
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2004; 16:503–513 (DOI: 10.1002/cpe.829)

GridSphere: a portal framework
for building collaborations

Jason Novotny, Michael Russell and Oliver Wehrens∗,†

Max-Planck-Institut fur Gravitationsphysik, Albert-Einstein-Institut,
Am Mhlenberg 1, D-14476 Golm, Germany

SUMMARY

Grid-enabled portals are becoming increasingly popular as a platform for providing access to Grid
services and resources. Unfortunately, much of the work done in portal development has led to vertically
layered solutions that work for a particular project but are difficult to extend or reuse for other projects.
The GridSphere portal framework seeks to address these limitations by providing a framework that will
offer external developers a model for easily adding new functionality and hence increasing community
collaboration. The GridLab portal will serve as an initial prototype to showcase the GridSphere framework
and provide access to services being developed within the GridLab project. Copyright c© 2004 John Wiley
& Sons, Ltd.

KEY WORDS: Grid computing; portals; portlets

1. INTRODUCTION

In the last couple of years, Grid-enabled portals have become increasingly popular as a platform to
provide application scientists access to Grid services and resources. The difficulty with bridging the
gap between currently deployed Grid services and the would-be user community has been largely due
to the unfriendly nature of much of the Grid software available today. Web-based portal environments
have sought to provide easy-to-use interfaces by relying on technology that reaches out to the lowest
common denominator. The holy grail of Grid usability is to provide on-demand services and make
access to computational resources as easy as it is to buy books from Amazon.com. In trying to build
support for the Grid user community, the authors have developed and describe a new portal framework,
GridSphere, based on the many previous lessons and best practices learned from past notable Grid

∗Correspondence to: Oliver Wehrens, Max-Planck-Institut fur Gravitationsphysik, Albert-Einstein-Institut, Am Mhlenberg 1,
D-14476 Golm, Germany.
†E-mail: wehrens@aei.mpg.de

Contract/grant sponsor: European Commission 5th Framework Program; contract/grant number: IST-2001-32133

Copyright c© 2004 John Wiley & Sons, Ltd.
Received 1 August 2003

Revised 1 September 2003
Accepted 10 September 2003



504 J. NOVOTNY, M. RUSSELL AND O. WEHRENS

portal projects such as the Grid Portal Development Kit (GPDK) and the Astrophysics Scientific
Collaboratory (ASC) portal.

The GPDK garnered a lot of attention from the Grid community as an attempt to provide a collection
of reusable components for accessing Globus-based Grid services. GPDK provided a functional
template portal that could be extended and enhanced by users which offered file staging and job
submission, and monitoring capabilities. A core part of the design philosophy of GPDK was the
separation of logic from presentation, making it easier to develop new functionality that could plug
into the existing framework by following a prescribed recipe. From the GPDK project came many
lessons about building a framework and developing reusable components. Ultimately, while the GPDK
template/demo portal could be enhanced to create a project specific portal, users had to become familiar
with the source code in order to add the features they needed. Another major limitation was the lack of
any reusability in the presentation layer. Developers would need to handcraft customized presentation
pages to re-use the GPDK services provided to create a new portal instance.

The ASC portal project was aimed at providing a Web portal for the computational astrophysics
community that would allow them to compile and execute simulation applications on large-scale
computational resources. The ASC portal had a similar design to GPDK, but was ultimately specialized
in its functionality and services to suit the needs of a particular user community. However, the ASC
portal offered a wealth of lessons on trying to create a production portal environment that would
attract more application scientists to using the portal instead of the conventional form of logging on to
computational resources and running their simulations from the command-line. In both the GPDK and
the ASC portal, an emphasis was placed on providing value-added capabilities that would encourage
users to perform their work via the portal. As an example, the portal could track and monitor jobs on
behalf of users or store input data that had been used for previous simulations. The portal provided a
virtual desktop that sought to simplify the day-to-day operations being performed by computational
scientists. In doing this, the ASC Portal devoted considerable attention to the needs and usage patterns
of its users. Attempts were made to provide easy-to-use, yet flexible Web interfaces that met the
demands of the scientists. Another lesson learned in putting the portal into production use is that the
portal is only as good as the services that it uses. In deploying a production portal, one of the greatest
difficulties is managing the underlying, quickly changing, Grid software libraries that are used by Grid
portals and software version compatibilities. As an example, both the GPDK and ASC portals required
a user to obtain a valid credential during the login process. If the credential repository was upgraded,
users were often unable to login to the portal resulting in user frustration.

