K

E3/2

t2
.

Furthermore,

ψ ≤ t

2

∫
S1

[
P2

t + e2P Q2
t

]
dθ

(
1 + K

t

)
.

Thus
1

t
E − ψ ≥ − K

t2
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so that the right-hand side of (9.2) is bounded by −K t−2 from below. Observe that

there is a C3 > 0 such that ∣∣∣∣d(E − tψ)

dt

∣∣∣∣ ≤ C3

t

where we have used (1.2)–(1.3) and the fact that t2 H is bounded.

Assume there is an η > 0 and a time sequence tk → ∞ such that

(E − tψ)(tk) ≥ η .

By the above, if t ≥ tk ,

|(E − tψ)(t) − (E − tψ)(tk)| ≤ C3 ln
t

tk
.

Choose t ′
k such that

C3 ln
t ′
k

tk
= η

2
.

Then

(E − tψ)(t) ≥ η

2
in [tk, t ′

k]
and ∫ t ′k

tk

1

t
(E − tψ)dt ≥ η

2
ln

t ′
k

tk
= η2

4C3

.

Since the negative contributions to the integral are negligible, we get the conclusion

that E → ∞, a contradiction. Thus E − tψ → 0 as t → ∞. Since E − t2 H → 0

as t → ∞, the lemma follows. �

LEMMA 9.3 Consider a solution to (1.2) and (1.3). If A2 + 4BC ≥ 0 and t2 H is

bounded, then the solution is independent of θ .

PROOF: Due to Lemma 8.2 and the fact that H is invariant under the isometries,

we can assume that B = 0. Under the assumptions of the lemma, (8.2) implies

e〈P〉〈Qt〉 = O(t−2)

whence Lemma 9.2 yields

lim
t→∞

[
t2 H − π t2〈Pt〉2

] = 0 .

By (8.1), we get the conclusion that t〈Pt〉 → −α/2, whence t2 H → πα2/4. Since

the derivative of t2 H is nonnegative, we get the conclusion that

t2 H ≤ πα2

4
.
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Using (8.1) again, we obtain

t2

2

∫
S1

P2
t dθ ≥ π t2〈Pt〉2 ≥ πα2

4
− α

2

∫
S1

te2P(Q − 〈Q〉)Qt dθ

≥ πα2

4
− K t

∫
S1

e2P
(
Q2

θ + Q2
t

)
dθ .

Thus, if t is large enough that K t ≤ t2/4, we can conclude that

πα2

4
≤ t2

2

∫
S1

P2
t dθ + K t

∫
S1

e2P
(
Q2

θ + Q2
t

)
dθ

≤ t2

2

∫
S1

P2
t dθ + t2

4

∫
S1

e2P
(
Q2

θ + Q2
t

)
dθ ≤ t2 H ≤ πα2

4
.

Thus ∫
S1

[
P2

θ + e2P(Q2
t + Q2

θ )
]
dθ = 0 ,

whence the solution is independent of θ and Q is constant. �

LEMMA 9.4 Consider a solution to (1.2) and (1.3). If A2 + 4BC < 0, then t2 H is

unbounded.

PROOF: Let us assume that t2 H ≤ K < ∞. We know that 〈P〉 is bounded in

this case, so (8.3) implies

t〈Qt〉 = −β

[(
〈Q〉 − α

2β

)2

− α2 + 4βγ

4β2

]
+ O(t−1) .

Thus A2 + 4BC < 0 is not possible. �

Adding up the results of this section, we obtain Theorem 1.6.

10 The Sup Norm of the Derivatives

Observe that the arguments carried out so far yield no control over the behavior

of the derivatives of P and Q in the sup norm. In this section we will try to remedy

this.

PROOF OF PROPOSITION 1.8: The approach is the same as in Theorem 3.1.

Let F1, F2, E1, E2, and E be as in the proof of that theorem, where the metric ḡ

used to define A and B is given by g1 defined in (1.7). Observe that F1, F2 ≥ 0

and that

s
[
P2

t + P2
θ + e2P(Q2

t + Q2
θ )

]
(s, θ) ≤ E(s) .
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Due to (2.5), we have

(10.1) 2
∂ F2

∂s
(s, θ) = [−P2

t − e2P Q2
t + P2

θ + e2P Q2
θ

]
(s, θ + s) .

