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Abstract
I discuss the impact of gauge-invariant perturbation theory, as developed
originally by Vincent Moncrief, on numerical simulations of Einstein’s theory.
Far from being replaced by numerical relativity, perturbative approaches
remain essential for analysing, interpreting, extending and complementing
fully nonlinear approaches. In the last decade, as computers have become ever
more powerful tools for studying the full nonlinear equations, the power and
application of perturbation theory has also grown. Its impact on numerical
relativity is profound (decidedly nonlinear), and will surely continue to be for
years to come.

PACS numbers: 04.25.Dm, 11.15.Bt

1. Introduction

Numerical relativity is a field that aims to solve Einstein’s equations through the use of
computers, using numerical methods to solve the partial differential equations. These days,
this generally involves developing large codes to run on monstrous computers, with hundreds or
thousands of processors, and techniques involving cache utilization, message passing, parallel
I/O, grid computing, etc. All of these are needed to obtain—in language that might more
usually be associated with Moncrief—‘exact’ solutions to Einstein’s equations, or perhaps
‘arbitrarily accurate’ would be more appropriate. That is, any well-behaved, convergent code
should produce solutions to Einstein’s equations with errors known to be proportional to �xn,
where �x is the grid spacing and n is known; most commonly n = 2. Given a set of computing
resources, errors away from the true solution should be reduced by a factor of 4 if one doubles
the resolution. Hence, with enough computer power, in an ideal world errors can be made
arbitrarily small, and full, dynamical solutions to the nonlinear Einstein equations can be made
arbitrarily close to the exact solution.
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When I began as Moncrief’s student 20 years ago, the basic state of numerical relativity
was the following: 2D calculations were advancing; Smarr had just made his pioneering
attempt to study the simplest two black-hole problems in axisymmetry [55]. 3D calculations,
although extremely limited, were starting; Nakamura and co-workers had begun a program
aimed at tackling 3D systems [44]. The basic numerical method for evolution was explicit
leapfrog [54] (on which, surprisingly, Moncrief wrote a paper in Phys. Rev. D [43]). Although
fully numerical, nonlinear work was underway, perturbation theory was still one of the primary
tools for studying systems of interest; Chandrasekhar and Detweiler, among others, were
computing quasinormal modes of black holes [28] and, as I discuss in more detail below,
Moncrief and colleagues had developed a program to compute gravitational radiation from
core collapse via perturbative techniques. Although highly mathematically inclined, Moncrief
had an unusual appreciation for and insight into numerical approaches, and guided most of
his early students (among them Tom Moore, Roger Ove and myself) into numerical projects.
In my case, this meant extending previously developed perturbative approaches in a more
numerical setting.

Since that time, computer power has grown tremendously, by roughly a factor of 105. (As
Moncrief’s student I was lucky enough to be working on a 200MFlop machine, whereas my
students today have access to 10+ TFlop machines!) Given the ‘brute force’ arguments above,
one might expect a completely different world today, where numerical relativity, armed with
vastly improved computers and numerical methods, could routinely tackle highly complex,
fully 3D, highly nonlinear systems, such as coalescing binary black holes. In this fantasy
world, basic numerical methods such as leapfrog would be replaced by some advanced, high-
order, constraint preserving scheme, huge computers would produce ‘exact’ solutions to the
fully nonlinear field equations, and perturbation theory would probably be relegated to classes
on the history of numerical relativity.

I was among those who, although ‘brought up right’ with a firm grounding in mathematical
perturbation theory, believed that fully nonlinear, numerical approaches would quickly
overtake the very limited perturbative approaches. Although I had many plans to extend
the perturbative approaches I had learned from Moncrief, and to apply them to an array of
problems involving black holes, neutron stars, core collapse, and so on, like many others
I quickly moved on to fully nonlinear numerical approaches. But I never left perturbation
theory behind; like the death of Mark Twain, its (future) demise was highly exaggerated. To my
repeated surprise, it kept coming back, in many different and unexpected ways, as a crucially
important technique for analysing, interpreting, complementing and even in extending results
in numerical relativity.

