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ABSTRACT

We present results concerning adiabatic inertial-mode oscillations of non-stratified superfluid
neutron stars in Newtonian gravity, using the anelastic and slow-rotation approximations. We
consider a simple two-fluid model of a superfluid neutron star, where one fluid consists of
the superfluid neutrons and the second fluid contains all the comoving constituents (protons,
electrons). The two fluids are assumed to be ‘free’ in the sense that vortex-mediated forces
such as mutual friction or pinning are absent, but they can be coupled by the equation of state,
in particular by entrainment. The stationary background consists of the two fluids rotating
uniformly around the same axis with potentially different rotation rates. We study the special
cases of corotating backgrounds, vanishing entrainment, and the purely toroidal r modes an-
alytically. We calculate numerically the eigenfunctions and frequencies of inertial modes in
the general case of non-corotating backgrounds, and study their dependence on the relative
rotation rate and entrainment. In these non-stratified models, we find avoided crossings only
between associated mode pairs, e.g. an ‘ordinary’ mode and its ‘superfluid’ counterpart, while
other mode frequencies generally cross as the background parameters are varied. We confirm
(for the first time in a mode calculation) the onset of a ‘two-stream instability’ at a critical
relative background rotation rate, and we study some of the properties of this instability for
the inertial modes.
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1 INTRODUCTION

The oscillations of rotating compact stars are a subject that has
attracted interest for a considerable time. This is natural because
the associated issues range from fundamental applied mathematics
(e.g. the stability of rotating self-gravitating fluid configurations),
to mainstream astrophysics (e.g. helioseismology and attempts to
infer the Sun’s rotation profile from observed modes of oscillation)
and exotic neutron-star physics (e.g. the gravitational-wave driven
instability of the r modes and various viscous damping mechanisms,
such as hyperon bulk viscosity). To date, most investigations have
assumed that a rotating star can be appropriately described by a
perfect fluid model. While such models are relevant in many con-
texts, they do not provide an adequate description of mature neutron
stars. Once a neutron star has cooled below 10°-10'° K, i.e. within
minutes to months after its birth, its outer layers will form a crys-
talline lattice of nuclei. At the same time, the fluid core is expected
to contain several superfluid/superconducting components.
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This paper concerns the dynamics of rotating superfluid neutron
stars. In particular, we study the inertial modes of a simple two-
fluid model appropriate for the conditions that prevail in the outer
core of a neutron star. The two fluids, which represent superfluid
neutrons and a conglomerate of all comoving constituents (protons,
electrons), are coupled via the equation of state (in particular via en-
trainment), but are otherwise allowed to move at independent veloc-
ities. Our background model is a stationary two-fluid configuration
with constant entrainment, with the two fluids rotating uniformly
around the same axis with rotation rates €2, and €2;,.

Previous studies of superfluid inertial modes (including prelim-
inary studies of the zero-frequency subspace), namely Lindblom
& Mendell (2000), Sedrakian & Wasserman (2000), Andersson &
Comer (2001), Comer (2002), Lee & Yoshida (2003) and Yoshida
& Lee (2003a,b), have all been restricted to corotating backgrounds
Q, =Q,. This study is the first to allow for the general case of a back-
ground with two fluids rotating at different rates. This is expected
to be the quasi-stationary ‘ground state’ of a superfluid neutron star
due to its emission-induced spin-down and the weak coupling to the
superfluid components. This background model is also the starting
point of all viable models of Vela-sized glitches. In other words, by
allowing for different rates of rotation, we have taken a crucial step
towards more realistic modelling of the dynamics of mature neutron
stars.
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2 THE TWO-FLUID NEUTRON-STAR MODEL

We take as our starting point the ‘standard’ two-fluid model for su-
perfluid neutron stars (e.g. Lindblom & Mendell 1994; Lee 1995;
Langlois, Sedrakian & Carter 1998; Prix & Rieutord 2002; Prix
2003a), in which we assume that the protons and electrons are
locked together by the magnetic field and viscosity, while the su-
perfluid neutrons form an independent fluid due to their lack of
viscosity. Our model neglects the presence of the elastic crust as
well as the potential presence of exotic matter in the deep neutron-
star core. In essence, the model is expected to be relevant for the
outer neutron-star core. By studying the global modes of oscillation
of this model, we hope to gain insight into the complex dynamics
of any two-fluid system. Even though we are not considering a de-
tailed realistic neutron-star model (the construction of which would
be very difficult given our current level of understanding) we expect
to learn much about qualitative aspects that should remain relevant
also in more complicated settings. It is also interesting to note, cf.
comments made by Sedrakian & Wasserman (2000), that the study
of two-fluid models may be of significance in laboratory contexts,
for example in the study of rotating heavy nuclei using the com-
pressible liquid approximation of the Bohr—Wheeler model, or for
rotating mixtures of Bose—Einstein condensates.

A general Newtonian formalism to describe mixtures of charged
and uncharged fluids has been developed by Prix (2003a,b), based
on a variational principle that was first developed in a fully rela-
tivistic framework by Carter and coworkers (Carter 1989; Carter
& Khalatnikov 1992; Carter & Langlois 1998). In particular, Prix
(2003a) developed a general two-fluid neutron-star model allowing
for temperature gradients and dissipation through mutual friction
and B-reactions between the two fluids. For the present application,
however, we assume a ‘cold’ neutron star in which we can neglect
temperature effects, so we set 7 = 0, and we also neglect mutual
friction and non-adiabatic processes such as §-reactions. The result-
ing framework, which is identical to that used by Prix & Rieutord
(2002) and Andersson & Comer (2001), is briefly introduced in this
section. Note that, although the formalism used here is different from
that more commonly found in the Newtonian literature (Lindblom
& Mendell 1994; Lee 1995; Lee & Yoshida 2003), which is based
on the ‘orthodox’ superfluid formalism introduced by Landau, the
two frameworks can be shown to be strictly equivalent, as discussed
by Prix (2003a).