Consider, for s ≥ s0 ≥ 1,∫ s

s0

[−P2
t (u, θ + u) + P2

θ (u, θ + u)
]
du

=
∫ s

s0

[−Pt(u, θ + u) + Pθ (u, θ + u)][Pt(u, θ + u) + Pθ (u, θ + u)]du

=
∫ s

s0

[−Pt(u, θ + u) + Pθ (u, θ + u)]

· [∂u(P(u, θ + u) − 〈P〉(u)) + 〈Pt〉(u)]du

=
∫ s

s0

〈Pt〉(u)[−Pt(u, θ + u) + Pθ (u, θ + u)]du

+ [{−Pt(u, θ + u) + Pθ (u, θ + u)}{P(u, θ + u) − 〈P〉(u)}]s

s0

−
∫ s

s0

[−Ptt(u, θ + u) + Pθθ (u, θ + u)][P(u, θ + u) − 〈P〉(u)]du .

Since |〈Pt〉| ≤ K/t , we have∣∣∣∣
∫ s

s0

〈Pt〉(u)[−Pt(u, θ + u) + Pθ (u, θ + u)]du

∣∣∣∣ ≤ K

∫ s

s0

u−3/2 E1/2(u)du

≤ K

∫ s

s0

u−3/2[1 + E(u)]du

and

∣∣[{−Pt(u, θ + u) + Pθ (u, θ + u)}{P(u, θ + u) − 〈P〉(u)}]s
s0

∣∣
≤ K (s0) + K

s
E1/2(s) ≤ K (s0) + K

s
[1 + E(s)] .

Finally,∫ s

s0

[−Ptt(u, θ + u) + Pθθ (u, θ + u)][P(u, θ + u) − 〈P〉(u)]du

=
∫ s

s0

[
1

u
Pt(u, θ + u) − exp[2P(u, θ + u)](Q2

t (u, θ + u) − Q2
θ (u, θ + u)

)]

· [P(u, θ + u) − 〈P〉(u)]du .

However,
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∣∣∣∣
∫ s

s0

exp[2P(u, θ+u)][Q2
t (u, θ+u)−Q2

θ (u, θ+u)
][P(u, θ+u)−〈P〉(u)]du

∣∣∣∣ ≤

K

∫ s

s0

1

u3/2
E(u)du

and ∣∣∣∣
∫ s

s0

1

u
Pt(u, θ + u)[P(u, θ + u) − 〈P〉(u)]du

∣∣∣∣ ≤
∫ s

s0

K

u2
[1 + E(u)]du .

Adding up we get

(10.2)

∣∣∣∣
∫ s

s0

[−P2
t (u, θ + u) + P2

θ (u, θ + u)
]
du

∣∣∣∣ ≤

K (s0) + K

s
E(s) + K

∫ s

s0

u−3/2 E(u)du .

Consider, for s ≥ s0 ≥ 1,∫ s

s0

exp[2P(u, θ + u)]{Q2
θ (u, θ + u) − Q2

t (u, θ + u)
}
du

=
∫ s

s0

{exp[2P(u, θ + u)] − exp[2〈P〉(u)]}{Q2
θ (u, θ + u) − Q2

t (u, θ + u)
}
du

+
∫ s

s0

e2〈P〉(u)[Qθ (u, θ + u) − Qt(u, θ + u)]
· {∂u[Q(u, θ + u) − 〈Q〉(u)] + 〈Qt〉(u)}du

= I1 + I2 = I1 + (I21 + I22) ,

where I1 is the first integral and I2 is the second integral. I21 contains the part of I2

due to the term involving the ∂u-derivative. Similarly to the above, we then have

|I1| ≤ K

∫ s

s0

u−3/2 E(u)du and |I22| ≤ K

∫ s

s0

u−3/2[1 + E(u)]du .

