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If perturbations beyond the horizon have the velocities prescribed everywhere then the dragging
of inertial frames near the origin is suppressed by an exponential factor. However if perturbations
are prescribed in terms of their angular momenta there is no such suppression.

We resolve this paradox and in doing so give new explicit results on the dragging of inertial frames
in closed, flat and open universe with and without a cosmological constant.

PACS numbers: 04.20-q, 98.80.Jk

I. INTRODUCTION

In a clearly written paper Schmid [1] describes how
rotational perturbations of a spatially flat universe influ-
ence the inertial frames. He finds that such influences are
attenuated by an exponential Yukawa factor whenever
the perturbation lies beyond a ‘horizon’. He expressed
his results in terms of a quantity that he calls the energy

current ~Jǫ. What corresponds to Schmid’s energy current
~Jǫ in our calculation is a quantity ~Js with the dimensions
of angular momentum. However his result appears to dis-
agree with our earlier result [2] (hereafter LKB) that in
a flat universe the rotation of the inertial frame, ω, due
to any system of spheres with small rotations about a
center is given by

~ω(r, t) =
2G

c2

[

1

r3
~J(t, < r) +

∫ ∞

r

1

r′3
d ~J

dr′
dr′

]

, (1.1)

where ~J(t, < r) is the total angular momentum within
the sphere of proper radius [3] r = a(t)r. This expres-
sion demonstrates how angular momenta at all distances
contribute and shows no exponential cut-off and no in-
fluence of any horizon.

Both results agree, however, that inertial ‘influences’
may be expressed instantaneously i.e. with no light
travel-time delay. This is because they follow from the
constraint equations of General Relativity with an appro-
priate mapping onto an unperturbed universe to provide
a suitable gauge.

The results are in apparent contradiction. However,
when the details of both calculations are examined it is
evident that the contradiction lies in the attribution of
different causes for the effect. Schmid’s ‘energy current’
is considered by him as the source of the rotational drag-
ging of inertial frames ω. Schmid’s quantity does not
obey a conservation law but for a rotating sphere it can
be directly expressed in terms of its angular velocity Ω,

density ρ, pressure p and proper radius r as

Jǫ = 2π

∫∫

(ρ + p)Ω sin3 θ r4 dθ dr, (1.2)

Ω is the ‘coordinate’ angular velocity, not that measured
relative to the local inertial frame which, as we show be-
low, is the quantity needed in the angular momentum
conservation law. The contribution to the conserved an-
gular momentum is

2π(ρ + p)(Ω − ω) sin3 θ r4 dθ dr. (1.3)

The difference comes about mathematically because the
perturbed metric is not diagonal but in spherical polar
coordinates is

ds2 = dt2−a2(t)
{

dr2+r2
[

dθ2+sin2 θ (dϕ2−2ω dϕdt)
]}

,

(1.4)
where ω(t, r) gives the small rotation of the inertial frame
due to the rotational perturbations everywhere.

For a perturbed 3-flat universe, angular momentum
conservation is given by the equation

∂

∂xµ

(

−√−g T µ
ν ην

)

= 0, (1.5)

where ην is the angular Killing vector of the background
(flat) space corresponding to the particular component
of angular momentum considered.

Thus the conserved quantity is (the minus sign comes
from the signature we use in the metric)

J =

∫

−T 0
ϕ

√−g d3x. (1.6)

Since the ϕ component of T µν is brought down in this
expression, it is not merely the motion of the fluid that
is involved in T 0

ϕ via its contribution uµuν but also the
off-diagonal metric component g0ϕ which depends on ω
at the position of the source [see our metric (1.4)]. As we
see from equation (1.1), we regard the conserved angular
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momentum J as the source of the dragging of inertial
frames, and this was the quantity we used in LKB.

Schmid’s work for a spatially flat universe is more
general than our work published so far, since he con-
siders all vector perturbations, nevertheless we treated
closed and open universes as well as flat ones and in-
deed from a Machian viewpoint it is the closed universes
that are more interesting by far. We also considered
all spherical but inhomogeneous Lemâıtre-Tolman-Bondi
universes with rotational perturbations that were con-
stant on spheres. Finally we looked into the problem of
the rotation of inertial frames induced by spheres of given
angular velocities, rather than given angular momentum.
This is a special case of Schmid’s problem but general-
ized to closed and open universes. In our discussion we
wrote down the equations governing ω(t, r) when Ω(t, r)
was given and showed how they could be solved. We car-
ried out the detailed solution only for the static closed
Einstein universe (LKB Appendix A).

Schmid’s beautiful result that the dragging is exponen-
tially suppressed when a sphere of given angular velocity
is outside his horizon, has stimulated us to work out all
our solutions in detail for all FRW universes. Barring fac-
tors of a(t) that Schmid seems to have omitted in error,
we fully confirm his result for a flat universe. Thus we
have the fascinating paradox that while spheres of given
angular velocity have their dragging exponentially sup-
pressed if they are outside the horizon, nevertheless the
dragging of spheres of given angular momentum suffers
no such suppression! How can this be!

In the prescribed angular momentum problem one may
consider (for an open or 3-flat universe) having only one
spherical shell of finite thickness having angular momen-
tum. The gravity of this source will induce a rotation of
inertial frames everywhere. The fluid at all other places
will respond inertially and start to rotate so that Ω = ω
everywhere except on the original shell. Thus in the pre-
scribed angular momentum problem we give one shell
angular momentum, sit back and watch. We see how
the inertial frames are affected everywhere else merely
by watching the rotations of all other spheres.

The prescribed angular velocity problem needs more
organization in the creation of the initial state. If we
start one thick shell rotating at the prescribed rate then
all the other will start moving so as to keep up with the
induced rotation of the inertial frames. If the prescription
is to have just the one thick shell rotating and none of the
others we shall have to stop them. In doing so we have
to give them negative angular momentum to keep Ω zero
even though the inertial frame is rotating at ω. When
in Schmid’s problem the perturbation in angular veloc-
ity is considered as confined beyond his horizon he shows
that the rotation of inertial frames is exponentially sup-
pressed near the origin. The prime reason is that in order
to keep the motion confined, the intervening spheres have
to be given backward angular momentum to stop them
from following their inertial tendency of rotating at the
inertial rate ω. The influence of all the backward angular

momentum (of non-rotating spheres!) rather effectively
cancels most of the rotation of the inertial frames induced
by the original shell. Hence the suppression of the effect
is due to all the negative angular momentum that was
supplied to keep the other spheres from rotating! The re-
maining suppression is due to the rotation of the inertial
frame at the original shell itself: ω there is a fraction of
Ω so that Ω − ω, on which the source depends, is less.