Our two-fluid model consists of a neutron and a ‘proton’ fluid (the
latter actually consists of the comoving protons and the electrons).
Therefore, the kinematic variables are the particle number densities
n, and n, together with the respective transport velocities v, and
vp. The corresponding transport currents are naturally expressed as

nhy =nxvy, (D

where X € {n, p} is the constituent index (the repetition of which
does not imply summation). An important quantity for our analysis
is the relative velocity A between the two fluids, which we define
as

A =1 — v, 2)
The dynamics is governed by the Lagrangian density

1 1
A= Ennmnvﬁ + Enpmpvi —E&—pd, 3)

where p = myn, + mpn, is the total mass density, @ is the grav-
itational potential and £ is the energy function or ‘equation of
state’ of the system. The general form of the equation of state is

E = E(ny, ny, AZ), which determines the first law of thermody-
namics in the form

d€ = p"dn, + pPdn, + adA?, )

defining the chemical potentials " and uP, as well as the entrain-
ment «. The conjugate momenta for the two fluids are defined by
the total differential of the Lagrangian density A, namely

da =Y [p* - duy + (pf —m*®) dny] — pdo, )
X=n,p

In the following we assume the two masses to be equal, so we set
mP = m" = my,. With the explicit form (3) of the Lagrangian and the
first law (4), we can express these conjugate momenta as

pn = mb(vn + SnA), (6)

pp = mb(vp - é‘pA)» (7)
n n 1 n

pp=—1 +5mbvﬁ—vn-p, ®)
P p 1 v* p

Po = —HE Smet, = v P ©

where we have defined the dimensionless parameters ¢y character-
izing entrainment by

2a

mbnx'

(10)

Ex =

Sometimes it is more convenient to use a single entrainment param-
eter ¢, which we choose to be ¢, so we have

Xp

g, (11)

&p =&, and &n =
1 —x

in terms of the proton fraction x,,, which is naturally defined as

X, = %, with n=n,+np. 12)
We note that this definition of the entrainment ¢ is different from
another definition, which we denote as €, and which is sometimes
found in the literature (e.g. Lindblom & Mendell 2000; Lee &
Yoshida 2003). The relation between these two different defini-
tions is simply (see Prix, Comer & Andersson 2002, for further
discussion)

&ny

€= (13)

[
We assume that the time-scale of oscillations is much shorter than

that of B-reactions. Therefore, strict conservation of neutrons and
protons applies, i.e. we have

01, + V- (n,v,) =0, (14)

Onp + V- (npyp) =0. 15)

As shown by Prix (2003a), the equations of motion for the two fluids
can be derived from the Lagrangian density (2) using a ‘convective’
variational principle. They can be written in the form

fX

nx

@ +vx - V)p* + p Vv — VO = (16)

where f¥ is the ‘external’ force density acting on the fluid X, and
the scalars QX are defined as
0% = pf —m*® + vy - p*

= —p* + Imyv} — m,®. 17
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In the absence of ‘external’ forces acting on the whole system, the
hydrodynamic force densities f¥ in equation (16) have to satisfy
S™ + fP = 0 as a Noether identity of the variational principle. This
still allows us to describe a mutual force f,, acting between the two
fluids. It could be caused, for example, by collisions of the electrons
with the neutron vortices (see, for example, Alpar, Langer & Sauls
1984). Such amodel would be characterized by f" = — f? = f u- As
a first step, however, we only consider the ‘free’ limit and postpone
the inclusion of mutual friction and viscosity to future work. Our
‘free’ model is therefore characterized by

fX=o, for X =n,p. (18)

3 THE STATIONARY BACKGROUND

We assume the background to be stationary and axisymmetric, with
both fluids rotating around the z-axis with rotation rates £, and 2,
respectively. Hence

vy = Qxp, and A =(2, — Q)o, (19)

where ¢ is the axial Killing vector, given by

In spherical coordinates, i.e. x' € {r, 6, ¢}, this vector has the
components ¢’ = (0, 0, 1), and its norm is ¢’p; = r? sin?§. With the
entrainment relations (6) and (7) we can now write the background
fluid momenta as

Pn = mb(Qn - 5n(Qn - Qp))@v (21)

pp = mb(Qp - 8p(Qp - Qn))‘p (22)

In the following it will be convenient to introduce as a shorthand
notation the tilde operator acting on a constituent quantity, Qy say,
as follows

Qx = Qy — ex(Qy — Qy),  where Y #X. (23)

This allows us to rewrite the background momenta as
p¥ = myQxep. 24)

We restrict our attention to models with uniform rotation, i.e.
VQy = 0. Therefore, the background vorticities are

V x p¥ = 2myQxz + (Qx — Q) X Vex, (25)

where Z is the unit vector along the z-axis. We see that, in the general
case of a varying entrainment ¢y and different background rotation
rates 2, # 2, the vorticities are no longer aligned with the rotation
axis. In other words, they acquire a non-zero 8-component and the
system is in a state which resembles differential rotation.

As a first step towards a complete understanding of the dynamics
of rotating two-fluid systems, we will focus on one of the simplest
possibilities. We make the assumption that the entrainment ey is
constant throughout the star, which means that we have Vey = 0
and therefore also VQyx = 0. We note that assuming both entrain-
ment parameters €y to be constant also requires a constant proton
fraction x,. In the following we therefore consider a non-stratified
neutron-star model (i.e. Vx, = 0) with constant entrainment. This
model is admittedly simplistic but, as we will see in the following,
it nevertheless allows for a rich phenomenology.
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4 LINEAR OSCILLATIONS

4.1 Oscillation equations in harmonic basis

Assuming uniform rotation and a constant entrainment model as
discussed above, the linear perturbation of the equations of motion
(16) can be obtained in the form

spX
@, + QX£¢)mL +2QxCx + Vix = 0, (26)
b

where the Lie derivative here has the explicit form £,8p; = ¢/V;5p;
+ 8p;V,¢/, and § represents an Eulerian perturbation. We have de-
fined the Coriolis term Cy for each of the two fluids as

Cx =% X dvy, 27

and a scalar potential v x representing the ‘effective’ pressure per-
turbation, namely

myry =8 + mydg + (p¥ — vx) - Svx. (28)

The background is assumed to be stationary and axisymmetric, so
we can look for eigenmode solutions of the form e+ and the
comoving time derivative in equation (26) can be directly replaced
by

(0, + Qx£,) — i(w + mQx). (29)

The practical advantage of using the Lie derivative £, here is that the
substitution £, — im holds for any geometric object (e.g. a vector as
in equation 26) with a ¢ dependence of the form ¢, while for the
simple directional derivative ¢ - V this is only true if it is applied
to scalars.

