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Variational des
ription of multi-�uid hydrodynami
s: Un
harged �uids.Reinhard PrixDepartment of Mathemati
s, University of Southampton, SO17 1BJ, UK∗(Dated: Nov. 26, 2003)We present a formalism for Newtonian multi-�uid hydrodynami
s derived from an un
onstrainedvariational prin
iple. This approa
h provides a natural way of obtaining the general equations ofmotion for a wide range of hydrodynami
 systems 
ontaining an arbitrary number of intera
ting �u-ids and super�uids. In addition to spatial variations we use �time shifts� in the variational prin
iple,whi
h allows us to des
ribe dissipative pro
esses with entropy 
reation, su
h as 
hemi
al rea
tions,fri
tion or the e�e
ts of external non-
onservative for
es. The resulting framework in
orporatesthe generalization of the entrainment e�e
t originally dis
ussed in the 
ase of the mixture of twosuper�uids by Andreev and Bashkin. In addition to the 
onservation of energy and momentum,we derive the generalized 
onservation laws of vorti
ity and heli
ity, and the spe
ial 
ase of Ertel'stheorem for the single perfe
t �uid.We expli
itly dis
uss the appli
ation of this framework to thermally 
ondu
ting �uids, super�uids,and super�uid neutron star matter. The equations governing thermally 
ondu
ting �uids are foundto be more general than the standard des
ription, as the e�e
t of entrainment usually seems tobe overlooked in this 
ontext. In the 
ase of super�uid 4He we re
over the Landau�Khalatnikovequations of the two-�uid model via a translation to the �orthodox� framework of super�uidity,whi
h is based on a rather awkward 
hoi
e of variables. Our two-�uid model for super�uid neutronstar matter allows for dissipation via mutual fri
tion and also �transfusion� via β-rea
tions betweenthe neutron �uid and the proton-ele
tron �uid.I. INTRODUCTIONThe main purpose of this work is to develop a formal-ism that allows one to derive the equations of motionfor a general 
lass of multi-
onstituent systems of inter-a
ting 
harged and un
harged �uids, su
h as 
ondu
tingand non-
ondu
ting �uids, multi-�uid plasmas, super�u-ids and super
ondu
tors. For the sake of 
larity of pre-sentation we restri
t ourselves here to un
harged �uids,while the 
ase of 
harged �uids and their 
oupling to theele
tromagneti
 �eld will be treated in a subsequent pa-per [1℄.Long after the 
ompletion of 
lassi
al Hamiltonian par-ti
le me
hani
s, the quest of �nding a variational (or�Hamlitonian�) des
ription of hydrodynami
s has surpris-ingly been a long-standing problem, whi
h started onlya few de
ades ago to be fully understood. The reasonfor this 
an be tra
ed to the nature of the hydrodynami
equations, whi
h are most 
ommonly expressed in theirEulerian form in terms of the density ρ and velo
ity v,where the information about the underlying �owlines hasbeen hidden. Fluid parti
le traje
tories, i.e. �owlines,
an still be re
overed by integrating the velo
ity �eld,but they are not independent quantities of the Euleriandes
ription. However, it turns out that the �true� fun-damental �eld variables of Hamiltonian hydrodynami
sare the �owlines, whi
h determine ρ and v as derivedquantities.Consider as an example the Lagrangian density Λ de-s
ribing a barotropi
 perfe
t �uid, whi
h in analogy to
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lassi
al me
hani
s one would postulate to be
Λ(ρ, v) =

1

2
ρv2 − E(ρ) ,where E(ρ) represents the internal energy density of the�uid. We note that the internal energy de�nes the 
hem-i
al potential µ̃ and the pressure P as

dE = µ̃ dρ , and P + E = ρ µ̃ .The 
orresponding a
tion is de�ned in the usual way as
I ≡

∫
Λ dV dt, and the variation δΛ of the Lagrangiandensity is

δΛ = ρv · δv + (v2/2 − µ̃) δρ .Requiring the a
tion I to be stationary with respe
t tofree variations δρ and δv is immediately seen to be use-less, as this leads to the over-
onstrained equations of mo-tion ρv = 0 and µ̃ = v2/2. In fa
t, it has been shown [2℄that an un
onstrained variational prin
iple with ρ and vas the fundamental variables 
annot produ
e the Eulerianhydrodynami
 equations. The reason for this is rather in-tuitive, as it is evident that free variations of density andvelo
ity probe 
on�gurations with di�erent masses (i.e.di�erent numbers of parti
les), whi
h is not an a
tual de-gree of freedom of the dynami
s of the system. Thereforethe variational prin
iple has to be 
onstrained or refor-mulated in some way in order to restri
t the variationsto the physi
ally meaningful degrees of freedom.The histori
 approa
h to this problem in Newtonianphysi
s has been to supplement the Lagrangian with ap-propriate 
onstraints using Lagrange multipliers. Thismethod was pioneered by Zilsel [3℄ in the 
ontext of thetwo-�uid model for super�uid 4He, who used the 
on-straints of 
onserved parti
les (i.e. mass) and entropy.

http://arXiv.org/abs/physics/0209024v3


2However, as pointed out by Lin [4℄, this is generally in-su�
ient, as it results in equations of motion restri
tedto irrotational �ow in the 
ase of uniform entropy. Linshowed that one has to add a further 
onstraint, namelythe �
onservation of identity� of �uid parti
les in orderto obtain the most general hydrodynami
 equations. We
an label parti
les by their initial positions a, and so we
an write their �owlines as x = x(a, t). The famous �Lin
onstraint� is ∂ta + v · ∇a = 0, i.e. the identity or labelof a parti
le is 
onserved under its transport. For reviewsof this approa
h and its relation to the �Clebs
h repre-sentation� we refer the reader to [5�7℄, and referen
estherein.Although this method produ
es the 
orre
t equationsof motion, it does not seem very natural due to the ratherad ho
 introdu
tion of 
onstraints, and the need for un-physi
al auxiliary �elds (the Lagrange multipliers). Itwas pointed out by Herivel [8℄ that the Lagrangian as op-posed to Eulerian formulation of hydrodynami
s resultsin a mu
h more natural variational des
ription, and thisapproa
h was further developed and 
lari�ed by Seligerand Whitham [5℄. Instead of using ρ and v as funda-mental variables, hydrodynami
s 
an also be understoodas a �eld theory in terms of the �owlines x(a, t), orequivalently a = a(x, t). It turns out that this formu-lation allows for a perfe
tly natural un
onstrained varia-tional prin
iple. This seems rather intuitive 
onsideringthat hydrodynami
s is a smooth-averaged des
ription ofa many-parti
le system, whi
h is des
ribed by a varia-tional prin
iple based on the parti
le traje
tories, i.e. xNand ẋN .We 
an express the velo
ity and density in terms of the�owlines as v = ∂tx(a, t) and ρ(x, t) = ρ0(a)/ det(J i
j),where J i

j = ∂xi/∂aj is the Ja
obian matrix 
orrespond-ing to the map a 7→ x(a, t) between the physi
al spa
e xand the �material spa
e� a. Any further 
omoving quan-tities like the entropy s are determined in terms of theirinitial value s0(a). Substituting these expressions intothe Lagrangian Λ, one obtains an un
onstrained varia-tional prin
iple for the �eld x(a, t), whi
h results in the
orre
t equations of motion. It is interesting to note thatthis approa
h impli
itly satis�es Lin's 
onstraint, as weare varying the parti
le traje
tories x(a, t), along whi
h
a is a 
onstant by 
onstru
tion. Also, we do not needto impose an a priori 
onstraint on the 
onservation ofmass, as it is automati
ally satis�ed by these �
onve
-tive� variations: shifting around �owlines obviously 
on-serves the number of �owlines, and therefore the numberof parti
les. One 
an a
tually derive the Lin 
onstraintby transforming this Lagrangian framework ba
k into apurely Eulerian variational prin
iple [5, 6℄, whi
h showsthat these two approa
hes are formally equivalent.As pointed out by Bretherton [9℄, one 
an even more
onveniently use a �hybrid� approa
h, in whi
h the La-grangian is expressed in terms of the Eulerian hydro-dynami
 quantities v, ρ, s et
, but one 
onsider themas fun
tions of the underlying �owlines. Their varia-tions are therefore naturally indu
ed by variations ξ of

the �owlines x(a, t). In general relativity the same ideawas pioneered by Taub [10℄, and has subsequently beenlargely developed and extended by Carter [11�13℄, whoalso 
oined the term �
onve
tive variational prin
iple� forthis approa
h. Carter and Khalatnikov [14℄ have furtherdemonstrated the formal equivalen
e of the 
onve
tiveapproa
h and the more 
ommon Clebsh formulation thatresults from an Eulerian variational approa
h. A �trans-lation� of the 
ovariant 
onve
tive formalism into a New-tonian framework (albeit using a spa
etime-
ovariant lan-guage 
lose to general relativity) is also available [15, 16℄.The 
onve
tive approa
h in relativity has independentlybeen developed by Kijowski [17℄, and Hamiltonian for-mulations have been 
onstru
ted by Comer and Langlois[18℄ and Brown [19℄. Here we are using the 
onve
tive(or �hybrid�) variational prin
iple in order to derive theNewtonian multi-�uid equations, and our notation andformalism follows most 
losely the framework developedby Carter.We 
on
lude our example of the simple barotropi
 �uidby using the 
onve
tive variational prin
iple to derive theEuler equation. The expressions for (Eulerian) variationsof density and velo
ity indu
ed by in�nitesimal spatialdispla
ements ξ of the �owlines are well known1 (e.g. see[20℄), namely
δρ = −∇ (ρξ) , and δv = ∂t ξ + (v · ∇)ξ − (ξ · ∇)v .Inserting these expressions into the variation of the a
-tion δI =

∫
δΛ dV dt with δΛ given above, and after someintegrations by parts and dropping total divergen
es andtime derivatives (whi
h vanish due to the boundary 
on-ditions), we �nd

δI = −
∫

ξ ·
[
ρ(∂t + v · ∇)v + ρ∇µ̃

+v {∂tρ + ∇ · (ρv)}
]

dV dt .If we assume 
onservation of mass2, i.e.
∂tρ + ∇ · (ρv) = 0, then stationarity of the a
tion(i.e. δI = 0) under free variations ξ dire
tly leads toEuler's equation, namely

(∂t + v · ∇)v +
1

ρ
∇P = 0 ,where we have used the thermodynami
 identity

ρ∇µ̃ = ∇P . This shows that an un
onstrained 
onve
-tive variational prin
iple produ
es to the 
orre
t hydro-dynami
 equations of motion in a surprisingly simple andstraightforward way.1 A generalization of these expressions to in
lude time-shifts isderived in Appendix A2 This will be seen to be a 
onsequen
e of the variational prin
iplerather than an a-priori assumption when time-shift variations arein
luded.



