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Variational desription of multi-�uid hydrodynamis: Unharged �uids.Reinhard PrixDepartment of Mathematis, University of Southampton, SO17 1BJ, UK∗(Dated: Nov. 26, 2003)We present a formalism for Newtonian multi-�uid hydrodynamis derived from an unonstrainedvariational priniple. This approah provides a natural way of obtaining the general equations ofmotion for a wide range of hydrodynami systems ontaining an arbitrary number of interating �u-ids and super�uids. In addition to spatial variations we use �time shifts� in the variational priniple,whih allows us to desribe dissipative proesses with entropy reation, suh as hemial reations,frition or the e�ets of external non-onservative fores. The resulting framework inorporatesthe generalization of the entrainment e�et originally disussed in the ase of the mixture of twosuper�uids by Andreev and Bashkin. In addition to the onservation of energy and momentum,we derive the generalized onservation laws of vortiity and heliity, and the speial ase of Ertel'stheorem for the single perfet �uid.We expliitly disuss the appliation of this framework to thermally onduting �uids, super�uids,and super�uid neutron star matter. The equations governing thermally onduting �uids are foundto be more general than the standard desription, as the e�et of entrainment usually seems tobe overlooked in this ontext. In the ase of super�uid 4He we reover the Landau�Khalatnikovequations of the two-�uid model via a translation to the �orthodox� framework of super�uidity,whih is based on a rather awkward hoie of variables. Our two-�uid model for super�uid neutronstar matter allows for dissipation via mutual frition and also �transfusion� via β-reations betweenthe neutron �uid and the proton-eletron �uid.I. INTRODUCTIONThe main purpose of this work is to develop a formal-ism that allows one to derive the equations of motionfor a general lass of multi-onstituent systems of inter-ating harged and unharged �uids, suh as ondutingand non-onduting �uids, multi-�uid plasmas, super�u-ids and superondutors. For the sake of larity of pre-sentation we restrit ourselves here to unharged �uids,while the ase of harged �uids and their oupling to theeletromagneti �eld will be treated in a subsequent pa-per [1℄.Long after the ompletion of lassial Hamiltonian par-tile mehanis, the quest of �nding a variational (or�Hamlitonian�) desription of hydrodynamis has surpris-ingly been a long-standing problem, whih started onlya few deades ago to be fully understood. The reasonfor this an be traed to the nature of the hydrodynamiequations, whih are most ommonly expressed in theirEulerian form in terms of the density ρ and veloity v,where the information about the underlying �owlines hasbeen hidden. Fluid partile trajetories, i.e. �owlines,an still be reovered by integrating the veloity �eld,but they are not independent quantities of the Euleriandesription. However, it turns out that the �true� fun-damental �eld variables of Hamiltonian hydrodynamisare the �owlines, whih determine ρ and v as derivedquantities.Consider as an example the Lagrangian density Λ de-sribing a barotropi perfet �uid, whih in analogy to
∗Eletroni address: Reinhard.Prix�aei.mpg.de

lassial mehanis one would postulate to be
Λ(ρ, v) =

1

2
ρv2 − E(ρ) ,where E(ρ) represents the internal energy density of the�uid. We note that the internal energy de�nes the hem-ial potential µ̃ and the pressure P as

dE = µ̃ dρ , and P + E = ρ µ̃ .The orresponding ation is de�ned in the usual way as
I ≡

∫
Λ dV dt, and the variation δΛ of the Lagrangiandensity is

δΛ = ρv · δv + (v2/2 − µ̃) δρ .Requiring the ation I to be stationary with respet tofree variations δρ and δv is immediately seen to be use-less, as this leads to the over-onstrained equations of mo-tion ρv = 0 and µ̃ = v2/2. In fat, it has been shown [2℄that an unonstrained variational priniple with ρ and vas the fundamental variables annot produe the Eulerianhydrodynami equations. The reason for this is rather in-tuitive, as it is evident that free variations of density andveloity probe on�gurations with di�erent masses (i.e.di�erent numbers of partiles), whih is not an atual de-gree of freedom of the dynamis of the system. Thereforethe variational priniple has to be onstrained or refor-mulated in some way in order to restrit the variationsto the physially meaningful degrees of freedom.The histori approah to this problem in Newtonianphysis has been to supplement the Lagrangian with ap-propriate onstraints using Lagrange multipliers. Thismethod was pioneered by Zilsel [3℄ in the ontext of thetwo-�uid model for super�uid 4He, who used the on-straints of onserved partiles (i.e. mass) and entropy.
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2However, as pointed out by Lin [4℄, this is generally in-su�ient, as it results in equations of motion restritedto irrotational �ow in the ase of uniform entropy. Linshowed that one has to add a further onstraint, namelythe �onservation of identity� of �uid partiles in orderto obtain the most general hydrodynami equations. Wean label partiles by their initial positions a, and so wean write their �owlines as x = x(a, t). The famous �Linonstraint� is ∂ta + v · ∇a = 0, i.e. the identity or labelof a partile is onserved under its transport. For reviewsof this approah and its relation to the �Clebsh repre-sentation� we refer the reader to [5�7℄, and referenestherein.Although this method produes the orret equationsof motion, it does not seem very natural due to the ratherad ho introdution of onstraints, and the need for un-physial auxiliary �elds (the Lagrange multipliers). Itwas pointed out by Herivel [8℄ that the Lagrangian as op-posed to Eulerian formulation of hydrodynamis resultsin a muh more natural variational desription, and thisapproah was further developed and lari�ed by Seligerand Whitham [5℄. Instead of using ρ and v as funda-mental variables, hydrodynamis an also be understoodas a �eld theory in terms of the �owlines x(a, t), orequivalently a = a(x, t). It turns out that this formu-lation allows for a perfetly natural unonstrained varia-tional priniple. This seems rather intuitive onsideringthat hydrodynamis is a smooth-averaged desription ofa many-partile system, whih is desribed by a varia-tional priniple based on the partile trajetories, i.e. xNand ẋN .We an express the veloity and density in terms of the�owlines as v = ∂tx(a, t) and ρ(x, t) = ρ0(a)/ det(J i
j),where J i

j = ∂xi/∂aj is the Jaobian matrix orrespond-ing to the map a 7→ x(a, t) between the physial spae xand the �material spae� a. Any further omoving quan-tities like the entropy s are determined in terms of theirinitial value s0(a). Substituting these expressions intothe Lagrangian Λ, one obtains an unonstrained varia-tional priniple for the �eld x(a, t), whih results in theorret equations of motion. It is interesting to note thatthis approah impliitly satis�es Lin's onstraint, as weare varying the partile trajetories x(a, t), along whih
a is a onstant by onstrution. Also, we do not needto impose an a priori onstraint on the onservation ofmass, as it is automatially satis�ed by these �onve-tive� variations: shifting around �owlines obviously on-serves the number of �owlines, and therefore the numberof partiles. One an atually derive the Lin onstraintby transforming this Lagrangian framework bak into apurely Eulerian variational priniple [5, 6℄, whih showsthat these two approahes are formally equivalent.As pointed out by Bretherton [9℄, one an even moreonveniently use a �hybrid� approah, in whih the La-grangian is expressed in terms of the Eulerian hydro-dynami quantities v, ρ, s et, but one onsider themas funtions of the underlying �owlines. Their varia-tions are therefore naturally indued by variations ξ of

the �owlines x(a, t). In general relativity the same ideawas pioneered by Taub [10℄, and has subsequently beenlargely developed and extended by Carter [11�13℄, whoalso oined the term �onvetive variational priniple� forthis approah. Carter and Khalatnikov [14℄ have furtherdemonstrated the formal equivalene of the onvetiveapproah and the more ommon Clebsh formulation thatresults from an Eulerian variational approah. A �trans-lation� of the ovariant onvetive formalism into a New-tonian framework (albeit using a spaetime-ovariant lan-guage lose to general relativity) is also available [15, 16℄.The onvetive approah in relativity has independentlybeen developed by Kijowski [17℄, and Hamiltonian for-mulations have been onstruted by Comer and Langlois[18℄ and Brown [19℄. Here we are using the onvetive(or �hybrid�) variational priniple in order to derive theNewtonian multi-�uid equations, and our notation andformalism follows most losely the framework developedby Carter.We onlude our example of the simple barotropi �uidby using the onvetive variational priniple to derive theEuler equation. The expressions for (Eulerian) variationsof density and veloity indued by in�nitesimal spatialdisplaements ξ of the �owlines are well known1 (e.g. see[20℄), namely
δρ = −∇ (ρξ) , and δv = ∂t ξ + (v · ∇)ξ − (ξ · ∇)v .Inserting these expressions into the variation of the a-tion δI =

∫
δΛ dV dt with δΛ given above, and after someintegrations by parts and dropping total divergenes andtime derivatives (whih vanish due to the boundary on-ditions), we �nd

δI = −
∫

ξ ·
[
ρ(∂t + v · ∇)v + ρ∇µ̃

+v {∂tρ + ∇ · (ρv)}
]

dV dt .If we assume onservation of mass2, i.e.
∂tρ + ∇ · (ρv) = 0, then stationarity of the ation(i.e. δI = 0) under free variations ξ diretly leads toEuler's equation, namely

(∂t + v · ∇)v +
1

ρ
∇P = 0 ,where we have used the thermodynami identity

ρ∇µ̃ = ∇P . This shows that an unonstrained onve-tive variational priniple produes to the orret hydro-dynami equations of motion in a surprisingly simple andstraightforward way.1 A generalization of these expressions to inlude time-shifts isderived in Appendix A2 This will be seen to be a onsequene of the variational priniplerather than an a-priori assumption when time-shift variations areinluded.