The natural way to estimate I21 is to first carry out a partial integration

I21 = [
e2〈P〉(u){Qθ (u, θ + u) − Qt(u, θ + u)}{Q(u, θ + u) − 〈Q〉(u)}]s

s0

−
∫ s

s0

2〈Pt〉(u)e2〈P〉(u)[Qθ (u, θ + u) − Qt(u, θ + u)]
· [Q(u, θ + u) − 〈Q〉(u)]du

−
∫ s

s0

e2〈P〉(u)[Qθθ (u, θ + u) − Qtt(u, θ + u)][Q(u, θ + u) − 〈Q〉(u)]du .

Call the three terms on the right-hand side I211, I212, and I213, respectively. We

have

|I211| ≤ K (s0) + K

s
E(s) , |I212| ≤ K

∫ s

s0

1

u2
[1 + E(u)]du
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and, using (1.3),

|I213| ≤ K

∫ s

s0

1

u3/2
[1 + E(u)]du .

Adding up, we have

(10.3)

∣∣∣∣
∫ s

s0

exp[2P(u, θ + u)]{Q2
θ (u, θ + u) − Q2

t (u, θ + u)
}
du

∣∣∣∣ ≤

K (s0) + K

s
E(s) + K

∫ s

s0

1

u3/2
E(u)du .

Combining (10.1), (10.2), and (10.3), we get the conclusion that

F2(s, θ) ≤ F2(s0, θ) + K (s0) + K

s
E(s) + K

∫ s

s0

1

u3/2
E(u)du ,

whence

E2(s) ≤ E2(s0) + K (s0) + K

s
E(s) + K

∫ s

s0

1

u3/2
E(u)du .

The argument for F1 is similar, and we conclude that

E(s) ≤ K (s0) + K

s
E(s) + K

∫ s

s0

1

u3/2
E(u)du ,

whence

E(s) ≤ K (s0) + K

∫ s

s0

1

u3/2
E(u)du .

Grönwall’s lemma yields the conclusion of the proposition. �

11 Causal Geodesic Completeness

We are now in a position to prove Theorem 1.9.

PROOF: Introduce the global orthonormal frame

e0 = t1/4e−λ/4∂t , e1 = t1/4e−λ/4∂θ ,

e2 = t−1/2e−P/2∂σ , e3 = t−1/2eP/2(−Q∂σ + ∂δ) .

Let

f0 = −〈γ ′, e0〉 and fk = 〈γ ′, ek〉 .

Since the curve is a causal geodesic,

(11.1) − f 2
0 +

∑
f 2
k = c where c ≤ 0 is a constant.

Let the time component of γ be denoted γ0. We have

dγ0

ds
= −t1/2e−λ/2〈γ ′, ∂t〉 = t1/4e−λ/4 f0 .

Note that γ0(s) → ∞ as s → s+. The reason is the following: Let s0 ∈ (s−, s+).

Since dγ0/ds > 0, the assumption that γ0 is bounded from above leads to the
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conclusion that γ0 converges to a finite value. Furthermore, the curve is contained

in a compact set for s ∈ [s0, s+). Due to the causality of the curve, one can conclude

that γ (s) converges as s → s+. This implies that it is extendible as a continuous

curve and thus as a geodesic.

Let k = 2, 3 and consider

d fk

ds
= 〈γ ′,∇γ ′ek〉 =

3∑
l=2

f0 fl[〈e0,∇el
ek〉 + 〈el,∇e0

ek〉]

+
3∑

l=2

f1 fl[〈e1,∇el
ek〉 + 〈el,∇e1

ek〉] .

(11.2)

Let φ = t1/4e−λ/4. Then one can estimate, using Proposition 1.8,

|〈eµ,∇eν
eκ〉| ≤ K t−1/2φ

if two of µ, ν, and κ belong to {2, 3}. Combining this with (11.2) and the fact that

the curve is causal, one concludes that

d

ds

[
1 + f 2

2 + f 2
3

] ≤ K t−1/2φ f0

[
1 + f 2

2 + f 2
3

]
,

where the 1 has been included for convenience. Since φ f0 = dt/ds, one concludes

that

(11.3) 1 + f 2
2 + f 2

3 ≤ K exp(K t1/2) .