Linear perturbation of the conservation equations (14) and (15)
leads to

a,(Snx -+ V. (I’lx6UX + (Snx’Ux) =0. (30)

In the present analysis we are only interested in inertial modes,
which are characterized by frequencies of the order of the rotation
rate Q2. Because this frequency is usually much lower than that of the
lowest-order p-mode frequency @, we can simplify the problem by
using the anelastic approximation (which effectively ‘filters out’ the
p modes). As discussed in more detail in Appendix A, the anelastic
approximation consists of replacing the conservation equations by

>
V-(nXva)=O+O(—2> . (€2))
@p
The lowest-order p-mode frequency w, is of the order of the sound
crossing frequency, i.e. w, = O(co/R), where ¢ is an averaged
sound speed and R is the stellar radius. For low-frequency modes
such as the inertial modes we can therefore drop the higher-order
corrections in equation (31), which account for the ‘elasticity’ (i.e.
compressibility) of matter. In the following we also restrict ourselves
to slowly rotating backgrounds. Because

QZ
ny =nx(r)+ O <47’tG,00> , (32)

the star remains spherical if we neglect the centrifugal deforma-
tion. It is important to note the difference between the slow-rotation
approximation, which compares the rotation rate 2 to the Kepler
limit Qg = O(V/47Gpy), and the anelastic approximation, which
is relevant for mode frequencies that are small compared to ;.
The anelastic approximation (31) together with the slow-rotation
approximation (32) is effectively equivalent to the formalism used
by Lockitch & Friedman (1999) and others in this context, which
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proceeds by ordering all quantities in €2 and keeping only terms up
to O(R2). The present approach, however, makes it more obvious that
there are really two different small quantities (which both scale with
€2) which can be used for consistent approximations. For example,
in the next step one could go up to second order in slow rotation
(taking into account the centrifugal deformation of the background)
while still working at zeroth order in the anelastic approximation,
and thus still filtering out high-frequency modes. In the same man-
ner, one could drop the anelastic approximation while still working
with a spherical slow-rotation background.

In order to solve the perturbation equations (26) and (31) for iner-
tial modes, we first transform them into a pseudo-one-dimensional
problem by expressing all angular dependences in terms of the spher-
ical harmonics Y;"(6, ¢). The spherical harmonics are the eigenvec-
tors of the angular Laplacian, namely

41

VYO, 9) = =

Y, ¢). (33)

Because these functions form a complete orthonormal basis, we can
expand a scalar field ¥ x as

Ux(r,0,9) = Yy (NY"©, ), (34)

where here and in the following automatic summation over repeated
‘angular’ indices (I, m, ...) applies. Because of the assumption of
an axisymmetric background, the various m-contributions can be
decoupled, and therefore we can consider each value of m separately.
In order to express a vector field in a similar manner, we use the
‘harmonic basis’ {R}", S}", T}, which is defined in terms of the
spherical harmonics as

R'=Y"Vr, S =vVvy/", T =8" X Vr. (35)
We can then expand the velocity perturbations §vy as
W/
svy = D0 gyt gt . (36)
r

Using the entrainment relations (6) and (7), and assuming a constant
entrainment model we obtain

spX
ny

= (S’UX — Sx((S’UX — S’U)/) = (Sf’l;x, (37)

where we have used the definition (23) of the tilde operator. This
can conveniently be written in the harmonic basis as

spX Wl ~ ~
o _ Txpm oy yisr gl (38)
my r

The gradient of a scalar field (34) is readily expressed as
Vi = U (DR + ¥ (ST, (39)

where the prime represents a radial derivative. The expression for
the Coriolis terms (27) in the harmonic basis is found after a straight-
forward, but laborious, calculation to be given by

Cy =~ (mVi + BLUY) R

1 I I Ik qm
T (mWy +mVy +yUS) S
1
I+
where we sum over the repeated ‘angular’ indices (k and /), and the
constant matrices B and y! are defined as

Bf =101418k101 — L+ 1) Qi8ii1, 1)

(BfW§ +mU, + y[V§) T}, (40)

J’kl =- DO i—1 + 11 +2)Q1 416k 1415 (42)

with the usual definition

12 —m?

Q=\E-1

43)

4.2 The general eigenmode equations

Putting all the pieces together, we can now express the complete
system of equations (26) and (31) in the harmonic basis as

rwl 4+ (1 + r"—X> W, — 1+ 1)V, =0, (44)
nx
Kx Wy =2 (mVy + BLUY) = 2r i, 45)
7! 2 ! 1 I77k 7l
Kx Vi — TFD (mWy +mVy + v UY) =2y, (46)
P — (BEWE +mUy + v V§) =0 47)
X l(l+ ]) 1 X X k"X ’
where we defined
w+mQy ~, i .
Ky = ———, and Yy = — Y. (48)
. Qx YT

We note that this definition of the dimensionless frequencies « x
reduces to the usual single-fluid definition k¥ = (@ + m2)/<2 in the
case of comoving fluids, or in the absence of entrainment. In both
of these cases we have 2y — Qy as seen from the definition (23).

The boundary conditions at the centre of the star (r = 0) consist
of the regularity requirement of the harmonic expansion (34) and
(36), which implies the asymptotic conditions

Wy~ Wy ~Uy ~yx ~O@") as  r—0. (49)

At the surface (r = R) we require another regularity condition due
to the divergent term nx’/ny in the conservation equations (44). As
discussed in Appendix A, this is a consequence of the anelastic ap-
proximation. The resulting surface boundary condition is therefore

Wx(R) =0, (50)

i.e. the radial displacement vanishes at the surface. For models with
a vanishing surface density we do not need to impose an explicit con-
dition on the pressure variation at the surface, as for the Lagrangian
pressure perturbation § P we have

AP:8P+£-VP:8P:an8uX, (51)

where £ is the displacement vector of the perturbation. The van-
ishing of 8P is therefore ensured provided that §uX are regular at
the surface. As our numerical scheme can only find such regular
solutions, this boundary condition is implicitly guaranteed to hold.

4.3 Special case: zero entrainment

We note that the only coupling between the neutrons (X = n) and
the protons (X = p) in the eigenvalue system (44)—(47) is caused by
the entrainment, cf. the definition of the tilde operator (23). In the
case of zero entrainment, i.e. £, = &, = 0, we obtain two uncou-
pled eigenvalue systems. Both systems are formally identical, and
therefore both have the same solutions for xy, i.e.

o = Ky = Kot (52)
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where « oq represents the single-fluid solutions. However, from the
definition (48) we see that these correspond to different mode fre-
quencies when the rotation rates of the two fluids are different, i.e.

@y = (Kora — M) 2, and wp = (Kord — m) st (53)

which implies that these two solutions cannot form a single mode
solution when €2, # €. The two modes in this case therefore cor-
respond to only one of the two fluids oscillating while the other fluid
is at rest, i.e.

w=w, :6v, #0, and dv, =0, 54)

o =w,:0v, =0, and dv, # 0. (55)

From the fact that one of the two fluid amplitudes necessarily van-
ishes when ¢ — 0 we deduce that the corresponding amplitude will
actually change sign at this point. We can therefore conjecture that
if the two fluids were predominantly in phase before crossing ¢ =
0, then they will be predominantly in counter-phase afterwards and
vice versa. We will see in Section 6 that our numerical results agree
perfectly with this conjecture.