3The spatial variations ξ have three degrees of freedom,resulting in one vetor equation, whih represents theonservation of momentum. In order to omplete thedesription we will need a fourth variational degree offreedom to produe the missing energy equation. Thisan be ahieved by onsidering time-shifts, whih are anatural part of the ovariant relativisti approah, butwhih we have to be onsidered expliitly in the onven-tional �3+1� language of Newtonian spae-time. Thesetime-shifts variations allow us to take this formalism toits full generality, as we an now desribe even dissipativeproesses with entropy reation, partile transformations(i.e. hemial reations), resistive fritional fores et.These dissipative systems are of ourse still onservativeas long as one inludes entropy, whih is why they an bedesribed by an ation priniple. The seond law of ther-modynamis, however, is obviously not ontained in theation priniple and has to be imposed as an additionalequation on the level of the equations of motion.We note that the equations we derive here do not ex-pliitly inlude shear- and bulk-visosity e�ets. How-ever, the urrent form of the equations is in priniplegeneral enough to allow for both of these e�ets: bulkvisosity is aused by heat �ow or hemial reations dueto thermal or hemial disequilibrium, both of whih analready be desribed in the urrent formulation. Shearvisosity on the other hand has to be introdued as an�external� fore, the problem therefore onsists in pre-sribing a physially reasonable model for a multi-�uidgeneralization of the shear stresses. Inluding visosityshould therefore not be a matter of atually extendingthe urrent framework but rather of appropriately ap-plying it in order to desribe suh proesses. An expliitdisussion of this is postponed to future work. Furtherwork is also neessary in order to extend this formal-ism to inlude elastiity (as pioneered in the relativis-ti framework [21℄), and espeially to allow for an elas-ti medium interpenetrated by �uids as enountered inthe inner neutron star rust, or any type of ondutingsolid. As shown in [22℄, a Kalb-Ramond type extensionis required for the marosopi treatment of quantizedvorties in super�uids. With the present formalism wean desribe super�uids either on the loal irrotationallevel, or on the smooth-averaged marosopi level bynegleting the (generally small) anisotropy indued bythe quantized vorties.The plan of this paper is as follows: in Set. II we de-rive the general form of the equations of motion for multi-onstituent systems using the onvetive variational prin-iple. In Set. III we show the onservation of energyand momentum implied by these equations. In Set. IVwe derive onserved quantities under transport by the�ow, namely the vortiity and heliity. We then givethe expliit funtional form of the Lagrangian densityfor hydrodynami systems in Set. V, and in Set. VI wedisuss several appliations of the foregoing formalism topartiular physial systems.

II. VARIATIONAL DESCRIPTION OFMULTI-CONSTITUENT SYSTEMSA. KinematisWe want to desribe systems onsisting of several on-stituents distinguished by suitably hosen labels, and weuse apital lettersX ,Y , ... as indies whih run over theseonstituents labels. As the fundamental quantities of thekinemati desription we hoose the onstituent densities
nX and the assoiated transport urrents nX , whih arerelated to the respetive veloities vX as

nX = nXvX , where X ∈ {onstituent labels} . (1)Not all onstituents an neessarily move independentlyfrom eah other, i.e. not all veloities vX have to bedi�erent: visosity and frition due to partile ollisionson the mirosopi level an e�etively bind onstituentstogether on very short timesales. We therefore distin-guish between the notions of onstituentsX , harateriz-ing lasses of mirosopi partiles, and �uids, whih aresets of onstituents with a ommon veloity.We note that in this framework entropy an be de-sribed very naturally as a onstituent for whih we re-serve the labelX = s, and we write
ns = s , (2)where s is the entropy density. In this ontext it is in-strutive to think of the entropy as a gas of partile-likethermal exitations (e.g. phonons, rotons et.), whihmakes its desription as a onstituent on the same foot-ing with partile number densities quite intuitive.B. DynamisThe dynamis of the system is governed by an ation

I de�ned as
I =

∫
ΛH dV dt , (3)in terms of the hydrodynami Lagrangian ΛH. The La-grangian density ΛH depends on the kinemati variables,whih are the densities nX and the urrents nX , i.e.

ΛH = ΛH(nX , nX ). The total di�erential of ΛH de�nesthe dynamial quantities pX0 (�energy�) and pX (�momen-tum�) per �uid partile as the anonially onjugate vari-ables to nX and nX , namely
dΛH=

∑(
pX0dnX +pX· dnX

)
, so pX0 =

∂ΛH

∂nX

, pX=
∂ΛH

∂nX

,(4)where here and in the following the sum over repeatedonstituent indies is expliitly indiated by a Σ, i.e. noautomati summation onvention applies to onstituentindies.



4C. The onvetive variational prinipleAs we have seen in the introdution, one annot ap-ply the standard variational priniple to ΛH in terms ofthe Eulerian hydrodynamis variables nX and nX . From(4) it is obvious that allowing free variations of densities
δnX and urrents δnX would lead to the trivial equa-tions of motion pX0 = 0 and pX = 0. Instead, we on-sider the Lagrangian to be a funtional of the underly-ing �owlines xX = xX (aX , t), and therefore admit onlyvariations δnX , δnX that are indued by in�nitesimal dis-plaements of the �owlines. These �onvetive� variationsnaturally onserve the number of partiles (i.e. the num-ber of �owlines) and no onstraints are required in thevariational priniple as was disussed in more detail inthe introdution.We apply in�nitesimal spatial displaements ξ

X
andtime-shifts τX to the �owlines of the onstituentX . Theresulting indued variations of density and urrent havebeen derived in Appendix A, namely the density varia-tion (A18) for onstituentX is

δnX = −∇ · [nX ξ
X

] + [nX · ∇τX − τX∂tnX ] , (5)while the urrent variation δnX is given by (A20) andreads as
δnX = nX∂tξX + (nX · ∇) ξ

X
− (ξ

X
· ∇)nX

−nX (∇ · ξ
X

) − ∂t (nX τX ) . (6)Inserting these expressions into the variation of the La-grangian (4) and integrating by parts, we an rewrite theindued variation δΛH in the form
δΛH =

∑ (
gX τX − fX · ξ

X

)
+ ∂tR + ∇ · R . (7)The time derivative and divergene terms will vanish inthe ation integration (3) by the appropriate boundaryonditions (i.e. ξ = 0 and τ = 0) and are irrelevantas far as the variational priniple is onerned, but forompleteness we note that their expliit expressions are

R ≡
∑ (

nXpX · ξ
X
− nX · pX τX

)
, (8)

R ≡
∑

[nX (pX0 τX + pX · ξ
X

)

−ξ
X

(nX pX0 + nX · pX )] . (9)The indued ation variation therefore has the form
δI =

∑ ∫ (
gX τX − fX · ξ

X

)
dV dt , (10)where the fore densities fX (ating on the onstituent)and the energy transfer rates gX (into the onstituent)are found expliitly as

fX = nX

(
∂tp

X −∇pX0
)
− nX × (∇× pX )+pX

ΓX , (11)
gX = vX ·

(
fX − pX

ΓX

)
− pX0 ΓX , (12)

where ΓX is the partile reation rate for the onstituent
X , i.e.

ΓX ≡ ∂tnX + ∇ · nX . (13)The fore density fX is the total momentum hange rateof the onstituent X , and we see that the last term in(11), i.e. the �roket term� pX
ΓX , represents a ontri-bution that is purely due to the hange of the partilenumber. Therefore it will be onvenient to de�ne thepurely �hydrodynami fore� fX

H
, as

fX

H
≡ nX

(
∂tp

X −∇pX0
)
− nX × (∇× pX ) . (14)With this de�nition we an now write the fore density(11) and energy transfer rate (12) in the form

fX = fX

H
+ pX

ΓX , (15)
gX = vX · fX

H
− pX0 ΓX . (16)D. The equations of motionUp to this point we have developed only purely math-ematial identities without a spei� physial ontent.The equations of motion are obtained by imposing whihtype of invariane the ation I should satisfy under er-tain in�nitesimal variations. The most general equationsare obtained by requiring that a ommon displaement

ξ
X

= ξ and time shift τX = τ of all onstituents shouldresult in an ation variation of the form
δI =

∫
(gext τ − f ext · ξ) dV dt , (17)where f ext and gext are interpretable as the external foredensity and energy transfer rate. This generalizes themore ommon ation priniple of isolated systems, inwhih the external in�uenes fext and gext vanish andtherefore the equations of motion are obtained by requir-ing the ation to be invariant under small variations.�External� here is meant in the sense of not being in-luded in the total Lagrangian, whih ould also mean,for example visous or gravitational fores. The resultingminimal equations of motion obtained from omparingwith (10) are therefore found as

∑
fX = fext , and ∑

gX = gext . (18)Together with (11) and (12) this represents the Euler-Lagrange equations assoiated with this variational prin-iple. If all onstituentsX form a single �uid, namely allonstituents have a ommon veloity, then only ommondisplaements of all onstituents make sense in the vari-ational priniple. For this lass of non�onduting mod-els, (18) represent the full equations of motion obtainablefrom the variational priniple. In order to omplete themodel, one has to speify the hydrodynami Lagrangian
ΛH, the external interations f ext and gext, and the re-ation rates ΓX as funtions of the kinemati variables.



5In the ase of onduting models, at least some of theonstituents are allowed to move independently, the sys-tem therefore onsists of more than one �uid. This in-reases orrespondingly the number of degrees of free-dom, and more equations of motion are required. Theyare obtained very naturally from the variational prin-iple, as independent displaements (in spae and time)are permitted for eah �uid. Therefore the resulting foreating on eah �uid an be presribed by the model, sub-jet to the restrition only of satisfying the minimal equa-tions of motion (18).As an example, onsider the ase of a simple ondut-ing model onsisting of two �uids, where we useX and Yare onstituent indies running only over the respetiveonstituent labels, i.e. X ∈ {�uid 1} and Y ∈ {�uid 2}.We then have the respetive fore densities ating on eahof the two �uids as f (1) =
∑

X
fX and f (2) =

∑
Y

fY ,whih by (18) have to satisfy f (1) + f (2) = fext. There-fore there are now exatly two fore densities (e.g. f (1)and f ext) freely spei�able in the model, orrespondingto the additional degrees of freedom of two �uids. In thisase f (1) ould for example represent a mutual fore thetwo �uids exert on eah other, e.g. a resistive fritionfore.III. CONSERVATION OF ENERGY ANDMOMENTUMUsing the expliit expression (11) for the fore density
fX , we an write

∑
fX = ∂t

(∑
nX pX

)
+ ∇j

(∑
nj
X

pX

)

−
∑(

nX∇pX0 + nj
X
∇pXj

)
. (19)We de�ne the �generalized pressure� Ψ via the total Leg-endre transformation of ΛH, namely

Ψ ≡ ΛH −
∑ (

nX pX0 + nX · pX
)

, (20)whih is seen from (4) to result in the total di�erential
dΨ = −

∑(
nXdpX0 + nX · dpX

)
, (21)and therefore the last sum in (19) is simply ∇Ψ. Wean now ast the fore equation (18) in the form of aonservation law for the total momentum, namely

∂tJ
i
H

+ ∇jT
ij
H

= f i
ext , (22)where the hydrodynami momentum density JH andstress tensor T ij

H are de�ned as
JH ≡

∑
nXpX , and T ij

H
≡

∑
ni
X

pX j + Ψ gij , (23)and where gij are the omponents of the metri tensor de-termining the relation between physial distane dl and

oordinate intervals dxi, i.e. dl2 = gij dxi dxj . In Carte-sian oordinates this is simply gij = δij . A proof ofthe symmetry of the stress tensor T ij
H together with amore elegant derivation of momentum onservation as aNoether identity of the variational priniple is given inAppendix B.Using expressions (11) and (12), we an further showthat