3The spatial variations ξ have three degrees of freedom,resulting in one ve
tor equation, whi
h represents the
onservation of momentum. In order to 
omplete thedes
ription we will need a fourth variational degree offreedom to produ
e the missing energy equation. This
an be a
hieved by 
onsidering time-shifts, whi
h are anatural part of the 
ovariant relativisti
 approa
h, butwhi
h we have to be 
onsidered expli
itly in the 
onven-tional �3+1� language of Newtonian spa
e-time. Thesetime-shifts variations allow us to take this formalism toits full generality, as we 
an now des
ribe even dissipativepro
esses with entropy 
reation, parti
le transformations(i.e. 
hemi
al rea
tions), resistive fri
tional for
es et
.These dissipative systems are of 
ourse still 
onservativeas long as one in
ludes entropy, whi
h is why they 
an bedes
ribed by an a
tion prin
iple. The se
ond law of ther-modynami
s, however, is obviously not 
ontained in thea
tion prin
iple and has to be imposed as an additionalequation on the level of the equations of motion.We note that the equations we derive here do not ex-pli
itly in
lude shear- and bulk-vis
osity e�e
ts. How-ever, the 
urrent form of the equations is in prin
iplegeneral enough to allow for both of these e�e
ts: bulkvis
osity is 
aused by heat �ow or 
hemi
al rea
tions dueto thermal or 
hemi
al disequilibrium, both of whi
h 
analready be des
ribed in the 
urrent formulation. Shearvis
osity on the other hand has to be introdu
ed as an�external� for
e, the problem therefore 
onsists in pre-s
ribing a physi
ally reasonable model for a multi-�uidgeneralization of the shear stresses. In
luding vis
osityshould therefore not be a matter of a
tually extendingthe 
urrent framework but rather of appropriately ap-plying it in order to des
ribe su
h pro
esses. An expli
itdis
ussion of this is postponed to future work. Furtherwork is also ne
essary in order to extend this formal-ism to in
lude elasti
ity (as pioneered in the relativis-ti
 framework [21℄), and espe
ially to allow for an elas-ti
 medium interpenetrated by �uids as en
ountered inthe inner neutron star 
rust, or any type of 
ondu
tingsolid. As shown in [22℄, a Kalb-Ramond type extensionis required for the ma
ros
opi
 treatment of quantizedvorti
es in super�uids. With the present formalism we
an des
ribe super�uids either on the lo
al irrotationallevel, or on the smooth-averaged ma
ros
opi
 level bynegle
ting the (generally small) anisotropy indu
ed bythe quantized vorti
es.The plan of this paper is as follows: in Se
t. II we de-rive the general form of the equations of motion for multi-
onstituent systems using the 
onve
tive variational prin-
iple. In Se
t. III we show the 
onservation of energyand momentum implied by these equations. In Se
t. IVwe derive 
onserved quantities under transport by the�ow, namely the vorti
ity and heli
ity. We then givethe expli
it fun
tional form of the Lagrangian densityfor hydrodynami
 systems in Se
t. V, and in Se
t. VI wedis
uss several appli
ations of the foregoing formalism toparti
ular physi
al systems.

II. VARIATIONAL DESCRIPTION OFMULTI-CONSTITUENT SYSTEMSA. Kinemati
sWe want to des
ribe systems 
onsisting of several 
on-stituents distinguished by suitably 
hosen labels, and weuse 
apital lettersX ,Y , ... as indi
es whi
h run over these
onstituents labels. As the fundamental quantities of thekinemati
 des
ription we 
hoose the 
onstituent densities
nX and the asso
iated transport 
urrents nX , whi
h arerelated to the respe
tive velo
ities vX as

nX = nXvX , where X ∈ {
onstituent labels} . (1)Not all 
onstituents 
an ne
essarily move independentlyfrom ea
h other, i.e. not all velo
ities vX have to bedi�erent: vis
osity and fri
tion due to parti
le 
ollisionson the mi
ros
opi
 level 
an e�e
tively bind 
onstituentstogether on very short times
ales. We therefore distin-guish between the notions of 
onstituentsX , 
hara
teriz-ing 
lasses of mi
ros
opi
 parti
les, and �uids, whi
h aresets of 
onstituents with a 
ommon velo
ity.We note that in this framework entropy 
an be de-s
ribed very naturally as a 
onstituent for whi
h we re-serve the labelX = s, and we write
ns = s , (2)where s is the entropy density. In this 
ontext it is in-stru
tive to think of the entropy as a gas of parti
le-likethermal ex
itations (e.g. phonons, rotons et
.), whi
hmakes its des
ription as a 
onstituent on the same foot-ing with parti
le number densities quite intuitive.B. Dynami
sThe dynami
s of the system is governed by an a
tion

I de�ned as
I =

∫
ΛH dV dt , (3)in terms of the hydrodynami
 Lagrangian ΛH. The La-grangian density ΛH depends on the kinemati
 variables,whi
h are the densities nX and the 
urrents nX , i.e.

ΛH = ΛH(nX , nX ). The total di�erential of ΛH de�nesthe dynami
al quantities pX0 (�energy�) and pX (�momen-tum�) per �uid parti
le as the 
anoni
ally 
onjugate vari-ables to nX and nX , namely
dΛH=

∑(
pX0dnX +pX· dnX

)
, so pX0 =

∂ΛH

∂nX

, pX=
∂ΛH

∂nX

,(4)where here and in the following the sum over repeated
onstituent indi
es is expli
itly indi
ated by a Σ, i.e. noautomati
 summation 
onvention applies to 
onstituentindi
es.



4C. The 
onve
tive variational prin
ipleAs we have seen in the introdu
tion, one 
annot ap-ply the standard variational prin
iple to ΛH in terms ofthe Eulerian hydrodynami
s variables nX and nX . From(4) it is obvious that allowing free variations of densities
δnX and 
urrents δnX would lead to the trivial equa-tions of motion pX0 = 0 and pX = 0. Instead, we 
on-sider the Lagrangian to be a fun
tional of the underly-ing �owlines xX = xX (aX , t), and therefore admit onlyvariations δnX , δnX that are indu
ed by in�nitesimal dis-pla
ements of the �owlines. These �
onve
tive� variationsnaturally 
onserve the number of parti
les (i.e. the num-ber of �owlines) and no 
onstraints are required in thevariational prin
iple as was dis
ussed in more detail inthe introdu
tion.We apply in�nitesimal spatial displa
ements ξ

X
andtime-shifts τX to the �owlines of the 
onstituentX . Theresulting indu
ed variations of density and 
urrent havebeen derived in Appendix A, namely the density varia-tion (A18) for 
onstituentX is

δnX = −∇ · [nX ξ
X

] + [nX · ∇τX − τX∂tnX ] , (5)while the 
urrent variation δnX is given by (A20) andreads as
δnX = nX∂tξX + (nX · ∇) ξ

X
− (ξ

X
· ∇)nX

−nX (∇ · ξ
X

) − ∂t (nX τX ) . (6)Inserting these expressions into the variation of the La-grangian (4) and integrating by parts, we 
an rewrite theindu
ed variation δΛH in the form
δΛH =

∑ (
gX τX − fX · ξ

X

)
+ ∂tR + ∇ · R . (7)The time derivative and divergen
e terms will vanish inthe a
tion integration (3) by the appropriate boundary
onditions (i.e. ξ = 0 and τ = 0) and are irrelevantas far as the variational prin
iple is 
on
erned, but for
ompleteness we note that their expli
it expressions are

R ≡
∑ (

nXpX · ξ
X
− nX · pX τX

)
, (8)

R ≡
∑

[nX (pX0 τX + pX · ξ
X

)

−ξ
X

(nX pX0 + nX · pX )] . (9)The indu
ed a
tion variation therefore has the form
δI =

∑ ∫ (
gX τX − fX · ξ

X

)
dV dt , (10)where the for
e densities fX (a
ting on the 
onstituent)and the energy transfer rates gX (into the 
onstituent)are found expli
itly as

fX = nX

(
∂tp

X −∇pX0
)
− nX × (∇× pX )+pX

ΓX , (11)
gX = vX ·

(
fX − pX

ΓX

)
− pX0 ΓX , (12)

where ΓX is the parti
le 
reation rate for the 
onstituent
X , i.e.

ΓX ≡ ∂tnX + ∇ · nX . (13)The for
e density fX is the total momentum 
hange rateof the 
onstituent X , and we see that the last term in(11), i.e. the �ro
ket term� pX
ΓX , represents a 
ontri-bution that is purely due to the 
hange of the parti
lenumber. Therefore it will be 
onvenient to de�ne thepurely �hydrodynami
 for
e� fX

H
, as

fX

H
≡ nX

(
∂tp

X −∇pX0
)
− nX × (∇× pX ) . (14)With this de�nition we 
an now write the for
e density(11) and energy transfer rate (12) in the form

fX = fX

H
+ pX

ΓX , (15)
gX = vX · fX

H
− pX0 ΓX . (16)D. The equations of motionUp to this point we have developed only purely math-emati
al identities without a spe
i�
 physi
al 
ontent.The equations of motion are obtained by imposing whi
htype of invarian
e the a
tion I should satisfy under 
er-tain in�nitesimal variations. The most general equationsare obtained by requiring that a 
ommon displa
ement

ξ
X

= ξ and time shift τX = τ of all 
onstituents shouldresult in an a
tion variation of the form
δI =

∫
(gext τ − f ext · ξ) dV dt , (17)where f ext and gext are interpretable as the external for
edensity and energy transfer rate. This generalizes themore 
ommon a
tion prin
iple of isolated systems, inwhi
h the external in�uen
es fext and gext vanish andtherefore the equations of motion are obtained by requir-ing the a
tion to be invariant under small variations.�External� here is meant in the sense of not being in-
luded in the total Lagrangian, whi
h 
ould also mean,for example vis
ous or gravitational for
es. The resultingminimal equations of motion obtained from 
omparingwith (10) are therefore found as

∑
fX = fext , and ∑

gX = gext . (18)Together with (11) and (12) this represents the Euler-Lagrange equations asso
iated with this variational prin-
iple. If all 
onstituentsX form a single �uid, namely all
onstituents have a 
ommon velo
ity, then only 
ommondispla
ements of all 
onstituents make sense in the vari-ational prin
iple. For this 
lass of non�
ondu
ting mod-els, (18) represent the full equations of motion obtainablefrom the variational prin
iple. In order to 
omplete themodel, one has to spe
ify the hydrodynami
 Lagrangian
ΛH, the external intera
tions f ext and gext, and the 
re-ation rates ΓX as fun
tions of the kinemati
 variables.



5In the 
ase of 
ondu
ting models, at least some of the
onstituents are allowed to move independently, the sys-tem therefore 
onsists of more than one �uid. This in-
reases 
orrespondingly the number of degrees of free-dom, and more equations of motion are required. Theyare obtained very naturally from the variational prin-
iple, as independent displa
ements (in spa
e and time)are permitted for ea
h �uid. Therefore the resulting for
ea
ting on ea
h �uid 
an be pres
ribed by the model, sub-je
t to the restri
tion only of satisfying the minimal equa-tions of motion (18).As an example, 
onsider the 
ase of a simple 
ondu
t-ing model 
onsisting of two �uids, where we useX and Yare 
onstituent indi
es running only over the respe
tive
onstituent labels, i.e. X ∈ {�uid 1} and Y ∈ {�uid 2}.We then have the respe
tive for
e densities a
ting on ea
hof the two �uids as f (1) =
∑

X
fX and f (2) =

∑
Y

fY ,whi
h by (18) have to satisfy f (1) + f (2) = fext. There-fore there are now exa
tly two for
e densities (e.g. f (1)and f ext) freely spe
i�able in the model, 
orrespondingto the additional degrees of freedom of two �uids. In this
ase f (1) 
ould for example represent a mutual for
e thetwo �uids exert on ea
h other, e.g. a resistive fri
tionfor
e.III. CONSERVATION OF ENERGY ANDMOMENTUMUsing the expli
it expression (11) for the for
e density
fX , we 
an write

∑
fX = ∂t

(∑
nX pX

)
+ ∇j

(∑
nj
X

pX

)

−
∑(

nX∇pX0 + nj
X
∇pXj

)
. (19)We de�ne the �generalized pressure� Ψ via the total Leg-endre transformation of ΛH, namely

Ψ ≡ ΛH −
∑ (

nX pX0 + nX · pX
)