4.4 The r-mode subclass

The subclass of purely axial inertial modes, commonly referred to
as r modes, has generated a lot of interest due to its strong instability
with respect to gravitational waves (Andersson 1998; Friedman &
Morsink 1998). Therefore, it is interesting to see if this subclass still
exists in the superfluid case, and how its properties are modified. A
purely axial velocity perturbation is proportional to T7", so we set
Wi = V%, = 0. In this case, equations (44)—(47) reduce to

2QxBLUE +iryl =0, (56)
2Qxy UL +il(l + Dyl =0, (57)
1 ~

Sexdl + HUy —mUj = 0. (58)

While the first two equations (56) and (57) allow us to calculate
the eigenfunctions U, and %, they do not constrain the eigenvalue
in any way. The third equation (58), however, leads to an algebraic
constraint for the existence of a non-trivial axial solution. In order to
find this constraint, we use the explicit expressions for equation (58)
for the two fluids, i.e.

1
El(l + D [(1 = &)U, + &,U] = mU, =0, (59)

1 1 1 1
L0+ Vi [(1 = &)U, + &Up | = mUy =0, (60)

from which we can eliminate the Uﬁ( (assumed non-zero) to obtain
the following dispersion relation for superfluid r modes

(10 + D — &)@ + m,) — 2m,]
X 1A+ D — gp)@ + my) — 2m]
— P+ 1 ?engp(@ + mQu) (@ + mR,) = 0. 61)

We note that this corrects the dispersion relation that was used by
Andersson, Comer & Prix (2003) in a discussion of the superfluid
two-stream instability of the r modes.

© 2004 RAS, MNRAS 348, 625-637
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5 THE COROTATING CASE Q, = Q,

Before turning to the numerical solution of the general case with
Q, # Qp, it is instructive to study the special case of two coro-
tating fluids, where we have Q x = 2. The linearized perturbation
equations (26) and (31) then take the form

\%
ik[svy — ex(Svy — Svy)] + 2Cx + gx =0, (62)
V. (nxa’l)x) = O, (63)
where we have defined
Q
‘= a)+7m (64)
Q

which is the usual dimensionless frequency of inertial modes in the
corotating frame. It is interesting to see under which conditions this
system can be separated into purely comoving and counter-moving
modes. We therefore introduce the usual variables corresponding to
these two mode-classes, namely

A = bv, — vy, 88 = Vp — Y,
dv= xp0up +xpdvn, S = XY + Xa V. (65)

In terms of these variables the oscillation equations can be rewritten
as

V. (név) =0, (66)
iKév+2Z X v+ Véu = 8BVx,, (67)
V « (nxpxp8 A) = —ndv - Vxp, (68)
iy 'SA 422 X A+ VB =0, (69)

where we have defined

-1
1
y=— = (1--% . (70)
l—¢&,—¢ 1—x,

We see that the variables {$v, i}, which are characteristic of
‘ordinary’-type modes, decouple from the ‘superfluid’ variables
{8A, 38}, if and only if the background model is not stratified,
i.e. if Vx, = 0. This is exactly the same condition that was found in
the case of a static superfluid neutron star (Prix & Rieutord 2002).
We further see that in the non-stratified case the equations governing
the two mode-families are equivalent, and the ‘ordinary’-type mode
frequencies « ,q are therefore related to the ‘superfluid’-type ones
by

Kst = ¥V Kord- (71)

It is well known (Bryan 1889) that the inertial mode frequencies
k2 of an incompressible fluid are bounded (and form a dense set)
in the interval [—2€2, 2L2]. In the compressible case, we still expect
this to hold approximately. This will therefore also be true for the
‘ordinary’-type modes in the corotating case, but relation (71) shows
that the corresponding interval for the ‘superfluid’-type modes will
be governed by the factor y. This scalefactor depends only on the
proton fraction x;, and the entrainment ¢, and can, in principle, take
any value between [—o0, +00]. For ¢ < 0 we have y € (0, 1), i.e.
the ‘superfluid’-type mode frequencies lie closer to the origin than
their ‘ordinary’-type counterpart, and they are bounded by a smaller
interval than the ‘ordinary’ modes. For ¢ > 0 on the other hand, the
‘superfluid’-type mode frequencies lie further away from the ori-
gin than their ‘ordinary’ counterparts and their bounding interval is
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larger. We also note that the ‘ordinary’-type modes are independent
of the entrainment (in these non-stratified models), as expected from
their strictly comoving character. If we express the scalefactor (70)
in terms of the alternative entrainment parameter € as defined in
equation (13), we find

y=1+5. (72)
Xp

Therefore, we see that the ‘superfluid’-type mode frequencies are
linear in €. This has been found previously for the r-mode subclass
by Andersson & Comer (2001). It was also observed numerically for
inertial modes by Lee & Yoshida (2003) and Yoshida & Lee (2003a),
although only as an ‘almost’ linear dependence. This slight discrep-
ancy is not surprising as their background model is stratified (i.e. x,,
is not constant) and the above decoupling of the mode families is
therefore expected to hold only approximately.

5.1 The r modes of the corotating model

In the case of a corotating background, the r-mode dispersion rela-
tion (61) reduces to

[(1 - Sn)K - Kord][(l - 8p)K - Kord] - gngplc2 = O, (73)
where

_ 2m (74)
Kord = l(l + 1)

is the standard single-fluid r-mode frequency. Solving the quadratic
dispersion relation we find that the two r-mode frequencies of the
superfluid problem are

k= {Korda yKord}, (75)

in agreement with the general relation (71).
In order to find the corresponding eigenfunctions, we eliminate
ng from equations (56) and (57) to obtain

-1 [, U
Hor vy it

I+2 : Uy
+ H_—IQ,H {Uﬁ(“ +d+1 ’r‘ =0. (76)

This equation has to hold for every / > m, and we can therefore
extract the two simultaneous conditions

, U!
or, [U§( —(+ 1)7)‘} =0, (77)

. UL
or [U; +1—X} =0, (78)
r

for which the only non-trivial and non-singular solution is
UL = Cxr'™, with  m =1 (79)

Substituting this eigenfunction and the eigenvalues (75) back into
(58), we find the following relation between the two amplitudes

K = Kora : Cp = Cu, (80)

nn
K = VYKo - Cp =——0C,, (81)
p
which corresponds to purely comoving and counter-moving
r modes, respectively.