Moncrief’s influence is felt in many areas of numerical relativity1. But in this paper I
pay special tribute to his important contributions in perturbative methods and their impact
on numerical relativity. This impact has been decidedly ‘nonlinear’ in at least two respects.
First, perturbative approaches often make predictions that are at least qualitatively valid even
in nonlinear regimes where one would not, a priori, expect them to work. Second, over time,
they have become even more useful, and are more widely used, than ever before, even as
fully nonlinear approaches are reaching maturity. In summary, perturbative methods, based
on Moncrief’s early work, have formed the continuing foundation for much work in numerical
relativity over the last several decades, and probably the next several as well!

1 For example, his original work with Ove [45]; extensive work with Berger; his recent work with Andersson
[14]. The latter, through discussions with Moncrief at AEI, motivated and inspired my group to further develop
the ‘BSSN’ system of equations, especially a class of very powerful gauge conditions [11]. These conditions
have helped enable the EU numerical relativity community to make very important progress in fully 3D nonlinear
evolutions [33].



Nonlinear impact of perturbation theory on numerical relativity S341

2. Gauge–invariant perturbation theory

In this section I review Moncrief’s seminal approach to perturbation theory that has become
the foundation for important tools in numerical relativity. The fundamental problem driving
much of the work of several generations of relativists is the response of a Schwarzschild or
Kerr black hole to its environment. As early as 1957, Regge and Wheeler [47] studied stability
of the Schwarzschild singularity to small perturbations. The standard approach is to write the

full metric as a sum of the static Schwarzschild metric
o
gαβ and a perturbation hαβ (in Moncrief

notation):

gαβ = o
gαβ + εhαβ. (1)

One then plugs this expression into the vacuum Einstein equations and expands them up to first
order in ε, to get equations for the perturbation tensor hαβ . The angular part of the solution
can be separated off by expanding hαβ in tensor spherical harmonics. For each �,m mode,
one gets separate equations for the perturbed metric functions, which we can denote by h

(�m)
αβ .

As recognized by Regge and Wheeler, the perturbation equations break up into two
linearly independent classes, even- and odd-parity. The odd-parity class is considerably
simpler, having just three components h

(odd,�m)
αβ , while the even-parity class h

(even,�m)
αβ has

seven. However, the equations governing these functions are extremely complex. By using a
clever choice of gauge, Regge and Wheeler were able to simplify the odd-parity system and
derive the famous Regge–Wheeler equation

∂2ψ(�m)

∂r∗2
− ∂2ψ(�m)

∂t2
+ V

(�)
RW (r) ψ(�m) = 0, (2)

where r∗ is the so-called tortoise coordinate, given by r∗ = r + 2M ln (r/2M − 1), and the
Regge–Wheeler potential V

(�)
RW (r) is a function of r and M and contains all the physics of

the problem. This equation has been studied for the last half-century, and has revealed much
of what is currently known about black holes in the Universe. In particular, studies of the
equation revealed that black holes have quasi-normal modes, damped sinusoidal oscillations
whose wavelength and damping time are determined by the mass of the black hole.

The even-parity case is so much complicated that it was not solved until 13 years later,
when Zerilli was able to derive an amazingly similar wave equation, which differs only in the
details of the potential V

(�)
Zerilli(r). It was yet later shown by Chandrasekhar to have the same

spectrum of quasi-normal modes as in the odd-parity case. The fact that such very different
classes of perturbations would lead to such similar wave equations was a clue that there must
be a fundamentally simpler, more transparent approach to the problem.