∑
gX =

∑ [
nX · ∂tp

X − nX · ∇pX0 − ΓX pX0
]

=
(
∂t

∑
nX · pX

)
−∇ ·

(∑
nX pX0

)

−
∑

(pX0 ∂tnX + pX · ∂tnX ) , (24)and we see from (4) that the last sum simply represents
∂tΛH. We an therefore rewrite the energy equation (18)in the form of a onservation law, namely

∂tEH + ∇ · Q
H

= gext , (25)where the hydrodynami energy density EH and energy�ux Q
H
are given by

EH =
∑

nX · pX − ΛH , and Q
H
=

∑
(−pX0 )nX . (26)We see that the energy density EH has quite naturallythe form of a hamiltonian, i.e. HH(nX , pX ) = EH, as it isthe Legendre-transformed (with respet to the momenta)of the Lagrangian ΛH.IV. CONSERVATION ALONG FLOWLINESIn addition to the total energy-momentum onserva-tion, derived in the previous setion, we an �nd fur-ther onserved quantities for individual onstituents, forwhih onservation holds under transport by the �uid�ow. Beause the following derivations apply to individ-ual onstituents instead of the sum over all onstituents,we will omit the onstituent index X in this setion inorder to simplify the notation.Transport of a quantity by the �uid �ow is losely re-lated to the Lie derivative with respet to the �uid ve-loity, therefore these onservation laws are most easilyderived using the language and theorems of di�erentialforms instead of vetors. We will use this formalism inderiving the transport-onservation laws, but we also givethe essential steps and results translated in the more om-mon vetor- and index-notation, so that familiarity withexterior alulus should not be neessary (albeit helpful)for reading this setion.A. Kelvin-Helmholtz vortiity onservationWe de�ne the vortiity 2-form w (with omponents

wij) as the exterior derivative (denoted by d) of the mo-mentum 1-form p (with omponents pi), namely
w ≡ dp , i.e. wij ≡ 2∇[ipj] , (27)



6where [ij] denotes antisymmetri averaging, i.e.
2A[iBj] = AiBj − AjBi. In three dimensions we an de-�ne the more ommon vortiity vetor W as the dual(with respet to the volume form ǫijk) of the 2-form w,namely

W i ≡ 1

2
ǫijkwjk = (∇× p)

i
. (28)The volume form is de�ned as

ǫijk =
√

g [i, j, k] , (29)where g = det(gij) and [i, j, k] is the sign of the permu-tation of {1, 2, 3}, whih is zero if two indies are equal.The duality between w and W implies
wij = ǫijkW k , (30)whih is easily veri�ed by inserting (28). We note thatdue to the Poinaré property (namely dd = 0), the exte-rior derivative of the vortiity 2-form vanishes identially,i.e.

dw = 0 ⇐⇒ ∇ · W = 0 . (31)We an rewrite the expression (14) for the hydrodynamifore fH in the language of forms as
∂tp + v⌋dp − dp0 =

1

n
f

H

, (32)where ⌋ indiates summation over adjaent vetor- andform- indies, i.e. in this ase (v⌋dp)i = 2vj∇[jpi]. In thefollowing it will be onvenient to separate the fore perpartile into its non-onservative part F and a onserva-tive ontribution dφ, namely
1

n
f

H

= dφ + F . (33)The Cartan formula for the Lie derivative of a p-formapplied to the 1-form p yields
£v p = v⌋dp + d(v⌋p) , (34)whih in expliit index notation reads as

£vpi = 2vj∇[jpi] + ∇i(v
jpj). Using this identityand (33) we rewrite the fore equation (32) moreonveniently as

(∂t + £v) p = dQ + F , (35)where the salar Q is given by Q = p0 + v⌋p. Lie deriva-tives and partial time derivatives ommute with exteriorderivatives, so we an apply an exterior derivative to (35)and obtain the Helmholtz equation of vortiity transport,namely
(∂t + £v)w = dF , (36)whih shows that the vortiity is onserved under trans-port by the �uid if and only if the hydrodynami fore

per partile ating on the �uid is purely onservative, i.e.if F = 0. In its more ommon dual form, this equationan be written as
∂tW −∇× (v × W ) = ∇× F . (37)The Helmholtz vortiity onservation expresses theonservation of angular momentum of �uid partiles,and we an equivalently derive it in its integrated form,namely the onservation of irulation as �rst shown byKelvin. We onsider a 2-surfae Σ and de�ne the iru-lation C around its boundary ∂Σ as

C ≡
∮

∂Σ

p =

∮

∂Σ

pi dxi . (38)Using Stoke's theorem, we see that the irulation around
∂Σ is equivalent to the vortiity �ux through the surfae
Σ, i.e.

C =

∫

Σ

w =
1

2

∫

Σ

wij dxi ∧ dxj , (39)and the more familiar dual expression is found by insert-ing (30):
C =

∫

Σ

W · dS , (40)where the surfae normal element dS is
dSi ≡ 1

2ǫijk dxj ∧ dxk. Using (35) the omovingtime derivative of the irulation C yields
dC
dt

=
d

dt

∮

∂Σ

p =

∮
(∂t + £v) p =

∮
F , (41)whih is known as Kelvin's theorem of onservation ofirulation. As we have already seen before, strit on-servation only applies if the non-onservative fore perpartile F vanishes.B. Vortiity and super�uidsThe hydrodynamis of super�uids is haraterized bytwo fundamental properties: on one hand by the abseneof dissipative mehanisms like frition or visosity, and onthe other hand by irrotational �ow. As we will see now,the hydrodynami desription of super�uids is thereforea natural sublass within the more general frameworkof multi-onstituent hydrodynamis presented here. Letus assume that a onstituent X = S is super�uid, withpartile density nS, veloity vS and mass mS. The ab-sene of mirosopi dissipative mehanisms implies thatthe super�uid is not bound to any other onstituents ,i.e. it is a perfet ondutor in the sense that it an�ow freely even in the presene of other onstituents.Dissipation-free �ow is haraterized by the absene of



7non-onservative fores ating on the bulk3 of super�uid,i.e.
FS = 0 . (42)As a onsequene of (36) and (41) we see that the vorti-ity (and therefore irulation) of a super�uid is stritlyonserved. The seond onstraint, whih distinguishesa super�uid from a perfet �uid, is that a super�uid isloally irrotational, i.e. its vortiity is zero, so

wS = 0 , ⇐⇒ W S = 0 . (43)Due to the vortiity onservation of super�uids, this on-straint remains automatially satis�ed if it is true at someinstant t, i.e. it is onsistent with the hydrodynami evo-lution.The formulation most ommonly found in the litera-ture on super�uids and superondutors is based on theonept of the so-alled �super�uid veloity�, whih isonstrained to be irrotational [23, 24℄. If one interpretedthis as the atual transport-veloity vS, suh a onstraintwould generally not be onsistent with the equations ofmotion, ontrary to the natural onservation of the mo-mentum vortiity wS. This �orthodox� formulation of su-per�uidity, whih goes bak to Landau's two-�uid modelfor 4He, is therefore a rather unfortunate misinterpreta-tion of physial quantities, as the so-alled �super�uidveloity� is neessarily to be interpreted as the resaledsuper�uid momentum in order to make this onstraintonsistent with hydrodynamis. The fat that in New-tonian single-�uid ontexts the partile momentum onlydi�ers by a onstant mass fator from the veloity has un-fortunately lead to a less than areful distintion betweenthese fundamentally di�erent quantities. This simpleidenti�ation no longer holds true in more general on-texts, like in the ase of multi-�uids (e.g. super�uids) oreven in the ase of a single relativisti perfet �uid. Theveloity-irulation is generally not onserved, ontraryto the onservation of momentum irulation (41). Theorthodox framework of super�uid hydrodynamis will bedisussed in more detail in Set. VID.In addition to the super�uid onstraints of beingdissipation-free and irrotational, there is a further impor-tant restrition, namely the quantization of irulation.An irrotational �ow an still arry non-zero irulationin the presene of topologial defets (suh as vorties).In order to see this, we note that (as a onsequene of(43)) we an write the super�uid momentum pS as thegradient of a phase ϕ, namely
pS = ~ dϕ , i.e. pS = ~∇ϕ . (44)3 However, there an be a non-onservative fore ating on thesuper�uid at a vortex-ore if the vortex is pushed by another�uid. This mehanism gives rise to the so-alled e�et of �mutualfrition�.

The irulation (38) an therefore be non-zero if ∂Σ en-loses a topologial defet in ϕ, i.e. a region where ϕ(and pS) is not de�ned, as for example in the ase of �owinside a torus. While in the ase of a perfet irrotational�uid the resulting irulation ould have any value, thesuper�uid phase ϕ is restrited to hange only by a mul-tiple of 2π after a omplete tour around the defet. Theresulting irulation is therefore quantized as
C = 2Nπ~ , with N ∈ Z , (45)whih gives rise to the well-known quantized vortex stru-ture of super�uids.C. Heliity onservationContrary to the onservation laws derived in the pre-vious setions, whih have been known for more than aentury, there is a further onserved quantity namely theso-alled heliity, whose existene in hydrodynamis hasonly been pointed out omparatively reently by Mo�at[25℄. This quantity is analogous to the magneti heliityonservation found in magneto-hydrodynamis [26℄, andit is related to the topologial struture of the vortiity,i.e. its �knottedness� [27℄. The relativisti analogue ofthis onservation has been shown by Carter [13, 28, 29℄,and generalizations have been disussed by Bekenstein[30℄.We de�ne the heliity 3-form H (with omponents

Hijk) as the exterior produt of the momentum 1-form pwith the vortiity 2-form w, i.e.
H ≡ p ∧ w , (46)whih in omponents reads as Hijk = 3p[iwjk]. A 3-formin a 3-dimensional manifold is dual to a salar, so we ande�ne the heliity density h as

Hijk = h ǫijk . (47)From the duality relation together with the de�nition(46), we see that the heliity salar has the followingexpliit expression
h=

1

3!
ǫijkHijk = pi

1

2
ǫijkwjk = p ⌋W = p·(∇×p) . (48)Using (35) and (36), the omoving time-derivative of Han be expressed as

(∂t + £v)H =
[
(∂t + £v) p

]
∧ w + p ∧ [(∂t + £v)w]

