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Abstract
We cast the Reissner Nordström solution in a particular coordinate system
which shows dynamical evolution from initial data. The initial data for the
E < M case are regular. This procedure enables us to treat the metric as a
collapse to a singularity. It also implies that one may assume Wald axioms
to be valid globally in the Cauchy development, especially when Hadamard
states are chosen. We can thus compare the semiclassical behaviour with the
spherical dust case, looking upon the metric as well as state-specific information
as evolution from initial data. We first recover the divergence on the Cauchy
horizon obtained earlier. We point out that the semiclassical domain extends
right up to the Cauchy horizon. This is different from the spherical dust
case where the quantum gravity domain sets in before. We also find that
the backreaction is not negligible near the central singularity, unlike the dust
case. Apart from these differences, the Reissner Nordstrom solution has a
similarity with dust in that it is stable over a considerable period of time.
The features appearing in dust collapse mentioned above were suggested to
be applicable within general spherical symmetry. The Reissner Nordstrom
background (along with the quantum state) generated from initial data, is
shown not to reproduce them.

PACS numbers: 04.20.Dw, 04.62.+v

1. Introduction

The issue of cosmic censorship has several physical implications, two of which have been in
focus recently.
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Firstly, it appears that spacetime singularities might signal the visibility of high curvature
regions. Even if completely absent in loop quantum gravity [1], classical singularities
would correspond to regions of high curvature and nakedness would imply their exposure
to asymptotic observers. This itself could lead to observational signatures of particle creation
and such effects [2].

Secondly, there appears to be a contrast in the semiclassical behaviour of black holes and
naked singularities. That contrast could be carried through into the quantum gravity domain.
This has been clearly brought out in the dust collapse case [2]. The covered singularity
evaporates leaving behind about a Planck mass before reaching the quantum gravity domain.
However, when the initial data correspond classically to naked singularities, most of the star
collapses almost intact into the quantum gravity domain all through the semiclassical phase.
The star stays almost classical directly till the quantum gravity stage. Moreover, this happens
well within the lifetime of the universe [2]. The naked singular solution is thus special from
the physical point of view. This argument is subject to the assumption that the behaviour in
the dust case is typical of the general scenario.

Out of these, we focus on the second aspect in this paper. Although a contrast in behaviour
may still occur, the analysis of dust collapse does not warrant being considered as typical as
suggested in [2]. The behaviour of dust depends not only on the semiclassical phase but also
on the onset of the quantum gravity domain as well as backreaction considerations. In the
spherical dust case, the quantum gravity domain is reached at some stage before the formation
of the Cauchy horizon [2] and the backreaction is found to be negligible.

The above behaviour need not always be the case. To this end, we show that the Reissner
Nordström metric (charge denoted by E and mass by M ) E < M case is an exception. Before
proceeding on that, we first point out that the Reissner Nordström metric can be presented
in coordinates which mimic dynamical evolution. As far as we are aware, this has not been
done previously. This leads us to two important technical facts. Firstly, one can work with
Hadamard states, in principle requiring specification only on the initial Cauchy surface. This
justifies the global validity of Wald axioms for the quantum stress tensor which will be assumed
in this work. Secondly, we can easily imagine the metric to result from initial data since we
have explicit dynamical coordinates. This qualifies the metric to be considered as a collapse
leading to a singularity (curvature singularity). The case E < M can be obtained from non-
singular initial data. We then calculate the quantum stress tensor for massless scalar fields
on this background and recover the divergence of the quantum stress tensor on the Cauchy
horizon obtained earlier [3]. It should be noted that the global validity of Wald axioms is
essential in this and similar results concerning the quantum stress tensor. This has not been
justified in previous work on the Reissner Nordström metric.

It should be noted that the Reissner Nordström solution is likely to be more of an
idealized situation. A realistic collapse would perhaps be accompanied by a radiative influx.
Perturbations of the solution are therefore extensively studied especially for instability of the
Cauchy horizon [4–7]. Several issues thus arise. Some, like the inflation of the mass function,
suggest a non-local characterization of the Cauchy horizon in special models. Others admit
observer dependence of divergences. The premise for our theme necessitates consideration of
only local quantities, the divergences of which are observer independent. We wish to address
the issues in the simplest of cases and present the Reissner Nordström solution as one.