2. THE GridLab PROJECT

The GridLab project funded by the EU has recognized the need for higher level computing
environments to entice application scientists in using the Grid. The goal of the GridLab project is
to enable Grid application development by supporting higher level libraries and services and the
deployment of a Grid testbed encompassing resources from ten institutes around Europe. The authors
have teamed up to work together with the GridLab project in developing a new portal framework that
will support the GridLab community primarily, yet be extensible to support the needs of other Grid and
even non-Grid user communities. GridSphere, the Java-based portal framework being developed to
support the GridLab portal, will provide scientific researchers with a single point of entry from which

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



GRIDSPHERE PORTAL FRAMEWORK 505

Figure 1. Shows how the portal acts as an intermediary between users of Grid
resources and the resources themselves.

they can gain easy access to the broad array of Grid services developed by the other work packages in
the GridLab project. Users will be provided with a friendly and easy-to-use interface by allowing them
to interact with these services through standard means such as a Web browser or even a PDA or other
mobile device. The hourglass model depicting the role of the GridLab portal as a gateway between
end-users and GridLab service providers is shown below.

The design of the GridLab portal, based upon the GridSphere portal framework, will allow
for maximum modularity and flexibility to support the many different needs and requirements of
both the GridLab portal users, typically computational scientists and the GridLab service providers.
Indeed GridSphere is designed to be modular enough to also support the needs of a much wider
community outside of GridLab. The scientists require an easy-to-use, efficient and value-laden set
of interfaces for interacting with the Grid to make their work more productive. The GridSphere
architecture outlines both a general portal framework used to assist virtual organizations composed
of scientists and project developers, as well as an architecture for the development of reusable,
modular components that serve to access the services being developed within the GridLab project.
These components, called Portlets, and the overall portal architecture are described in more detail in
the following sections.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



506 J. NOVOTNY, M. RUSSELL AND O. WEHRENS

3. GridSphere FRAMEWORK OVERVIEW

As learned from the previous portal development projects, the time and effort involved in building a
robust portal environment from scratch is prohibitively high. Sadly enough, many research groups
around the world have been building ‘stove-pipe’ portal solutions from the ground up with very
little emphasis on reusability and extensibility. Application frameworks are designed to address this
limitation by providing a ‘semi-complete’ domain-specific application that can be specialized to
produce custom applications [1]. Frameworks, however, are not a silver bullet; they must be well
designed, tested and provide useful, comprehensive documentation in order to gain widespread success
and adoption. Design patterns [2] are also an important aspect of component-based frameworks and
offer solutions to commonly recurring software development problems. Patterns and frameworks
integrated together both facilitate reuse by capturing successful software development strategies.
The GridSphere portal framework makes use of many commonly understood design patterns and can
therefore be understood and improved upon by other portal framework developers. The goal of the
GridSphere framework is to make the development of new portal interfaces and offer new functionality
as easy as possible. It is envisioned that users of GridSphere can simply download and install the code,
and easily develop new functionality after reading the user’s guide, which offers a recipe for developers
to follow. The GridSphere framework is an example of a whitebox framework. Whitebox frameworks
rely heavily on object-oriented language features like inheritance and dynamic binding to achieve
extensibility. Existing functionality is reused and extended by (1) inheriting from framework base
classes and (2) overriding pre-defined hook methods [3]. The difficulty with whitebox frameworks
is that developers are required to have some knowledge of base framework classes. In the case of
GridSphere, however, the core framework classes that framework users must have knowledge of are
not internal GridSphere specific components, but a community-supported API, called the Portlet API.