There is a long history of treating dragging effects
within spheres starting with Einstein’s treatment using
an early version of his gravitational theories. Within
General Relativity the early works of Thirring [4] and
Lense and Thirring [5] were later generalized to deep po-
tential wells by Brill and Cohen [6]. This raised ques-
tions as to whether the dragging would be perfect within
a black-hole’s horizon. We believe that the first paper to
remark on the apparent instantaneity if inertial frames
is the pioneering paper of Lindblom and Brill [7] on in-
ertia in a sphere that falls through its horizon. More re-
cently we explored observational effects seen within such
a sphere [8] and gave an example of strong linear drag-
ging in a rapidly accelerated charged sphere [9]. Strong
cosmological perturbations in a weakly rotating sphere
surrounding a void were treated by Klein [10], and in
greater detail by Doležel, Bičák, and Deruelle [11] who
also discussed how an observer within such a cosmologi-
cal shell views the world outside.

We owe a debt to Schmid as his work stimulated us to
work out the consequences of our solutions [2] in much
greater detail and, without that, we would never have
raised, let alone understood, the delightful paradox em-
phasized above. In particular we have now investigated
thoroughly the problem when ω is to be solved for with
the angular velocities given everywhere at one cosmic
time. Previously we had concentrated on the problem
with the angular momenta given. While both are impor-
tant problems we strongly believe that it is the latter that
is of dynamical importance in formulating Mach’s Prin-
ciple. It can nevertheless be argued that the apparent
agreement between the angular positions of quasars at
different epochs and the inertial frame defined by using
the solar system as a giant gyroscope stimulates Machian
ideas. While it is the angular momentum that is impor-
tant for the physics it is the apparent kinematical agree-
ment between the angular velocity of the sphere and the
inertial frame that is observed. In this sense the prob-
lem with given angular velocities may be closer to Mach’s
original and it is unclear how distant observations could
measure the true angular momentum of a sphere includ-
ing its dragging term, while its angular velocity is more
directly observable. However, see [11] for the complica-
tions of light bending. Unfortunately the problem of the
observed agreement of frames is not that either Schmid
or we have addressed since both our treatments relate in-
stantaneous quantities at the same cosmic time whereas
observers use no such world map (except in the solar
system) but a world picture in which distant objects are
seen as they were long ago on the backward light cone.
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It seems unlikely that an exact causal relationship exists
between proper motions of masses on our past light cone
and our local inertial frame, since, at any cosmic time
the inertial frame’s rotation has contributions from ob-
jects that were never in our past light cone. Of course
such objects will no doubt have been seen by some alien
and the Copernican principle would suggest that the ap-
parent agreement of the kinematic and inertial frames
here will be repeated there. What is under discussion
above is the influence of distant bodies on the local in-
ertial frame. This is quite distinct from a comparison
of the dynamics of the solar system with its kinematics
relative to distant quasars (as seen on a hundred years of
past light cones), from which the rotation of the inertial
frame is computed.

Beside the resolution of the apparent contradiction
with Schmid the main contributions of this paper are
the following.

Section 2. The derivation of the equations govern-
ing general perturbations and a brief introduction to
Machian gauge conditions which allow the separation of
the (h0k) vector perturbations equations from the others.
The discussion of the equations of motion that must be
obeyed if the contracted Bianchi identities are to be sat-
isfied. As a consequence when axial symmetry is imposed
each ring of fluid preserves its angular momentum. This
section concludes with basic equations for odd parity axi-
ally symmetrical perturbations from which the remainder
of the paper is derived.

Section 3 derives the explicit expressions for rotation
of inertial frames in terms of the angular momentum dis-
tribution at any one time. This is done for all FRW uni-
verses with k = ±1 or 0 but the simplest case is solved
in this section with Ω constant on spheres at the time
considered. This corresponds to odd-parity vector l = 1
perturbations with Ω independent of θ. In the following
paper [12] (Paper II) we allow for general θ dependence.
With the integrals evaluated at fixed cosmic time and
with the constants c and G restored we have the follow-
ing results for ~ω(r) at fixed time (for the derivation of
the vector forms below see [2]):

For k = 0, r = a(t)r,

~ω =
2G

c2a3

[

~J(< r)r−3 +

∫ ∞

r

d ~J

dr
r−3 dr

]

. (1.7)

Notice that ~ω ∝ [a(t)]−3 since ~J is conserved.
For k = 1,

~ω =
2G

c2a3

[

~J(< χ)W (χ) +

∫ π

χ

d ~J

dχ′W (χ′) dχ′
]

+ ~ω0(t),

(1.8)
here ~ω0(t) is undetermined, r = sinχ and W (χ) =
cot3 χ + 3 cotχ. The arbitrariness of ~ω0(t) is intimately

connected with Mach’s principle. The physical ~J involves

(~Ω − ~ω) and does not change for rotating axes as it in-
volves a difference, see [2] and below.

For k = −1,

~ω =
2G

c2a3

[

~J(< χ)W (χ) +

∫ ∞

χ

d ~J

dχ′ W (χ′) dχ′
]

, (1.9)

where W (χ) = coth3 χ−3 cothχ+2, and W has an extra
2 so it tends to zero at χ → ∞ thus ensuring that the
boundary condition ω → 0 is obeyed. When contribu-
tions from a θ dependence of Ω are included these results
are supplemented by θ dependent terms that average to
zero on spheres. More general results are given in the
accompanying Paper II.

Section 4 gives explicit solutions for the rotations of in-
ertial frames for the same special forms of perturbations
as in Section 3 but now it is the angular velocities of the
different spheres that are given rather than their angular
momenta (this is closer to what might be observed but
cf. earlier discussion). We define λ by

λ2 = 2κa2(ρ + p) = 4(k − a2Ḣ), (1.10)

κ = 8πG/c4, κ = 8π in geometrical units used in the
following, the dot denotes ∂/∂t, H = ȧ/a is the Hubble
constant. The second relation in (1.10) follows from the
combination of the background Einstein’s equations for
any ρ, p, k and also for any value of the cosmological con-
stant Λ. The rotation of inertial frames near the origin
due to an Ω distribution at large z′ = λr is for k = 0

ω(r) =
1

3

(

1 +
1

10
λ2r2

)
∫ ∞

0

z′2e−z′

Ω(z′) dz′, (1.11)

which shows Schmid’s exponential attenuation e−z′

. At
the perturbation itself, close to z0, we find for z′ large:

ω(r0) =
1

2

∫ ∞

0

(

z′

z0

)2

e−|z′−z0|Ω(z′) dz′. (1.12)

For k = 1 we give the results near the origin and at
the perturbation when λ2 > 4. When λ2 < 4, which can
occur when a Λ-term is present, there is no exponential
in the expression. It is assumed that exp(

√
λ2 − 4χ) is

large at the source. With r = sin χ

ω(χ) =
1

3

(

1 +
λ2χ2

10

)

× (1.13)

∫ ∞

0

λ2
√

λ2 − 4 e−
√

λ2−4χ′

sin2(χ′)Ω(χ′) dχ′.