Though we consider the evolution for initial data corresponding to the Reissner Nordström
solution, the result is useful as far as a general possibility of an energy burst near Cauchy
horizons is concerned. In general, one needs to account for backreaction and invoke quantum
gravity to check this. In this example, the E < M initial configuration radiates away right up
to the Cauchy horizon. The quantum gravity limit does not occur before the horizon. This



Reissner Nordström background metric in dynamical coordinates: exceptional behaviour of Hadamard states 1507

is unlike the dust case scenario (suggested to be generally valid within spherical symmetry)
wherein the quantum gravity domain sets in earlier.

We thus wish to point out that the interplay between physical limits needs to be considered
carefully, even within general spherical symmetry. The counter-example of initial data that
appears as this simple case, warrants further investigation into the issue.

Apart from this theme, we note that our result for our example does not strengthen the
case for a burst because of backreaction. Also, there is a similarity with dust collapse in our
example. We find that the configuration does stay intact until it is very close to the Cauchy
horizon.

2. Quantum stress tensor and choice of state

Much of the physics of quantum fields in curved spacetime is captured by a local quantity, the
quantum stress tensor. See for instance chapter 6 of [8] (the central problem). After several
approaches to regularize and renormalize this quantity, Wald came up with four axioms which
restricted the form of the quantum stress tensor to a very large extent [9].

From the Wald axioms and the trace anomaly in 2d, one can show that the quantum stress
tensor is of the form

〈Tuu〉 = C(1/C),u,u + AA(u) (1)

〈Tvv〉 = C(1/C),v,v + BB(v) (2)

〈Tuv〉 = R/24π (3)

where the line element is expressed in double null coordinates as ds2 = C2 du dv and R is the
scalar curvature of the background spacetime. The information about the state is contained in
AA and BB. It can easily be argued, based on asymptotic behaviour of 〈Tµν〉, that AA and
BB are finite in their domain of definition [3].

The important assumption here is that the Wald axioms, especially the conservation of
the stress tensor, hold all over the spacetime. Physically, one would like to ensure that only
by specifying initial conditions near a Cauchy surface, expecting the equations to hold all
through the evolution. Indeed this is possible if one chooses Hadamard states. For a definition
and related mathematical development see [10, 11]. These states can be defined using the
singularity structure of the two-point function. They have two useful properties: (a) that
they satisfy Wald axioms if they stay Hadamard and (b) by choosing the singularity structure
near a Cauchy surface, one is essentially guaranteed that the Hadamard form is preserved all
throughout the Cauchy development [12].

In our example, the choice of state is automatically contained in the choice of the AA
and BB. Certainly, there would be choices corresponding to Hadamard states and that poses
no conceptual difficulty. However, property (b) requires careful attention since it would
restrict considerations to Cauchy developments only. In particular, if the spacetime or region
of spacetime under consideration is realized as a Cauchy development then we can assume
properties (a) and (b), and thereby we can be assured of the formulae (1) holding all over the
region.

We show that the Reissner Nordström solution can be explicitly realized as a time evolution
of initial data, justifying our use of Wald axioms in a global sense. In fact, we show that we
can recast the metric in coordinates such that the evolution becomes explicit.
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3. Reissner Nordström solution using special coordinates

We develop the first part of the analysis in this section, wherein we recast the general Reissner
Nordström solution. However, for further analysis, only E < M is suitable.

We consider the field equations for spherical symmetry. In the first subsection we make
certain assumptions on the radial pressure and on the gravitational potential. We show in
the next subsection that further choice recovers the Reissner Nordström metric. This enables
us to cast the metric in a form similar to dynamical evolution. This has been done for
the Schwarzschild metric [13]. In the following subsection we show that the condition for
nakedness is indeed E2 > M2. Finally we present the Penrose diagram illustrating the region
covered by the coordinates.