= (dQ + F) ∧ w + p ∧ dF

= d(Qw) +
[
d(p ∧ F) + 2dF ∧ p

]
. (49)We see that, not surprisingly, the vanishing of the non-onservative fore F is a neessary (albeit not su�ient)ondition for the onservation of heliity. We introduethe total heliity H of a volume V as

H ≡
∫

V

H =

∫

V

h dV , (50)



8and, assuming F = 0, we �nd for the omoving timederivative of H:
dH
dt

=

∫

V

(∂t +£v)H =

∮

∂V

Q w =

∮

∂V

QW ·dS . (51)The heliity H of a volume V is therefore onserved un-der transport by the �uid if, in addition to F = 0, thevortiity W vanishes on the surfae ∂V surrounding thisvolume. V. HYDRODYNAMICSA. The Lagrangian of hydrodynamisIn the previous setions we have derived the most gen-eral form of the Euler-Lagrange equations (18) assoi-ated with the onvetive variational priniple, togetherwith the fore densities (11) and energy transfer rates(12). We are now interested in a partiular lass of La-grangian densities ΛH, namely those whih desribe New-tonian hydrodynamis. One an postulate the generalform of the hydrodynami Lagrangian ΛH in analogy toanonial partile mehanis as
ΛH(nX , nX ) ≡

∑
mX

n2
X

2nX

− E , (52)where E is a thermodynami potential related to the in-ternal energy (or �equation of state�) of the system. Wetherefore �nd the following general form for the onjugatemomenta pX0 and pX as de�ned in Eq. (4):
−pX0 =

1

2
mXv2

X
+

∂E
∂nX

, pX = mXvX − ∂E
∂nX

. (53)We want to identify these onjugate momenta with theatual physial energy and momentum per �uid partile,whih implies that under a Galilean boost −V induingthe transformations
v′
X

= vX + V , n′
X

= nX , ∂t
′ = ∂t − V · ∇ , (54)these momenta should transform (e.g. see [23, 31℄) as

−pX0
′
=−pX0 +V ·pX +

1

2
mXV 2 , and pX ′ = pX +mXV .(55)One an verify that in this ase the hydrodynami foredensities fX

H
de�ned in (14) are invariant under Galileanboosts as one should expet. The partile reation rates

ΓX de�ned in (13) are also Galilean invariant, so that thetransformation of the total fore densities fX of (11) isseen to be
fX ′ = fX + V mX

ΓX . (56)The equations of motions of an isolated system, i.e.∑
fX = 0, are therefore Galilean invariant if and onlyif the total mass is onserved, i.e. if

∑
mX

ΓX = 0 . (57)

By using (55) we an show that the energy transfer rates(16) transform as
gX

′
= gX + V · fX + mX

ΓX

V 2

2
, (58)and due to mass onservation (57) the total energyhange rate therefore satis�es

∑
gX

′
=

∑
gX + V · fext , (59)so that the total energy onservation of an isolated sys-tem is Galilean invariant.In general the transformation properties (55) are onlyonsistent with the onjugate momenta (53) if E is itselfGalilean invariant, whih is shown in Appendix C. Thisimplies that the veloity dependene of E an only be ofthe form

E(nX , nX ) = E(nX ,∆XY ) , (60)where ∆XY is the relative veloity between �uidX and�uid Y , i.e.
∆XY ≡ vX − vY =

nX

nX

− nY

nY

. (61)We note that a funtion E of the form (60) satis�es theidentity
∑

nX

∂E
∂nX

= 0 , (62)whih an be used together with (53) to show that thehydrodynami momentum density (23) satis�es
JH =

∑
nXpX =

∑
mXnX = ρ , (63)i.e. the hydrodynami momentum density JH is equalto the total mass urrent ρ as a onsequene of Galileaninvariane.In addition to the requirement of Galilean invarianewe will restrit our attention to systems of �perfet�multi-onstituent �uids in the sense that their energyfuntion E is isotropi. This means that we onsider onlyequations of state of the form

E(nX ,∆XY ) = E(nX , ∆2
XY

) . (64)Summarizing we an now write the hydrodynami La-grangian density (52) for this lass of perfet multi-�uidsystems as
ΛH(nX , nX ) =

∑
mX

n2
X

2nX

− E(nX , ∆2
XY

) . (65)It is interesting to note that ontrary to the relativis-ti ase, whih is governed by a fully ovariant hydrody-nami Lagrangian density (e.g. see [13℄), the NewtonianLagrangian (65) is not stritly Galilean invariant beauseof the kineti energy term. The violation is su�ientlyweak, however, that is does not a�et the Galilean in-variane of the resulting equations of motion.



9B. Conjugate momenta and entrainment e�etThe total di�erential of the energy funtion
E(nX , ∆2

XY
) represents the �rst law of thermodynamisfor the given system, namely

dE =
∑

µX dnX +
1

2

∑

X ,Y

αXY d∆2
XY

, (66)whih de�nes the hemial potentials µX and the sym-metri entrainment matrix αXY as the thermodynami-al onjugates to nX and ∆2
XY

. The onjugate momenta(53) are therefore expliitly found as
pX = mXvX −

∑

Y

2αXY

nX

∆XY , (67)
−pX0 = µX − mX

v2
X

2
+ vX · pX . (68)The expression (67) for the momenta in terms of the ve-loities is interesting, as it shows that in general the mo-menta are not aligned with the respetive �uid veloities,whih is the so-alled entrainment e�et4. The simplesingle-�uid ase, in whih the momentum is just p = mv,is only reovered if there is no entrainment between the�uids (i.e. αXY = 0) or if all onstituents move together(i.e. ∆XY = 0). This phenomenon is well-known (albeitnot under the name entrainment) in solid-state physis,for example the eletron momentum in a rystal lattieis onneted to its veloity by an e�etive mass-tensor(e.g. see [33℄). For a more detailed disussion of the ex-pliit relation between e�etive masses and entrainmentin a two-�uid model we refer the reader to [34℄. In theontext of super�uid mixtures the importane of the in-teration and the entrainment e�et has �rst been reog-nized by Andreev&Bashkin [35℄, although expressed inthe oneptually more onfused orthodox framework ofsuper�uidity. Substituting (65) together with (68) and(67) into (20), we an now relate the �generalized pres-sure� Ψ diretly to the energy funtion E , namely

E + Ψ =
∑

nXµX , (69)and with (66) the total di�erential of Ψ(µX , ∆2
XY

) isfound as
dΨ =

∑
nX dµX − 1

2

∑

X ,Y

αXY d∆2
XY

. (70)We an further express the hydrodynami fore density(14) more expliitly as
fX

H
=nX (∂t+vX · ∇) pX +nX∇µX −

∑

Y

2αXY ∆j
XY

∇vX j ,(71)4 Sometimes also referred to as �drag� in the super�uid literature.But as pointed out in [32℄, this is rather misleading, as entrain-ment is a purely non-dissipative e�et, whereas �drag� in physisusually refers to a resistive drag.

and for the onserved hydrodynami energy density (26)we �nd
EH =

∑

X

mXnX

v2
X

2
+ E −

∑

X ,Y

αXY ∆2
XY

. (72)This relation an be used to larify the physial meaningof the thermodynami potential E . One might have ex-peted to �nd the total energy density simply as the sumof kineti energies plus E . It is to be noted though that
EH, whih represents the Hamiltonian HH(nX , pX ) of thesystem, is naturally a funtion of the �uid momenta pXas opposed to the veloities. Similarly it turns out that inorder to �nd the atual �internal energy�, we have to on-strut the thermodynami potential that depends on therelative momenta instead of ∆XY . We therefore de�nethe �entrained� relative momenta JXY as

JXY ≡ 2αXY
∆XY , (73)representing the momentum exhange between on-stituentsX and Y due to entrainment, namely by using(67) the momentum density of the onstituentX an bewritten as

nXpX = nXmXvX −
∑

Y

JXY . (74)Using this de�nition of JXY , the �rst law (66) now takesthe form
dE =

∑
µX dnX +

1

2

∑

X ,Y

JXY d∆XY , (75)We an therefore introdue the internal energy density
Ẽ as the Legendre transformed (with respet to the mo-menta JXY ) of the energy funtion E , namely

Ẽ(nX , JXY ) ≡ E − 1

2

∑

X ,Y

JXY · ∆XY , (76)with the assoiated total di�erential
dẼ =

∑
µX dnX − 1

2

∑

X ,Y

∆XY dJXY . (77)We note that E and Ẽ only di�er in systems where theentrainment e�et is present. Traditionally the quantity
Ẽ is what one might all the atual �internal energy� den-sity, whih is a funtion of the momenta, while the on-jugate thermodynami potential E does not seem to havea well established name in the literature. We see that interms of the internal energy Ẽ , the total energy density(72) does indeed have the expeted form of �kineti plusinternal� energy, namely

EH =
∑

X

mXnX

v2
X

2
+ Ẽ . (78)



10C. Entropy and temperatureAs noted earlier, entropy an be inluded quite nat-urally in this framework as a onstituent. The orre-sponding density and urrent are ns = s and ns = svs interms of the entropy density s and its transport veloity
vs. The entropy is naturally mass-less, i.e. ms = 0. Thethermodynamially onjugate variable to the entropy (its�hemial potential�) is the temperature, i.e. µs = T , so(66) an be written as

dE = T ds +
∑

X 6=s

µX dnX +
1

2

∑

X ,Y

αXY d∆2
XY

. (79)The thermal momenta ps
0 = Θ0 and ps = Θ of the en-tropy onstituent are found from (67) and (68), namely

Θ = −
∑

Y

2αsY

s
∆sY , (80)

−Θ0 = T + vs · Θ . (81)We see that although the entropy has zero rest mass, itan aquire a non-zero dynamial momentum Θ due toentrainment. This an also be interpreted as the entropyhaving a non-zero �e�etive mass�. The hydrodynamientropy fore density f s
H
and energy hange rate gs de-�ned in (14) and (16) yield

f s
H

= s∇T +s (∂t + vs ·∇)Θ−
∑

2αsY ∆j
sY ∇vsj ,(82)

gs = vs · f s
H

+ (T + vs · Θ) Γs . (83)We see that the temperature gradient is a driving foreof the entropy onstituent, as would be expeted. Wealso reognize the term TΓs in the expression of the en-ergy transfer rate gs, whih represents the heat reation�T dS�. VI. APPLICATIONSA. Single perfet �uidsAs the �rst appliation of the foregoing formalism, weonsider a single perfet �uid onsisting of several o-moving onstituents. This multi�onstituent �uid is de-sribed by the densities nX whih move with a singleveloity vX = v, and so the urrents are nX = nX v. Ob-viously all the relative veloities vanish in this ase, i.e.
∆XY = 0, and therefore there is no entrainment. Herewe will expliitly write the entropy with its density s, andwe do not inlude it in the onstituent index set labelledbyX , i.e. X 6= s. The Lagrangian (65) for this system is