, (20)whi
h is seen from (4) to result in the total di�erential
dΨ = −

∑(
nXdpX0 + nX · dpX

)
, (21)and therefore the last sum in (19) is simply ∇Ψ. We
an now 
ast the for
e equation (18) in the form of a
onservation law for the total momentum, namely

∂tJ
i
H

+ ∇jT
ij
H

= f i
ext , (22)where the hydrodynami
 momentum density JH andstress tensor T ij

H are de�ned as
JH ≡

∑
nXpX , and T ij

H
≡

∑
ni
X

pX j + Ψ gij , (23)and where gij are the 
omponents of the metri
 tensor de-termining the relation between physi
al distan
e dl and


oordinate intervals dxi, i.e. dl2 = gij dxi dxj . In Carte-sian 
oordinates this is simply gij = δij . A proof ofthe symmetry of the stress tensor T ij
H together with amore elegant derivation of momentum 
onservation as aNoether identity of the variational prin
iple is given inAppendix B.Using expressions (11) and (12), we 
an further showthat

∑
gX =

∑ [
nX · ∂tp

X − nX · ∇pX0 − ΓX pX0
]

=
(
∂t

∑
nX · pX

)
−∇ ·

(∑
nX pX0

)

−
∑

(pX0 ∂tnX + pX · ∂tnX ) , (24)and we see from (4) that the last sum simply represents
∂tΛH. We 
an therefore rewrite the energy equation (18)in the form of a 
onservation law, namely

∂tEH + ∇ · Q
H

= gext , (25)where the hydrodynami
 energy density EH and energy�ux Q
H
are given by

EH =
∑

nX · pX − ΛH , and Q
H
=

∑
(−pX0 )nX . (26)We see that the energy density EH has quite naturallythe form of a hamiltonian, i.e. HH(nX , pX ) = EH, as it isthe Legendre-transformed (with respe
t to the momenta)of the Lagrangian ΛH.IV. CONSERVATION ALONG FLOWLINESIn addition to the total energy-momentum 
onserva-tion, derived in the previous se
tion, we 
an �nd fur-ther 
onserved quantities for individual 
onstituents, forwhi
h 
onservation holds under transport by the �uid�ow. Be
ause the following derivations apply to individ-ual 
onstituents instead of the sum over all 
onstituents,we will omit the 
onstituent index X in this se
tion inorder to simplify the notation.Transport of a quantity by the �uid �ow is 
losely re-lated to the Lie derivative with respe
t to the �uid ve-lo
ity, therefore these 
onservation laws are most easilyderived using the language and theorems of di�erentialforms instead of ve
tors. We will use this formalism inderiving the transport-
onservation laws, but we also givethe essential steps and results translated in the more 
om-mon ve
tor- and index-notation, so that familiarity withexterior 
al
ulus should not be ne
essary (albeit helpful)for reading this se
tion.A. Kelvin-Helmholtz vorti
ity 
onservationWe de�ne the vorti
ity 2-form w (with 
omponents

wij) as the exterior derivative (denoted by d) of the mo-mentum 1-form p (with 
omponents pi), namely
w ≡ dp , i.e. wij ≡ 2∇[ipj] , (27)



6where [ij] denotes antisymmetri
 averaging, i.e.
2A[iBj] = AiBj − AjBi. In three dimensions we 
an de-�ne the more 
ommon vorti
ity ve
tor W as the dual(with respe
t to the volume form ǫijk) of the 2-form w,namely

W i ≡ 1

2
ǫijkwjk = (∇× p)

i
. (28)The volume form is de�ned as

ǫijk =
√

g [i, j, k] , (29)where g = det(gij) and [i, j, k] is the sign of the permu-tation of {1, 2, 3}, whi
h is zero if two indi
es are equal.The duality between w and W implies
wij = ǫijkW k , (30)whi
h is easily veri�ed by inserting (28). We note thatdue to the Poin
aré property (namely dd = 0), the exte-rior derivative of the vorti
ity 2-form vanishes identi
ally,i.e.

dw = 0 ⇐⇒ ∇ · W = 0 . (31)We 
an rewrite the expression (14) for the hydrodynami
for
e fH in the language of forms as
∂tp + v⌋dp − dp0 =

1

n
f

H

, (32)where ⌋ indi
ates summation over adja
ent ve
tor- andform- indi
es, i.e. in this 
ase (v⌋dp)i = 2vj∇[jpi]. In thefollowing it will be 
onvenient to separate the for
e perparti
le into its non-
onservative part F and a 
onserva-tive 
ontribution dφ, namely
1

n
f

H

= dφ + F . (33)The Cartan formula for the Lie derivative of a p-formapplied to the 1-form p yields
£v p = v⌋dp + d(v⌋p) , (34)whi
h in expli
it index notation reads as

£vpi = 2vj∇[jpi] + ∇i(v
jpj). Using this identityand (33) we rewrite the for
e equation (32) more
onveniently as

(∂t + £v) p = dQ + F , (35)where the s
alar Q is given by Q = p0 + v⌋p. Lie deriva-tives and partial time derivatives 
ommute with exteriorderivatives, so we 
an apply an exterior derivative to (35)and obtain the Helmholtz equation of vorti
ity transport,namely
(∂t + £v)w = dF , (36)whi
h shows that the vorti
ity is 
onserved under trans-port by the �uid if and only if the hydrodynami
 for
e

per parti
le a
ting on the �uid is purely 
onservative, i.e.if F = 0. In its more 
ommon dual form, this equation
an be written as
∂tW −∇× (v × W ) = ∇× F . (37)The Helmholtz vorti
ity 
onservation expresses the
onservation of angular momentum of �uid parti
les,and we 
an equivalently derive it in its integrated form,namely the 
onservation of 
ir
ulation as �rst shown byKelvin. We 
onsider a 2-surfa
e Σ and de�ne the 
ir
u-lation C around its boundary ∂Σ as

C ≡
∮

∂Σ

p =

∮

∂Σ

pi dxi . (38)Using Stoke's theorem, we see that the 
ir
ulation around
∂Σ is equivalent to the vorti
ity �ux through the surfa
e
Σ, i.e.

C =

∫

Σ

w =
1

2

∫

Σ

wij dxi ∧ dxj , (39)and the more familiar dual expression is found by insert-ing (30):
C =

∫

Σ

W · dS , (40)where the surfa
e normal element dS is
dSi ≡ 1

2ǫijk dxj ∧ dxk. Using (35) the 
omovingtime derivative of the 
ir
ulation C yields
dC
dt

=
d

dt

∮

∂Σ

p =

∮
(∂t + £v) p =

∮
F , (41)whi
h is known as Kelvin's theorem of 
onservation of
ir
ulation. As we have already seen before, stri
t 
on-servation only applies if the non-
onservative for
e perparti
le F vanishes.B. Vorti
ity and super�uidsThe hydrodynami
s of super�uids is 
hara
terized bytwo fundamental properties: on one hand by the absen
eof dissipative me
hanisms like fri
tion or vis
osity, and onthe other hand by irrotational �ow. As we will see now,the hydrodynami
 des
ription of super�uids is thereforea natural sub
lass within the more general frameworkof multi-
onstituent hydrodynami
s presented here. Letus assume that a 
onstituent X = S is super�uid, withparti
le density nS, velo
ity vS and mass mS. The ab-sen
e of mi
ros
opi
 dissipative me
hanisms implies thatthe super�uid is not bound to any other 
onstituents ,i.e. it is a perfe
t 
ondu
tor in the sense that it 
an�ow freely even in the presen
e of other 
onstituents.Dissipation-free �ow is 
hara
terized by the absen
e of



7non-
onservative for
es a
ting on the bulk3 of super�uid,i.e.
FS = 0 . (42)As a 
onsequen
e of (36) and (41) we see that the vorti
-ity (and therefore 
ir
ulation) of a super�uid is stri
tly
onserved. The se
ond 
onstraint, whi
h distinguishesa super�uid from a perfe
t �uid, is that a super�uid islo
ally irrotational, i.e. its vorti
ity is zero, so

wS = 0 , ⇐⇒ W S = 0 . (43)Due to the vorti
ity 
onservation of super�uids, this 
on-straint remains automati
ally satis�ed if it is true at someinstant t, i.e. it is 
onsistent with the hydrodynami
 evo-lution.The formulation most 
ommonly found in the litera-ture on super�uids and super
ondu
tors is based on the
on
ept of the so-
alled �super�uid velo
ity�, whi
h is
onstrained to be irrotational [23, 24℄. If one interpretedthis as the a
tual transport-velo
ity vS, su
h a 
onstraintwould generally not be 
onsistent with the equations ofmotion, 
ontrary to the natural 
onservation of the mo-mentum vorti
ity wS. This �orthodox� formulation of su-per�uidity, whi
h goes ba
k to Landau's two-�uid modelfor 4He, is therefore a rather unfortunate misinterpreta-tion of physi
al quantities, as the so-
alled �super�uidvelo
ity� is ne
essarily to be interpreted as the res
aledsuper�uid momentum in order to make this 
onstraint
onsistent with hydrodynami
s. The fa
t that in New-tonian single-�uid 
ontexts the parti
le momentum onlydi�ers by a 
onstant mass fa
tor from the velo
ity has un-fortunately lead to a less than 
areful distin
tion betweenthese fundamentally di�erent quantities. This simpleidenti�
ation no longer holds true in more general 
on-texts, like in the 
ase of multi-�uids (e.g. super�uids) oreven in the 
ase of a single relativisti
 perfe
t �uid. Thevelo
ity-
ir
ulation is generally not 
onserved, 
ontraryto the 
onservation of momentum 
ir
ulation (41). Theorthodox framework of super�uid hydrodynami
s will bedis
ussed in more detail in Se
t. VID.In addition to the super�uid 
onstraints of beingdissipation-free and irrotational, there is a further impor-tant restri
tion, namely the quantization of 
ir
ulation.An irrotational �ow 
an still 
arry non-zero 
ir
ulationin the presen
e of topologi
al defe
ts (su
h as vorti
es).In order to see this, we note that (as a 
onsequen
e of(43)) we 
an write the super�uid momentum pS as thegradient of a phase ϕ, namely
pS = ~ dϕ , i.e. pS = ~∇ϕ . (44)3 However, there 
an be a non-
onservative for
e a
ting on thesuper�uid at a vortex-
ore if the vortex is pushed by another�uid. This me
hanism gives rise to the so-
alled e�e
t of �mutualfri
tion�.