Compute

(11.4)
d f0

ds
= −1

4
λθφ f1 f0 + 1

4

(
t−1 − λt

)
φ f 2

1 −
3∑

k,l=2

fk fl〈ek,∇el
e0〉 .

Observe that λt is bounded due to Proposition 1.8. By (11.1) we thus get

1

4

(
t−1 − λt

)
f 2
1 = 1

4

(
t−1 − λt

)
f 2
0 + 1

4

(
t−1 − λt

)( 3∑
k=1

f 2
k − f 2

0

)

− 1

4

(
t−1 − λt

)(
f 2
2 + f 2

3

)

≤ 1

4

(
t−1 − λt

)
f 2
0 + K

[
1 + f 2

2 + f 2
3

]
.

Combining this with (11.4), we get the conclusion

d f0

ds
≤

[
−1

4
λθ f1 + 1

4
(t−1 − λt) f0

]
φ f0 + Kφ

[
1 + f 2

2 + f 2
3

]
.

Note that

d

ds
ln φ = d

ds

(
1

4
ln t − 1

4
λ

)
= −1

4
λθφ f1 + 1

4
(t−1 − λt)φ f0 .
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Thus

(11.5)
1

f0

d f0

ds
≤ d

ds
ln φ + Kφ

1 + f 2
2 + f 2

3

f0

.

Let us prove that φ f0 is bounded to the future. Assume the contrary. Then there

is a k0 ∈ N and for each k ≥ k0 an interval [s1,k, s2,k] such that

k0 ≤ φ(s) f0(s) ≤ k

in the interval, the lower endpoint being achieved for s = s1,k and the higher for

s2,k . Due to Theorem 1.7, the fact that the solution is spatially inhomogeneous

implies that λ(t) ≥ 4at for t big enough, where a > 0. We have, using this

observation together with (11.3),∫ s2,k

s1,k

φ
1 + f 2

2 + f 2
3

f0

ds ≤ 1

k2
0

∫ s2,k

s1,k

φ2
[
1 + f 2

2 + f 2
3

]
φ f0 ds

≤ K

k2
0

∫ t2,k

t1,k

e−at dt ≤ K ,

where K is independent of k. Let us use the notation λ[γ (si,k)] = λi,k and

γ0(si,k) = ti,k for i = 1, 2. Observe that t1,k is bounded from below by a posi-

tive constant, that t2,k tends to infinity, that |λi,k − 〈λ〉(ti,k)| ≤ K , and that

〈λ〉(t2,k) − 〈λ〉(t1,k) ≥ a(t2,k − t1,k)

for k great enough, where a > 0. We conclude that φ2,k/φ1,k is bounded by a

constant independent of k (note that if t2,k − t1,k tends to infinity, the quotient

tends to 0). By (11.5), we conclude that f0(s2,k)/ f0(s1,k) is bounded by a constant

independent of k. We have a contradiction. Thus φ f0 is bounded. Since φ f0 =
dγ0/ds and γ0(s) → ∞ as s → s+, we conclude that s+ = ∞; that is, the

geodesic is future complete. �

12 Discussion

There are several questions concerning the problem presented in this paper that

have not been answered. If one is interested in considering curvature, one would,

for instance, be interested in the behavior of higher-order derivatives. Furthermore,

one would like to find some geometric condition that makes the argument concern-

ing the decay of the energy work. For example, if the target space is complex

hyperbolic space, the method presented in this paper does not immediately apply,

but it can be modified to fit that setting. In terms of physics, this target corresponds

to Einstein’s equations coupled to Maxwell’s equations under the same symmetry

assumptions. Furthermore, the method of obtaining the equations for the mean

values is rather haphazard, which is of course not satisfactory. If the target space is

a higher-dimensional hyperbolic space, one can derive equations of the same form

as those written down in Lemmas 8.7 and 8.8, but again it is difficult to see a more

general pattern.
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