ΛH =
∑

mX nX

v2

2
− E(s, nX ) , (84)and the energy and pressure di�erentials (66) and (70)simply read as

dE=T ds +
∑

µX dnX , and dP =s dT +
∑

nX dµX ,(85)

where in the ase of a single �uid, the generalized pressure
Ψ simply redues to the usual �uid pressure P . The �uidmomenta (67) and (68) are

pX = mX v , and − pX0 = µX + mX
v2

2
, (86)while for the entropy onstituent we have with (80) and(81):

Θ = 0 , and − Θ0 = T . (87)The expliit expression for the fore densities (11) andenergy transfer rates (16) are found as
fX = nXmX (∂t + v ·∇)v + nX∇µX + mX

ΓX v , (88)
gX = v · fX + ΓX µX − mX

v2

2
ΓX , (89)

f s = s∇T , (90)
gs = v · f s + TΓs , (91)If we allow for an external fore fext and energy exhangerate gext, the equations of motion (18) of the system are

f s +
∑

fX = fext , and gs +
∑

gX = gext . (92)Inserting (88)�(91) and using mass onservation (57), we�nd the expliit equations of motion
(∂t + v · ∇)v +

1

ρ
∇P =

1

ρ
fext , (93)

TΓs +
∑

µX
ΓX = gext − v · f ext , (94)where we have used the thermodynami relation (85) inorder to rewrite the momentum equation in the famil-iar Euler form. The energy equation expresses the heatreation TΓs by hemial reations ΓX . For an isolatedsystem, where fext = 0 and gext = 0, that entropy anonly inrease due to the seond law of thermodynamis,so Γs ≥ 0. From (94) we therefore obtain a onstraint onthe diretion of the hemial reations, namely

∑
ΓXµX ≤ 0 . (95)If we onsider for example the ase of two onstituentsof equal mass, so that the mass-onservation (57) implies

Γ1 + Γ2 = 0, then this onstraint now reads as
Γ1(µ

1 − µ2) ≤ 0 , (96)whih shows that hemial reations only proeeds in thediretion of the lower hemial potential as would be ex-peted.B. �Potential vortiity� onservation: Ertel'stheoremWe now onsider the ase without hemial reations,in whih the general perfet �uid disussed in the fore-going setion an be desribed e�etively as a �uid on-sisting only of a single matter onstituent and entropy.



11In this ase we an show that the vortiity is generallynot onserved, but that a weaker form of the vortiityonservation still holds. The �uid is desribed by thepartile number density n, the mass per partile m anda omoving entropy density s. Mass onservation (57) inthis ase redues to Γ = 0. If we assume the system to beisolated, i.e. f + f s = 0, then the only fore per parti-le (33) ating on the matter onstituent is the �thermalfore� (90), namely
1

n
fH = −s̃∇T , (97)where s̃ ≡ s/n is the spei� entropy. If s̃ is onstanteverywhere, then this �thermal fore� is onservative, i.e.

F = 0 and by (41) the irulation is therefore onserved.In the non-uniform ase, however, we �nd
dC
dt

=

∮

∂Σ

F = −
∮

∂Σ

s̃ dT , (98)whih vanishes only if we integrate along a path ∂Σ thatlies ompletely in a surfae of onstant s̃. We an also seethis in the Helmholtz formulation, namely by applying anexterior derivative to (97), one obtains
dF = −ds̃ ∧ dT , i.e. ∇× F = −∇s̃ ×∇T , (99)and it follows therefore from (36) that the vortiity isno longer generally onserved in this ase. However,the quantity ds̃ ∧ dF, or its equivalent dual expression

∇s̃ · (∇× F), still vanishes identially. Based on this ob-servation we onstrut the �potential vortiity� 3-form Zas
Z ≡ ds̃ ∧ w , (100)and the dual salar z is

Zijk = z ǫijk , and z =
1

3!
ǫijkZijk = ∇s̃ · (∇× p) ,(101)where the last expression was found using (30). The evo-lution of the potential vortiity 3-form Z under transportby the �uid is

(∂t + £v)Z = d [(∂t + £v)s̃] ∧ w , (102)and therefore Z is onserved for isentropi �ow, i.e. if
Γs = 0 ⇐⇒ (∂t + £v) s̃ = 0 . (103)The dual version of (102), namely the onservation of thesalar z is then found as

∂t z + ∇ · (zv) = 0 . (104)Traditionally this onservation law is often expressed interms of the salar α ≡ z/ρ, whih then results in thefollowing form of the onservation law:
(∂t + v · ∇) α = 0 , (105)whih is generally known as �Ertel's theorem� [36, 37℄.

C. Thermally onduting �uidsWe have so far only onsidered perfet �uids, whih areperfet heat insulators as the entropy is stritly arriedalong by �uid elements and no heat is exhanged between�uid elements. It is quite straightforward to extend thisto thermally onduting �uids simply by dropping theassumption that the entropy �ux is bound to the matter�uid �ow, i.e. we just have to allow vs 6= v, where vs and
v are the veloities of the entropy �uid and the matter�uid respetively. For simpliity we onsider only a sin-gle matter onstituent, desribed by its partile numberdensity n, whih by (57) is automatially onserved, i.e.
Γ = 0.From the general expressions (81) and (80) we see thatthe �entropy �uid� aquires a non-zero momentum dueto the interation with the matter �uid, via entrain-ment. However, this aspet does not usually seem to betaken into aount in the traditional desription of heat-onduting �uids (e.g. see [23℄). The aim of the presentsetion is only to show how to reover the standard equa-tions for a heat-onduting �uid, and we therefore simplyassume the entrainment to be negligible, i.e. α = 0. Itis ertainly an interesting question if this neglet of en-trainment is physially justi�ed in all ases. With thisassumption, the fore density (82) and energy rate (83)of the entropy redue to

f s = s∇T , and gs = vs · f s + T Γs . (106)As in the (isolated) perfet �uid ase disussed previ-ously, the equations of motion are again f s + f = 0 and
gs + g = 0. This time, however, one fore density, f s say,an be spei�ed by the model due to the inreased num-ber of degrees of freedom, so we set it to f s = fR, where
fR is a resistive fore ating against the entropy �ow. Weobtain the Euler equation in the same form as in (93),but now the energy equation takes the form

TΓs = (v − vs) · fR . (107)By the seond law of thermodynamis, namely Γs ≥ 0,we an onstrain the form of the resistive fore fR to
fR = −η (vs − v) , with η ≥ 0 , (108)i.e. the frition fore ating on the entropy �uid is alwaysopposed to its �ow relative to the matter �uid. Obviouslythe value of the resistivity η is not restrited to be aonstant but will generally depend on the state of thesystem. Following the traditional desription (e.g. [23℄)we introdue the heat �ux density q relative to the matter�uid as

q ≡ Ts(vs − v) . (109)By ombining this with (106) and (108), we see that theheat �ux urrent is onstrained by the seond law to beof the form
q = −κ∇T , with κ ≡ Ts2

η
≥ 0 , (110)



12where κ is the thermal ondutivity. With (109) we anexpress the veloity of the entropy �uid vs in terms ofthe heat �ux q and the matter veloity v, so the entropyreation rate Γs an be expressed as
Γs = ∂ts + ∇ ·

(
sv +

q

T

)
. (111)We further �nd for the hydrodynami energy �ux vetor

Q
H
of (26):

Q
H

=
∑

(−pX0 )nX = (µ + m
v2

2
)nv + sTvs

= nv

(
m

v2

2
+ µ + s̃T

)
+ q , (112)where the last equality was found using (109). We in-trodue the spei� enthalpy as w ≡ µ + s̃ T , and usingthe �rst law5, namely dP = n dµ + s dT , we �nd the totalvariation of the spei� enthalpy as

dw = Tds̃ +
1

n
dP , (113)and so we reover the standard expression (e.g. f. [23℄)for the energy �ux:

Q
H

= nv

(
m

v2

2
+ w

)
+ q . (114)D. The two-�uid model for super�uid 4HeWe now onsider the example of super�uid 4He at anon-zero temperature T . Let n be the number density of

4He atoms and s be the entropy density. The 4He atomsmove with a veloity v, while the entropy (arried by athermal gas of exitations suh as phonons and rotons)transports heat without frition (i.e. fR = 0) at theveloity vN, so the relative veloity is ∆ = vN − v. Inthis ontext the entropy �uid is often referred to as the�normal �uid� as opposed to the super�uid mass �ow.The two transport urrents, namely that of 4He atomsand of entropy, are respetively
n = n v , and s = s vN . (115)The 4He atoms have mass m, so the mass density is

ρ = nm, and the hydrodynami Lagrangian density (65)reads as
ΛH =

1

2
nmv2 − E(n, s, ∆2) , (116)5 In the absene of entrainment the entropy �uid does not arrymomentum, therefore the matter �uid de�nes a unique frame inwhih the stress tensor (23) is purely isotropi. In this ase thegeneralized pressure Ψ is idential with the usual perfet �uidnotion of the pressure P .

where the energy funtion E determines the �rst law (66)as
dE = µ dn + T ds + α d∆2 , (117)whih de�nes the hemial potential µ of 4He atoms, thetemperature T and the entrainment α. The onjugatemomenta (67), (68) of the 4He atoms are

p = mv +
2α

n
∆ , (118)

−p0 = µ − 1

2
mv2 + v · p , (119)while for the entropy �uid Eqs. (80) and (81) yield

Θ = −2α

s
∆ , (120)

−Θ0 = T + vN ·Θ . (121)The onservation of mass (57) implies
Γ = ∂tn + ∇ · n = 0 . (122)In the absene of vorties, there are no diret fores atingbetween the two �uids, so the equations of motion in theabsene of external fores (i.e. fext = 0) are simply

f = fH = 0 and fN = 0 . (123)The energy equations are g = 0 and gN = gext, and with(83) this leads to
−gext = Γs(Θ0 + vN · Θ) = −TΓs , (124)where we have inserted (121). We see that this equationdesribes the rate of entropy reation by an external heatsoure, namely

∂ts + ∇ · (svN) =
1

T
gext . (125)As disussed in Set. IVB, the super�uid 4He is (loally)irrotational, i.e.