The 
ir
ulation (38) 
an therefore be non-zero if ∂Σ en-
loses a topologi
al defe
t in ϕ, i.e. a region where ϕ(and pS) is not de�ned, as for example in the 
ase of �owinside a torus. While in the 
ase of a perfe
t irrotational�uid the resulting 
ir
ulation 
ould have any value, thesuper�uid phase ϕ is restri
ted to 
hange only by a mul-tiple of 2π after a 
omplete tour around the defe
t. Theresulting 
ir
ulation is therefore quantized as
C = 2Nπ~ , with N ∈ Z , (45)whi
h gives rise to the well-known quantized vortex stru
-ture of super�uids.C. Heli
ity 
onservationContrary to the 
onservation laws derived in the pre-vious se
tions, whi
h have been known for more than a
entury, there is a further 
onserved quantity namely theso-
alled heli
ity, whose existen
e in hydrodynami
s hasonly been pointed out 
omparatively re
ently by Mo�at[25℄. This quantity is analogous to the magneti
 heli
ity
onservation found in magneto-hydrodynami
s [26℄, andit is related to the topologi
al stru
ture of the vorti
ity,i.e. its �knottedness� [27℄. The relativisti
 analogue ofthis 
onservation has been shown by Carter [13, 28, 29℄,and generalizations have been dis
ussed by Bekenstein[30℄.We de�ne the heli
ity 3-form H (with 
omponents

Hijk) as the exterior produ
t of the momentum 1-form pwith the vorti
ity 2-form w, i.e.
H ≡ p ∧ w , (46)whi
h in 
omponents reads as Hijk = 3p[iwjk]. A 3-formin a 3-dimensional manifold is dual to a s
alar, so we 
ande�ne the heli
ity density h as

Hijk = h ǫijk . (47)From the duality relation together with the de�nition(46), we see that the heli
ity s
alar has the followingexpli
it expression
h=

1

3!
ǫijkHijk = pi

1

2
ǫijkwjk = p ⌋W = p·(∇×p) . (48)Using (35) and (36), the 
omoving time-derivative of H
an be expressed as

(∂t + £v)H =
[
(∂t + £v) p

]
∧ w + p ∧ [(∂t + £v)w]

= (dQ + F) ∧ w + p ∧ dF

= d(Qw) +
[
d(p ∧ F) + 2dF ∧ p

]
. (49)We see that, not surprisingly, the vanishing of the non-
onservative for
e F is a ne
essary (albeit not su�
ient)
ondition for the 
onservation of heli
ity. We introdu
ethe total heli
ity H of a volume V as

H ≡
∫

V

H =

∫

V

h dV , (50)



8and, assuming F = 0, we �nd for the 
omoving timederivative of H:
dH
dt

=

∫

V

(∂t +£v)H =

∮

∂V

Q w =

∮

∂V

QW ·dS . (51)The heli
ity H of a volume V is therefore 
onserved un-der transport by the �uid if, in addition to F = 0, thevorti
ity W vanishes on the surfa
e ∂V surrounding thisvolume. V. HYDRODYNAMICSA. The Lagrangian of hydrodynami
sIn the previous se
tions we have derived the most gen-eral form of the Euler-Lagrange equations (18) asso
i-ated with the 
onve
tive variational prin
iple, togetherwith the for
e densities (11) and energy transfer rates(12). We are now interested in a parti
ular 
lass of La-grangian densities ΛH, namely those whi
h des
ribe New-tonian hydrodynami
s. One 
an postulate the generalform of the hydrodynami
 Lagrangian ΛH in analogy to
anoni
al parti
le me
hani
s as
ΛH(nX , nX ) ≡

∑
mX

n2
X

2nX

− E , (52)where E is a thermodynami
 potential related to the in-ternal energy (or �equation of state�) of the system. Wetherefore �nd the following general form for the 
onjugatemomenta pX0 and pX as de�ned in Eq. (4):
−pX0 =

1

2
mXv2

X
+

∂E
∂nX

, pX = mXvX − ∂E
∂nX

. (53)We want to identify these 
onjugate momenta with thea
tual physi
al energy and momentum per �uid parti
le,whi
h implies that under a Galilean boost −V indu
ingthe transformations
v′
X

= vX + V , n′
X

= nX , ∂t
′ = ∂t − V · ∇ , (54)these momenta should transform (e.g. see [23, 31℄) as

−pX0
′
=−pX0 +V ·pX +

1

2
mXV 2 , and pX ′ = pX +mXV .(55)One 
an verify that in this 
ase the hydrodynami
 for
edensities fX

H
de�ned in (14) are invariant under Galileanboosts as one should expe
t. The parti
le 
reation rates

ΓX de�ned in (13) are also Galilean invariant, so that thetransformation of the total for
e densities fX of (11) isseen to be
fX ′ = fX + V mX

ΓX . (56)The equations of motions of an isolated system, i.e.∑
fX = 0, are therefore Galilean invariant if and onlyif the total mass is 
onserved, i.e. if

∑
mX

ΓX = 0 . (57)

By using (55) we 
an show that the energy transfer rates(16) transform as
gX

′
= gX + V · fX + mX

ΓX

V 2

2
, (58)and due to mass 
onservation (57) the total energy
hange rate therefore satis�es

∑
gX

′
=

∑
gX + V · fext , (59)so that the total energy 
onservation of an isolated sys-tem is Galilean invariant.In general the transformation properties (55) are only
onsistent with the 
onjugate momenta (53) if E is itselfGalilean invariant, whi
h is shown in Appendix C. Thisimplies that the velo
ity dependen
e of E 
an only be ofthe form

E(nX , nX ) = E(nX ,∆XY ) , (60)where ∆XY is the relative velo
ity between �uidX and�uid Y , i.e.
∆XY ≡ vX − vY =

nX

nX

− nY

nY

. (61)We note that a fun
tion E of the form (60) satis�es theidentity
∑

nX

∂E
∂nX

= 0 , (62)whi
h 
an be used together with (53) to show that thehydrodynami
 momentum density (23) satis�es
JH =

∑
nXpX =

∑
mXnX = ρ , (63)i.e. the hydrodynami
 momentum density JH is equalto the total mass 
urrent ρ as a 
onsequen
e of Galileaninvarian
e.In addition to the requirement of Galilean invarian
ewe will restri
t our attention to systems of �perfe
t�multi-
onstituent �uids in the sense that their energyfun
tion E is isotropi
. This means that we 
onsider onlyequations of state of the form

E(nX ,∆XY ) = E(nX , ∆2
XY

) . (64)Summarizing we 
an now write the hydrodynami
 La-grangian density (52) for this 
lass of perfe
t multi-�uidsystems as
ΛH(nX , nX ) =

∑
mX

n2
X

2nX

− E(nX , ∆2
XY

) . (65)It is interesting to note that 
ontrary to the relativis-ti
 
ase, whi
h is governed by a fully 
ovariant hydrody-nami
 Lagrangian density (e.g. see [13℄), the NewtonianLagrangian (65) is not stri
tly Galilean invariant be
auseof the kineti
 energy term. The violation is su�
ientlyweak, however, that is does not a�e
t the Galilean in-varian
e of the resulting equations of motion.



9B. Conjugate momenta and entrainment e�e
tThe total di�erential of the energy fun
tion
E(nX , ∆2

XY
) represents the �rst law of thermodynami
sfor the given system, namely

dE =
∑

µX dnX +
1

2

∑

X ,Y

αXY d∆2
XY

, (66)whi
h de�nes the 
hemi
al potentials µX and the sym-metri
 entrainment matrix αXY as the thermodynami-
al 
onjugates to nX and ∆2
XY

. The 
onjugate momenta(53) are therefore expli
itly found as
pX = mXvX −

∑

Y

2αXY

nX

∆XY , (67)
−pX0 = µX − mX

v2
X

2
+ vX · pX . (68)The expression (67) for the momenta in terms of the ve-lo
ities is interesting, as it shows that in general the mo-menta are not aligned with the respe
tive �uid velo
ities,whi
h is the so-
alled entrainment e�e
t4. The simplesingle-�uid 
ase, in whi
h the momentum is just p = mv,is only re
overed if there is no entrainment between the�uids (i.e. αXY = 0) or if all 
onstituents move together(i.e. ∆XY = 0). This phenomenon is well-known (albeitnot under the name entrainment) in solid-state physi
s,for example the ele
tron momentum in a 
rystal latti
eis 
onne
ted to its velo
ity by an e�e
tive mass-tensor(e.g. see [33℄). For a more detailed dis
ussion of the ex-pli
it relation between e�e
tive masses and entrainmentin a two-�uid model we refer the reader to [34℄. In the
ontext of super�uid mixtures the importan
e of the in-tera
tion and the entrainment e�e
t has �rst been re
og-nized by Andreev&Bashkin [35℄, although expressed inthe 
on
eptually more 
onfused orthodox framework ofsuper�uidity. Substituting (65) together with (68) and(67) into (20), we 
an now relate the �generalized pres-sure� Ψ dire
tly to the energy fun
tion E , namely

E + Ψ =
∑

nXµX , (69)and with (66) the total di�erential of Ψ(µX , ∆2
XY

) isfound as
dΨ =

∑
nX dµX − 1

2

∑

X ,Y

αXY d∆2
XY

. (70)We 
an further express the hydrodynami
 for
e density(14) more expli
itly as
fX

H
=nX (∂t+vX · ∇) pX +nX∇µX −

∑

Y

2αXY ∆j
XY

∇vX j ,(71)4 Sometimes also referred to as �drag� in the super�uid literature.But as pointed out in [32℄, this is rather misleading, as entrain-ment is a purely non-dissipative e�e
t, whereas �drag� in physi
susually refers to a resistive drag.

and for the 
onserved hydrodynami
 energy density (26)we �nd
EH =

∑

X

mXnX

v2
X

2
+ E −

∑

X ,Y

αXY ∆2
XY

. (72)This relation 
an be used to 
larify the physi
al meaningof the thermodynami
 potential E . One might have ex-pe
ted to �nd the total energy density simply as the sumof kineti
 energies plus E . It is to be noted though that
EH, whi
h represents the Hamiltonian HH(nX , pX ) of thesystem, is naturally a fun
tion of the �uid momenta pXas opposed to the velo
ities. Similarly it turns out that inorder to �nd the a
tual �internal energy�, we have to 
on-stru
t the thermodynami
 potential that depends on therelative momenta instead of ∆XY . We therefore de�nethe �entrained� relative momenta JXY as

JXY ≡ 2αXY
∆XY , (73)representing the momentum ex
hange between 
on-stituentsX and Y due to entrainment, namely by using(67) the momentum density of the 
onstituentX 
an bewritten as

nXpX = nXmXvX −
∑

Y

JXY . (74)Using this de�nition of JXY , the �rst law (66) now takesthe form
dE =

∑
µX dnX +

1

2

∑

X ,Y

JXY d∆XY , (75)We 
an therefore introdu
e the internal energy density
Ẽ as the Legendre transformed (with respe
t to the mo-menta JXY ) of the energy fun
tion E , namely

Ẽ(nX , JXY ) ≡ E − 1

2

∑

X ,Y

JXY · ∆XY , (76)with the asso
iated total di�erential
dẼ =

∑
µX dnX − 1

2

∑

X ,Y

∆XY dJXY . (77)We note that E and Ẽ only di�er in systems where theentrainment e�e
t is present. Traditionally the quantity
Ẽ is what one might 
all the a
tual �internal energy� den-sity, whi
h is a fun
tion of the momenta, while the 
on-jugate thermodynami
 potential E does not seem to havea well established name in the literature. We see that interms of the internal energy Ẽ , the total energy density(72) does indeed have the expe
ted form of �kineti
 plusinternal� energy, namely

EH =
∑

X

mXnX

v2
X

2
+ Ẽ . (78)



10C. Entropy and temperatureAs noted earlier, entropy 
an be in
luded quite nat-urally in this framework as a 
onstituent. The 
orre-sponding density and 
urrent are ns = s and ns = svs interms of the entropy density s and its transport velo
ity
vs. The entropy is naturally mass-less, i.e. ms = 0. Thethermodynami
ally 
onjugate variable to the entropy (its�
hemi
al potential�) is the temperature, i.e. µs = T , so(66) 
an be written as

dE = T ds +
∑

X 6=s

µX dnX +
1

2

∑

X ,Y

αXY d∆2
XY

. (79)The thermal momenta ps
0 = Θ0 and ps = Θ of the en-tropy 
onstituent are found from (67) and (68), namely

Θ = −
∑

Y

2αsY

s
∆sY , (80)