We have assumed exp(
√

λ2 − 4 x) ≫ 1 for x = π, χ′, and
π − χ′. At the ‘source’

ω(χ0) = (1.14)

1

2

∫ ∞

0

λ2 λ2 − 3√
λ2 − 4

(

sin χ′

sin χ0

)2

e−
√

λ2−4|χ′−χ0|Ω(χ′) dχ′.

Similarly for k = −1: r = sinhχ,

ω(χ) =
1

3

(

1 +
λ2χ2

10

)

× (1.15)

∫ ∞

0

λ2
√

λ2 + 4 e−
√

λ2+4χ′

sinh2(χ′)Ω(χ′) dχ′,
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and at the source

ω(χ0) = (1.16)

1

2

∫ ∞

0

λ√
λ2 + 4

(

sinhχ′

sinhχ0

)2

e−
√

λ2+4|χ′−χ0|Ω(χ′) dχ′.

We emphasize that all of the above relationships are
true at any given instant, but that both the angular mo-
mentum distribution and the angular velocity distribu-
tion at later instants are related to those at earlier times,
so can not be given independently of those given at an
earlier epoch. In axial symmetry the angular momentum
distribution follows the motion of the perfect fluid but, as
the angular momentum is first order and the movement
across the background is of first order, the product can
be neglected. Thus to first order the angular momentum
density can be considered as painted on the background.

This is not true of ~Js which is not conserved and nor is
it true of the angular velocity Ω. In both cases to find
the time evolution one must appeal to the equations of
motion which, in axial symmetry, leads back to local con-
servation of angular momentum density. Only by use of

its conservation can one find how Ω and ~Js can evolve
consistently with Einstein equations (i.e. with the con-
tracted Bianchi identities). In this sense the given angu-
lar momentum problem is far more physical than either
Schmid’s problem or the given Ω problem to which it is
equivalent. The time evolution of ω and Ω are derived
and discussed in Section 5.

In a paper that has long been in gestation we give
a discussion of those gauges in which the Machian rela-
tions of the local inertial frames to the motions of distant
masses can be expressed instantaneously at constant cos-
mic time. In that paper we derive all equations that gov-
ern all perturbations. All can be solved using harmonics
in the 3-space of constant time. However harmonics are
not as informative as Green’s functions so in the follow-
ing paper [12] we integrate the relationships between the
rotations of the inertial frames and the angular momen-
tum density for all axially symmetrical odd-parity vector
perturbations, called usually ”toroidal” perturbations in
astrophysical and geophysical literature. These results
allow Ω − ω, which enter the angular momentum den-
sity, to be any function of (r, θ) but independent of ϕ.
However, since the background is spherically symmet-
ric, non-axisymmetric perturbations can be generated by
re-expanding axisymmetric perturbations around a new
axis, and taking the component with the new eimϕ as the
component with general m.

II. THE EQUATIONS TO BE SOLVED

We write the perturbed FRW metric in the form

ds2 = (gµν + hµν)dxµdxν (2.1)

= dt2 − a2(t)fijdxidxj + hµνdxµdxν ,

where the background metric gµν is used to move indices
and the time-independent part of the spatial background
metric fij [i, j, k = 1, 2, 3] is used to define the 3-covariant
derivative ∇k and ∇k = fkl∇l.

In one of the standard coordinate systems the back-
ground FRW metric reads

ds2 = dt2 − a2

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]

, (2.2)

where in positive curvature (closed) universe (k = +1)
r ∈ 〈0, 1〉, in flat (k = 0) and negative curvature (k = −1)
open universes r ∈ 〈0,∞〉, and θ ∈ (0, π), ϕ ∈ (0, 2π).
We shall also employ hyperspherical coordinates

ds2 = dt2 − a2
[

dχ2 + r2(dθ2 + sin2 θdϕ2)
]

, (2.3)

with r = sin χ, χ, sinhχ for k = 1, 0, −1.
In a completely general gauge for general perturbations

hµν , the (momentum) constraint equation, δG0
k = κδT 0

k ,
turns out to be

1

2
∇2h0k + kh0k − 1

6
a2∇k∇jh

j
0 +

2

3
a∇kK − 1

2
a2Ṫk

= a2κδT 0
k , (2.4)

where the dot denotes ∂/∂t,

K = a

[

3

2
Hh00 −

1

2
(hj

j)
˙+ ∇jh

j
0

]

(2.5)

is the perturbed mean external curvature of t = constant
slices, H = ȧ/a is the Hubble constant,

Tk = −∇j

(

hj
k − 1

3
δj
khi

i

)

. (2.6)

Notice that equation (2.4) is independent of the choice
of the cosmological constant Λ because we perturbed
“mixed” components of G0

k. Other perturbed Einstein’s
equations will not be needed here. Since, however, we
are interested primarily in perfect fluid perturbations we
shall also consider the perturbed fluid equations of mo-
tion, i.e. the perturbed Bianchi identities

(δρ)˙+ 3H(δρ + δp) + (2.7)

(ρ + p)∇k(hk
0 + V k) + (ρ + p)

(

3

2
Hh00 −

1

a
K

)

= 0,

and

1

a3

[

a3(ρ + p)(a2fkmV m − h0k)
]˙

+ (2.8)

∇kδp +
1

2
(ρ + p)∇kh00 = 0,

where V k = dxk

dt ≃ δUk and Vk = −a2fkjV
j is

the fluid (small) velocity. The perturbed fluid energy-
momentum tensor components entering the constraint
equations (2.4) read

δT 0
k = (ρ+p)(h0k+Vk) = (ρ+p)(h0k−a2fkmV m). (2.9)
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There have been various choices of gauges used in the
literature, in particular the synchronous gauge (h00 =
h0k = 0). In order to understand the effect of drag-
ging of inertial frames, in particular its ‘instantaneous’
character, it is convenient to use gauges — we call them
‘Machian’ — in which the constraint equations, and still
another (combination of) the perturbed field equations
are explicitly the elliptic equations. In order to achieve
this it is first useful to choose coordinates on t = constant
slices such that the spatial harmonic gauge conditions are
satisfied, i.e. Tk = 0, where Tk is given in (2.6) (in nu-

merical relativity Ṫk = 0 is frequently called the ‘minimal
distortion’ shift vector gauge condition). Next, it is con-
venient to choose the time slices so that, for example, the
perturbation of their external curvature vanishes: K = 0,
K given by (2.5) (so called ‘uniform Hubble expansion
gauge’). Under these gauge conditions (which determine
the coordinates in a substantially more restrictive way
than e.g. the synchronous gauge) the constraint field
equations (2.4) become the elliptic equations for just the
components h0k, no other hµν enter.