3.1. The Portlet API

Portlets [4] have become an increasingly popular concept used to describe visual user interfaces to a
content or service provider. From a technical perspective, portlets represent modular, reusable software
components that may be developed independently of the general portal architecture and offer a specific
set of operations. For instance, portlets may provide users with an updated list of stock quotes or content
from a news feed. Within the GridLab portal framework, portlets offer atomic functionality such as a
job submission component or a remote file browser interface. In a Web browser or PDA, portlets
can be aggregated together supplying the user with easy and efficient access to multiple sources of
content, services and applications. A portal user may be able to add (subscribe) or remove portlets from
their personalized portal page depending on their needs. The portlet model frees the portlet developer
from worrying about presentation layout of portlets and Web page composition and to focus solely
on providing functionality and a usable interface. Currently, the Portlet API has received widespread
adoption in a number of vendor specific application server products including IBM’s WebSphere,
Oracle’s PortalServer, and the Sun iPlanet Server. Because of the importance of portlets to the industrial
community, the Portlet API is in the process of being reviewed within the Java Community Process
(JCP) and a Java Specification Request (JSR) [5] is currently in the process of being standardized.

Currently, the Jakarta Jetspeed project [6] provides an implementation of the evolving Portlet API
and a complete portal framework based upon another Jakarta project, Turbine [7]. Believing that the

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



GRIDSPHERE PORTAL FRAMEWORK 507

Jetspeed/Turbine framework would suit most of the GridLab portal requirements, an evaluation [8]
was made. Unfortunately, it was determined that Jetspeed did not provide a suitable development
platform in its current state and the dependencies upon existing large over-extended software were
too high. In the evaluation, a comparison was made with a commercial portlet implementation offered
by IBM’s WebSphere Portal Server. While we lacked the time and money to evaluate WebSphere
software, the WebSphere Portlet Development Guide [9] offers a very solid description of the Portlet
API that comes bundled with WebSphere and appears far more functional than the constantly evolving
Portlet API specified in Jetspeed. In fact, the WebSphere Portlet API was actually based upon Jetspeed
in version 2.1 and inherited from many of the core classes. WebSphere Portal version 4+ appears to
be a refactoring of the Portlet API to reduce the dependance on Jetspeed and offer a more coherent
model for describing portlets. Because the Portlet API implementation offered in WebSphere is not
open-source, it would be impossible to modify the internal libraries to suit the needs of the GridLab
project. In addition, the software is prohibitively expensive thereby denying other academic research
groups the ability to use our software components. The GridSphere Portlet API is based loosely on
the portlet interfaces provided by the WebSphere Portlet API and is designed to offer only the base
functionality required to implement the portlet concept in practice. The GridSphere Portlet API will
conform to the standardized API when it is ratified by the JCP.

3.2. Portlet design

In standard Java-based Web application development, servlets are developed that function as server-
side components responsible for processing browser requests. In the GridSphere Portlet API, portlets
inherit much of their functionality from servlets, including existing lifecycle methods such as init,
service and destroy, as well as providing additional lifecycle methods that can be implemented
by portlet developers.

Initially when the portal is started, the portlets are all initialized and the servicemethod is invoked
for every client request until the portal is shutdown, at which point the portlets are all destroy’ed to
allow portlets to perform any shutdown operations.

One of the core concepts associated with portlets is the notion of portlet modes. As described earlier,
a portlet is essentially a window, or mini-application running within the portlet container. Portlets may
be displayed in the following four modes.

• View—this is the normal mode of operation for a portlet.
• Edit—allows the portlet to be customized by the user.
• Configure—allows the portlet to be configured by a portal administrator.
• Help—displays help information to provide additional information on a portlet.

The portlet service method is responsible for invoking the proper doView, doConfigure, or
doEdit method based on the portlet mode dictated by the set of icons on the portlet’s title bar. One of
the most important design requirements when developing new portal functionality is the separation of
presentation from logic which the Portlet API does quite nicely. While the doXXX lifecycle methods
are responsible for presentation, portlet events are handled by either the actionPerformed,
messageReceived, or window{Minimized, Maximized, Resized} methods. It is up to
the portlet developer to override these methods to provide functionality to handle the following kinds
of portlet events.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



508 J. NOVOTNY, M. RUSSELL AND O. WEHRENS

• Actions events—general portlet events such as form submission, etc.
• Window events—triggered when the window state of the portlet changes.
• Message events—triggered when a portlet sends a message to another portlet.