6 NUMERICAL RESULTS FOR THE
GENERAL CASE Q, # Q,

In the following we choose the proton rotation rate 2, as the ‘ref-
erence’ rotation rate. This choice is motivated by the fact that the
observed rotation of neutron stars (via pulsar emission) is thought
to be related to the charged components (assumed to corotate with
the crust), while the rotation rate €2, of the superfluid neutrons is
not directly observable. We define the relative rotation rate R as

Q- Q,

R = 82
o, (82)
With these definitions we can write equation (23) as
Q= Q1 + (1 — )R], (83)
Qp = [l + &R (84)
Further introducing
| 1

vy = ———— and 2v, = , 85

1+ —e)R PR @)
we can express k x defined in equation (48) as
Kn = 2nko + 2mvy, R, (86)
Kp = 2VpKo, 87)

where «( is a dimensionless ‘reference frequency’ of the mode,
which we define as
Q
Ko = w’ (88)
2,

in analogy with the usual single-fluid definition. With these defi-
nitions we can write the system of equations (44)—(47) as a one-
dimensional infinite eigenvalue problem for «( in the form

i AV =k i B, (89)

I=|m| I=|m|

where X, and ﬁ, are linear operators and W' is the eigenvector
W= { WL WL VL VL UL UL ) (90)
The explicit form of these equations is given in Appendix B. By
taking the sum over / only up to a finite value /,,,,, we can solve the
resulting finite eigenvalue problem using the LSB spectral solver,
which is based on the efficient incomplete Arnoldi—Chebychev al-
gorithm. This is the same method that Prix & Rieutord (2002) used
to study non-radial oscillations of non-rotating superfluid neutron
stars.

Most of the numerical calculations in the following have been
performed for both a uniform-density background (i.e. polytropic
index N = 0) and a polytropic background with N = 1 (for each of the
fluids). The results are quite similar and we therefore only present the
polytropic case here. Furthermore, we only considered the case m =
2, which is expected to be the most relevant for gravitational-wave
emission. The results for higher values of m are not expected to show
any qualitative differences. In all of the following sections except
for Section 6.4, we use a neutron-star model with ‘canonical’ values
xp = 0.1 for the proton fraction and ¢ = 0.6 for the entrainment,
which conveniently results in a scaling factor (70) of y = 3. This
choice of parameters is referred to as ‘model I’. In Section 6.4 on the
two-stream instability, on the other hand, we will choose these values
tobe x, = 0.2 and & = —2, which leads to y ~ 0.2857, and we call
this ‘model II’. The parameters of these two neutron-star models are
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Table 1. Parameters of the two neutron-star
models studied here.

Model Xp & y
I 0.1 0.6 3.0
I 0.2 -2.0 0.2857

T
f

T
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T
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logyq |et]
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T
[

T
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Figure 1. Angular convergence of the (‘ordinary’) inertial mode withm =2
andj =y —m+ 1 =5 (which we label glf{f) at R = 0 for the homogeneous
background model (N = 0) and the N = 1 polytrope. The plotted quantity
¢ represents the magnitude of the harmonic expansion coefficients (34) and

(36) of the eigenmode.

summarized in Table 1. For the low-order inertial modes considered
in this paper aradial resolution of 30 Chebychev polynomials and an
angular resolution of about 10 spherical harmonics is used in most
cases, which proves sufficient to obtain a numerical precision of the
order of 107, In the case of r modes, we compared our numerical
results to a direct evaluation of the dispersion relation (61) and
found an agreement better than 10~° in all cases considered. In the
corotating case (R = 0) our numerical results for the ‘ordinary’
modes agree up to the given precision ~ 10~®) with the single-fluid
results in the literature (e.g. Lockitch & Friedman 1999), and the
‘superfluid” modes satisfy the analytical relation (71) as expected.

6.1 Angular convergence and inertial-mode labelling

It was shown by Lockitch & Friedman (1999) that for m # 0O the
lowest non-zero [-coefficient in the harmonic expansions (34) and
(36) is necessarily / = |m|. Furthermore, in the case of a uniform
density background model (i.e. N = 0), it is known that the harmonic
expansion (36) of the solution dv stops at a finite /y. In fact, the
corresponding coefficients can be calculated analytically. There are
always exactly j = [y — |m| + 1 mode-solutions for any given m # 0
and /o > |m|. In the case of a polytropic background with N = 1
the solution turns out to be quite similar to the uniform case, except
that the expansion does not stop after a finite number of terms.
Instead it converges exponentially beyond / = /. This behaviour is
illustrated in Fig. 1, which shows the angular expansion coefficients
of the (axial-led, m = 2) inertial mode with xy = —1.308 for N =
0 and the analogous mode ko = —1.43392 for N = 1. We see that
in the uniform background case there is a sharp drop after j = 5,
as the higher-order coefficients are analytically zero, while in the
polytropic case we observe an exponential falloff. The quantitative
and qualitative similarity to the uniform model allows us to associate
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Table 2. Inertial-mode frequencies k  of the polytropic model I (cf. Table 1)
for backgrounds with relative rotation R = 0 and for R = 0.1, respectively.

P kg R=0 1§ lR=0 kg R=0.1 K3 I R=0.1
11(1) 0.666 667 2.000 000 0.545 300 2.108 033
21(1) —0.556 592 —1.669 775 —0.781 724 —1.800 487
21(2) 1.100 026 3.300 077 1.018 492 3.489 617
3[(1) —1.025 883 —3.077 648 —1.295019 —3.295 758
31(2) 0.517 337 1.552 012 0.381 944 1.632 260
3[(3) 1.357 781 4.073 343 1.299 684 4311618

the modes of the polytropic model with corresponding modes of
the uniform model. In case of doubt it should always be possible
to associate modes via a continuous transformation of N. We can
therefore conveniently label the modes by their ‘quantum numbers’
m, j and an additional index n € [1, j] accounting for the j different
solutions at given m and j. As a convention we choose to order the
modes by increasing frequency « (, so we label the inertial modes as

wdoy 20 A0y < hloy < -+ < 4Gy 1

where the inequalities obviously refer to the eigenfrequency «( of
the corresponding mode. For the sake of reference we show the
frequencies « of the six lowest-order inertial modes in Table 2,
both for a corotating background R = 0 and for R = 0.1. We note
that the values for k{™|r—y agree up to the given precision with
previous results in the literature, (e.g. Lockitch & Friedman 1999).
We also note that the ‘superfluid’ frequencies in the corotating case
satisfy the scaling relation (71) at R = 0 with y = 3.0 (cf. Table 1),
while this relation naturally does not hold for R # 0.