−Θ0 = T + vs · Θ . (81)We see that although the entropy has zero rest mass, it
an a
quire a non-zero dynami
al momentum Θ due toentrainment. This 
an also be interpreted as the entropyhaving a non-zero �e�e
tive mass�. The hydrodynami
entropy for
e density f s
H
and energy 
hange rate gs de-�ned in (14) and (16) yield

f s
H

= s∇T +s (∂t + vs ·∇)Θ−
∑

2αsY ∆j
sY ∇vsj ,(82)

gs = vs · f s
H

+ (T + vs · Θ) Γs . (83)We see that the temperature gradient is a driving for
eof the entropy 
onstituent, as would be expe
ted. Wealso re
ognize the term TΓs in the expression of the en-ergy transfer rate gs, whi
h represents the heat 
reation�T dS�. VI. APPLICATIONSA. Single perfe
t �uidsAs the �rst appli
ation of the foregoing formalism, we
onsider a single perfe
t �uid 
onsisting of several 
o-moving 
onstituents. This multi�
onstituent �uid is de-s
ribed by the densities nX whi
h move with a singlevelo
ity vX = v, and so the 
urrents are nX = nX v. Ob-viously all the relative velo
ities vanish in this 
ase, i.e.
∆XY = 0, and therefore there is no entrainment. Herewe will expli
itly write the entropy with its density s, andwe do not in
lude it in the 
onstituent index set labelledbyX , i.e. X 6= s. The Lagrangian (65) for this system is

ΛH =
∑

mX nX

v2

2
− E(s, nX ) , (84)and the energy and pressure di�erentials (66) and (70)simply read as

dE=T ds +
∑

µX dnX , and dP =s dT +
∑

nX dµX ,(85)

where in the 
ase of a single �uid, the generalized pressure
Ψ simply redu
es to the usual �uid pressure P . The �uidmomenta (67) and (68) are

pX = mX v , and − pX0 = µX + mX
v2

2
, (86)while for the entropy 
onstituent we have with (80) and(81):

Θ = 0 , and − Θ0 = T . (87)The expli
it expression for the for
e densities (11) andenergy transfer rates (16) are found as
fX = nXmX (∂t + v ·∇)v + nX∇µX + mX

ΓX v , (88)
gX = v · fX + ΓX µX − mX

v2

2
ΓX , (89)

f s = s∇T , (90)
gs = v · f s + TΓs , (91)If we allow for an external for
e fext and energy ex
hangerate gext, the equations of motion (18) of the system are

f s +
∑

fX = fext , and gs +
∑

gX = gext . (92)Inserting (88)�(91) and using mass 
onservation (57), we�nd the expli
it equations of motion
(∂t + v · ∇)v +

1

ρ
∇P =

1

ρ
fext , (93)

TΓs +
∑

µX
ΓX = gext − v · f ext , (94)where we have used the thermodynami
 relation (85) inorder to rewrite the momentum equation in the famil-iar Euler form. The energy equation expresses the heat
reation TΓs by 
hemi
al rea
tions ΓX . For an isolatedsystem, where fext = 0 and gext = 0, that entropy 
anonly in
rease due to the se
ond law of thermodynami
s,so Γs ≥ 0. From (94) we therefore obtain a 
onstraint onthe dire
tion of the 
hemi
al rea
tions, namely

∑
ΓXµX ≤ 0 . (95)If we 
onsider for example the 
ase of two 
onstituentsof equal mass, so that the mass-
onservation (57) implies

Γ1 + Γ2 = 0, then this 
onstraint now reads as
Γ1(µ

1 − µ2) ≤ 0 , (96)whi
h shows that 
hemi
al rea
tions only pro
eeds in thedire
tion of the lower 
hemi
al potential as would be ex-pe
ted.B. �Potential vorti
ity� 
onservation: Ertel'stheoremWe now 
onsider the 
ase without 
hemi
al rea
tions,in whi
h the general perfe
t �uid dis
ussed in the fore-going se
tion 
an be des
ribed e�e
tively as a �uid 
on-sisting only of a single matter 
onstituent and entropy.



11In this 
ase we 
an show that the vorti
ity is generallynot 
onserved, but that a weaker form of the vorti
ity
onservation still holds. The �uid is des
ribed by theparti
le number density n, the mass per parti
le m anda 
omoving entropy density s. Mass 
onservation (57) inthis 
ase redu
es to Γ = 0. If we assume the system to beisolated, i.e. f + f s = 0, then the only for
e per parti-
le (33) a
ting on the matter 
onstituent is the �thermalfor
e� (90), namely
1

n
fH = −s̃∇T , (97)where s̃ ≡ s/n is the spe
i�
 entropy. If s̃ is 
onstanteverywhere, then this �thermal for
e� is 
onservative, i.e.

F = 0 and by (41) the 
ir
ulation is therefore 
onserved.In the non-uniform 
ase, however, we �nd
dC
dt

=

∮

∂Σ

F = −
∮

∂Σ

s̃ dT , (98)whi
h vanishes only if we integrate along a path ∂Σ thatlies 
ompletely in a surfa
e of 
onstant s̃. We 
an also seethis in the Helmholtz formulation, namely by applying anexterior derivative to (97), one obtains
dF = −ds̃ ∧ dT , i.e. ∇× F = −∇s̃ ×∇T , (99)and it follows therefore from (36) that the vorti
ity isno longer generally 
onserved in this 
ase. However,the quantity ds̃ ∧ dF, or its equivalent dual expression

∇s̃ · (∇× F), still vanishes identi
ally. Based on this ob-servation we 
onstru
t the �potential vorti
ity� 3-form Zas
Z ≡ ds̃ ∧ w , (100)and the dual s
alar z is

Zijk = z ǫijk , and z =
1

3!
ǫijkZijk = ∇s̃ · (∇× p) ,(101)where the last expression was found using (30). The evo-lution of the potential vorti
ity 3-form Z under transportby the �uid is

(∂t + £v)Z = d [(∂t + £v)s̃] ∧ w , (102)and therefore Z is 
onserved for isentropi
 �ow, i.e. if
Γs = 0 ⇐⇒ (∂t + £v) s̃ = 0 . (103)The dual version of (102), namely the 
onservation of thes
alar z is then found as

∂t z + ∇ · (zv) = 0 . (104)Traditionally this 
onservation law is often expressed interms of the s
alar α ≡ z/ρ, whi
h then results in thefollowing form of the 
onservation law:
(∂t + v · ∇) α = 0 , (105)whi
h is generally known as �Ertel's theorem� [36, 37℄.

C. Thermally 
ondu
ting �uidsWe have so far only 
onsidered perfe
t �uids, whi
h areperfe
t heat insulators as the entropy is stri
tly 
arriedalong by �uid elements and no heat is ex
hanged between�uid elements. It is quite straightforward to extend thisto thermally 
ondu
ting �uids simply by dropping theassumption that the entropy �ux is bound to the matter�uid �ow, i.e. we just have to allow vs 6= v, where vs and
v are the velo
ities of the entropy �uid and the matter�uid respe
tively. For simpli
ity we 
onsider only a sin-gle matter 
onstituent, des
ribed by its parti
le numberdensity n, whi
h by (57) is automati
ally 
onserved, i.e.
Γ = 0.From the general expressions (81) and (80) we see thatthe �entropy �uid� a
quires a non-zero momentum dueto the intera
tion with the matter �uid, via entrain-ment. However, this aspe
t does not usually seem to betaken into a

ount in the traditional des
ription of heat-
ondu
ting �uids (e.g. see [23℄). The aim of the presentse
tion is only to show how to re
over the standard equa-tions for a heat-
ondu
ting �uid, and we therefore simplyassume the entrainment to be negligible, i.e. α = 0. Itis 
ertainly an interesting question if this negle
t of en-trainment is physi
ally justi�ed in all 
ases. With thisassumption, the for
e density (82) and energy rate (83)of the entropy redu
e to

f s = s∇T , and gs = vs · f s + T Γs . (106)As in the (isolated) perfe
t �uid 
ase dis
ussed previ-ously, the equations of motion are again f s + f = 0 and
gs + g = 0. This time, however, one for
e density, f s say,
an be spe
i�ed by the model due to the in
reased num-ber of degrees of freedom, so we set it to f s = fR, where
fR is a resistive for
e a
ting against the entropy �ow. Weobtain the Euler equation in the same form as in (93),but now the energy equation takes the form

TΓs = (v − vs) · fR . (107)By the se
ond law of thermodynami
s, namely Γs ≥ 0,we 
an 
onstrain the form of the resistive for
e fR to
fR = −η (vs − v) , with η ≥ 0 , (108)i.e. the fri
tion for
e a
ting on the entropy �uid is alwaysopposed to its �ow relative to the matter �uid. Obviouslythe value of the resistivity η is not restri
ted to be a
onstant but will generally depend on the state of thesystem. Following the traditional des
ription (e.g. [23℄)we introdu
e the heat �ux density q relative to the matter�uid as

q ≡ Ts(vs − v) . (109)By 
ombining this with (106) and (108), we see that theheat �ux 
urrent is 
onstrained by the se
ond law to beof the form
q = −κ∇T , with κ ≡ Ts2

η
≥ 0 , (110)



12where κ is the thermal 
ondu
tivity. With (109) we 
anexpress the velo
ity of the entropy �uid vs in terms ofthe heat �ux q and the matter velo
ity v, so the entropy
reation rate Γs 
an be expressed as
Γs = ∂ts + ∇ ·

(
sv +

q

T

)
. (111)We further �nd for the hydrodynami
 energy �ux ve
tor

Q
H
of (26):

Q
H

=
∑

(−pX0 )nX = (µ + m
v2

2
)nv + sTvs

= nv

(
m

v2

2
+ µ + s̃T

)
+ q , (112)where the last equality was found using (109). We in-trodu
e the spe
i�
 enthalpy as w ≡ µ + s̃ T , and usingthe �rst law5, namely dP = n dµ + s dT , we �nd the totalvariation of the spe
i�
 enthalpy as

dw = Tds̃ +
1

n
dP , (113)and so we re
over the standard expression (e.g. 
f. [23℄)for the energy �ux:

Q
H

= nv

(
m

v2

2
+ w

)
+ q . (114)D. The two-�uid model for super�uid 4HeWe now 
onsider the example of super�uid 4He at anon-zero temperature T . Let n be the number density of

4He atoms and s be the entropy density. The 4He atomsmove with a velo
ity v, while the entropy (
arried by athermal gas of ex
itations su
h as phonons and rotons)transports heat without fri
tion (i.e. fR = 0) at thevelo
ity vN, so the relative velo
ity is ∆ = vN − v. Inthis 
ontext the entropy �uid is often referred to as the�normal �uid� as opposed to the super�uid mass �ow.The two transport 
urrents, namely that of 4He atomsand of entropy, are respe
tively
n = n v , and s = s vN . (115)The 4He atoms have mass m, so the mass density is

ρ = nm, and the hydrodynami
 Lagrangian density (65)reads as
ΛH =

1

2
nmv2 − E(n, s, ∆2) , (116)5 In the absen
e of entrainment the entropy �uid does not 
arrymomentum, therefore the matter �uid de�nes a unique frame inwhi
h the stress tensor (23) is purely isotropi
. In this 
ase thegeneralized pressure Ψ is identi
al with the usual perfe
t �uidnotion of the pressure P .

where the energy fun
tion E determines the �rst law (66)as
dE = µ dn + T ds + α d∆2 , (117)whi
h de�nes the 
hemi
al potential µ of 4He atoms, thetemperature T and the entrainment α. The 
onjugatemomenta (67), (68) of the 4He atoms are

p = mv +
2α

n
∆ , (118)

−p0 = µ − 1

2
mv2 + v · p , (119)while for the entropy �uid Eqs. (80) and (81) yield

Θ = −2α

s
∆ , (120)