3.3. Core portlet interfaces

Just as portlets themselves inherit functionality from the Servlet API [10], the Portlet API also specifies
decorator classes that wrap most of the standard servlet interfaces to provide a more portlet-centric view
of the portal. For instance, the PortletRequest object inherits from HttpServletRequest
and provides additional functionality and an API for dealing with portlet sessions, modes, users
and clients (a client defines the client platform used for accessing the portal). The key additions to
the PortletRequest interface are the getUser method which simply returns the User object
associated with this request, the getData method which returns the user-specific persistent data for
the active portlet, and the getMode and getWindow methods which return the current portlet mode
and window state of the active portlet. Similarly, PortletResponse and PortletSession
subclass HttpServletResponse and HttpSession to provide portlet specific functionality
for generating responses and handling sessions. PortletConfig and PortletContext inherit
from ServletConfig and ServletContext respectively and provide methods for obtaining
portlet container information, portlet configuration information, and obtaining instances of portlet
services which will be described in more detail later. The PortletSettings object, obtainable from the
PortletRequest, provides dynamic portlet customization information and can be modified by authorized
users, thus dynamically modifying a portlets configuration information.

3.4. Portlet packaging and deployment

In addition to reusing functionality provided by the Servlet API, portlets are packaged as Web archives
(WAR) files, just as servlets are, as defined in the Sun Java 2.3 Specification [10]. By reusing the
servlet packaging model, portlets can be developed and packaged cleanly to facilitate easy sharing
and deployment of portlets between portal providers. A portlet Web application consists of portlet
source code, presentation pages including static HTML, or Java Server Pages (JSPs) and a portlet
deployment descriptor which defines a portlet’s capabilities and configuration parameters in XML
format. The following list itemizes the parameters that a portlet descriptor may define.

• Supported portlet modes.
• Allowed window states.
• Initialization parameters in the form of key value pairs.
• Portlet localization and descriptive information including title.
• Accessibility information including which users can have access to a portlet.

4. PORTLET SERVICES FRAMEWORK

The portlet services framework defines an architecture for the development of portlet services that
provide functionality to portlets. Portlet services are designed to individuate the functions provided by

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



GRIDSPHERE PORTAL FRAMEWORK 509

<service>
<name>LoginService</name>
<description>Provides Login Capabilities</description>
<interface>LoginService</interface>
<implementation>LoginServiceImpl</implementation>

</service>

Figure 2. Example portlet service descriptor.

portlets from the services with which they need to interact with. In GridSphere, services are used to
manage everything from layout preferences, user profiles, user access control, security credentials and
Grid services.

4.1. Portlet services API

We borrow from the IBM WebSphere service interface to build a services architecture that we believe
will allow for future integration with a standardized Portlet API. In the current model, a portlet service
is created from a PortletServiceFactory. A PortletService defines a blank interface that
is enhanced by the PortletServiceProvider interface which defines a lifecycle consisting of
init and destroy methods used when the service is initialized and shutdown. A portlet service
configuration file is used to provide class information and initialization parameters that are accessed
via the PortletServiceConfig object. The PortletServiceFactory is also responsible
for initializing and destroying services. Like the portlet descriptor, the portlet services descriptor is
also expressed as an XML file. An example entry is shown below.

The GridSphere portlet service framework has also been augmented to provide support for user
services. Under this model, services can be developed that perform method-level access control checks.
As an example of its usage, the UserManagerService has a method deleteAccount().
Because the UserManagerService is a user service, the PortletServiceFactory will
return a UserManagerService appropriate for the passed in User object, such that only a
‘super-user’ can invoke this method and for other types of users, the method would throw an
AccessDeniedException.

4.2. Core services

The primary core services are the LoginService, the UserManagerService and the Access-
ControlManagerService. The LoginService is used by the GridSphere framework and is not
really exposed or useful to portlet developers. The UserManagerService provides methods for
the creation, querying and deletion of users and groups. The AccessControlManagerService
provides methods for managing users’ roles and assigning/revoking user to/from groups. Access
control is not only a core service but used internally by the framework. For instance, when a user
service is instantiated the AccessControlManagerService is also used to determine which
methods the user can successfully invoke in the user service. Our notion of access control is based

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



510 J. NOVOTNY, M. RUSSELL AND O. WEHRENS

upon the Role Based Access Control (RBAC) model [11] in which users can belong to one or more
groups. Within a group a user is assigned a role. A generalized RBAC model would allow users to have
multiple or even new roles within a group, but for now we have chosen to limit the number of roles to
the following.

• Guest—a portal user that has not logged into the portal.
• User—a standard user can access portlets but may have restricted access to particular

functionality.
• Administrator—a user that is a manager of a particular group. Administrators can grant users

access to a group.
• Super—the super user can do everything from approving new user account requests to

adding/deleting groups.