Until now we considered general perturbations in the
chosen gauge. Hereafter, we assume the vectors h0k, V k

to be transverse,

∇kh0k = 0, ∇kV k = 0, (2.10)

so that also ∇kδT 0
k = 0. If (2.10) is not satisfied, we

can apply ∇k to equation (2.4), find the elliptic equation
for the scalar ∇kh0k, solve it and substitute back into
(2.4) where the third term on the left hand side could be
viewed as the source together with δT 0

k . Since, however,
the longitudinal parts do not contribute to the dragging
of inertial frames, we assume equations (2.10) to be sat-
isfied.

The constraint field equations (2.4) with our choice of
gauge K = Tk = 0 [cf. equations (2.5) and (2.6)] thus
become

∇2h0k+2kh0k = 2a2κδT 0
k = 2a2κ(ρ+p)(h0k−a2fkmV m),

(2.11)
where for the perfect fluid δT 0

k is substituted from equa-
tion (2.9). This is our basic equation to be solved at a
given time t = constant, with either δT 0

k or V k given.
The Bianchi identities (fluid equations of motion) de-
termine the time evolution of perturbations, the scalar
equation (2.8) for δρ, whereas the vector equation (2.9)
governs the evolution of the term

jk ≡ a3(ρ + p)(a2fkmV m − h0k) = −a3δT 0
k . (2.12)

In the following we shall often express the background
time dependent term a2(ρ + p) by using equation (1.10).

Consider first the flat universe (k = 0). In Cartesian
coordinates xk used by Schmid [1], the 3-metric fkl = δkl,
and (2.11) becomes

∇2h0k = 2a2κδT 0
k = 2a2κ(ρ + p)(h0k + Vk), (2.13)

where ∇2 is the flat-space Laplacian. Substituting from
equation (1.10) with k = 0 in the first term in the r.h.s.

of equation (2.13), we get

∇2h0k = −4a2Ḣh0k − 2κa4(ρ + p)Vk. (2.14)

Now comparing our general form of the perturbed
FRW metric with the perturbed metric (5) in Schmid’s
work (and bewaring of the opposite signature), we see
that h0k = −aβk(Schmid). Considering (ρ + p)Vk (de-

noted by ~Jǫ in Schmid) as the source, the equation (2.14)
written for Schmid’s βk becomes

−∇2βk − 4a2Ḣβk = −2κa3(ρ + p)Vk. (2.15)

This is Schmid’s basic equation (14), up to the factors a2

and a3 which in Schmid’s equation (14) are missing but
this does not change significantly Schmid’s conclusions.

When δT 0
k is given, the solution of equation (2.13) is

given as the Poisson integral over the source. If, how-
ever, the matter current is given, equation (2.14) can be
written as

∇2h0k − λ2(t)h0k = −2κa4(ρ + p)Vk, (2.16)

with (k = 0)

λ2 = −4a2Ḣ. (2.17)

Usually (e.g. in the standard Friedmann models) Ḣ < 0,
so λ is real. The three equations (2.16) are, as empha-
sized by Schmid, of the Yukawa-type. The Green’s func-
tions are given by

G(x, x′) = − 1

4π

e∓λ|x−x′|

|x − x′| , (2.18)

the well-behaved solution of equation (2.18) is thus

h0k = − 1

2π
κa4(ρ + p)

∫

Vk(x′)
e−λ|x−x′|

|x − x′| dx′. (2.19)

Clearly if the perturbation Vk(x′) is located at |x −
x′|>∼λ−1 = 1/2a

√

−Ḣ, i.e. beyond the ‘Ḣ radius’ RḢ =

2(−Ḣ)−
1

2 in Schmid’s terminology, the vector h0k which
determines the dragging of inertial frames is exponen-
tially suppressed around the origin. Although we thus
verified the interesting conclusion of Schmid, we do not
resonate with his view that “ because of the exponential
cut-off... there is no need to impose ‘appropriate bound-
ary conditions of some kind’....”. The Green’s function
in (2.18) with the ‘+’ sign in the exponential is also the
solution of equation (2.16) with a δ-function source but
one discards it by demanding ‘reasonable’ boundary con-
ditions at infinity.

From the Machian viewpoint the closed universes are
of course preferable. There is, however, no vector Green’s
function available for equation (2.11) with either δT 0

k or
Vk considered as a source. In order to understand how
Schmid’s conclusions get modified in curved universes
and to generalize our previous work [2] which analyzed
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perturbations corresponding to rigid rotating spheres in
the FRW universes, we shall study all axisymmetric, odd-
parity l-pole perturbations corresponding to differentially
rotating ‘spheres’. We now derive the basic equations for
such ”toroidal” perturbations. Their solutions, in par-
ticular for l ≥ 2 and closed universes, require special
treatment. These solutions are analyzed in the following
Paper II.

In spherical coordinates [as in the FRW metrics (2.2),
(2.2)], the only non-vanishing vector components are
h0ϕ(t, r, θ) and Vϕ(t, r, θ). [For the general axisymmet-
ric even-parity vector fields Vϕ = 0, whereas Vr(t, r, θ)
and Vθ(t, r, θ) are non-vanishing, the same being true for
h0r, h0θ]. There is now just one non-trivial constraint
equation in (2.11) to be satisfied:

∇2h0ϕ + 2kh0ϕ = 2a2κδT 0
ϕ, (2.20)

in which ∇2 = fkl∇k∇l, with fkl being the inverse to fkl

given by FRW metric (2.2) (recall – see (2.2) – that fkl is
positive definite, without factor a2). Calculating ∇2h0ϕ

explicitly, we find equation (2.20) to take the form

[

(1 − kr2)
∂2

∂r2
− kr

∂

∂r

]

h0ϕ + (2.21)

+
1

r2
sin θ

∂

∂θ

(

1

sin θ

∂

∂θ

)

h0ϕ + 4kh0ϕ = 2a2κδT 0
ϕ.