−Θ0 = T + vN ·Θ . (121)The 
onservation of mass (57) implies
Γ = ∂tn + ∇ · n = 0 . (122)In the absen
e of vorti
es, there are no dire
t for
es a
tingbetween the two �uids, so the equations of motion in theabsen
e of external for
es (i.e. fext = 0) are simply

f = fH = 0 and fN = 0 . (123)The energy equations are g = 0 and gN = gext, and with(83) this leads to
−gext = Γs(Θ0 + vN · Θ) = −TΓs , (124)where we have inserted (121). We see that this equationdes
ribes the rate of entropy 
reation by an external heatsour
e, namely

∂ts + ∇ · (svN) =
1

T
gext . (125)As dis
ussed in Se
t. IVB, the super�uid 4He is (lo
ally)irrotational, i.e.

wij = 2∇[ipj] = 0 ,⇐⇒ W = ∇× p = 0 . (126)Using (14), the equation of motion (123) for the super-�uid therefore redu
es to
∂tp −∇p0 = 0 , (127)and with the expli
it momenta (119) and (118) this yields

∂t (v + ε∆) + ∇
(

µ̃ +
1

2
v2 + εv · ∆

)
= 0 , (128)where we introdu
ed the entrainment number ε and thespe
i�
 
hemi
al potential µ̃ as

ε ≡ 2α

ρ
, and µ̃ ≡ µ

m
. (129)



13The entropy �uid is governed by the momentum equation
fN = 0, and with (82) and the entropy momenta (121)and (120), we �nd
(∂t + vN · ∇)

(
2α

s
∆

)
−∇T +

2α

s
∆j∇vj

N +
2α

s2
Γs∆ = 0 .(130)The two equations (128) and (130) represent the �
anon-i
al� formulation of the two-�uid model for super�uid

4He. These equations do not seem to bear any obviousrelation to the �orthodox� formulation of Landau's two-�uid model found in all textbooks on the subje
t (e.g.see [23, 24, 31℄). Nevertheless, these equations are equiv-alent to the orthodox framework, as we will show now,but it is important to note that the orthodox formulationis based on a rather unfortunate 
onfusion between thevelo
ity and momentum of the super�uid whi
h is inher-ent in the histori
 de�nition of the �super�uid velo
ity�by Landau.We demonstrate the equivalen
e of these formulationsby expli
itly translating the 
anoni
al formulation intothe orthodox language. The starting point of Landau'smodel is the statement that the �super�uid velo
ity� isirrotational. We write νS for the �super�uid velo
ity�,whi
h is not to be 
onfused with the a
tual velo
ity v of
4He atoms, so the starting point is

∇× νS = 0 . (131)From the general dis
ussion about vorti
ity 
onserva-tion in Se
t. IVA and its parti
ular role in super�uids(Se
t. IVB) we have already seen that 
ontrary to themomentum vorti
ity W = ∇× p, the velo
ity-rotation
∇× v is generally not 
onserved by the �uid �ow, andin parti
ular not in the presen
e of more than one �uid asis the 
ase in super�uid 4He at T > 0. The only possibleinterpretation we 
an give νS in order for the 
onstraint(131) to be 
onsistent with hydrodynami
s and to remaintrue for all times is that it is really the res
aled super-�uid momentum p, so the �key� to our translation is theansatz

νS ≡ p

m
. (132)While this would be equivalent to the �uid velo
ity in asingle perfe
t �uid, as seen in (86), this has no interpre-tation as the velo
ity of either the mass or the entropyin the 
ase of the present two-�uid model as we 
an seein (118). Therefore we 
all νS a pseudo velo
ity, as it isa dynami
 
ombination of both �uid velo
ities governedby the entrainment α between the super�uid 4He andits ex
itations. With the expli
it entrainment relation(118) we 
an now express the velo
ity v of the 4He �uidin terms of the pseudo-velo
ity νS and the normal-�uidvelo
ity vN as

v = (1 − ε)−1 (νS − εvN) , (133)where we used the de�nition (129) of the entrainmentnumber ε. With this substitution, the total mass 
urrent

ρ, whi
h is equal to the total momentum density JH asseen in (63), 
an be written in the form
JH = ρv =

[
ρ

1 − ε

]
νS +

[ −ερ

1 − ε

]
vN , (134)whi
h suggests to introdu
e a �super�uid density� ̺S anda �normal density� ̺N as

̺S ≡ ρ

1 − ε
, and ̺N ≡ −ερ

1 − ε
, (135)su
h that total mass density ρ and mass 
urrent ρ = JH
an now be written as

ρ = ̺S + ̺N , and JH = ̺SνS + ̺NvN . (136)It is now obvious that this split is 
ompletely arti�
ial,and ̺N and ̺S are only pseudo densities, as they do notrepresent the density of any (
onserved) physi
al quan-tity and are not even ne
essarily positive. In fa
t neitherof the two pseudo-densities and 
urrents are 
onservedindividually, 
ontrary to the physi
al 
urrents (115). Wenote that even Landau warned against taking too liter-ally the interpretation of super�uid 4He as a �mixture� ofthese two (pseudo-) ��uids� [23℄. Contrary to the arti�-
ial orthodox split, however, the separation into entropy�uid and 4He mass �ow is physi
ally perfe
tly meaning-ful, and the super�uid 
an be regarded as a two-�uidsystem in the literal sense in the 
anoni
al framework.The pseudo �mass density� ̺N, whi
h the normal �uidseems to 
arry in the orthodox des
ription is due to thefa
t that entrainment provides the entropy �uid with anon-vanishing momentum (120) in the presen
e of rela-tive motion, even though it does not transport any mass.This la
k of 
areful distin
tion between mass 
urrent andmomentum leads to the paradoxi
al pi
ture of the �super-�uid 
ounter�ow�: for example, in the simple 
ase of heat�ow through a stati
 super�uid, the normal �uid asso
i-ated with the heat �ow 
arries a pseudo mass-
urrent
̺NvN. But be
ause there is no net mass 
urrent therehas to be some super�uid �
ounter�ow� of pseudo mass
urrent ̺SνS = −̺NvN. This apparently strange behav-ior is solely due to an awkward 
hoi
e of variables and aloss of dire
t 
onta
t between the quantities used in theorthodox des
ription and the a
tual 
onserved physi
alquantities of 4He.Further following the traditional orthodox framework,we de�ne the relative (pseudo-)velo
ity w as

w ≡ vN − νS , (137)whi
h, using (133), 
an be expressed in terms of ∆ as
w = (1 − ε)∆ . (138)In order to relate the 
anoni
al thermodynami
 quan-tities to the orthodox language, we follow Khalatnikov[31℄ and Landau [23℄ and 
onsider the energy density inthe �super�uid frame� K0, whi
h is de�ned by ν

(0)
S = 0.



14In this frame, the momentum density J (0)
H

expressed in(136) is
J (0)

H
= ̺N v

(0)
N = ̺N w = −2α∆ , (139)and the transport velo
ity v of the super�uid 4He atomsin this frame 
an be expressed using (140) as

v(0) = v − νS =
̺N

ρ
v

(0)
N =

1

ρ
J(0)

H
. (140)The hydrodynami
 energy density EH of the �uid systemis given by (72), whi
h reads in this 
ase

EH =
1

2
ρv2 + E − 2α∆

2 , (141)and using the previous translations together with the �rstlaw (117), we 
an write the total variation dE(0) of theenergy density in K0 as
dE

(0)
H = T ds + µ̃S dρ + w · dJ (0)

H
, (142)whi
h de�nes the �super�uid 
hemi
al potential� µ̃S as

µ̃S = µ̃ − 1

2
(v − νS)

2 . (143)Using these quantities, the 
anoni
al equation of motion(128) 
an now be translated into the orthodox form as
∂tνS + ∇

(
ν2
S

2
+ µ̃S

)
= 0 . (144)One 
an equally verify that the generalized pressure, de-�ned in (69), is expressible in terms of the orthodox quan-tities as

Ψ = −E+ρ µ̃+s T = −E
(0)
H +T s+ρ µ̃S+w ·J (0)

H
, (145)in exa
t agreement with the expressions found in [23,31℄. For the remaining momentum equation, the totalmomentum 
onservation (22) is traditionally preferredover the equation of motion (130) of the entropy �uid.We therefore 
on
lude this se
tion by the appropriatetranslation of the stress tensor (23) into the orthodoxlanguage. The 
anoni
al expression for the stress tensorof super�uid 4He is

T ij
H

= ni pj + si Θj + Ψ gij , (146)and inserting the previous expressions for the expli
it mo-menta and the translations to orthodox variables, one 
anwrite this in the form
T ij

H
= ̺S νi

Sνj
S + ̺N vi

Nvj
N + Ψ gij , (147)whi
h 
on
ludes our proof of equivalen
e between 
anon-i
al and orthodox des
ription.

E. A two-�uid model for the neutron star 
oreHere we 
onsider a (simpli�ed) model for the matterinside a neutron star 
ore, whi
h mainly 
onsists of a(
harge neutral) plasma of neutrons, protons and ele
-trons. We fo
us on super�uid models, in whi
h the neu-trons are assumed to be super�uid, whi
h allows themto freely traverse the �uid of 
harged 
omponents due tothe absen
e of vis
osity. As dis
ussed in Se
t. IVB, thisalso implies some extra 
ompli
ations due to the quanti-zation of vorti
ity into mi
ros
opi
 vorti
es. Here we areinterested in a ma
ros
opi
 des
ription, i.e. we 
onsider�uid elements that are small 
ompared to the dimensionsof the total system, but whi
h 
ontain a large number ofvorti
es. On this s
ale we 
an work with a smooth aver-aged vorti
ity instead of having to worry about individualvorti
es. One e�e
t of the presen
e of the vorti
es will bea slight anisotropy in the resulting smooth averaged �uid[22, 38, 39℄, whi
h 
an be as
ribed to the tension of vor-ti
es, and whi
h we will negle
t here for simpli
ity. These
ond e�e
t of the vortex latti
e is that it allows a dire
tfor
e between the super�uid and the normal �uid, medi-ated by the respe
tive vortex intera
tions, and whi
h isnaturally des
ribed in the 
ontext of the two-�uid modelas a mutual for
e. The model assumptions used hereare fairly 
ommon to most 
urrent studies of super�uidneutrons stars (e.g. see [34, 40�42℄).The model therefore 
onsists of 
omoving 
onstituents
X ∈ {e, p, s}, 
orresponding to the ele
trons, protons andentropy, and we will label this �uid with 'c'. The se
ond�uid 
onsists only of the super�uid neutrons, i.e. X = n.Charge 
onservation implies

Γe = Γp , (148)and for simpli
ity we will assume lo
al 
harge neutrality,i.e.
ne = np . (149)We assume the ele
trons and protons to be stri
tly mov-ing together in this model (i.e. we 
onsider times
aleslonger than the plasma os
illation times
ale), so we 
annegle
t ele
tromagneti
 intera
tions altogether. Anotherphysi
al 
onstraint is baryon 
onservation, i.e. we musthave

Γn + Γp = 0 , (150)and together with mass 
onservation (57), this leads tothe requirement6
mn = mp + me ≡ m . (151)6 This relation is of 
ourse not exa
tly satis�ed in reality, whi
hshows a well-known short
oming of Newtonian physi
s: mass hasto be 
onserved separately from energy.