6.2 The effect of relative rotation R

We have seen in Section 5 that in the corotating case the inertial
modes of non-stratified stars can be separated into purely comoving
and counter-moving families. This is no longer true when we allow
for a non-zero relative rotation R # 0. Similar to stratification (cf.
Prix & Rieutord 2002), the relative rotation introduces a coupling
between these mode families, leading to a deviation from the strictly
comoving and counter-moving nature of the modes. This is shown
in Fig. 2.

Compared to the effect of stratification, however, the mode
coupling induced by the relative rotation R (in the absence of

S SN N NN (I TS [ AT NN S VRN U S N (L [T
0 02 04 0.6 0.8 10 02 04 06 (%3 1
R 4
Figure 2. The polar-led ‘ordinary’ inertial mode %I"lrd for model I with a
corotating background R = 0 (left panel) and R = 0.1 (right panel). The
next higher /-contributions are one order of magnitude smaller and are not

included in this graph.
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Figure 3. Neutron and proton amplitudes for different relative rotations
R. The plot shows the / = 2 components U, and U, of the mode %I;’Z‘f for
R =0, —0.1, —0.4 and —0.6. The normalization is such that U,(R) = 1,
for which Uy, is seen to be invariant under changes of R.

stratification) seems to be of a much weaker nature. Although the
two fluids are no longer strictly comoving or counter-moving, they
always have a well-defined phase relation, in the sense that they
are either strictly in phase or in counter-phase. Changing R does
not change the position of the nodes of the mode. This can be seen
in Fig. 3 which illustrates the transition of the 3/%¢ mode being in
phase to being in counter-phase when varying R. Furthermore, this
coupling does not lead to general avoided crossings between iner-
tial modes, as can be seen in Fig. 4 in which we show the mode
frequencies of the lowest-order inertial modes as functions of the
relative rotation rate R. A striking feature of this graph is that there
are two common crossing points for the mode frequencies. This can
be understood as follows. The system of equations (B1)—-(B8) has
a singularity when vy — oo for X = n or X = p. We see from
equation (85) that this happens at the relative rotation rates
1 1

and R=——,
1—¢, &p

Figure 4. Frequencies k¢ of ‘ordinary’ I°¢ and ‘superfluid’ I*' inertial
modes with m = 2 as functions of the relative rotation rate R for the poly-
tropic (N = 1) background model I. The two common crossing points (94)
are marked by ‘x’. The modes presented here are the six lowest-order inertial
modes, %I(]) to 31(3).

respectively. At these singular points the system of equations re-
duces to the following constraints:
&n

v, = 00 kg = —mR, or Wr[‘:—

W ©2)

v, = 00 : ko = 0, or w! = % wi, 93)

P 1—¢

and similar amplitude constraints hold for V% and U,. The two
common crossing points therefore have to be

mro={(L0). (o)) e
&p 1_“E‘n

These points are marked by ‘x’ in our various frequency plots. The
solutions at these critical relative rotation rates fall into two classes:
modes that cross at the common crossing point, and modes that
satisfy the amplitude relations (92) or (93). These analytical results
agree perfectly well with the numerical findings and provide a good
consistency check of our numerical results. We note that while in
Fig. 4 it seems as if each of the modes necessarily passes through
one of the two crossing points, this is not generally the case, as will
be seen in Fig. 7 for a different choice of parameters.

It is interesting to note that the two critical relative rotation rates
correspond to the vanishing of the angular momentum of one of
the two fluids, i.e. v, — oo corresponds to p" = 0 and v, — o0 is
equivalent to p? = 0. This is obviously an effect of the entrainment —
the fluid is rotating but has zero angular momentum. As a result, the
Coriolis force acting on this fluid vanishes and the mode becomes
stationary in the reference frame of the respective fluid. As we have
chosen €2, as our reference rotation, we find «o = 0 for p? = 0.
The non-zero crossing frequency ko = —mR for p" = 0 simply
corresponds to zero frequency in the neutron-frame observed in the
proton-frame.

While there are no general avoided crossings, the coupling in-
duced by R does lead to avoided crossings between corresponding
‘mode pairs’, i.e. between the ‘ordinary’ mode and its ‘superfluid’
counterpart, as can be seen in Fig. 5. We note that the labelling 7°®
and I*' used in Fig. 4 to refer to ‘ordinary’ or ‘superfluid’ modes is
defined by continuing the mode from R = 0. This labelling can be
misleading, however, as for R # 0 it does not reflect the comov-
ing or counter-moving nature of the mode. Neither does it imply
the mode to be in phase or in counter-phase, as can be seen from
Fig. 3. In Fig. 5 and in the following it will often be more inter-
esting to indicate the phase character of a mode, so we will write
1, for modes with in-phase fluid motion, and /_ for modes where
the fluids are in counter-phase. As we have already seen in Fig. 3,
the relative phase is not an invariant property of the ‘ordinary’ or
‘superfluid’” mode families. For example, in Fig. 5 the ‘superfluid’
modes are always in counter-phase, while the ‘ordinary’ mode is in
phase in a certain region but in counter-phase in another. We note,
however, that the ordinary mode necessarily has to be in phase in
R = 0, as we know analytically (see Section 5) that at this point
the two mode-families have strict comoving and counter-moving
character.

Let us consider the relation between the pattern speed ¢ = —w/m
of the mode and the two rotation rates 2, and €2,,. In particular, we
are interested in the region where the pattern speed of the mode lies
in between the rotation rates of the two fluids, such that it would
appear prograde when viewed in one fluid frame and retrograde in
the other. We can see that this ‘mixed’ region is characterized by
the condition

Kko(kg +mR) < 0. 95)
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Figure 5. Avoided crossings between ‘ordinary’ and ‘superfluid’ (defined at R = 0) inertial modes as functions of the relative rotation rate R. The common
crossing points (94) are marked by ‘x’ and the shaded areas corresponds to the ‘mixed’ region as defined in equation (95). The labels 7 and /_ indicate if the

two fluids are in phase or in counter-phase, respectively.

This ‘mixed’ region is indicated in Figs 5 and 7 as a shaded area,
and we observe that the change of the phase character of modes only
occurs when the mode frequency crosses into or out of the ‘mixed’
region. There seems to be no phase change, however, if the crossing
takes place via one of the two common crossing points (94), which
are indicated by ‘x’ in these figures. We can try to understand this as
follows. When a mode crosses into or out of the ‘mixed’ region, it
means that its frequency vanishes and changes sign in one of the two
fluid frames. In general, the Coriolis force of the corresponding fluid
is non-zero in this point, therefore the frequency can only be zero
if the fluid ceases to move. The corresponding fluid eigenfunctions
therefore undergo a sign change, which results in the phase change
of the mode. In the special case where the crossing occurs via one of
the two common crossing points, however, the Coriolis force does
vanish at this point and subsequently changes sign, therefore the
mode amplitude cannot change sign and the crossing takes place
without a phase change.