When dealing with perturbations in relativity, one must be careful about interpreting the
various metric components hαβ in terms of physics. Under a coordinate transformation of the
form

xµ → xµ + δxµ, (3)

the metric coefficients will transform as well. Regge and Wheeler, and later Zerilli, were able
to use this gauge freedom to eliminate certain metric functions to simplify the corresponding
equations for the perturbations. However, considerable foresight is needed to pick the
appropriate gauge for the equations to simplify, as exemplified by the fact that due to its sheer
algebraic complexity the even-parity case was not solved for 13 years! And this was for the
simplest, nontrivial spherical, static, vacuum spacetime, Schwarzschild. This overwhelming
complexity would be far worse in the case of time-dependent systems, or systems with matter,
such as collapsing stars.
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Moncrief was the first to recognize and exploit the point that another approach might
reveal the underlying physics of such systems much more transparently. The key idea is to
consider linear combinations of the hαβ and their derivatives that are actually invariant under
the transformation in equation (3), carried out only to first order in δx (definition of gauge
transformation). In his seminal 1974 paper [40], Moncrief developed this idea, assuming that
if one constructs gauge-invariant quantities, which are clearly more closely connected to the
underlying physics, then the analysis will proceed much more easily. This proved to be true,
so that what had taken more than a decade to develop by the community, through ingenious
choices of gauge and prodigious amounts of algebra, now could be derived very transparently
in just a few pages!

The idea was very powerful. Far more than a trick to reduce a complex derivation down
to size, it became a guiding principle for much work in rather different communities. The
technique was now straightforward: first define a maximal set of gauge-invariant quantities
on a given background, then compute their equations of motion, and entire theories of small
perturbations on a given background could be (comparatively) easily derived. Although
equations for gauge-dependent metric functions are highly tangled together, there is a
considerable decoupling in the gauge-invariant approach. Physically relevant variables, which
are naturally gauge invariant, are usually dominant in their own evolution equations. In an
accompanying paper [41], Moncrief then applied this approach to the case of perturbations
of a spherically symmetric, self-gravitating perfect fluid system, and again, the perturbation
equations for the relevant physically important quantities are naturally developed using this
approach.

This approach has been picked up and developed in various areas, including astrophysics
and cosmology. But in the following sections I describe how it has impacted particularly the
field of numerical relativity in the past, and continues to do so today.

3. Applications in numerical relativity

3.1. Perturbative time evolutions

The gauge-invariant approach devised by Moncrief could be applied not only to static
backgrounds, but also to time-dependent ones (this would have been virtually impossible
with the standard approach). This immediately gives rise to a clever form of numerical
relativity, ‘numerical relativity light’. In this approach, the perturbation equations, transparent
as they are with this gauge-invariant approach, can still be rather complex and need to be
solved numerically. But because the different (�,m) modes are decoupled, they can all be
evolved independently as PDEs in one spatial dimension, reducing the 3D problem to 1D.
Furthermore, the background, being time dependent, can be treated numerically as well, but
it can be fully relativistic, nonlinear, strong field gravity. But again, it is reduced to a 1D
(radial + time) PDE. Hence, this approach can be used in principle to treat virtually any fully
relativistic, 3D problem, that is close to being spherical, as a set of 1 + 1 PDEs. This approach
has proved very popular, and is still being used today, nearly 30 years after its development
by Moncrief. I mention a few applications next.

Shortly after the publication of these first two papers on gauge-invariant perturbation
theory, a series of papers studying the gravitational wave output from stellar core collapse
was published by Cunningham, Price, and Moncrief (CPM) [30–32, 42]. Using the approach
I just described, they took the background to be not a static star, but a dynamic, collapsing
one. In this case, the stars were modelled by Oppenheimer–Snyder collapsing dust balls, and
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the results showed for the first time that the quasinormal modes were strongly excited in the
collapse to a black hole.

This work is not only still highly cited as evidence that collapse to a black hole produces
quasinormal modes, the perturbative prediction has been shown to be remarkably robust. In
virtually every system studied, where a black hole is formed, quasinormal ringing is observed,
whether it is from nonlinear stellar collapse models [56, 52], black-hole collisions [15, 16, 10],
or even the collapse of pure gravitational waves to form a black hole [9]. A key point to make
is that predictions from perturbation theory turn out to be extremely robust, and often apply
even in nonlinear regimes where they might not be expected to.