3.1. Spherical symmetry

The line element in coordinates (t, r, θ, φ) is given by

ds2 = eσ(t,r) dt2 − eω(t,r) dr2 − R2(t, r) d�2. (4)

We use a source

T µ
ν = diag[ρ(t, r),−pr(t, r),−pT (t, r),−pT (t, r)]. (5)

The general field equations for spherical symmetry (see, for example, [14] and references
therein) are

2m′(t, r) = 8πρ(t, r)R2R′ (6)

˙2m(t, r) = −8πpr(t, r)R
2Ṙ (7)

σ ′(t, r) = − 2ρ ′

ρ + pr

+
4R′(pT − pr)

R(ρ + pr)
(8)

ω̇(t, r) = − 2ρ̇

ρ + pr

− 4Ṙ(ρ + pT )

R(ρ + pr)
(9)

where

2m(t, r)/R − 1 = e−σ Ṙ2 − e−ωR′2. (10)

Here m(t, r) is a free function arising out of integration of the Einstein equations. Its
initial value m(0, r) is interpreted as the mass of the interior of the shell with coordinate r.

In order to proceed towards obtaining the Reissner Nordström metric, we impose certain
assumptions within spherical symmetry. These are similar to but more general than those in
[14]. We cast them in a particular form so that the generalization is evident,

8πprR
2 = A(r)B′(R) (11)

and

σ ′(t, r) = ψ(r)Q′(R)R′. (12)

From the last assumption above using the fact that the Ricci tensor component Rtr = 0,
we obtain

R′2 e−ω = A(r)eQ(R)ψ(r) (13)

where A(r) is arbitrary.
From the time rate of change of 2m, and with the second to last assumption, we get

2m(t, r) = A(r)B(R) + 2mo(r) (14)

where 2mo(r) is arbitrary and B(R) = ∫
B′(R) dR.
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Further, from the definition of 2m, we obtain, using these results,

Ṙ2 e−σ = A(r)B(R) + 2mo(r)

R
− 1 + A(r) eQ(R)ψ(r). (15)

This is the evolution of R in time. Given 2mo(r), and using equation (14), we can obtain the
3-metric (and also extrinsic curvature) at any time. Thus we have set up a system of evolution
for initial data, much like that in [14].

3.2. Reissner Nordström solution

We now show that the Reissner Nordström metric can be cast into the initial value form using
certain special cases of the assumptions made.

The metric is usually presented as

ds2 = P(R) dt2 − P(R)−1 dR2 − R2 d�2 (16)

where P(R) = 1 − 2M/R + E2/R2. We perform the following transformation,

t = T +
∫

g(R)

P (R)
dR (17)

r = T +
∫

1

g(R)P (R)
dR (18)

where g is chosen so that P(R)/(1 − g2(R)) > 0 which maintains the signature of the
transformed metric.

The metric reduces to the general spherically symmetric form (4) with

eσ = P

1 − g2
(19)

eω = g2P

1 − g2
. (20)

One can easily check that this is recovered from the assumptions of the previous section
with the particular choice, ψ = 1 and σ = Q = ln P/(1 − g2). In order to obtain a solution
for R in terms of t and r, we choose A(r) = A(r) = 1 with 2mo(r) = 2M and B(R) =
−RP(R) + R − 2M . Using this in equation (15) we obtain

r − t =
∫

1 − g(R)2

P(R)g(R)
dR. (21)

The Reissner Nordström metric can now be recast as

ds2 = P(R)

1 − g(R)2
dt2 − g(R)2P(R)

1 − g(R)2
dr2 − R2 d�2. (22)

We can choose the function g to be a constant go with the condition 1 − g2
0 > 0 needed

(P > 0 for R > R+). In case P becomes negative (which it does when E � M between the
roots R− and R+), we choose g as follows. For the region R � R+ + ε, we choose g(R) = g0.
For R+ + ε � R � R+ − ε we choose g to be a C∞ function (C∞ at the endpoints of the
interval also). Further g(R+) = 1 is chosen with the condition limR→R+

P(R)