6.3 Varying the entrainment

In Fig. 6 we have plotted the mode frequencies of background model
I as functions of the entrainment ¢ for a configuration with relative
rotation R = 0.1. Similar to the avoided crossings as functions
of R shown in Fig. 5, we observe that there are only ‘pairwise’
avoided crossings, i.e. between an ‘ordinary’ and the corresponding
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‘superfluid’ mode. We further note that the crossing of the zero-
entrainment axis (¢ = 0) is rather special, as can be understood
from the discussion in Section 4.3. At ¢ = 0, one of the two fluid
amplitudes is necessarily zero, and therefore the crossing of the
¢ = 0 axis induces a phase change between the two fluids. This is
exactly the behaviour observed numerically for the modes shown in
Fig. 6.

We also note that in the corotating case R = 0 we would only find
degenerate crossings at ¢ = 0, because we know analytically that in
this case y = 1, so that with equation (71) we have « o;,¢ = k5. This
is a particularity of the non-stratified model, as indicated by similar
results for the oscillation modes of static backgrounds models (Prix
& Rieutord 2002). Avoided crossings as functions of & were first
suggested by Andersson & Comer (2001) and then first calculated
in the relativistic study of (stratified) static models by Andersson,
Comer & Langlois (2002). Furthermore, Lee & Yoshida (2003) and
Yoshida & Lee (2003a) have observed avoided crossings between
inertial modes of corotating (stratified) superfluid models. This is
consistent with our results.

6.4 The two-stream instability

It was recently discovered (Andersson, Comer & Prix, in prepa-
ration) that superfluid systems may, quite generally, suffer a so-
called ‘two-stream instability’. In the present context, this instability
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Figure 6. Avoided crossings between ‘ordinary’ and ‘superfluid’ m = 2 inertial modes as functions of entrainment ¢ for the background model I and a relative
rotation rate of R = 0.1. The labels 7 and /_ refer to the phase character of the modes.

would set in when the relative velocity between the two fluids ex-
ceeds a certain critical level. This mechanism was suggested as a
possible mechanism for triggering pulsar glitches (Andersson et al.
2003). Unfortunately, the dispersion relation for superfluid r modes
on which the analysis of Andersson et al. (2003) was based is in-
correct, affecting the various estimates for the onset and growth of
the instability (for a detailed discussion, see Andersson et al., in
preparation).

As the general instability mechanism remains sound, we expect
to find inertial modes that become unstable beyond a critical rela-
tive rotation rate R. For the parameter values chosen for Fig. 5, no
such instabilities were observed within the interval —2 < R < 1
that was considered. However, using the dispersion relation (61),
we can identify a more instability-prone region to be, for example, a
proton fraction of x, = 0.2 and an entrainment of ¢ = —2, which is
our model IT (cf. Table 1). In the neutron-star core, the entrainment
¢ is generally expected to be positive, but a negative entrainment
is nevertheless not unphysical. Superfluid “He, for example, has
negative entrainment, and this is also expected to be the case for
the neutron superfluid in the neutron-star crust (Carter, Chamel &
Haensel, in preparation). While the present example serves only as
a consistency check and proof of principle, we emphasize that these
parameter values are not completely unphysical. In Fig. 7 we plot the
frequencies of the lowest-order inertial modes as functions of the R
for this choice of parameters. We see that now the r mode {I (), and
the inertial modes 3/ 5 and 3/ 3, do indeed undergo an instability via
the merger of the ‘ordinary’-type mode with its ‘superfluid’ coun-
terpart. After this merger, the two mode-frequencies are complex
conjugates, which is to be expected from the time symmetry of the
problem. The real part of « is strictly linear in R in the instability
region. For the present set of parameters, the two common crossing
points given by equation (94) are (R, ko) = (0.5, 0) and (—0.6667,
1.3333). These points are marked by ‘x’ in Fig. 7. Interestingly,
the instability point of the r mode coincides (up to numerical pre-
cision ~107%) with one of the common crossing points discussed
earlier, namely the one at which the proton-fluid angular momentum
vanishes. Using the analytic r-mode dispersion relation (61), we can
verify that the instability occurs exactly at the crossing point (0.5, 0).
However, this is clearly seen not to be the case for the higher-order

inertial modes. We might expect the instabilities to occur in one
of the ‘mixed’ regions, as the mode is then prograde in one fluid
frame and retrograde in the other (see, for example, Pierce 1974).
This, however, is not always the case, as illustrated in Fig. 8. We
see that onset of the instabilities of the /(5 and 3/(3, modes occurs
slightly outside the ‘mixed’ region. Given the numerical precision
of < 107°, this should not be due to numerical errors. This obser-
vation serves as a strong motivation for a study into the stability
properties of rotating multi-fluid systems. It would be desirable to
attempt a derivation of useful instability criteria, e.g. analogous to
those derived by Friedman & Schutz (1978) for the single-fluid
problem.

7 DISCUSSION

In this paper we have derived the equations that govern inertial
modes of a slowly-rotating superfluid neutron-star model using the
anelastic and slow-rotation approximations. These equations are
more general than those used in previous studies because they al-
low for general non-corotating backgrounds 2, # 2,. We have
discussed analytically the special cases of corotation and zero en-
trainment. The obtained analytical results were then confirmed by,
and thus served as important benchmark tests for, our numerical
calculations. We studied numerically the dependence of the mode
frequencies on the relative rotation rate and entrainment, and found
avoided crossings between mode pairs. The ‘phase character’ of the
modes was found to be rather complex, in the sense that it can change
when crossing into or out of a ‘mixed region’. In a ‘mixed region’
the mode frequencies lie in between the two background rotation
rates. We have also confirmed, for the first time in a complete mode
calculation, the existence of the superfluid two-stream instability.
We have studied the onset of this instability as a function of relative
rotation rate, and found that, contrary to intuitive expectations, the
onset can sometimes take place slightly outside the ‘mixed region’.