wij = 2∇[ipj] = 0 ,⇐⇒ W = ∇× p = 0 . (126)Using (14), the equation of motion (123) for the super-�uid therefore redues to
∂tp −∇p0 = 0 , (127)and with the expliit momenta (119) and (118) this yields

∂t (v + ε∆) + ∇
(

µ̃ +
1

2
v2 + εv · ∆

)
= 0 , (128)where we introdued the entrainment number ε and thespei� hemial potential µ̃ as

ε ≡ 2α

ρ
, and µ̃ ≡ µ

m
. (129)



13The entropy �uid is governed by the momentum equation
fN = 0, and with (82) and the entropy momenta (121)and (120), we �nd
(∂t + vN · ∇)

(
2α

s
∆

)
−∇T +

2α

s
∆j∇vj

N +
2α

s2
Γs∆ = 0 .(130)The two equations (128) and (130) represent the �anon-ial� formulation of the two-�uid model for super�uid

4He. These equations do not seem to bear any obviousrelation to the �orthodox� formulation of Landau's two-�uid model found in all textbooks on the subjet (e.g.see [23, 24, 31℄). Nevertheless, these equations are equiv-alent to the orthodox framework, as we will show now,but it is important to note that the orthodox formulationis based on a rather unfortunate onfusion between theveloity and momentum of the super�uid whih is inher-ent in the histori de�nition of the �super�uid veloity�by Landau.We demonstrate the equivalene of these formulationsby expliitly translating the anonial formulation intothe orthodox language. The starting point of Landau'smodel is the statement that the �super�uid veloity� isirrotational. We write νS for the �super�uid veloity�,whih is not to be onfused with the atual veloity v of
4He atoms, so the starting point is

∇× νS = 0 . (131)From the general disussion about vortiity onserva-tion in Set. IVA and its partiular role in super�uids(Set. IVB) we have already seen that ontrary to themomentum vortiity W = ∇× p, the veloity-rotation
∇× v is generally not onserved by the �uid �ow, andin partiular not in the presene of more than one �uid asis the ase in super�uid 4He at T > 0. The only possibleinterpretation we an give νS in order for the onstraint(131) to be onsistent with hydrodynamis and to remaintrue for all times is that it is really the resaled super-�uid momentum p, so the �key� to our translation is theansatz

νS ≡ p

m
. (132)While this would be equivalent to the �uid veloity in asingle perfet �uid, as seen in (86), this has no interpre-tation as the veloity of either the mass or the entropyin the ase of the present two-�uid model as we an seein (118). Therefore we all νS a pseudo veloity, as it isa dynami ombination of both �uid veloities governedby the entrainment α between the super�uid 4He andits exitations. With the expliit entrainment relation(118) we an now express the veloity v of the 4He �uidin terms of the pseudo-veloity νS and the normal-�uidveloity vN as

v = (1 − ε)−1 (νS − εvN) , (133)where we used the de�nition (129) of the entrainmentnumber ε. With this substitution, the total mass urrent

ρ, whih is equal to the total momentum density JH asseen in (63), an be written in the form
JH = ρv =

[
ρ

1 − ε

]
νS +

[ −ερ

1 − ε

]
vN , (134)whih suggests to introdue a �super�uid density� ̺S anda �normal density� ̺N as

̺S ≡ ρ

1 − ε
, and ̺N ≡ −ερ

1 − ε
, (135)suh that total mass density ρ and mass urrent ρ = JHan now be written as

ρ = ̺S + ̺N , and JH = ̺SνS + ̺NvN . (136)It is now obvious that this split is ompletely arti�ial,and ̺N and ̺S are only pseudo densities, as they do notrepresent the density of any (onserved) physial quan-tity and are not even neessarily positive. In fat neitherof the two pseudo-densities and urrents are onservedindividually, ontrary to the physial urrents (115). Wenote that even Landau warned against taking too liter-ally the interpretation of super�uid 4He as a �mixture� ofthese two (pseudo-) ��uids� [23℄. Contrary to the arti�-ial orthodox split, however, the separation into entropy�uid and 4He mass �ow is physially perfetly meaning-ful, and the super�uid an be regarded as a two-�uidsystem in the literal sense in the anonial framework.The pseudo �mass density� ̺N, whih the normal �uidseems to arry in the orthodox desription is due to thefat that entrainment provides the entropy �uid with anon-vanishing momentum (120) in the presene of rela-tive motion, even though it does not transport any mass.This lak of areful distintion between mass urrent andmomentum leads to the paradoxial piture of the �super-�uid ounter�ow�: for example, in the simple ase of heat�ow through a stati super�uid, the normal �uid assoi-ated with the heat �ow arries a pseudo mass-urrent
̺NvN. But beause there is no net mass urrent therehas to be some super�uid �ounter�ow� of pseudo massurrent ̺SνS = −̺NvN. This apparently strange behav-ior is solely due to an awkward hoie of variables and aloss of diret ontat between the quantities used in theorthodox desription and the atual onserved physialquantities of 4He.Further following the traditional orthodox framework,we de�ne the relative (pseudo-)veloity w as

w ≡ vN − νS , (137)whih, using (133), an be expressed in terms of ∆ as
w = (1 − ε)∆ . (138)In order to relate the anonial thermodynami quan-tities to the orthodox language, we follow Khalatnikov[31℄ and Landau [23℄ and onsider the energy density inthe �super�uid frame� K0, whih is de�ned by ν

(0)
S = 0.



14In this frame, the momentum density J (0)
H

expressed in(136) is
J (0)

H
= ̺N v

(0)
N = ̺N w = −2α∆ , (139)and the transport veloity v of the super�uid 4He atomsin this frame an be expressed using (140) as

v(0) = v − νS =
̺N

ρ
v

(0)
N =

1

ρ
J(0)

H
. (140)The hydrodynami energy density EH of the �uid systemis given by (72), whih reads in this ase

EH =
1

2
ρv2 + E − 2α∆

2 , (141)and using the previous translations together with the �rstlaw (117), we an write the total variation dE(0) of theenergy density in K0 as
dE

(0)
H = T ds + µ̃S dρ + w · dJ (0)

H
, (142)whih de�nes the �super�uid hemial potential� µ̃S as

µ̃S = µ̃ − 1

2
(v − νS)

2 . (143)Using these quantities, the anonial equation of motion(128) an now be translated into the orthodox form as
∂tνS + ∇

(
ν2
S

2
+ µ̃S

)
= 0 . (144)One an equally verify that the generalized pressure, de-�ned in (69), is expressible in terms of the orthodox quan-tities as

Ψ = −E+ρ µ̃+s T = −E
(0)
H +T s+ρ µ̃S+w ·J (0)

H
, (145)in exat agreement with the expressions found in [23,31℄. For the remaining momentum equation, the totalmomentum onservation (22) is traditionally preferredover the equation of motion (130) of the entropy �uid.We therefore onlude this setion by the appropriatetranslation of the stress tensor (23) into the orthodoxlanguage. The anonial expression for the stress tensorof super�uid 4He is

T ij
H

= ni pj + si Θj + Ψ gij , (146)and inserting the previous expressions for the expliit mo-menta and the translations to orthodox variables, one anwrite this in the form
T ij

H
= ̺S νi

Sνj
S + ̺N vi

Nvj
N + Ψ gij , (147)whih onludes our proof of equivalene between anon-ial and orthodox desription.

E. A two-�uid model for the neutron star oreHere we onsider a (simpli�ed) model for the matterinside a neutron star ore, whih mainly onsists of a(harge neutral) plasma of neutrons, protons and ele-trons. We fous on super�uid models, in whih the neu-trons are assumed to be super�uid, whih allows themto freely traverse the �uid of harged omponents due tothe absene of visosity. As disussed in Set. IVB, thisalso implies some extra ompliations due to the quanti-zation of vortiity into mirosopi vorties. Here we areinterested in a marosopi desription, i.e. we onsider�uid elements that are small ompared to the dimensionsof the total system, but whih ontain a large number ofvorties. On this sale we an work with a smooth aver-aged vortiity instead of having to worry about individualvorties. One e�et of the presene of the vorties will bea slight anisotropy in the resulting smooth averaged �uid[22, 38, 39℄, whih an be asribed to the tension of vor-ties, and whih we will neglet here for simpliity. Theseond e�et of the vortex lattie is that it allows a diretfore between the super�uid and the normal �uid, medi-ated by the respetive vortex interations, and whih isnaturally desribed in the ontext of the two-�uid modelas a mutual fore. The model assumptions used hereare fairly ommon to most urrent studies of super�uidneutrons stars (e.g. see [34, 40�42℄).The model therefore onsists of omoving onstituents
X ∈ {e, p, s}, orresponding to the eletrons, protons andentropy, and we will label this �uid with 'c'. The seond�uid onsists only of the super�uid neutrons, i.e. X = n.Charge onservation implies

Γe = Γp , (148)and for simpliity we will assume loal harge neutrality,i.e.
ne = np . (149)We assume the eletrons and protons to be stritly mov-ing together in this model (i.e. we onsider timesaleslonger than the plasma osillation timesale), so we anneglet eletromagneti interations altogether. Anotherphysial onstraint is baryon onservation, i.e. we musthave

Γn + Γp = 0 , (150)and together with mass onservation (57), this leads tothe requirement6
mn = mp + me ≡ m . (151)6 This relation is of ourse not exatly satis�ed in reality, whihshows a well-known shortoming of Newtonian physis: mass hasto be onserved separately from energy.