5. GridSphere CORE PORTLETS

The GridSphere framework provides a core set of portlets that offer the basic functionality required for
the portal to be usable. Essentially the only portlet required at initialization time is the Portlet Manager
Portlet. The manager portlet allows packaged portlets to be deployed, removed and installed ‘on the
fly’ from the portal itself by authorized users.

The following list itemizes the core set of portlets provided by default.

• Login—allows users to login based on a name and password.
• Logout—logs a user out of the portal.
• Account request—provides interface for a new portal user to request an account and optionally

choose groups to join.
• Account management—provides the super user and admin users the ability to assign/revoke

users’ roles.
• User management—provides the super user the ability to approve/deny account requests, and

admin users the ability to approve/deny group requests.
• Portlet subscription—provides the ability for users to add and remove portlets from their

workspace.

5.1. OGSA and Grid services

While Grid services are not necessary for the proper functioning of the framework or the core portlets,
many advanced portlets that wish to offer some Grid functionality will make use of Grid services
as represented under the outlined services framework. These services will not only provide access
to existing Grid middleware such as Globus gatekeepers, GridFTP services and MDS information
services, but will also provide access to the GridLab developed services which are designed to be higher
level than the existing Grid fabric layer. The GridLab services include resource brokers, monitoring and
data management services to name a few. These services will use the respective GridLab client APIs
as well as the Java CoG [12] and the Open Grid Services Architecture (OGSA) [13] to provide access
to Globus-based Grid services.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



GRIDSPHERE PORTAL FRAMEWORK 511

Figure 3. The GridSphere portal.

Integration of GridSphere and OGSA has just begun and already portlets have been developed
that can use OGSA clients to connect to OGSA services hosted elsewhere, as described in the IBM
developerWorks articles [14]. Even more interesting for future development is the planned integration
of the GridSphere portal framework and OGSA services. Under this model, the portal will also act
as a container for OGSA services that can be accessed either via the portal itself or other clients.
By building off the notion of portlet services discussed earlier we hope to make these portlet services
OGSA compliant by providing a wrapper around the portlet services to make them accessible via
OGSA clients. For instance, the current LoginServicewhich is a portlet service could benefit from
being exposed as an OGSA service to allow portal interactivity from other clients beyond a user’s Web
browser, such as a PDA or other mobile device.

6. STATUS AND FUTURE DIRECTIONS

A stable release of the GridSphere portlet container is now available and future work will focus on
developing more Grid-enabled portlets using OGSA/Globus and other underlying middleware. We are
actively collaborating and seeking collaborations to enhance the overall usefulness of GridSphere to the
general portal community. As of this writing, the JSR 168 Portlet Specification has just been announced
and we are hoping to be compliant with the ‘blessed’ Portlet API as soon as possible. Another area
of future direction is to enhance the GridSphere portlet container to develop a general ‘content
management system’ (CMS) to allow portal users to dynamically create and update personalized
content. Other portlets that we wish to develop to increase the overall usability and end-user experience
are game portlets and a variety of chat, SMS, e-mail portlets to promote collaboration and enthusiasm
among portal users.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



512 J. NOVOTNY, M. RUSSELL AND O. WEHRENS

7. CONCLUSION

The GridSphere Portal Framework is evolving to support a wide variety of applications that can
be easily plugged into the portal by adopting the Portlet API. The GridSphere framework offers
many value-added features such as a services framework and core portlets that make it easy for new
portlet developers to immediately provide portlet interfaces that can be easily deployed to the portal.
Core portlets are provided that manage users, access control and portlet subscription. In addition,
manager portlets provide the capabilities to dynamically install and remove portlets without having
to shutdown the application server.

8. AVAILABILITY

The GridSphere portal framework has been released under an open-source software license and is
available from the project Web site at http://www.gridsphere.org.

ACKNOWLEDGEMENTS

The authors wish to thank all the members of the GridLab project for their assistance and discussions that helped
make the GridSphere framework more usable. We wish to acknowledge the support of the European Commission
5th Framework program (grant IST-2001-32133), the primary funder of the GridLab project, without which none
of this work would be possible.