1−g2(R)
> 0. For

R+ − ε � R, we choose g to be a constant g1 > 1.
Additionally, we need to set Ṙ < 0 to mimic a collapse scenario. This needs g > 0. The

solution of (21) can now be obtained explicitly (R � R+ + ε).

r − t = 1 − g2
o

go

[
R + 2M/2 ln(R2 − 2MR + E2) +

(2M)2 − 2E2

2

]
H(R) (23)
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where H is defined as

H(R) = (E2 − M2)−1/2

(
tan−1

(
R − M

(E2 − M2)1/2

)
− tan−1

( −M

(E2 − M2)1/2

)

iff E2 > M2 (24)

H(R) = (M − R)−1R/M iff E2 = M2 (25)

H(R) = 1/2(M2 − E2)−1/2 ln
1 − R

M+
√

M2−E2

1 − R

M−√
M2−E2

iff E2 < M2. (26)

For R � R+ − ε (which will be needed in the further sections), we simply replace g0 in
(23) by g1.

For R < R−, the case we would need for leading order behaviour of r − t in terms of R,
we note that 1 − g2 > 0 (as P is positive again). It is not difficult to see that this behaviour
of r − t in terms of R is cubic. One can check explicitly that the coefficients of the linear
and quadratic terms in R cancel out in the equation (similar to (23) at leading order) and one
obtains the following:

r − t = 1 − g(0)2

g(0)
KR3 (27)

where

K = 1

3E2
iff E2 > M2

K = −1

3E2
iff E2 = M2 (28)

K = M2

3E4

[
11 − 12

M2

E2
− 3E2

2M2

]
iff E2 < M2.

Thus K and therefore r − t , is positive only for the case E2 > M2. It is this leading order
behaviour that is important for further analysis.

The behaviour of the right-hand side of equation (23) can be easily checked to be
monotonic. Thus, the R = 0 curve is the locus t − r = 0. It is also easily checked that
the Kretschmann scalar diverges when R = 0. Thus, the singularity occurs when t − r = 0.
Also, the central singularity forms at (t = 0, r = 0).

Using the monotonicity and the leading order behaviour (27), we note that in the case
E < M , the singularity is absent for all t < 0 at r = 0. We begin with an initial surface
t = tin. The initial data evolve from there to form the singularity.

Thus we have cast the case E < M in a manner which enables us to compare with
spherical dust collapse.

The E > M case can also be addressed similarly. In this case, one cannot have t < 0 at
all for r = 0. Thus the surfaces of constant t begin from t = 0 and thus include the singularity
from the beginning.

3.3. Nakedness of the Reissner Nordström solution

At this juncture it is easily possible to demonstrate that the singularity is locally naked. It is
done in a manner equivalent to [15].

Casting the metric into the usual double null form,

ds2 = P(R) du dv + R2 d�2 (29)
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      (t=0,r=0)

Cauchy
Horizon

R=R–

R=R+
R=const

R+>R>R–

R<R–

R=0

R>R+

REGION   I

Figure 1. Penrose diagram for the Reissner Nordström case E < M , showing a Cauchy surface
across region I.

we find dR/dv along u = constant rays (outgoing rays). It is easy to see that

dR

dv
= P(R)

2
. (30)

Evaluating this as R → 0, we find that it diverges positively independent of E and M. Thus
the Reissner Nordström singularity is always locally naked.

It is useful to cast the initial conditions in terms of pr and 2m instead of E and M.

E2 = R(tin, r)
4pr(tin, r) (31)

and

2M = 2m(tin, r) − R(tin, r)
3pr(tin, r). (32)

Thus depending on how 2m(tin, r) the initial mass (at any r) compares with the radial pressure
dependent quantity R(tin, r)

3pr(tin, r) + 2R(tin, r)
2√pr(tin, r), one has eventually either a

naked or a covered singularity.
Further, we examine the nature of initial data for regularity. We need to consider the

behaviour of R(tin, r), for this purpose. We use equation (27) and the monotonicity of the
right-hand side of (23). In the case E � M,R(tin, r) does not vanish at any r and hence pr as
well as ρ do not diverge anywhere on the initial Cauchy surface. The same is not true however
in the case E > M . We know that the singularity is met by all Cauchy surfaces as pointed
out in the previous section. R(tin, r) vanishes at (t = 0, r = 0). Using (27) and (23), we
find that R(tin, r) vanishes at points on each surface of constant positive t. Since the surfaces
begin from t = 0 with increasing t, pr as well as ρ diverge at a point on the surface t = 0
considered as initial (and on the subsequent surfaces also).