15We an therefore write the mass densities of the two �uidsas
ρn = m nn , and ρc = m np . (152)The �rst law (66) of this model reads as

dE = T ds + µn dnn + µe dne + µp dnp + αen d∆2
en

+αpn d∆2
pn + αsn d∆2

sn . (153)Obviously there is only one independent relative veloity
∆, namely

∆ ≡ vc − vn = ∆en = ∆pn = ∆sn , (154)and we de�ne the total entrainment α as
α ≡ αen + αpn + αsn . (155)In the ase of the neutron star model, we are obviouslyalso interested to inlude the e�ets of gravitation. Wean therefore not assume the system to be isolated andwe inlude the e�et of the gravitational potential Φ asan external fore. The minimal equations of motion (18)therefore read as

fn + f c = −ρ∇Φ , and gn + gc = −ρ · ∇Φ , (156)where the fore and energy rate of the 'c'-�uid are natu-rally given by fc ≡ fp + fe + f s and gc ≡ gp + ge + gs.With (148) and (150) we an write the respetive foredensities more expliitly as
fn = fn

H
+ Γnpn , (157)

fc = f c
H
− Γn(pe + pp) + ΓsΘ , (158)where we naturally de�ned f c

H
≡ f

p
H + fe

H
+ f s

H
. Simi-larly we an write the energy rates (16) as

gn = vn · fn
H
− Γnpn

0 , (159)
gc = vc · fc

H
+ Γn(p

e
0 + pp

0) − ΓsΘ0 . (160)Beause the gravitational aeleration is the same for allbodies (i.e. �uids), we an now simply absorb the ef-fet of the gravitational potential into the de�nition of�extended� fores f̂ and energy rates ĝ whih simply in-orporate the respetive gravitational fore density andwork rate, i.e. we de�ne
f̂
X ≡ fX + ρX∇Φ , (161)

f̂
X

H
≡ fX

H
+ ρX∇Φ , (162)

ĝX ≡ gX + ρXvX · ∇Φ . (163)With these rede�nitions, the minimal equations of mo-tion (156) again take the form of an isolated system, i.e.
f̂

n
+ f̂

c
= 0 , and ĝn + ĝc = 0 , (164)

while for (157)�(160) we obtain exatly the same form,just for all fores and energy rates replaed by their �ex-tended� version. Using the foregoing equations, we ob-tain
f̂

c

H
= −f̂

n
+ Γnpc − ΓsΘ , (165)and therefore

ĝc = −vc · f̂
n

H
− Γn [vc · (pn − pc) − pc

0] − ΓsΘ0 . (166)Substituting this and the �extended� version of (159) intothe energy-rate equation (164), we �nd
TΓs = ∆ · f̂n

H
+Γn [pn

0 − pe
0 − pp

0 + vc · (p n − p e − p p)] ,(167)where we have used the expliit form (81) of Θ0. In addi-tion to the external fore, the two-�uid model allows oneto presribe one of the �uid fore densities. In the presentase it is most onvenient to speify the �extended� hy-drodynami fore f̂
n

H
on the neutrons. As this fore anonly originate from the seond �uid, we will refer to it asthe mutual fore fmut, so we set
f̂

n

H
= fmut . (168)Substituting the expliit onjugate momenta (67) and(68), we obtain the �nal expression for the entropy re-ation rate (167) as

TΓs = ∆ · fmut + Γnβ . (169)The �rst term on the right hand side is the work done bythe mutual fore, and the seond term is the entropy re-ated by beta reations between the two �uids, for whihthe term �transfusion� has been oined [32℄. The devi-ation from beta equilibrium haraterized by β is foundas
β ≡ µp + µe − µn − 1

2
m

(
1 − 4α

ρn

)
∆2 , (170)where the last term gives the orretion to the hemialequilibrium due to relative motion ∆ of the two �uids.The seond law of thermodynamis for an isolated systemstates that entropy an only inrease, i.e. Γs ≥ 0. Inorder for this to be identially true in (169), the mutualfore fmut and the reation rate Γn have to be of theform

Γn = Ξβ , with Ξ ≥ 0 ,
fmut = η ∆ + κ × ∆ , with η ≥ 0 ,

(171)where κ is an arbitrary vetor haraterizing a non-dissipative Magnus-type fore orthogonal to the relativeveloity. Further substituting the onjugate momenta inthe expression for the hydrodynami fore densities (14),we �nd their expliit form
fn

H
=nn(∂t+vn ·∇)

(
mvn+

2α

nn
∆

)
+nn∇µn+2α∆j∇vj

n ,(172)
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fc

H
= np(∂t+vc ·∇)

(
mvc−

2(αen+αpn)

np
∆

)
+np∇(µp+µe)

−2α∆j∇vj
c − s(∂t + vc · ∇)

(
2αsn

s
∆

)
+ s∇T . (173)We now make the simplifying assumption that we anneglet the entrainment of entropy, i.e. we assume thatall the entrainment between the two �uids is due to theneutron-proton and neutron-eletron ontributions, so weset αsn = 0, whih implies Θ = 0. Using (67) we �nd

pe + pp − pn = m (1 − εn − εc)∆ , (174)where we have de�ned the entrainment numbers
εn ≡ 2α

ρn
, and εc ≡

2α

ρc
. (175)Putting all the piees together, we obtain the momentumequations (168) and (165) in the form

(∂t+vn ·∇)(vn+εn∆)+∇ (µ̃n+Φ)+εn∆j∇vj
n =

1

ρn
fmut ,(176)

(∂t + vc ·∇)(vc−εc∆)+∇ (µ̃c+Φ)−εc∆j∇vj
c +

s

ρc
∇T

= − 1

ρc
fmut + (1 − εc − εn)m

Γn

ρc
∆ . (177)with the spei� hemial potentials µ̃n ≡ µn/m and
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xi = xi(a, t) , (A1)where the �partile oordinates� ai are used to label in-dividual partiles and an be taken, for example, to betheir initial position, i.e.
ai = xi(a, 0) . (A2)

This introdues a time-dependent map (or �pull-bak�)between the �material spae� ai and physial spae xi,and the assoiated Jaobian matrix J is
J i

j ≡ ∂xi

∂aj

∣∣∣∣
t

. (A3)We onsider the variations of �uid variables induedby ative in�nitesimal spatial displaements ξi(x, t) andtemporal shifts τ(x, t) of the �uid partile �owlines (A1),namely
x′i(a, t′) = xi(a, t) + ξi(x, t) , and t′ = t + τ(x, t) .(A4)We note that the transformation (A4) not only shifts�owlines in spae, but also in time. A physial quantityof the �ow, Q(x, t) say, is hanged to Q′(x′, t′), and wede�ne the orresponding Eulerian and Lagrangian varia-tions as7

δQ ≡ Q′(x, t) − Q(x, t) , (A5)
∆Q ≡ Q′(a, t′)−Q(a, t)=Q′(x′, t′)−Q(x, t) . (A6)By expanding ∆Q to �rst order using the de�nition (A4)of xi′ and t′, we �nd the relation
∆Q = δQ + ξj ∇jQ(x, t) + τ ∂tQ(x, t) . (A7)Let us onsider the indued (�rst order) variation of theveloity vi ≡ ∂tx

i(a, t), namely
v′i(a, t′) = ∂t′x

′i(a, t′) = ∂t′x
i(a, t) + ∂tξ

i(a, t)

= ∂tx
i(a, t)

∂t

∂t′

∣∣∣∣
a

+ ∂tξ
i(a, t)

= vi(a, t) − vi ∂tτ(a, t) + ∂tξ
i(a, t) , (A8)whih by (A6) orresponds to the following Lagrangianvariation of the veloity:

∆vi =
[
∂tξ

i + vl∇lξ
i
]
−

[
vi∂tτ + vivl∇lτ

]
, (A9)and with (A7) the Eulerian variation is found as

δvi =
[
∂tξ

i + vl∇lξ
i − ξl∇lv

i
]
−

[
∂t

(
viτ

)
+ vivl∇lτ

]
.(A10)From the onservation of mass one an derive an expres-sion for the partile density n in terms of the Jaobian(A3), namely

n(x, t) =
n0(a)

detJ , (A11)7 Contrary to the Eulerian variation, the Lagrangian variation anbe de�ned in di�erent (non-equivalent) ways. The de�nition usedhere is based on omparing the quantity Q in di�erent pointsby parallel-transport. Another ommon de�nition (e.g. see [11,20℄) onsists in using the Lie-transported quantity instead. Bothde�nitions are equivalent for salars but di�er for vetors andhigher order tensors.



17where n0(a) = n(a, 0) is the initial density at t = 0.Using (A3), the hange of the Jaobian matrix J induedby the �owline variation (A4) an be found as
J ′i

j(a, t′) =
∂x′i(a, t′)

∂aj
=

∂xi(a, t)

∂aj

∣∣∣∣
t′

+
∂ξi

∂aj

=
∂xi(a, t)

∂aj
+

∂xi(a, t)

∂t

∂t

∂aj

∣∣∣∣
t′

+
∂ξi

∂aj

= J i
j(a, t) − vi ∂τ

∂aj
+

∂ξi

∂aj
, (A12)with the resulting Lagrangian variation (A6) expressibleas

∆J i
j = J l

j

(
∇lξ

i − vi∇lτ
)

. (A13)The derivative of a determinant det A with respet to amatrix element Aij is given by
∂ detA

∂Aij

= det(A)
(
A−1

)ij
, (A14)and therefore we an write the Lagrangian variation ofthe Jaobian determinant as

∆(detJ ) = det(J )
(
J−1

)j

i
∆J i

j . (A15)The �owline variation (A4) therefore indues the La-grangian hange of the Jaobian
∆(detJ)

det J
= ∇lξ

l − vl∇lτ . (A16)Using (A11), the indued density variation is thereforefound as
∆n = −n∇lξ

l + nvl∇lτ , (A17)and with (A7) the orresponding Eulerian expression isfound as
δn = −∇l

(
nξl

)
+

[
nvl∇lτ − τ∂tn

]
. (A18)By ombining the results for veloity and density varia-tions we �nd the variations of the urrent ni = nvi as

∆ni =
[
n ∂tξ

i(x, t) + nl∇lξ
i − ni∇lξ

l
]
− ni ∂tτ , (A19)

δni =
[
n∂tξ

i(x, t)+nl∇lξ
i−∇l

(
niξl

)]
−∂t

(
niτ

)
. (A20)APPENDIX B: NOETHER IDENTITIES OF THEVARIATIONAL PRINCIPLEIn addition to the �owline variations onsidered so far,we will now also allow for metri variations δgij . Al-though we only onsider Newtonian physis here, there isa-priori no reason to restrit ourselves to �at spae. Mostimportantly, however, inluding metri variations allows

us to obtain the form of the stress tensor T ij
H and the as-soiated momentum onservation (22) diretly from thevariational priniple as a Noether identity, as opposed toonstruting it from the equations of motion as we havedone in Se. III. Therefore we extend the variation (4)of the Lagrangian to

δΛH =
∑

pX0 δnX +
∑

pX · δnX +
∂ΛH

∂gij

δgij . (B1)Next onsider the density hange δnX indued by a metrivariation δgij at onstant �owlines, i.e. onstant J i
j .First we note that we an express the Jaobian as

detJ = ǫijk J i
1 J j

2 J k
3 , (B2)and using (A14) the variation of the volume form

ǫijk =
√

g [ijk] indued by metri hanges is expressibleas
δǫijk =

1

2
ǫijk glmδglm . (B3)Therefore we have

∂ detJ
∂gij

∣∣∣∣
J

=
1

2
det(J ) gij , (B4)and using (A11) and (A18) we an write the variationof the density indued by spatial displaements ξ andmetri variations δgij as