15We 
an therefore write the mass densities of the two �uidsas
ρn = m nn , and ρc = m np . (152)The �rst law (66) of this model reads as

dE = T ds + µn dnn + µe dne + µp dnp + αen d∆2
en

+αpn d∆2
pn + αsn d∆2

sn . (153)Obviously there is only one independent relative velo
ity
∆, namely

∆ ≡ vc − vn = ∆en = ∆pn = ∆sn , (154)and we de�ne the total entrainment α as
α ≡ αen + αpn + αsn . (155)In the 
ase of the neutron star model, we are obviouslyalso interested to in
lude the e�e
ts of gravitation. We
an therefore not assume the system to be isolated andwe in
lude the e�e
t of the gravitational potential Φ asan external for
e. The minimal equations of motion (18)therefore read as

fn + f c = −ρ∇Φ , and gn + gc = −ρ · ∇Φ , (156)where the for
e and energy rate of the 'c'-�uid are natu-rally given by fc ≡ fp + fe + f s and gc ≡ gp + ge + gs.With (148) and (150) we 
an write the respe
tive for
edensities more expli
itly as
fn = fn

H
+ Γnpn , (157)

fc = f c
H
− Γn(pe + pp) + ΓsΘ , (158)where we naturally de�ned f c

H
≡ f

p
H + fe

H
+ f s

H
. Simi-larly we 
an write the energy rates (16) as

gn = vn · fn
H
− Γnpn

0 , (159)
gc = vc · fc

H
+ Γn(p

e
0 + pp

0) − ΓsΘ0 . (160)Be
ause the gravitational a

eleration is the same for allbodies (i.e. �uids), we 
an now simply absorb the ef-fe
t of the gravitational potential into the de�nition of�extended� for
es f̂ and energy rates ĝ whi
h simply in-
orporate the respe
tive gravitational for
e density andwork rate, i.e. we de�ne
f̂
X ≡ fX + ρX∇Φ , (161)

f̂
X

H
≡ fX

H
+ ρX∇Φ , (162)

ĝX ≡ gX + ρXvX · ∇Φ . (163)With these rede�nitions, the minimal equations of mo-tion (156) again take the form of an isolated system, i.e.
f̂

n
+ f̂

c
= 0 , and ĝn + ĝc = 0 , (164)

while for (157)�(160) we obtain exa
tly the same form,just for all for
es and energy rates repla
ed by their �ex-tended� version. Using the foregoing equations, we ob-tain
f̂

c

H
= −f̂

n
+ Γnpc − ΓsΘ , (165)and therefore

ĝc = −vc · f̂
n

H
− Γn [vc · (pn − pc) − pc

0] − ΓsΘ0 . (166)Substituting this and the �extended� version of (159) intothe energy-rate equation (164), we �nd
TΓs = ∆ · f̂n

H
+Γn [pn

0 − pe
0 − pp

0 + vc · (p n − p e − p p)] ,(167)where we have used the expli
it form (81) of Θ0. In addi-tion to the external for
e, the two-�uid model allows oneto pres
ribe one of the �uid for
e densities. In the present
ase it is most 
onvenient to spe
ify the �extended� hy-drodynami
 for
e f̂
n

H
on the neutrons. As this for
e 
anonly originate from the se
ond �uid, we will refer to it asthe mutual for
e fmut, so we set
f̂

n

H
= fmut . (168)Substituting the expli
it 
onjugate momenta (67) and(68), we obtain the �nal expression for the entropy 
re-ation rate (167) as

TΓs = ∆ · fmut + Γnβ . (169)The �rst term on the right hand side is the work done bythe mutual for
e, and the se
ond term is the entropy 
re-ated by beta rea
tions between the two �uids, for whi
hthe term �transfusion� has been 
oined [32℄. The devi-ation from beta equilibrium 
hara
terized by β is foundas
β ≡ µp + µe − µn − 1

2
m

(
1 − 4α

ρn

)
∆2 , (170)where the last term gives the 
orre
tion to the 
hemi
alequilibrium due to relative motion ∆ of the two �uids.The se
ond law of thermodynami
s for an isolated systemstates that entropy 
an only in
rease, i.e. Γs ≥ 0. Inorder for this to be identi
ally true in (169), the mutualfor
e fmut and the rea
tion rate Γn have to be of theform

Γn = Ξβ , with Ξ ≥ 0 ,
fmut = η ∆ + κ × ∆ , with η ≥ 0 ,

(171)where κ is an arbitrary ve
tor 
hara
terizing a non-dissipative Magnus-type for
e orthogonal to the relativevelo
ity. Further substituting the 
onjugate momenta inthe expression for the hydrodynami
 for
e densities (14),we �nd their expli
it form
fn

H
=nn(∂t+vn ·∇)

(
mvn+

2α

nn
∆

)
+nn∇µn+2α∆j∇vj

n ,(172)
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fc

H
= np(∂t+vc ·∇)

(
mvc−

2(αen+αpn)

np
∆

)
+np∇(µp+µe)

−2α∆j∇vj
c − s(∂t + vc · ∇)

(
2αsn

s
∆

)
+ s∇T . (173)We now make the simplifying assumption that we 
annegle
t the entrainment of entropy, i.e. we assume thatall the entrainment between the two �uids is due to theneutron-proton and neutron-ele
tron 
ontributions, so weset αsn = 0, whi
h implies Θ = 0. Using (67) we �nd

pe + pp − pn = m (1 − εn − εc)∆ , (174)where we have de�ned the entrainment numbers
εn ≡ 2α

ρn
, and εc ≡

2α

ρc
. (175)Putting all the pie
es together, we obtain the momentumequations (168) and (165) in the form

(∂t+vn ·∇)(vn+εn∆)+∇ (µ̃n+Φ)+εn∆j∇vj
n =

1

ρn
fmut ,(176)

(∂t + vc ·∇)(vc−εc∆)+∇ (µ̃c+Φ)−εc∆j∇vj
c +

s

ρc
∇T

= − 1

ρc
fmut + (1 − εc − εn)m

Γn

ρc
∆ . (177)with the spe
i�
 
hemi
al potentials µ̃n ≡ µn/m and

µ̃c ≡ (µp + µe)/m.A
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t HPRN-CT-2000-00137).APPENDIX A: EVALUATION OF CONVECTIVEVARIATIONSWe write the parti
le �owlines as
xi = xi(a, t) , (A1)where the �parti
le 
oordinates� ai are used to label in-dividual parti
les and 
an be taken, for example, to betheir initial position, i.e.
ai = xi(a, 0) . (A2)

This introdu
es a time-dependent map (or �pull-ba
k�)between the �material spa
e� ai and physi
al spa
e xi,and the asso
iated Ja
obian matrix J is
J i

j ≡ ∂xi

∂aj

∣∣∣∣
t

. (A3)We 
onsider the variations of �uid variables indu
edby a
tive in�nitesimal spatial displa
ements ξi(x, t) andtemporal shifts τ(x, t) of the �uid parti
le �owlines (A1),namely
x′i(a, t′) = xi(a, t) + ξi(x, t) , and t′ = t + τ(x, t) .(A4)We note that the transformation (A4) not only shifts�owlines in spa
e, but also in time. A physi
al quantityof the �ow, Q(x, t) say, is 
hanged to Q′(x′, t′), and wede�ne the 
orresponding Eulerian and Lagrangian varia-tions as7

δQ ≡ Q′(x, t) − Q(x, t) , (A5)
∆Q ≡ Q′(a, t′)−Q(a, t)=Q′(x′, t′)−Q(x, t) . (A6)By expanding ∆Q to �rst order using the de�nition (A4)of xi′ and t′, we �nd the relation
∆Q = δQ + ξj ∇jQ(x, t) + τ ∂tQ(x, t) . (A7)Let us 
onsider the indu
ed (�rst order) variation of thevelo
ity vi ≡ ∂tx

i(a, t), namely
v′i(a, t′) = ∂t′x

′i(a, t′) = ∂t′x
i(a, t) + ∂tξ

i(a, t)

= ∂tx
i(a, t)

∂t

∂t′

∣∣∣∣
a

+ ∂tξ
i(a, t)

= vi(a, t) − vi ∂tτ(a, t) + ∂tξ
i(a, t) , (A8)whi
h by (A6) 
orresponds to the following Lagrangianvariation of the velo
ity:

∆vi =
[
∂tξ

i + vl∇lξ
i
]
−

[
vi∂tτ + vivl∇lτ

]
, (A9)and with (A7) the Eulerian variation is found as

δvi =
[
∂tξ

i + vl∇lξ
i − ξl∇lv

i
]
−

[
∂t

(
viτ

)
+ vivl∇lτ

]
.(A10)From the 
onservation of mass one 
an derive an expres-sion for the parti
le density n in terms of the Ja
obian(A3), namely

n(x, t) =
n0(a)

detJ , (A11)7 Contrary to the Eulerian variation, the Lagrangian variation 
anbe de�ned in di�erent (non-equivalent) ways. The de�nition usedhere is based on 
omparing the quantity Q in di�erent pointsby parallel-transport. Another 
ommon de�nition (e.g. see [11,20℄) 
onsists in using the Lie-transported quantity instead. Bothde�nitions are equivalent for s
alars but di�er for ve
tors andhigher order tensors.



17where n0(a) = n(a, 0) is the initial density at t = 0.Using (A3), the 
hange of the Ja
obian matrix J indu
edby the �owline variation (A4) 
an be found as
J ′i

j(a, t′) =
∂x′i(a, t′)

∂aj
=

∂xi(a, t)

∂aj

∣∣∣∣
t′

+
∂ξi

∂aj

=
∂xi(a, t)

∂aj
+

∂xi(a, t)

∂t

∂t

∂aj

∣∣∣∣
t′

+
∂ξi

∂aj

= J i
j(a, t) − vi ∂τ

∂aj
+

∂ξi

∂aj
, (A12)with the resulting Lagrangian variation (A6) expressibleas

∆J i
j = J l

j

(
∇lξ

i − vi∇lτ
)

. (A13)The derivative of a determinant det A with respe
t to amatrix element Aij is given by
∂ detA

∂Aij

= det(A)
(
A−1

)ij
, (A14)and therefore we 
an write the Lagrangian variation ofthe Ja
obian determinant as

∆(detJ ) = det(J )
(
J−1

)j

i
∆J i

j . (A15)The �owline variation (A4) therefore indu
es the La-grangian 
hange of the Ja
obian
∆(detJ)

det J
= ∇lξ

l − vl∇lτ . (A16)Using (A11), the indu
ed density variation is thereforefound as
∆n = −n∇lξ

l + nvl∇lτ , (A17)and with (A7) the 
orresponding Eulerian expression isfound as
δn = −∇l

(
nξl

)
+

[
nvl∇lτ − τ∂tn

]
. (A18)By 
ombining the results for velo
ity and density varia-tions we �nd the variations of the 
urrent ni = nvi as

∆ni =
[
n ∂tξ

i(x, t) + nl∇lξ
i − ni∇lξ

l
]
− ni ∂tτ , (A19)

δni =
[
n∂tξ

i(x, t)+nl∇lξ
i−∇l

(
niξl

)]
−∂t

(
niτ

)
. (A20)APPENDIX B: NOETHER IDENTITIES OF THEVARIATIONAL PRINCIPLEIn addition to the �owline variations 
onsidered so far,we will now also allow for metri
 variations δgij . Al-though we only 
onsider Newtonian physi
s here, there isa-priori no reason to restri
t ourselves to �at spa
e. Mostimportantly, however, in
luding metri
 variations allows

us to obtain the form of the stress tensor T ij
H and the as-so
iated momentum 
onservation (22) dire
tly from thevariational prin
iple as a Noether identity, as opposed to
onstru
ting it from the equations of motion as we havedone in Se
. III. Therefore we extend the variation (4)of the Lagrangian to