REFERENCES

1. Johnson R, Foote B. Designing reusable classes. Journal of Object-Oriented Programming 1988; 1(5):22–35.
2. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object Oriented Software. Addison-

Wesley: Reading, MA, 1995.
3. Schmidt DC. Applying design patterns and frameworks to develop object-oriented communication software. Handbook of

Programming Languages, vol. I, Salus P (ed.). MacMillan Computer Publishing: Reading, MA, 1997.
4. What is a Portlet? http://www-3.ibm.com/software/webservers/portal/portlet.html [11 December 2003].
5. JSR 168: Portlet Specification. http://www.jcp.org/jsr/detail/168.jsp [11 December 2003].
6. The Jakarta Jetspeed Project. http://jakarta.apache.org/jetspeed [11 December 2003].
7. The Jakarta Turbine Project. http://jakarta.apache.org/turbine [11 December 2003].
8. Kelley I, Novotny J, Russell M, Wehrens O. Jetspeed evaluation. WP4 Internal Document, May 2002.
9. Hesmer S, Fischer P, Buckner T, Schuster I. Portlet development guide, 2 April 2002.

10. Java Servlet 2.3 and Java Server Pages 1.2 Specifications. http://java.sun.com/products/servlets [11 December 2003].
11. Role Based Access Control links. http://csrc.nist.gov/rbac/ [11 December 2003].
12. Laszewski G, Foster I, Gawor J. CoG Kits: A bridge between commodity distributed computing and high-performance

Grids. Proceedings of the ACM Java Grande Conference, 2000.
13. Foster I, Kesselman C, Nick J, Tuecke S. The physiology of the Grid: An open Grid services architecture for distributed

systems integration, January 2002. http://www.globus.org/research/papers/ogsa.pdf [11 December 2003].
14. Zhang L-J, Chung J-Y, Zhou Q. Developing Grid computing applications, Part 1, 1 October 2002.

http://www-106.ibm.com/developerworks/grid/library/gr-grid1 [11 December 2003].
15. Foster I, Kesselman C, Tsudik G, Tuecke S. A security architecture for computational grids. Proceedings of the 5th ACM

Conference on Computer and Communications Security, 1998; 83–92.
16. Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid information services for distributed resource sharing. Proceedings

10th IEEE Symposium on High Performance Distributed Computing, 2001.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513



GRIDSPHERE PORTAL FRAMEWORK 513

17. Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S. A resource management architecture
for metacomputing systems. Proceedings of the IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, 1998.

18. Allcock W, Bester J, Bresnahan J, Chervenak A, Liming L, Tuecke S. Grid Forum Working Draft.
http://www.gridforum.org [11 December 2003].

19. Novotny J. The Grid Portal Development Kit. Concurrency and Computation Practice and Experience 2002; 14(13–15):
1129–1144.

20. The Jakarta Tomcat Project. http://jakarta.apache.org/tomcat [11 December 2003].
21. Novotny J, Tuecke S, Welch V. An online credential repository for the Grid: MyProxy. Proceedings 10th IEEE Symposium

on High Performance Distributed Computing, 2001.
22. Allen G, Daues G, Foster I, Laszewski G, Novotny J, Russell M, Seidel E, Shalf J. The astrophysics simulation

collaboratory portal: A science portal enabling community software development. Proceedings 10th IEEE International
Symposium on High Performance Distributed Computing, 2001.

23. Hesmer S, Hepper S, Schaeck T. Portlet API (first draft), 2 April 2002.
http://cus.apache.org/viewcvs/jakarta-jetspeed/proposals/portletAPI/PortletAPIDraft.pdf [11 December 2003].

24. Tuecke S, Czajkowski K, Foster I, Frey J, Graham S, Kesselman C, Nick J. Grid Service Specification, February 2002.
http://citeseer.nj.nec.com/article/tuecke02grid.html [11 December 2003].

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:503–513


	1 INTRODUCTION
	2 THE GridLab PROJECT
	3 GridSphere FRAMEWORK OVERVIEW
	3.1 The Portlet API
	3.2 Portlet design
	3.3 Core portlet interfaces
	3.4 Portlet packaging and deployment

	4 PORTLET SERVICES FRAMEWORK
	4.1 Portlet services API
	4.2 Core services

	5 GridSphere CORE PORTLETS
	5.1 OGSA and Grid services

	6 STATUS AND FUTURE DIRECTIONS
	7 CONCLUSION
	8 AVAILABILITY