δn = −∇l

(
nξl

)
− 1

2
ngij δgij . (B5)

∆n = −n∇lξ
l − 1

2
ngij δgij , (B6)where we have used the fat that with our de�nition ofthe Lagrangian variation (A7) we have

∆gij = δgij + ξl∇lgij = δgij , (B7)as the metri is by de�nition onstant under paralleltransport. A metri hange with �xed �owlines does nothange the loal veloity vi, therefore the urrent varia-tion an be written using (B5) and (A20) as
δni =

[
n ∂tξ

i(x, t)+nl∇lξ
i−∇l

(
niξl

)]
− 1

2
nigljδglj ,(B8)

∆ni =
[
n ∂tξ

i(x, t) + nl∇lξ
i − ni∇lξ

l
]
− 1

2
ni gljδglj .(B9)When allowing for metri variations it is onvenient (e.g.see [39℄) to introdue the �diamond variation� ♦ΛH as

♦ΛH ≡ 1√
g
δ (

√
g ΛH) = δΛH +

1

2
ΛH gijδgij , (B10)suh that the variation of the ation (3) an now be writ-ten as (noting that dV =

√
g d3x):

δI =

∫
♦ΛH dV dt . (B11)



18Substituting (B1), (B5) and (B8) and integrating byparts, ♦ΛH an be ast in the form
♦ΛH = −

∑
fX

i ξi
X

+
1

2
T ij

H
δgij + ∇lR

l + ∂tR , (B12)where the anonial fores fX have the expliit expres-sion (11) and we de�ned the tensor T ij
H as

T ij
H

≡ 2
∂ΛH

∂gij

+ Ψ gij , (B13)using our earlier de�nition (20) of the generalized pres-sure Ψ.Now onsider a ommon displaement ξ of the wholesystem inluding the bakground metri, whih induesa metri hange
δgij = −2∇(iξj) , (B14)where (ij) indiates symmetri averaging, i.e.

2A(iBj) = AiBj + AjBi. The orresponding Lagrangianvariations (B9) and (B6) are found as
∆nX = 0 , (B15)
∆ni

X
= nX

(
∂tξ

i + vl
X
∇lξ

i
)

. (B16)Substituting this into (B1), the indued ∆ΛH is
∆ΛH =

(∑
ni
X

pX j − 2
∂ΛH

∂gij

)
∇iξj + J i

H
∂tξi , (B17)where we have used the de�nition (23) of the momentumdensity JH. It is well known that ontrary to the fullyovariant Lagrangian for relativisti hydrodynamis (e.g.[13℄), the Newtonian Lagrangian is not stritly Galileaninvariant under boosts. This is due to the veloity depen-dene of the kineti energy, as an be seen in the expliitform (52). We an therefore only demand strit invari-ane, i.e. ∆ΛH = 0, for time-independent displaements,namely ∂tξ = 0, whih leads to the Noether identity

∂ΛH

∂gij

=
1

2

∑
ni
X

pX j . (B18)The left-hand side is manifestly symmetri in i and j,therefore we see that
∑

ni
X

pX j =
∑

nj
X

pX i , (B19)and we an now write the (symmetri) stress tensor (B13)expliitly as
T i

Hj =
∑

ni
X

pXj + Ψ gi
j . (B20)This tensor is idential to the expression (23) found ear-lier by onstrution from the equations of motion. Itremains to be shown however, how the momentum on-servation law (22) is diretly obtainable as a Noetheridentity from the variational priniple. Using (B17), (A7)

and (B12) we an expliitly express the diamond varia-tion as
♦ΛH = −(∂tJ

j) ξj −∇l(ΛH ξl) + ∂t(J
l
H

ξl) , (B21)whih has to be idential to the expression (B12) for aommon displaement ξ of the whole system, whih aftersome partial integrations takes the form
♦ΛH =

(
−

∑
fX j + ∇lT

lj
H

)
ξj + ∇l(...)

l + ∂t(...) .(B22)The requirement that the previous two expressions haveto be idential (up to divergenes and time derivatives)leads to the Noether identity
∂tJ

i
H

+ ∇jT
ij
H

= f i
ext , (B23)whih is the momentum onservation law (22).APPENDIX C: GALILEAN INVARIANCE OF EIn this setion we show that requiring the onjugatemomenta pX0 and pX of (53) to transform as (55) underGalilean boosts (54) implies that the internal energy Ehas to be Galilean invariant. We assume that E(nX , nX )transforms into E ′(nX , n′

X
) under a Galilean boost, where

n′
X

= nX + nXV . (C1)Therefore the onjugate momenta (53) in the frame mov-ing with speed −V are of the form
−pX0

′
=

1

2
mXv2

X
+mXvX ·V +

1

2
mXV 2+

∂E ′

∂nX

, (C2)
pX ′ = mXvX + mXV − ∂E ′

∂n′
X

, (C3)Using (53) to eliminate all terms ontaining vX , we arriveat
−pX0

′
=−pX0 +V ·pX +

1

2
mXV 2+

[
∂E ′

∂nX

− ∂E
nX

+V · ∂E
nX

]
,(C4)

pX ′=p + mXV +

[
∂E

∂nX

− ∂E ′

∂n′
X

]
. (C5)By omparing with the required transformation proper-ties (55) we see that a neessary and su�ient onditionfor this is the vanishing of the terms in brakets in (C4)and (C5). We an rewrite the partial derivatives of theenergy funtion as follows

∂E ′

∂n′
X

=
∂E ′

∂nX

· ∂nX

∂n′
X

∣∣∣∣
nX

=
∂E ′

∂nX

, (C6)and
∂E ′

∂nX

∣∣∣∣
n

′

X

=
∂E ′

∂nX

∣∣∣∣
nX

+
∂E ′

∂nX

· ∂nX

∂nX

∣∣∣∣
n

′

X

=
∂E ′

∂nX

∣∣∣∣
nX

−V · ∂E ′

∂nX

.(C7)



19Inserting these identities into (C4) and (C5), the invari-ane requirement an be expressed as
∂E
∂nX

∣∣∣∣
nX

=
∂E ′

∂nX

∣∣∣∣
nX

, and ∂E
∂nX

=
∂E ′

∂nX

, for allX ,(C8)therefore E ′ an only di�er from E by a onstant, whihis unimportant beause the absolute value of the energysale is arbitrary. This shows that energy funtion E hasto be Galilean invariant under the above assumptions.APPENDIX D: NEWTONIAN LIMIT OF THERELATIVISTIC LAGRANGIANAs shown in the relativistially ovariant frameworkby Carter [13℄, the equations of motion for ondutingmulti-onstituent �uids an be derived from a ovariantLagrangian density of the form
Λcov = −ρc2 , (D1)where the salar ρ is now the total mass-energy den-sity of the system. For simpliity we onsider here atwo-�uid system, as generalizations to more �uids arestraightforward while making the notation more umber-some. The two �uids, A and B say, are desribed by thetwo 4-urrent densities nµ

A, nµ
B, and therefore the salar

Λcov(n
µ
A, nµ

B) an only depend on the three independentsalar ombinations of these two urrents, for example
nA =

1

c

√
−gµνnµ

Anν
A , nB =

1

c

√
−gµνnµ

Bnν
B ,and

x =
1

c

√
−gµνnµ

Anν
B , (D2)and so generally Λcov = Λcov(nA, nB, x). Instead of x wean equivalently hoose as a third independent quantitythe ombination

∆2

c2
≡ 1 −

(nAnB

x2

)2

. (D3)We are interested here only in the purely hydrodynamiontent of this framework, so we assume a �at spae-time,i.e. a metri of the form
ds2 = gµνdxµdxν = −c2 dt2 + dx2 , (D4)with the time-oordinate x0 = t and so g00 = −c2.When taking the Newtonian limit as c → ∞, the met-ri beomes singular. The reason for this singular limitobviously lies in the fat that a loally Lorentzian the-ory redues to a Galilean invariant theory, therefore theLorentz invariane has to be broken in the limit. Asthe non-invertible metri no longer fully determines the

spae-time, we now have to hoose8 a preferred time o-ordinate, t say, in whih to take the limit and whih willredue to the Newtonian absolute time.The relation between the salar rest-frame partiledensities nX and the densities n0
X

in the preferred-timeframe an be expressed from (D2) and (D4):
nX =

1

c

√
c2(n0

X
)2−n2

X
=n0

X

[
1− 1

2

(vX

c

)2
]
+O

(
c−4

)
,(D5)where (nX )i = ni

X
is the spatial part of the 4-urrent nµ

Xin the preferred time frame, and the relation to the New-tonian 3-veloity vX is simply nX = n0
X

vX . We see fromthis equation that if we hoose the densities n0
X

to rep-resent the Newtonian partile number densities indepen-dent of c, then in the limit we �nd
lim

c→∞
nX = n0

X
. (D6)We further note that the quantity ∆ introdued in (D3)redues to the relative veloity in the Newtonian limit,namely

∆2 = (vA − vB)
2

+ O
(
(v/c)2

)
. (D7)We now turn to the ovariant Lagrangian Λcov of (D1)whih we an quite generally be written as

Λcov = −(nAmA + nBmB) c2 − E(nA, nB, ∆2) , (D8)where the �rst term represents the rest-mass energy inthe �uid frame, while E ontains the �equation of state�,i.e. the internal-energy funtion of the �uid. When wewrite this in the preferred time-frame using (D5), we ob-tain
Λcov = −(n0

AmA+n0
BmB)c2+

1

2
mA n0

Av2
A+

1

2
mBn0

Bv2
B

−E(n0
A, n0

B, ∆2) + O
(
(v/c)2

)
. (D9)We see that this Lagrangian obviously diverges in theNewtonian limit c → ∞ due to the rest-mass energies

n0
X

mX c2. Before we an take this limit, we thereforehave to renormalize the Lagrangian density by subtrat-ing a �nite ounter-term that will make the limit �nite.The most natural hoie is obviously to subtrat themass-energy in the preferred-time frame that will deter-mine the Newtonian absolute time. We therefore de�nethe renormalized Lagrangian density Λren as
Λren ≡ Λcov + (n0

AmA + n0
BmB) c2 . (D10)In Λren we have expliitly broken Lorentz invariane byhoosing a preferred time frame, and when taking theNewtonian limit we obtain the �nite Lagrangian

lim
c→∞

Λren = mA
n2

A

2 nA
+mB

n2
B

2 nB
−E(nA, nB, ∆2) , (D11)8 See [15℄ for a more detailed disussion of this limit and how toonstrut a fully spae-time ovariant Newtonian framework.
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