Before solving this constraint equation it is interest-
ing to notice what the perturbed equations of motion
(Bianchi identities) say for axisymmetric odd-parity per-
turbations. Equation (2.8) in our gauge choice (with
K = 0) and transverse character of h0k, Vk is a simple
evolution equation for δρ. The vector equation (2.9) for
indices 1, 2 (x1 = r, x2 = θ) turns into the well known rel-
ativistic equilibrium conditions for perfect fluids, ∇kδp =
−(ρ+p)∇k(1

2h00) (see e.g. [13]). In the following the cru-

cial role is played by equation (2.9) for index 3 (x3 = ϕ).
Since in axisymmetric case ∇ϕδp = 0,∇ϕh00 = 0, it be-
comes

[

a3(ρ + p)
(

a2r2 sin2 θV ϕ − h0ϕ

)]˙

= 0, (2.22)

or

[

a3δT 0
ϕ

]˙

= 0. (2.23)

This is the conservation of angular momentum of each
element of each axially symmetrical ring of fluid. The
total angular momentum in a spherical layer 〈χ1, χ2〉 is
given by

J(χ1, χ2) = −
∫ χ2

χ1

dχ

∫ π

0

dθ

∫ 2π

0

dϕ
√

−g δT 0
µηµ, (2.24)

where ηµ = (0, 0, 0, 1) is the rotational Killing vec-

tor, the background metric determinant g = g(3) =
−a6r4 sin2 θ, r = sin χ, χ, sinhχ for respectively k =

+1, 0,−1 as in equation (2.3). Integrating over ϕ we
have

J(χ1, χ2) = −2π

∫ χ2

χ1

dχ

∫ π

0

dθ a3r2 sin θδT 0
ϕ

= 2π

∫ χ2

χ1

dχ

∫ π

0

dθ j(θ, χ, t), (2.25)

where j(θ, χ, t) is the (coordinate) angular momentum
density. Hence, the Bianchi identity (2.23) can be written
as

[j(θ, χ)]
˙
= 0. (2.26)

This is important for studying the time evolution of the
h0k and Vk perturbations.

Defining the fluid angular velocity

Ω = V ϕ =
dϕ

dt
, (2.27)

we get

Vϕ = −a2fϕϕV ϕ = −a2r2 sin2 θ Ω(t, r, θ). (2.28)

Writing similarly

h0ϕ = a2r2 sin2 θ ω(t, r, θ), (2.29)

the only non-vanishing component of δT 0
k becomes

δT 0
ϕ = (ρ + p)a2r2 sin2 θ(ω − Ω). (2.30)

The angular momentum density conservation law (2.23),
resp. (2.26), turns then into the simple evolution equa-
tion

[

a5(ρ + p)(ω − Ω)
]˙

= 0. (2.31)

Let us now return back to the constraint equation
(2.22). The second term on its left hand side suggests
the decomposition into the vector spherical harmonics.
It should be emphasized that, in contrast to standard
practice in the cosmological perturbation theory where
perturbations are decomposed into harmonics in all three
spatial dimensions (see e.g. [14]), we decompose in the
usual coordinates θ, ϕ on spheres only, and assume axial
symmetry (spherical functions Ylm having m = 0). Thus,
we write (Yl0,θ ≡ ∂θYl0)

h0ϕ = a2r2
∞
∑

l=1

ωl(t, r) sin θYl0,θ, (2.32)

Vϕ = −a2r2
∞
∑

l=1

Ωl(t, r) sin θYl0,θ, (2.33)

and

δT 0
ϕ = a2(ρ + p)r2

∞
∑

l=1

(ωl − Ωl) sin θ Yl0,θ

=

∞
∑

l=1

[δT 0
ϕ(t, r)]l sin θYl0,θ. (2.34)
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Substituting these expansions into equation (2.22) and
using the orthogonality of functions sin θ Yl0,θ for differ-
ent l’s, we obtain the ‘radial’ equation for each l:

[

(1 − kr2)
∂2

∂r2
− kr

∂

∂r

]

(r2ωl) − l(l + 1)ωl + 4kr2ωl

= 2a2κ(ρ + p)r2(ωl − Ωl) = λ2r2(ωl − Ωl), (2.35)

where we used equation (1.10). It is easy to convert the
last equation into the form

−
√

1 − kr2
1

r2

∂

∂r

[

√

1 − kr2
∂

∂r
(r2ωl)

]

+

l(l + 1)

r2
ωl − 4kωl = λ2(Ωl − ωl). (2.36)

For l = 1 (and the background pressure p = 0) this
equation coincides exactly with equation (4.32) in LKB.
In the language of the present paper, in LKB we ana-
lyzed dipole (l = 1) axisymmetric odd-parity perturba-

tions. With l = 1, Y10,θ = −
√

3/4π sin θ, so that putting

ω = −
√

3/4π ωl=1, Ω = −
√

3/4π Ωl=1, we recover

h0ϕ = a2r2 sin2 θ ω(t, r), Vϕ = −a2r2 sin2 θ Ω(t, r),

δT 0
ϕ = a2(ρ + p)r2 sin2 θ(ω − Ω), (2.37)

which corresponds to the rigidly rotating spheres in the
FRW universes considered in Section 4.4 in LKB, and,
for Ω(t, r) given, analyzed in detail in Section 4 in the
following.

Consider first the case k = 0. Equation (2.36) can be
written with the angular momentum density (δT 0

ϕ)l as a
source,

1

r4

∂

∂r

(

r4 ∂ωl

∂r

)

− l(l + 1) − 2

r2
ωl = λ2(ωl−Ωl) =

2κ

r2
(δT 0

ϕ)l.

(2.38)
If the fluid angular velocity is taken as a source, the equa-
tion reads

1

r4

∂

∂r

(

r4 ∂ωl

∂r

)

−
[

λ2 +
l(l + 1) − 2

r2

]

ωl = −λ2Ωl,

(2.39)

where λ2 = −4a2Ḣ = 2κa2(ρ + p) by using equation
(1.10) with k = 0.

In the case of spatially curved (k 6= 0) backgrounds it is

advantageous to write r2 = k(1 − µ2), i.e. µ =
√

1 − kr2

to obtain

1

[k(1 − µ2)]3/2

∂

∂µ

{

[k(1 − µ2)]5/2 ∂ωl

∂µ

}

− l(l + 1) − 2

k(1 − µ2)
ωl

=
2κ

k(1 − µ2)
(δT 0

ϕ)l. (2.40)

The substitution

ωl = [k(1 − µ2)]−3/4ωl (2.41)

turns equation (2.40) into the Legendre equation for ωl

with (δT 0
ϕ)l as the source:

∂

∂µ

[

k(1 − µ2)
∂ωl

∂µ

]

+

[

k
3

2
(
3

2
+ 1) − (l + 1

2 )2

k(1 − µ2)

]

ωl

=
2κ

[k(1 − µ2)]1/4
(δT 0

ϕ)l. (2.42)

Finally, considering the fluid angular velocity as the
source, we can write the last equation again as the Leg-
endre equation with a more complicated degree:

∂

∂µ

[

k(1 − µ2)
∂ωl

∂µ

]

+

[

kν(ν + 1) − (l + 1
2 )2

k(1 − µ2)

]

ωl

= −Kl ≡ −λ2Ωl[k(1 − µ2)]3/4, (2.43)

where
(

ν +
1

2

)2

= 4−2kκa2(ρ+p) = 4−kλ2 = 4ka2Ḣ. (2.44)

The degree ν of the Legendre equation does not depend
on l. For l = 1, equation (2.43) goes over into equation
4.35 in LKB [15].