The complicated problem of oscillations of rotating multi-fluid
systems provides many challenges that should inspire future work.
More detailed models should allow for stratified backgrounds as this
would be closer to a realistic neutron-star model. Stratification is ex-
pected to lead to a substantially more complex character of the mode
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Figure 7. Inertial-mode frequencies as functions of the relative rotation R for model II (cf. Table 1). The common crossing points (94) are marked by ‘x’.
Merger of two real frequencies leads to a complex-conjugate pair, and signals the onset of instability. The shaded areas indicate the ‘mixed’ region as defined
in equation (96). The labels /. and /_ indicate if the two fluids are in phase or in counter-phase, respectively. The boxes indicate regions that we zoom into in
Fig. 8.
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spectrum. In particular, there is likely to be avoided crossings be-
tween all modes and the modes will no longer be of purely ‘in-phase’
or ‘counter-phase’ character. This has already been observed in the
studies by Lee & Yoshida (2003) and Yoshida & Lee (2003a) in the
purely corotating case. It would also be interesting to move beyond
both the anelastic approximation and the slow-rotation approxima-
tion, in order to be able to consider rapidly spinning stars. We should
also account for the presence of an elastic crust, perhaps penetrated
by a neutron superfluid, and include dissipative processes such as
mutual friction and S-reactions between the two fluids. Another
issue that needs to be studied in detail is the potential gravitational-
radiation instability of the various modes, and a suitable adaptation
of the Chandrasekhar-Friedman—Schutz (CES) instability criterion
(Chandrasekhar 1970; Friedman & Schutz 1978) to non-corotating
backgrounds. This should also help shed light on the two-stream
instability, the true physical relevance of which is difficult to assess
at the present time.
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APPENDIX A: THE ANELASTIC
APPROXIMATION

The anelastic approximation was first introduced in atmospheric
physics (Batchelor 1953; Ogura & Phillips 1962) and has since also
been widely used in the study of stellar oscillations and convec-
tion. A more detailed analysis of the quality and justification of this
approximation in the case of g modes can be found in Dintrans
& Rieutord (2001) and Rieutord & Dintrans (2002), and it has
also been used recently in the study of inertial modes (Villain &
Bonazzola 2002). The anelastic approximation applies for modes
with frequencies which are small compared to the inverse of the
sound crossing time of the star, which characterizes the lowest-
order p-mode frequency. High-frequency modes such as p modes
are effectively ‘filtered out’ by this approximation, so that only low-
frequency modes such as inertial modes or g modes remain. We
will now briefly sketch how this approximation works in the study
of inertial modes of a barotropic star. We start from the linear per-
turbation equations for a uniformly rotating barotrope, assuming an
eigenmode solution of the form e+ which yields

i(lw+mQ)sn + V- (név) =0, (A1)

i(w 4+ mQ)sv + 292 X v+ V(Su + §¢) = 0. (A2)

We choose an average sound speed c as the natural velocity scale,
and the stellar radius R as length-scale, which implies the sound
crossing time R/cy as the natural time-scale. Therefore the dimen-
sionless mode frequency is
w

Co / R ’

Inertial modes have the property that their frequencies are of the
order of €2, so we introduce

(A3)

w

Q
{=—=00). (A4)
1)
From the relation between pressure perturbations and density per-
turbations we obtain
8P = pdi = c28p, = ndp = c2én. (A5)
We write the local sound speed c(r) as
cs(r) = Ar)co, (A6)

where A(r) is a function of order unity in the bulk of the star, but
which usually vanishes at the stellar surface. As §i has the dimen-
sions of a velocity squared, the relation (AS) takes the following
form in natural units:

ndp = A2(r)sn. (A7)

So, 81t and 8n are seen to be of the same order except close to the
surface if A — 0. In this system of units, the perturbation equations
can now be written as

@)+ monsp + V - (ndv) = 0, (A8)

Bli(1 + m&)sv + 202 X Sv] + V(ST + 5¢) = 0. (A9)

We restrict ourselves to modes that have low frequencies compared
to the sound crossing frequency cy/R, so we assume

o < 1. (A10)
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It is straightforward to see from equation (A9) that

s = O), (All)
and therefore equation (A8) yields

V- (név) = O@*172). (A12)

In the bulk of the star, where A ~ (1), we can therefore neglect the
density variation §n in the conservation equation, leading to an error
of order O(w?). However, in the boundary layer characterized by
A ~ O(®), i.e. in the region where the local sound speed is of order
¢s ~ w R, the error of neglecting the compressibility of the matter be-
comes large. Nevertheless, the overall quality of the approximation
is generally very good (see Dintrans & Rieutord 2001), provided this
surface boundary layer is sufficiently thin, but we might expect the
surface boundary conditions to be modified. This is indeed the case,
as equation (A12) now entails the regularity condition 6v"|,—x = 0
for stellar modes with p — O at the surface. Therefore, the sur-
face displacement is necessarily zero in the anelastic approximation,
which filters out any surface waves. Another consequence of this
approximation is seen by taking the curl of equation (A9), which
effectively eliminates the potentials Syt and 8¢ from the system of
equations. The velocity perturbation is therefore independent of the
pressure perturbation and gravitational perturbation, which can both
be determined a posteriori from the solution and the remaining com-
ponent of the Euler equation. The eigenmode solution is therefore
independent of all potential perturbations, §¢, P (or equivalently
8w). Although these perturbations were not assumed to be zero, they
are now ‘slaved’ to the velocity perturbation.

APPENDIX B: THE EXPLICIT
OSCILLATION EQUATIONS

The general system of equations (44)—(47) for the eigenmode prob-
lem together with the definitions in Section 6 can be written in the
explicit form

rw! (1 +r&> W, =10+ DV, =0, (B)

n
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rW, + (1 +r&> Wi —1(+ 1)V, =0,
o
p
(= DU — (1 +2)Q U +mV!
—(1 - ‘s,,)l)nmRerl — envnmRWé + rl//;‘l1
= ko [(1 — &)Wy + &0, W]

(= DQU — (1 +2)Q Ut +mV! +ryl
=Ky [(1 — e W) + 8prWr]1] ,

@ -1HQU + 1 +2)0,, UM
+ {m =10 + (1 — g )vymR} V!
—1( + DeyvamRV, +mW, +1( + 1)y
= ko [I + DA = e)vVy + 10 + Dean Vi ]

@ =DU +1U+2)0i Uy
+mV!+mW! 10+ DY
= ko [I( + D(1 — gp)v, Vo + 1+ Depv, V]

{m — 11 + 1)1 — g)v,mR}U!
— I + DeyuymRU,
+ =DV + 1A +2) Qi V!
—A+ DWW +10 Wi
= ko [I( + D(1 — e)va UL + 10 + DegvaUy ] |

mUy + (@ = DOV, + 10U +2)01 V™!
— A+ DWW 10 W
= ko [I( + D(1 — x)v, U} + 1 + Degv,Us] .

637

(B2)

(B3)

B4)

(B5)

(B6)

B7)

(B8)

This paper has been typeset from a TEX/IAIEX file prepared by the author.