The singularity develops eventually and a Cauchy horizon forms (illustrated in figure 1).

4. Quantum stress tensor for the Reissner Nordström solution

We now obtain the quantum stress tensor for the Reissner Nordström case E < M . It should
be noted here that we employ the Wald axioms all over the region—when actually, we only
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demand that one begins with a state of the Hadamard form near the initial Cauchy surface.
This supports the suggestion that the divergence on the Cauchy horizon we obtain is not an
artefact of assumptions on the quantum stress tensor prescription or on the state, made locally.
One could certainly work out the same expressions using the standard coordinates as done by
Hiscock, under local validity of the Wald axioms. Nevertheless, we use the coordinate system
in the previous section. Thus, we work explicitly with coordinates covering the Cauchy
development and implicitly require the Hadamard property assumption only on the initial
Cauchy surface.

We begin with the explicit expression of the line element in the (t, r) coordinates, i.e. in
the form (22),

ds2 = P(R)

1 − g2(R)
dt2 − g2(R)P (R)

1 − g2(R)
dr2 − R2 d�2 (33)

where

P(R) = 1 − 2M/R + E2/R2. (34)

Since we investigate regions near the Cauchy horizon R = R−, we use the fact that
g = g1. We suppress the angular part and obtain the expressions for the quantum stress tensor
using the results (1) mentioned earlier. We cast the resulting 2d metric in the double null form

ds2 = C2(u, v) du dv (35)

where u = t − g1r, v = t + g1r and

C2(u, v) = P(R)/
(
1 − g2

1

)
. (36)

The expressions for the quantum stress tensor can be easily worked out using (1)

〈Tuu〉 = −1/12π

(
g1 + 1/2

g2
1 − 1

)2

[P ′2/4 − PP ′′/2] + AA(u) (37)

〈Tvv〉 = −1/12π

(
g1 − 1/2

g2
1 − 1

)2

[P ′2/4 − PP ′′/2] + BB(v) (38)

〈Tuv〉 = R/24π (39)

where the prime denotes a derivative with respect to R and R is the Ricci scalar.
Here, the functions AA and BB from (1) are chosen to be finite as in [3]. We are

guaranteed that they stay finite once we choose them on a spacelike surface, in particular, the
initial Cauchy surface. This is shown using a simple argument. We present that below.

Since the state is chosen to be Hadamard near the initial Cauchy surface, the Wald axioms
yield finite expressions for the quantum stress tensor [8]. Then, using equation (37) evaluated
near the initial surface, it can be easily checked that the functions AA and BB have to be
finite there. The initial Cauchy surface is t = tin. Note that u and v depend only on t and r.
Specifying any function of u on this initial surface would amount to specifying it completely.
This is the case with any function of v. So the argument is complete.

Returning to equation (37), we would need to examine the behaviour of P. Real roots
of P(R) = 0 exist when E � M . It should also be noted that the metric C2 diverges when
R = R−, the Cauchy horizon. The null coordinates need to be suitably transformed so as to
ensure the regularity of the metric on the Cauchy horizon1. We then calculate the stress tensor
using these coordinates.

1 This is similar to the issue of introducing Kruskal coordinates for the Schwarzschild metric to ensure regularity at
the event horizon. See also [3, 16].
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We perform the following coordinate transformation which ensures regularity of the
metric:

W = W0 exp(−τu) (40)

Z = Z0 exp(τv) (41)

where τ is any positive constant having physical dimension of inverse length and W0 and Z0

are constants of physical dimension length.
One then transforms all tensors to the (W,Z) coordinate system. One can check that the

metric remains non-zero and finite across the Cauchy horizon,

gWZ = R+ − R−
τ 2W0Z0R

2−
exp

(
2τR2

−
R+ − R−

)
+ O(R − R−). (42)

The 〈TWW 〉 component can be easily seen to diverge positively, with the leading order behaviour
1

R2 . One can also check this explicitly by transforming 〈Tuu〉 to 〈TWW 〉. In terms of W the
divergence is 1

W 2 to the leading order in the approach to the Cauchy horizon. Similar behaviour
is reported in the spherical dust case [16].