III. SOLUTIONS FOR ω WITH GIVEN

ANGULAR MOMENTUM DISTRIBUTION

We shall start by making more explicit the solutions
obtained in LKB which are the l = 1 odd-parity vector
solutions of the general problem. In such modes each
sphere rotates with no shear but it expands (or contracts)
with the background and as it does so its angular velocity
changes (see Section 5).

k = 0
The equation to be solved is (2.38) with l = 1, this is

4.33 LKB

1

r4

∂

∂r

(

r4 ∂ω

∂r

)

= −λ2(Ω − ω) =
2κ

r2
δT 0

ϕ, (3.1)

multiplying up by r4 this takes the form

∂

∂r

(

r4 ∂ω

∂r

)

= − 6

a3

dJ(< r)

dr
, (3.2)

so

∂ω

∂r
= − 6J

a3r4
, (3.3)

the constant of integration is zero since J(< r) is zero at
r = 0 where ∂ω/∂r must vanish. Integrating again and
insisting that ω → 0 at ∞ we find

ω = a−3

∫ ∞

r

6J

r′4
dr′ = 2a−3

[

J(< r)

r3
+

∫ ∞

r

dJ

dr′
r′

−3
dr′

]

=
2

r3

∫ r

0

∫ π

0

2πr′
2
sin θ(−δT 0

ϕ) dθ dr′

+2

∫ ∞

r

∫ π

0

2πr′
−1

sin θ(−δT 0
ϕ) dθ dr′, (3.4)
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where we have used (2.25) to define J(< r) in terms of
δT 0

ϕ.

k = 1
The equation to be solved is (2.40) with l = 1 which is

4.34 LKB [16]

∂

∂µ

{

(1 − µ2)5/2 ∂ω

∂µ

}

= 2κ(1 − µ2)
1

2 δT 0
ϕ =

6

a3

dJ

dµ

so that

(1 − µ2)
1

2

∂ω

∂µ
=

6J

a3(1 − µ2)2
. (3.5)

As before there is no integration constant for the same
reason. We now write µ = cosχ, then χ is the normal
cosmic radial angle and

∂ω

∂χ
= − 6J

a3 sin4 χ
. (3.6)

Now
∫ χ dχ

sin4 χ
= −1

3

(

cot3 χ + 3 cotχ
)

= −1

3
W (χ). (3.7)

Hence

ω = 2a−3

[

WJ(< χ) +

∫ π

χ

W
dJ

dχ′ dχ′
]

+ ω0, (3.8)

where

J =

∫ χ

0

∫ π

0

2πa3[r(χ′)]2 sin2 θ(−δT 0
ϕ) dθ dχ′. (3.9)

Just as in the last case W diverges at χ = 0 like χ−3,
however, the angular momentum of spheres near the ori-
gin is sufficiently small to make the WJ tend to a con-
stant as χ tends to zero. It is shown in LKB that the
condition of convergence of the second integral at χ = π
is that the total angular momentum of the universe is
zero. If that condition is fulfilled and Ω − ω is regu-
lar near χ = π then the integral converges. If the total
angular momentum is not zero then the integral for ω
diverges at χ = π. Thus for ω to be finite at χ = π
the total angular momentum must be zero in the closed
universe. There is no way of fixing ω0 because there is
no standard of zero rotation, as there is for the infinite
universes. Indeed, according to Mach a description of
the world in rotating axes is just as good in principle as
a description in non-rotating ones. Note that the source
Ω − ω does not change when the axes are rotating since
Ω and ω acquire the same constant ω0. An absolute ro-
tation can arise only from spatial boundary conditions
which do not occur for closed universes.

k = −1
The equation to be solved is (2.40) with l = 1. Multi-

plying through by (µ2 − 1)3/2 we obtain

∂

∂µ

{

(µ2 − 1)5/2 ∂ω

∂µ

}

= −2κ
√

µ2 − 1δT 0
ϕ = − 6

a3

dJ

dµ
,

(3.10)

so on integration and division

(µ2 − 1)1/2 ∂ω

∂µ
= − 6

a3
(µ2 − 1)J. (3.11)

Writing µ = coshχ to introduce the natural radial vari-
able of hyperbolic space, this becomes

∂ω

∂χ
= − 6

a3

J

sinh4 χ
. (3.12)

Integrating again and insisting that ω → 0 at infinity we
use the integral

∫ χ dχ′

sinh4 χ′ = −1

3

(

coth3 χ − 3 cothχ + 2
)

≡ −1

3
W (χ),

(3.13)
and on integrating by parts we obtain

ω = 2a−3

[

WJ(< χ) +

∫ ∞

χ

W (χ′)
dJ

dχ′ dχ′
]

, (3.14)

where J is the same as in (3.9) with r = sinhχ. We
have chosen the above definition of W so that W → 0
at infinity; so no constant of integration is needed to
incorporate the boundary condition that ω → 0.

IV. SOLUTIONS FOR ω WITH GIVEN Ω

The method of solution was outlined in LKB but here
we work through all the details starting with the simplest
case.

k = 0
The relevant equation to be solved is (2.39) with l = 1,

equation 4.33 in LKB, rewritten as

1

r4

∂

∂r

(

r4 ∂ω

∂r

)

− λ2ω = −λ2Ω. (4.1)

Here λ2 = 2a2κ(ρ+p) > 0. λ−1a has the units of a length
and we shall call it, following Schmid [1], the distance
to the horizon. In dimensionless comoving coordinates
this corresponds to r = λ−1. We write z = λr and
∂ω/∂z = ω′. Then equation (4.1) reduces to

ω′′ +
4

z
ω − ω = −Ω. (4.2)

The corresponding homogeneous equation is Bessel’s
equation for z−3/2J3/2(iz), which has real solutions ω =

I and ω = K, where I = z−3/2I3/2(z) and K =

z−3/2K3/2(z). For small z, I → 1
3

√

2/π(1 + z2/10);

K →
√

π/2 z−3. For large z, I → (1/
√

2π)z−2ez;

K →
√

π/2 z−2e−z.
We use the method of variation of parameters to solve

the inhomogeneous equation with boundary conditions



9

that ω tends to zero at infinity and to a constant at the
origin. We thus obtain

ω(z) = K(z)

∫ z

0

(z′)4I(z′)Ω(z′) dz′

+ I(z)

∫ ∞

z

(z′)4K(z′)Ω(z′) dz′. (4.3)