The approach of CPM was generalized in my own PhD thesis to the case of more
general, time-dependent spherical backgrounds, with perfect fluid interiors matched to vacuum
exteriors [51], and used with sophisticated (at the time!) core collapse/bounce codes to study
gravitational wave emission from supernovae [49, 50]. Not recognizing how important this
approach would continue to be, I later moved on to other work, but in the meantime the same
approach was further (and better) developed by others, especially in recent years in [35, 36]. It
continues to be applied to a series of problems, most recently by Shibata and colleagues [37].
Similar approaches are also underway at present in a large collaborative EU project [33].

3.2. Extraction

Throughout the 1970s and 1980s, numerical relativists struggled with the problem of extracting
meaningful gravitational wave signals out of their numerical results. Even assuming the
codes were faithfully solving Einstein’s equations, they were all written in a particular
gauge that made identification of gravitational waves difficult. Many different measures
of gravitational wave indicators were proposed, but all suffered from theoretical ambiguities,
gauge dependences and other problems.

In the late 1980s, Abrahams realized that Moncrief’s gauge-invariant approach to
perturbation theory could be applied directly to fully nonlinear numerical simulations [5–7].
The original idea of Abrahams was based on a flat space background, which was generalized
later to include a Schwarzschild background [1]. But the basic idea is the same: one considers
the numerically generated metric gαβ,num to be the sum of a background part and a perturbation:

gαβ,num = o
gαβ + hαβ. (4)

In the original treatment, the background was considered flat space and in the revised treatment
[1] it was taken to be a time-dependent, generalized spherical background (e.g., not necessarily
in Schwarschild coordinates). The perturbation hαβ is expanded in tensor spherical harmonics
as always.

To compute the elements of both
o
gαβ and hαβ , we simply integrate the numerically evolved

metric components gαβ,num, taken directly from the output of the numerical code, against
appropriate spherical harmonics over a carefully chosen coordinate 2—sphere surrounding
the source of the waves. The orthogonality of the Y�m allows one to ‘project’ the contributions

of the general wave signal into individual modes. The background parts
o
gαβ are computed

by integrating gαβ,num against Y00, while the perturbative components h
(�m)
αβ are computed

by integrating gαβ,num against Y�m (technical complications arising from the tensor spherical
harmonics are glossed over here).

The resulting functions can then be combined in a gauge-invariant way, following the
prescription given by Moncrief. The beauty of this approach is that it is a simple prescription,
that allows one to pick out various modes of waves, in different codes, written in different
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gauges. It is incredibly effective, and has been shown to be able to accurately extract very
small waves buried in the metric functions that are computed in a numerical simulation. In
the next section I show an example.

A few further remarks are in order about this technique. First, it is not truly a perturbative
approach in a systematic sense. It simply provides a procedure for removing the spherical
background from a fully nonlinear numerical evolution, and then for decomposing what
remains (‘everything nonspherical’) in �,m modes, treating it as if it were a perturbation.
In reality, what remains may be rather large in practice, and for example, it may not obey
perturbative evolution equations. Secondly, the procedure assumes a spherical background,
whereas in many systems of interest the background would be better treated as an axisymmetric,
rotating system. Nonetheless, the extraction procedure has been used on what are effectively
Kerr backgrounds with reasonable results [26, 10]. Alternate approaches involving the Weyl
scalars are also sometimes used for rotating systems (see, e.g., [55, 16, 12]) and extensions of
the gauge-invariant procedure for this case are under development by some groups.

This basic method has by now become the standard wave extraction technique in numerical
relativity, having been used in dozens of works by groups in the US, Europe and Japan (see,
e.g., a recent article by Shibata and Uryu [53]).

3.3. Combined extraction and evolution

The first two applications above show how the gauge-invariant perturbation theory is used
in numerical relativity (a) to treat perturbative stellar systems by evolving relativitistic
perturbation equations on nonlinear, time-dependent backgrounds, and (b) to decompose
a fully nonlinear numerical evolution into a spherical and nonspherical part, applying the
gauge-invariant construction to the nonspherical pieces to extract a waveform. In this section,
I show how groups have combined these two approaches to take nonlinear solutions to the
Einstein equations (generated numerically or analytically), extract gauge-invariant quantities
and use their evolution equations to advance the solution in time.