5. Semiclassical radiation in Reissner Nordström spacetime

We now consider the validity of the semiclassical approximation in the context of the
Reissner Nordström background. If the semiclassical picture were to be followed right up
to the Cauchy horizon in the Reissner Nordström background, the results would suggest an
intense particle creation accompanying the naked singularity leading to a burst of energy on
the Cauchy horizon. This behaviour is similar to dust as pointed out in the previous section.
The semiclassical picture however can be taken to be physically appropriate only up to a limit,
beyond which quantum gravity has to be invoked. At the same time, backreaction effects must
also be considered. We address these issues in the Reissner Nordström case and compare
it with dust. The quantum gravity limit is worked out by assuming that it is reached when
curvature scales (of the central region of the dust cloud considered) reach the Planck scale [2].
This occurs one Planck length before the Cauchy horizon forms in the dust case. The Planck
length cutoff is crucial for further physical interpretation for the dust case. For instance, if
the cutoff had occurred much closer to the Cauchy horizon, the semiclassical calculation,
which indicates the occurrence of a burst, would have been well within acceptable range of
applicability (assuming that backreaction had remained negligible). This crucial feature is
clearly brought out in the Reissner Nordström case.

We first show a key feature which concerns boundedness of curvature in the E < M case.
From equation (6), putting in the assumptions about B, A and 2m0, we find that the density is
given by

8πρ = E2

R4
(43)

and the radial pressure is given by

8πpr = E2

R4
. (44)

As expected, both diverge as the central singularity (t = 0, r = 0) is approached. Planck scale
values are reached when t ∼ −tPlanck where tPlanck is the Planck time. The curvatures grow
unboundedly as R decreases to 0. This would happen only after the curve R = R− is crossed.
That being the Cauchy horizon, one infers that the curvatures are bounded within the Cauchy
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development. This boundedness within the full Cauchy development is the key feature which
makes this example special. We were able to show it explicitly by casting the region of interest
in suitable coordinates enabling easier identification of the full Cauchy development in the
problem.

One important consequence of this is that curvatures do not reach Planck scales in general
before the Cauchy horizon. In particular, it is guaranteed if one chooses R− to be much larger
than the Planck length scale. Thus, we make a distinction between Planck curvature limit and
Planck length cut-off. The latter is simply a null surface emerging out of an event one Planck
length before the central singularity forms. We study the semiclassical behaviour up to the
Planck length cutoff which we find similar to the dust case.

In order to find the total energy E emitted to I+, one needs to integrate the power radiated
up to the Planck length cutoff. We choose τ and W0 such that gWZ tends to unity as R → ∞.

E =
∫ t2

Planck

∞
P(W) dW (45)

where P is the power which turns out to be 〈TWW 〉. At this stage one can work in the full
4d picture also but needs to resort to geometrical optics approximation for calculating the
expression for P. We describe that here. Following [17] we express the radiated power2 as

P(W) = h̄

48π

(
G‖

G|

)2

(46)

where | denotes a derivative with respect to the argument. G is determined by the centre
r = 0 being cast as the locus v = G(W). This result is valid for all spherically symmetric
backgrounds as the derivation involves modes passing through the centre irrespective of
singularity formation at a later stage.

It can be easily checked from this definition that

G(W) = − 1

τ
ln W/W0. (47)

The expression for energy radiated is thus obtained as

E = h̄

48πW
. (48)

If W is limited to one Planck time before the Cauchy horizon at I+, then E can be seen to be
of the order of the Planck mass.

This suggests that the data leading to a naked singularity do indeed stay largely classical
until very near the Cauchy horizon. Nevertheless, a burst does occur beyond about a Planck
length. In order to rule out such a burst on physical grounds, we cannot invoke the Planck
curvature limit as in the dust case.