For the solutions near the origin with sources that are
not so close, we may neglect the first term and then for
small z,

ω(z) =
1

3

√

2

π

(

1 +
z2

10

)
∫ ∞

z

(z′)4K(z′)Ω(z′) dz′. (4.4)

When the source Ω is beyond the horizon z = 1, i.e.
z′ ≫ 1,

ω(z) =
1

3

(

1 +
z2

10

)
∫ ∞

z

(z′)2e−z′

Ω(z′) dz′; (4.5)

so for a source localized in r0(1 ± ∆) with ∆ ≪ 1/λ,

ω(z) =
1

3

(

1 +
λ2r2

10

)

(λr0)
3e−λr0Ω2∆, (4.6)

which clearly shows the exponential decline of influence
remarked on by Schmid [1]. When Ω is concentrated near
z0, in z0 ± λ∆, then with z0 ≫ 1 and Ω = Ω we get

ω(z0) =
1

2

∫ ∞

0

(

z′

z0

)2

e−|z′−z0|Ω(z′) dz′ ≃ λ∆Ω. (4.7)

Thus at the source the inertial frame rotates at λ∆Ω and
Ω − ω = (1 − λ∆)Ω.

We now turn to the solutions for a closed universe.

k = 1
The relevant equation is Legendre’s equation for ω =

(1−µ2)3/4ω with an inhomogeneous term written below.
This is LBK equation 4.35 and the same as the equation
(2.43) of Section 2 of this paper specialized for l = 1:

∂

∂µ

{

(1 − µ2)
∂ω

∂µ

}

+
{

ν(ν + 1) − (3
2 )2

(1 − µ2)

}

ω = −K,

K ≡ λ2Ω(1 − µ2)3/4, (4.8)

where (ν + 1
2 )2 = 4 − λ2 as in (2.44). Since k = +1 the

space is hyperspherical and the convention is to write
µ = cosχ so that χ becomes the radial variable. The
solutions of the homogeneous equation are the Legendre

functions P
3/2
ν (µ) and Q

3/2
ν (µ) and a recurrence relation

that generates Pµ+1
ν from Pµ

ν and Pµ
ν−1. (Here the order

µ of the Legendre function has nothing to do with the
variable µ =

√
1 − kr2.) Thus

P 1/2
ν (cosχ) =

(π

2

)− 1

2

(sin χ)−
1

2 cos
[(

ν +
1

2

)

χ
]

,

Q1/2
ν (cosχ) = −

(π

2

)
1

2

(sin χ)−
1

2 sin
[(

ν +
1

2

)

χ
]

.(4.9)

To keep P
3/2
ν (cos χ) and Q

3/2
ν (cosχ) real, we use (1 −

µ2)−
1

2 = (sin χ)−1 in place of (µ2−1)−
1

2 in the recurrence
relation 8.5.1 of Abramowitz and Stegun [17] (this merely
multiplies the results by −i).

P 3/2
ν (cos χ) =

1

sinχ

[

(

ν − 1

2

)

P
1

2

ν cosχ +
(

ν +
1

2

)

P
1

2

ν−1

]

,

(4.10)

the same relation holds for the Q
3/2
ν . It turns out to be

convenient to write n = ν + 1
2 . We note that (2.44) and

(4.8) involve this quantity and that n can be real but is
often imaginary. Thus

P
3/2

n− 1

2

(cos χ) = (4.11)

−
(π

2

)− 1

2 1

sin3/2 χ
[cosχ cos(nχ) − n sin χ sin(nχ)] ,

similarly writing n when it is real but n = iN when it is
imaginary:

Q
3/2

n− 1

2

(cos χ) = (4.12)

(π

2

)
1

2 1

sin3/2 χ
[cosχ sin(nχ) − n sin χ cos(nχ)] ,

Q
3/2

iN− 1

2

(cosχ) =

i
(π

2

)
1

2 1

sin3/2 χ
[cosχ sinh(Nχ) − N sin χ cosh(Nχ)] .

We shall be concerned to have functions which, after mul-
tiplication by another (sinχ)−3/2, are nevertheless still fi-
nite at the origin χ = 0. A little expansion around χ = 0
shows that the P function diverges but Q function satis-
fies this stringent test. Our next job is to find a solution
that satisfies this stringent convergence not at χ = 0 but
at the ‘other’ r = 0 at χ = π. Since that is an alternative

origin it is clear that Q
3/2

n− 1

2

[cos(π−χ)] passes that test. A

little work shows that it is indeed the linear combination
(2/π) sin(nπ)P

3/2

n− 1

2

(χ)−cos(nπ)Q
3/2

n− 1

2

(χ). Finally we no-

tice that n = 0, which is needed in some of our solutions,

gives Q
3/2
−1/2 ≡ 0. This is not a solution at all! However

lim
n→0

[(1/n)Q
3/2
n−1/2] gives the finite limit

(π

2

)
1

2 1

sin3/2 χ
[χ cosχ − sinχ] . (4.13)

We shall therefore use the functions

qn =
(π

2

)
1

2 1

sin3/2 χ
Sn(χ) , (4.14)

pn =
(π

2

)
1

2 1

sin3/2 χ
Sn(π − χ)

as our independent solutions of the Legendre equation.
These functions have the added advantage that they re-
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main real when n = iN :

Sn(χ) = − cosχ
sin(nχ)

n
+ sinχ cos(nχ), (4.15)

SiN (χ) = − cosχ
sinh(Nχ)

N
+ sinχ cosh(Nχ).

The Wronskian may be shown to be

pn
dqn

dµ
− qn

dpn

dµ
=

π

2

sin(nπ)

n

n2 − 1

1 − µ2
=

W
1 − µ2

. (4.16)

Having formed solutions p and q each of which satisfy
one of the boundary conditions we look for solutions of
the inhomogeneous equation of the form

ω = A(µ)p + B(µ)q. (4.17)

We choose A′p+B′q = 0, and then the equation demands
that

(1 − µ2)[A′p′ + B′q′] = −K, (4.18)

where a dash denotes ∂/∂µ. Solving for A′ and B′ we
have, using the Wronskian W/(1 − µ2) defined earlier,
A′ = Kq/W . Now p does not satisfy the boundary con-
ditions at χ = 0, so A must be zero there; hence

A = −
∫ 1

µ

Kq

W dµ = −
∫ χ

0

Kq

W sin χ dχ. (4.19)

Similarly B′ = −Kp/W and to satisfy the boundary con-
ditions at µ = −1, χ = π,

B = −
∫ µ

−1

Kp

W dµ = −
∫ π

χ

Kp

W sin χ dχ. (4.20)

Thus the solution by variation of the parameters is

ω = −
[

p(χ)

∫ χ

0

Kq

W sin χ′ dχ′ + q(χ)

∫ π

χ

Kp

W sin χ′ dχ′
]

,

(4.21)
which gives our solution for ω(χ) = (sinχ)−3/2ω:

ω(χ) = − π/2

W sin3 χ

[

Sn(π − χ)

∫ χ

0

λ2ΩSn(χ′) sinχ′ dχ′

+ Sn(χ)

∫ π

χ

λ2ΩSn(π − χ′) sin χ′ dχ′
]

. (4.22)

For χ small,

Sn → (1 − n2)

3
χ3

[

1 − (1 + n2)χ2

10

]

, i.e.