This has several very important uses:

• Testbeds. If the system is truly in a perturbative regime at the point where the
gauge-invariant quantities are extracted, the evolution equations obtained by Moncrief’s
procedure can be used to evolve the extracted quantities. These results can be compared
with the results obtained from fully nonlinear evolutions of the system to test the accuracy
of both the numerical codes and the extraction procedure itself.

• Analysis. Evolutions of the gauge-invariant equations can be used in comparsion to the
fully nonlinear, numerical evolutions to give insight into the physics obtained, which pure
numerical evolution alone cannot provide.

• Extension. Building on these ideas, an interesting hybrid approach has been developed,
whereby fully nonlinear evolutions are carried out to the point where the system reaches
a perturbative regime. Numerical difficulties prevent the nonlinear evolution codes from
continuing forever. But at some point, meaningful perturbation quantities can still be
extracted and evolved according to their evolution equations, extending the solution
forward in time.

I give examples of each of these approaches in turn.
In the first paper where the gauge-invariant extraction procedure was applied to black-

hole spacetimes [1], it was shown that waveforms could be extracted from fully nonlinear
distorted black-hole evolutions, and that quasinormal ringing modes were generated even in
very strong distorted black-hole systems. But the idea of using the gauge-invariant evolution
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Figure 1. Waveforms, computed by a gauge-invariant procedure originating with Moncrief and
adapted to numerical relativity, are shown for a distorted black hole evolution in 3D cartesian
coordinates shown for the � = 4, m = 2 mode. Results are compared for linear and nonlinear
evolution codes applied to the same numerically generated initial data. The dotted (solid) line
shows the linear (nonlinear) evolution.

equations both to test nonlinear evolution code results and to extend them further in time was
also developed.

The technique was to extract gauge-invariant data from the numerical simulation not only
to examine waveforms on a given timelike line, but also along a spacelike or null surface.
This could then be used as initial data for the perturbation equations, which could be evolved
independently of the nonlinear code. The perturbatively evolved waves could be compared
with waves extracted at later times from the full nonlinear code, or used to extend the evolution
to times beyond the point at which the nonlinear evolution was stopped. The results were in
spectacular agreement, showing the validity and accuracy of both the nonlinear code and the
wave extraction process.

This development paved the way for a host of other application of the basic hybrid
perturbative/nonlinear evolution technique. After a number of developments in vacuum
spacetimes (discussed further below), early examples of this technique applied to evolutions of
collapsing matter can be found in [8], where a failing fully nonlinear numerical simulation was
extended further in time by extracting gauge-invariant waves as Cauchy data for a perturbative
evolution, so that waveforms could be computed at times much later than the nonlinear
numerical code was able to run.

In another example, a similar technique was applied to full 3D distorted black-hole
simulations [13]. Distorted black-hole initial data were evolved in a 3D numerical code written
in Cartesian coordinates, and waves were computed using the gauge-invariant waveform
extraction procedure, showing the development of quasinormal ringing at late times. But
are the results correct? As a test of this, wave content was extracted from the numerically
generated initial data, and evolved independently using a Zerilli equation code, and waveforms
were compared. The agreement was spectacular, even for modes that carry as little as 10−7M

in energy! Results are shown in figure 1. Not only do such studies provide important
testbeds for numerical relativity codes, but they also show the extent to which waveform
extraction can be done in 3D simulations. In spite of the fact that very small waves are
propagating through a ‘gauge-infested’ background, and in spite of numerical errors, grid
stretching, and other difficulties, it turns out that numerical codes can very accurately evolve
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the spacetimes, and that the procedure is capable of faithfully extracting even tiny waves in the
system.