The issue of backreaction sheds light on this matter and the result is the other important
consequence of the key feature of boundedness of curvature in the Reissner Nordström case.

We briefly recount the analysis for dust [18]. The energy density 〈Tµν〉uµuν as seen by
a co-moving observer moving with 4-velocity uµ, represents the energy density associated
with quantum fields. The classical background density is then compared with this. The
background density grows unboundedly as the central singularity is approached. Especially
near the centre, the background density is larger than the energy density of the scalar field,
until the central singularity forms. This indicates that the backreaction is insignificant during
the semiclassical evolution.

2 Assuming a conformally coupled field.
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The situation is different in the Reissner Nordström case. The quantum stress tensor
grows unboundedly while the background density (43) and pressure (44) remain finite. It is
thus impossible for the background curvatures to dominate over the quantum field energies
at any event before the Cauchy horizon. It therefore turns out that the Reissner Nordström
metric would be unsuitable as a background near the Cauchy horizon under considerations of
backreaction.

6. Discussion and conclusion

The Schwarzschild solution has been cast in a suitable initial value form using co-moving
coordinates [13], wherein pressure does not appear in the source term. Our transformation
casts the Reissner Nordström solution in a similar form, but can be considered as collapse
with non-zero pressure.

The initial radial pressure is related to E and the initial mass function to E as well as M.
The case E < M can be obtained from regular initial data. One may interpret that increasing
the radial pressure as compared to the initial density tends to make the singularity globally
naked, however the initial data in the latter case turn out to be singular.

Casting the Reissner Nordström metric in a particular coordinate system has enabled us
to give an example where a naked singularity forms but curvatures are bounded within the full
Cauchy development. By making the Cauchy development explicit in terms of coordinates,
one can choose to work with certain states such as Hadamard states which guarantee the global
validity of Wald axioms, once they are specified near the initial Cauchy surface. This provides
stronger support for physical interpretation of the results obtained in the Cauchy development,
in particular near the Cauchy horizon. The results on which these interpretations are based
could have been drawn using the usual coordinates in which the Reissner Nordström solution
is presented (with a suitable modification on the Cauchy horizon). However, a separate
justification for the global validity of the Wald axioms would have to be given. We have
avoided this.

The semiclassical analysis recovers Hiscock’s result for E < M which shows that the
quantum stress tensor diverges on the Cauchy horizon, however with assumptions now made
only on initial data. This indicates that the suggestion that there is a burst of energy from the
singularity is actually a consequence of the choice of certain initial data.

In actual physical systems, the burst could be large but finite. To examine this further,
we analyse the domain of semiclassical validity and radiation therein to conclude about the
behaviour of initial data leading to naked singularities. Only one Planck mass of the mass of
the classical configuration is evaporated away up to one Planck time of the classical Cauchy
horizon. This behaviour is similar to the spherical dust case. We thus provide an example of an
initial data configuration which collapses almost intact throughout the semiclassical domain
up to the Planck length cutoff. However, in this example, the semiclassical domain extends
beyond this cutoff. These two results put together support the interpretation that a sudden
burst occurs near the Cauchy horizon, possibly for some initial data configurations.

The picture of semiclassical collapse in the dust model has been used to emphasize the need
to invoke quantum gravity for understanding the spacetime region classically corresponding
to the Cauchy development, in spherical symmetry. In the Reissner Nordström metric,
on the contrary, that is not necessary. This would have been significant physically but for the
backreaction factor. The latter, however, does not clearly indicate the occurrence of a burst
in the Reissner Nordström case. Rather, the prominence of backreaction over the quantum
energy seen near the Cauchy horizon suggests that the Reissner Nordström case appears to
be unsuitable as a background in the region near the Cauchy horizon. We note here that
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physical unsuitability near the horizon is also suggested by non-local quantities or observer
dependent divergences (e.g. [4, 7]). The analysis was carried out considering backreaction
of perturbations to the geometry near the horizon. However, we note that the unperturbed
solution is certainly valid as a background over a period of evolution. We recover the same
result comparing the quantum energies with the curvature. In fact, the solution behaves almost
entirely classically throughout the evolution.