δΛH =
∑

pX0 δnX +
∑

pX · δnX +
∂ΛH

∂gij

δgij . (B1)Next 
onsider the density 
hange δnX indu
ed by a metri
variation δgij at 
onstant �owlines, i.e. 
onstant J i
j .First we note that we 
an express the Ja
obian as

detJ = ǫijk J i
1 J j

2 J k
3 , (B2)and using (A14) the variation of the volume form

ǫijk =
√

g [ijk] indu
ed by metri
 
hanges is expressibleas
δǫijk =

1

2
ǫijk glmδglm . (B3)Therefore we have

∂ detJ
∂gij

∣∣∣∣
J

=
1

2
det(J ) gij , (B4)and using (A11) and (A18) we 
an write the variationof the density indu
ed by spatial displa
ements ξ andmetri
 variations δgij as

δn = −∇l

(
nξl

)
− 1

2
ngij δgij . (B5)

∆n = −n∇lξ
l − 1

2
ngij δgij , (B6)where we have used the fa
t that with our de�nition ofthe Lagrangian variation (A7) we have

∆gij = δgij + ξl∇lgij = δgij , (B7)as the metri
 is by de�nition 
onstant under paralleltransport. A metri
 
hange with �xed �owlines does not
hange the lo
al velo
ity vi, therefore the 
urrent varia-tion 
an be written using (B5) and (A20) as
δni =

[
n ∂tξ

i(x, t)+nl∇lξ
i−∇l

(
niξl

)]
− 1

2
nigljδglj ,(B8)

∆ni =
[
n ∂tξ

i(x, t) + nl∇lξ
i − ni∇lξ

l
]
− 1

2
ni gljδglj .(B9)When allowing for metri
 variations it is 
onvenient (e.g.see [39℄) to introdu
e the �diamond variation� ♦ΛH as

♦ΛH ≡ 1√
g
δ (

√
g ΛH) = δΛH +

1

2
ΛH gijδgij , (B10)su
h that the variation of the a
tion (3) 
an now be writ-ten as (noting that dV =

√
g d3x):

δI =

∫
♦ΛH dV dt . (B11)



18Substituting (B1), (B5) and (B8) and integrating byparts, ♦ΛH 
an be 
ast in the form
♦ΛH = −

∑
fX

i ξi
X

+
1

2
T ij

H
δgij + ∇lR

l + ∂tR , (B12)where the 
anoni
al for
es fX have the expli
it expres-sion (11) and we de�ned the tensor T ij
H as

T ij
H

≡ 2
∂ΛH

∂gij

+ Ψ gij , (B13)using our earlier de�nition (20) of the generalized pres-sure Ψ.Now 
onsider a 
ommon displa
ement ξ of the wholesystem in
luding the ba
kground metri
, whi
h indu
esa metri
 
hange
δgij = −2∇(iξj) , (B14)where (ij) indi
ates symmetri
 averaging, i.e.

2A(iBj) = AiBj + AjBi. The 
orresponding Lagrangianvariations (B9) and (B6) are found as
∆nX = 0 , (B15)
∆ni

X
= nX

(
∂tξ

i + vl
X
∇lξ

i
)

. (B16)Substituting this into (B1), the indu
ed ∆ΛH is
∆ΛH =

(∑
ni
X

pX j − 2
∂ΛH

∂gij

)
∇iξj + J i

H
∂tξi , (B17)where we have used the de�nition (23) of the momentumdensity JH. It is well known that 
ontrary to the fully
ovariant Lagrangian for relativisti
 hydrodynami
s (e.g.[13℄), the Newtonian Lagrangian is not stri
tly Galileaninvariant under boosts. This is due to the velo
ity depen-den
e of the kineti
 energy, as 
an be seen in the expli
itform (52). We 
an therefore only demand stri
t invari-an
e, i.e. ∆ΛH = 0, for time-independent displa
ements,namely ∂tξ = 0, whi
h leads to the Noether identity

∂ΛH

∂gij

=
1

2

∑
ni
X

pX j . (B18)The left-hand side is manifestly symmetri
 in i and j,therefore we see that
∑

ni
X

pX j =
∑

nj
X

pX i , (B19)and we 
an now write the (symmetri
) stress tensor (B13)expli
itly as
T i

Hj =
∑

ni
X

pXj + Ψ gi
j . (B20)This tensor is identi
al to the expression (23) found ear-lier by 
onstru
tion from the equations of motion. Itremains to be shown however, how the momentum 
on-servation law (22) is dire
tly obtainable as a Noetheridentity from the variational prin
iple. Using (B17), (A7)

and (B12) we 
an expli
itly express the diamond varia-tion as
♦ΛH = −(∂tJ

j) ξj −∇l(ΛH ξl) + ∂t(J
l
H

ξl) , (B21)whi
h has to be identi
al to the expression (B12) for a
ommon displa
ement ξ of the whole system, whi
h aftersome partial integrations takes the form
♦ΛH =

(
−

∑
fX j + ∇lT

lj
H

)
ξj + ∇l(...)

l + ∂t(...) .(B22)The requirement that the previous two expressions haveto be identi
al (up to divergen
es and time derivatives)leads to the Noether identity
∂tJ

i
H

+ ∇jT
ij
H

= f i
ext , (B23)whi
h is the momentum 
onservation law (22).APPENDIX C: GALILEAN INVARIANCE OF EIn this se
tion we show that requiring the 
onjugatemomenta pX0 and pX of (53) to transform as (55) underGalilean boosts (54) implies that the internal energy Ehas to be Galilean invariant. We assume that E(nX , nX )transforms into E ′(nX , n′

X
) under a Galilean boost, where

n′
X

= nX + nXV . (C1)Therefore the 
onjugate momenta (53) in the frame mov-ing with speed −V are of the form
−pX0

′
=

1

2
mXv2

X
+mXvX ·V +

1

2
mXV 2+

∂E ′

∂nX

, (C2)
pX ′ = mXvX + mXV − ∂E ′

∂n′
X

, (C3)Using (53) to eliminate all terms 
ontaining vX , we arriveat
−pX0

′
=−pX0 +V ·pX +

1

2
mXV 2+

[
∂E ′

∂nX

− ∂E
nX

+V · ∂E
nX

]
,(C4)

pX ′=p + mXV +

[
∂E

∂nX

− ∂E ′

∂n′
X

]
. (C5)By 
omparing with the required transformation proper-ties (55) we see that a ne
essary and su�
ient 
onditionfor this is the vanishing of the terms in bra
kets in (C4)and (C5). We 
an rewrite the partial derivatives of theenergy fun
tion as follows

∂E ′

∂n′
X

=
∂E ′

∂nX

· ∂nX

∂n′
X

∣∣∣∣
nX

=
∂E ′

∂nX

, (C6)and
∂E ′

∂nX

∣∣∣∣
n

′

X

=
∂E ′

∂nX

∣∣∣∣
nX

+
∂E ′

∂nX

· ∂nX

∂nX

∣∣∣∣
n

′

X

=
∂E ′

∂nX

∣∣∣∣
nX

−V · ∂E ′

∂nX

.(C7)



19Inserting these identities into (C4) and (C5), the invari-an
e requirement 
an be expressed as
∂E
∂nX

∣∣∣∣
nX

=
∂E ′

∂nX

∣∣∣∣
nX

, and ∂E
∂nX

=
∂E ′

∂nX

, for allX ,(C8)therefore E ′ 
an only di�er from E by a 
onstant, whi
his unimportant be
ause the absolute value of the energys
ale is arbitrary. This shows that energy fun
tion E hasto be Galilean invariant under the above assumptions.APPENDIX D: NEWTONIAN LIMIT OF THERELATIVISTIC LAGRANGIANAs shown in the relativisti
ally 
ovariant frameworkby Carter [13℄, the equations of motion for 
ondu
tingmulti-
onstituent �uids 
an be derived from a 
ovariantLagrangian density of the form
Λcov = −ρc2 , (D1)where the s
alar ρ is now the total mass-energy den-sity of the system. For simpli
ity we 
onsider here atwo-�uid system, as generalizations to more �uids arestraightforward while making the notation more 
umber-some. The two �uids, A and B say, are des
ribed by thetwo 4-
urrent densities nµ

A, nµ
B, and therefore the s
alar

Λcov(n
µ
A, nµ

B) 
an only depend on the three independents
alar 
ombinations of these two 
urrents, for example
nA =

1

c

√
−gµνnµ

Anν
A , nB =

1

c

√
−gµνnµ

Bnν
B ,and

x =
1

c

√
−gµνnµ

Anν
B , (D2)and so generally Λcov = Λcov(nA, nB, x). Instead of x we
an equivalently 
hoose as a third independent quantitythe 
ombination

∆2

c2
≡ 1 −

(nAnB

x2

)2

. (D3)We are interested here only in the purely hydrodynami

ontent of this framework, so we assume a �at spa
e-time,i.e. a metri
 of the form
ds2 = gµνdxµdxν = −c2 dt2 + dx2 , (D4)with the time-
oordinate x0 = t and so g00 = −c2.When taking the Newtonian limit as c → ∞, the met-ri
 be
omes singular. The reason for this singular limitobviously lies in the fa
t that a lo
ally Lorentzian the-ory redu
es to a Galilean invariant theory, therefore theLorentz invarian
e has to be broken in the limit. Asthe non-invertible metri
 no longer fully determines the

spa
e-time, we now have to 
hoose8 a preferred time 
o-ordinate, t say, in whi
h to take the limit and whi
h willredu
e to the Newtonian absolute time.The relation between the s
alar rest-frame parti
ledensities nX and the densities n0
X

in the preferred-timeframe 
an be expressed from (D2) and (D4):
nX =

1

c

√
c2(n0

X
)2−n2

X
=n0

X

[
1− 1

2

(vX

c

)2
]
+O

(
c−4

)
,(D5)where (nX )i = ni

X
is the spatial part of the 4-
urrent nµ

Xin the preferred time frame, and the relation to the New-tonian 3-velo
ity vX is simply nX = n0
X

vX . We see fromthis equation that if we 
hoose the densities n0
X

to rep-resent the Newtonian parti
le number densities indepen-dent of c, then in the limit we �nd
lim

c→∞
nX = n0

X
. (D6)We further note that the quantity ∆ introdu
ed in (D3)redu
es to the relative velo
ity in the Newtonian limit,namely

∆2 = (vA − vB)
2

+ O
(
(v/c)2

)
. (D7)We now turn to the 
ovariant Lagrangian Λcov of (D1)whi
h we 
an quite generally be written as

Λcov = −(nAmA + nBmB) c2 − E(nA, nB, ∆2) , (D8)where the �rst term represents the rest-mass energy inthe �uid frame, while E 
ontains the �equation of state�,i.e. the internal-energy fun
tion of the �uid. When wewrite this in the preferred time-frame using (D5), we ob-tain
Λcov = −(n0

AmA+n0
BmB)c2+

1

2
mA n0

Av2
A+

1

2
mBn0

Bv2
B

−E(n0
A, n0

B, ∆2) + O
(
(v/c)2

)
. (D9)We see that this Lagrangian obviously diverges in theNewtonian limit c → ∞ due to the rest-mass energies

n0
X

mX c2. Before we 
an take this limit, we thereforehave to renormalize the Lagrangian density by subtra
t-ing a �nite 
ounter-term that will make the limit �nite.The most natural 
hoi
e is obviously to subtra
t themass-energy in the preferred-time frame that will deter-mine the Newtonian absolute time. We therefore de�nethe renormalized Lagrangian density Λren as
Λren ≡ Λcov + (n0

AmA + n0
BmB) c2 . (D10)In Λren we have expli
itly broken Lorentz invarian
e by
hoosing a preferred time frame, and when taking theNewtonian limit we obtain the �nite Lagrangian

lim
c→∞

Λren = mA
n2

A

2 nA
+mB

n2
B

2 nB
−E(nA, nB, ∆2) , (D11)8 See [15℄ for a more detailed dis
ussion of this limit and how to
onstru
t a fully spa
e-time 
ovariant Newtonian framework.
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