I now turn to a spectacular example of how a hybrid numerical-perturbative approach not
only provided an unexpectedly strong validity check on numerical results, but also provided
unusual insight into the physics of black-hole collisions. Smarr studied Misner data for two
black holes in the 1970s, but the first time long-term evolutions were successfully carried
out accurately enough that detailed waveforms could also be studied was 20 years later
[15, 16]. Shortly afterwards, Price and Pullin [46] applied these gauge-invariant extraction
and evolution ideas to the same initial data. It might seem to be impossible to treat colliding
black holes perturbatively, but if the two holes are so close together initially that they have
actually already merged into one, they might be considered as a single perturbed Schwarzschild
hole (the so-called close limit). And maybe the technique could work if they were not already
merged initially, but merely nearby.

Price and Pullin extracted the gauge-invariant wave content in the initial data, which in
this case is given analytically, by expanding it around a Schwarzschild background. They were
thus able to formally generate an analytic, one-parameter family of data, with the parameter
being the distance between the holes. Clearly, if the holes were taken to be very far apart, the
approximation breaks down, but formally the expression still gives initial data which can then
be evolved with the Zerilli equation.

The results were spectacular! For cases where the holes were already surrounded by a
common horizon, the Price–Pullin waveform results agreed beautifully with the nonlinearly
computed numerical results, confirming the validity of both approaches. But incredibly, the
agreement was excellent even for a range of cases where the holes did not have common
apparent or event horizons! Naively one would not expect this! (For holes that are too widely
separated, the results started to diverge, indicating the expected failure of the perturbation
expansion.) This very unexpected result had an explanation, which was basically that even
for holes that are separated by some distance, if the potentials of the Zerilli equation are still
overlapping, they look from the perturbative point of view to be a single hole, at least outside
the potential barriers.

These results were so startling, and so impressive, that an industry developed around these
ideas, and many applications followed (see, e.g., [2, 4, 3, 18, 34, 17, 39, 27, 38, 19]).

The success of these techniques suggests, among other things, that these are very powerful
methods that can be used hand-in-hand with fully nonlinear numerical evolutions, and can be
applied in a variety of black-hole spacetimes where one might naively think they would not
work. For these reasons, many researchers are continuing to apply these techniques to more
and more complicated black-hole spacetimes.

Lastly, I mention an important extension of these ideas that has been developed in the last
few years, starting in my group at AEI. This is the aptly named ‘Lazarus’ approach, which
generalizes and combines approaches of [1, 8] on extending evolutions, and the industry of
perturbative approaches to black-hole collisions. The idea is similar, but the approach is much
more sophisticated. First one evolves orbital binary black-hole data, with a fully nonlinear
numerical code. If one is able to evolve it close to the point of merger, in principle, one
should be able to define a background, extract out wave perturbations and evolve them with
the relevant perturbation theory to extract waveforms. In this case, the Zerilli approach is
inadequate, and a Teukolsky approach, governing perturbations about a Kerr black hole, must
be used. The approach has produced the first waveforms from a series of orbital black-hole
initial data sets, based on work of Cook [29] and Baumgarte [25], and is an important step
forward in the quest of numerical relativists to determine waveforms from coalescing black
holes [23, 24, 20, 21, 22].
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4. Summary

I have tried to present a partial survey of a rather narrow segment of numerical relativity,
to show the profound and unexpected impact that Moncrief’s work has had2. It may seem
especially surprising that a highly mathematical approximation technique would become such
a force, with so many independent threads, in a field that aims to find ‘exact’ solutions to
Einstein’s equations in the absence of symmetries. It is tribute to the depth of Moncrief’s
work, and the insight it can provide, that his work has found so many important and lasting
uses in a field peripheral to his primary lines of research.

It is clear that the influence of perturbative methods will continue for years, even as
fully nonlinear numerical relativity—and the computers it depends on—become still more
powerful. After all, the goal is to divine physics from the numbers so produced, and to provide
intuition about the underlying processes that govern the systems numerical relativity tries to
study. In these ways, Moncrief has been a magician, and numerical relativists are trying to
borrow a bit of his magic for themselves.
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