Since we have been emphasizing the region near the Cauchy horizon, a few comments on
its classical nature are in order. Although the horizon will manifest as a surface generated by
null rays in spacetime, the behaviour of certain quantities along geodesics shows irregularities.
For a precise description see [19]. However, the horizon does not qualify as a physical barrier
in the classical sense as the so-called ‘singularity’ there is weak in the Tipler sense (volumes
stay bounded below in approach to the horizon). Thus the semiclassical results which do in
fact suggest drastic physical behaviour near the horizon, assume significance.

We conclude that behaviour in spherical collapse involves the interplay of the semiclassical
domain, onset of quantum gravity regime and prominence of backreaction, which need not be
typical. We draw this conclusion based on a premise for initial conditions, unlike previous
work. It may still be true that the contrasting physical behaviour of two kinds of initial
data, indicated by spherical dust, is typical. One possible way for that to hold is the likely
prominence of backreaction whenever the onset of quantum gravity is delayed, much like in
the example given. It is not known if this could just be the case for backgrounds which are
physically reasonable. For future work, we therefore suggest that more realistic examples be
considered.

Acknowledgments

Part of this work was carried out by SB at Albert Einstein Institut, Max Planck Institut
für Gravitationsphysik, Bundesrepublik Deutschland. SB wishes to acknowledges his well-
wishers, especially his parents, Dr Madhavi Barve and Al Barve (deceased) for continual
support.

References

[1] Bojowald Martin 2001 Phys. Rev. Lett. 86 5227
[2] Singh T P 2000 Conf. Proc. JGRG10 (Osaka, Japan) Sept. 2000 (Preprint gr-qc/0012087 (and references

therein))
In particular, see Harada T, Iguchi H, Nakao K, Singh T P, Tanaka T and Vaz C 2001 Phys. Rev. D 64 041501

[3] Hiscock W 1977 Phys. Rev. D 15 3054
Fulling S A 1978 Rep. Prog. Phys. 41 1313

[4] Hiscock W A 1981 Phys. Lett. A 83 110
[5] Penrose R 1968 Battelle Rencontres ed C M DeWitt and J A Wheeler (New York: Benjamin) p 222
[6] Brady P R Proc. X Brazilian School on Cosmology and Gravitation at press
[7] Poisson E and Israel W 1990 Phys. Rev. D 41 1796
[8] Birrel N D and Davies P C W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press)
[9] Wald R M 1994 Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago, IL:

University of Chicago Press)
[10] Junker W 1996 Rev. Math. Phys. 8 1091

Junker W 2002 Rev. Math. Phys. 14 511 (erratum)
Radzikowski M J 1996 Commun. Math. Phys. 179 529

[11] Kay B S and Wald R M 1991 Phys. Rep. 207 49
[12] Fulling S, Sweeny M and Wald R 1978 Commun. Math. Phys. 63 257

Further refinements of the proof are also worked out based on propagation of singularities theorem in microlocal
analysis-see Radzikowski M J 1996 Commun. Math. Phys. 179 529

Radzikowski M J 1996 Commun. Math. Phys. 180 1



Reissner Nordström background metric in dynamical coordinates: exceptional behaviour of Hadamard states 1517

[13] Landau L D and Lifshitz E M 1976 Classical Theory of Fields (Oxford: Pergamon)
[14] Barve S, Singh T P and Witten Louis 2000 Gen. Rel. Grav. 32 697
[15] Singh T P and Joshi P S 1996 Class. Quantum Grav. 13 559
[16] Barve S, Singh T P, Vaz C and Witten L 1998 Phys. Rev. D 58 104018
[17] Ford L H and Parker L 1978 Phys. Rev. D 17 1485
[18] Iguchi H and Harada T 2001 Class. Quantum Grav. 18 3681
[19] Burko L M and Ori A 1997 Phys. Rev. D 56 7820

Burko L M 1997 Phys. Rev. Lett. 79 4958
Burko L M 1999 Phys. Rev. D 60 104033