1

sin3 χ
Sn → (1 − n2)

3

[

1 +
(4 − n2)

10
χ2

]

, (4.23)

and for n = iN ,

1

sin3 χ
SiN → (1 + N2)

3

[

1 +
(4 + N2)

10
χ2

]

. (4.24)

We note that with k = +1 , 4 + N2 = λ2, and

W =
π

2
(n2−1)

sin(nπ)

n
= −π

2
(1+N2)

sinh(Nπ)

N
. (4.25)

For N large and χ small

SiN

W sin3 χ
→ − 4

3π
Ne−Nπ

(

1 +
λ2χ2

10

)

. (4.26)

For N large and χ not small nor near π,

SiN (χ) =
1

2
sinχ eNχ, SiN (π−χ) =

1

2
sin χ eN(π−χ).

(4.27)
Hence our solution near the origin is

ω(χ) =
1

3

(

1 +
λ2χ2

10

)

N

∫ π

χ

λ2Ω(χ′) sin2 χ′e−Nχ′

dχ′,

(4.28)
and near the perturbation

ω(χ0) =
1

2

∫ π

0

λ2N

N2 + 1

(

sinχ′

sinχ0

)2

e−N |χ′−χ0|Ω(χ′) dχ′,

(4.29)
where at the last line we consider a perturbation with a
mean Ω of Ω in r0 ± ∆ with N∆ ≪ 1.

k = −1
The equation to be solved is (2.43) with k = −1 and

l = 1. Now we write µ = coshχ , (ν + 1
2 )2 = λ2 + 4.

Space is now hyperbolic and µ runs from 1 to ∞. The
relevant solutions of the homogeneous equation are

p = −
(

P 3/2
ν +

2

π
iQ3/2

ν

)

=
1

2

(π

2

)− 1

2 1

sinh3/2 χ
Se(χ),

q = iQ3/2
ν =

1

2

(π

2

)
1

2 1

sinh3/2 χ
E(χ), (4.30)

where n = (ν + 1
2 ),

E(χ) = −(n − 1)e−(n+1)χ + (n + 1)e−(n−1)χ,

Se(χ) =
1

2
[E(χ) − E(−χ)] . (4.31)

The Wronskian

p
dq

dµ
− q

dp

dµ
= − (n2 − 1)n

µ2 − 1
. (4.32)

The solution by variation of parameters is

ω = − 1

n(n2 − 1)

[

p

∫ ∞

µ

qK dµ + q

∫ µ

1

pK dµ

]

, (4.33)

hence, changing the integrations from µ to χ and ω to ω,
we have

ω =
(sinhχ)−3

4(n2 − 1)n

[

E(χ)

∫ χ

0

λ2Ω(χ′)Se(χ
′) sinhχ′ dχ′

+ Se(χ)

∫ ∞

χ

λ2Ω(χ′)E(χ′) sinhχ′ dχ′
]

. (4.34)
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For small χ

E(χ) = 2 − (n2 − 1)χ2 × (4.35)
[

1 − 2n

3
χ +

3n2 + 1

12
χ2 − n(n2 + 1)

15
χ3 + ...

]

,

so

Se(χ) =
2n

3
(n2 − 1)χ3

[

1 − (n2 + 1)

15
χ2

]

. (4.36)

At large χ

E(χ) = (n + 1)e−(n−1)χ = 2(n + 1)e−nχ sinhχ,

Se(χ) =
1

2
(n − 1)e(n+1)χ = (n − 1)enχ sinhχ. (4.37)

Near the origin

ω =
1

3

[

1 − (4 − n2)χ2

10

]

× (4.38)

∫ ∞

χ

(n2 − 4)(n + 1) sinh2 χ′e−nχ′

Ω(χ′) dχ′.

At the perturbation

ω(χ0) =
1

2

n2 − 4

n

∫ ∞

0

(

sinhχ′

sinhχ0

)2

e−n|χ′−χ0|Ω(χ′) dχ′.

(4.39)

V. THE TIME EVOLUTION OF THE

DRAGGING

The evolution of ω and Ω as functions of cosmic time is
governed by the equations of motion (contracted Bianchi
identities) (2.9). For axisymmetric, odd-parity perturba-
tions these become the angular momentum density con-
servation law, as discussed in equations (2.22)–(2.26) in
Section 2. In terms of ω(t, r, θ) and Ω(t, r, θ) the conser-
vation law simply becomes (2.31), i.e.

[

a5(ρ + p)(ω − Ω)
]˙

= 0 (5.1)

or, in terms of the angular momentum density, we get

Ω − ω =
1

a5(ρ + p)
· j(χ, θ)

r4 sin3 θ
. (5.2)

In this formula the first factor singles out the time de-
pendence of Ω−ω. Notice that we have already obtained
ω(t, r, θ) as a function of the angular momentum within
χ, J(< χ), in all three cases k = +1, 0,−1 [see equations
(3.4), (3.8), (3.14)]. We found ω to depend on the time
as 1/a3(t). Equation (5.2) then can be regarded as a
solution Ω(t, r, θ) implied by the equations of motion.

On the other hand, for Ω−ω given at some time t = t0
as a function of χ, θ, equation (5.2) determines the den-
sity j(χ, θ) which in turn gives J(< χ) and ω(t, χ, θ) is
then obtained from equations (3.4), (3.8), (3.14). Angu-
lar velocity of matter, Ω(t, χ, θ), is then given again by
equation (5.2).

If we are interested in proper azimuthal velocities, we
can write

V = ar sin θ Ω, v = ar sin θ ω, (5.3)

and rewrite (5.2) as

V − v =
1

a4(ρ + p)
· j(χ, θ)

r3 sin2 θ
. (5.4)

Since |Ωr|, |ωr| ≪ 1, we have also |V |, |v| ≪ 1. In the
case of the dust universes (p = 0) the density obeys the
conservation law ρa3 = constant ≡ C. Equation (5.4)
then implies

V − v =
j(χ, θ)

Cr3 sin2 θ
· 1

a
. (5.5)

This is not valid near t ∼ 0 when a → 0 due to our
approximation. For a → ∞, V − v → 0 — the dragging
becomes perfect.
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