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Abstract

The global structure of solutions of the Einstein equations cou-
pled to the Vlasov equation is investigated in the presence of a two-
dimensional symmetry group. It is shown that there exist global CMC
and areal time foliations. The proof is based on long-time existence the-
orems for the partial differential equations resulting from the Einstein-
Vlasov system when conformal or areal coordinates are introduced.

1 Introduction

In general relativity the gravitational field is expressed in terms of the geom-
etry of spacetime. The matter constituting self-gravitating physical systems
is described using certain matter fields which are also geometrical objects.
The spacetime metric is required to satisfy the Einstein equations and these
are coupled to equations of motion for the matter fields. The resulting
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Einstein-matter system of partial differential equations is the central math-
ematical element of the theory. Thus to understand the mathematical con-
tent of general relativity we require an overview of the solutions of these
equations and their qualitative behaviour.

When different kinds of physical situations are considered solutions of
the Einstein-matter equations with certain boundary conditions or spatial
asymptotics will be particularly relevant. One choice which avoids the issue
of boundary conditions or asymptotic conditions in the strict sense is to give
initial data on a compact manifold. This possibility, which is that studied
in the present paper, is of interest for applications to cosmology. In practice
it leads to imposing periodic boundary conditions.

A further choice which has to be made in order to get a concrete math-
ematical problem is to decide which kind of matter fields to consider. Here
we choose collisionless matter, where the equation of motion is the Vlasov
equation. The special interest of this kind of matter has been discussed
in several places (see [Rl3], [R15], [A2]) and the relevant facts will not be
repeated here. A fundamental insight is that collisionless matter acts as a
source of the gravitational field in a way which allows specific features of the
matter model to remain in the background while revealing basic properties
of the dynamics of self-gravitating matter. A fact on the PDE level related
to this is that in many cases long-time existence theorems for solutions of
the Einstein-Vlasov system are to be expected. For other matter models
coupled to the Einstein equations this is not true. Results on formation of
singularities in finite time in the case of one matter model, dust, can be
found in [Rl4] and [I].

While the Einstein-matter system itself is naturally expressed in geomet-
rical terms the application of the theory of partial differential equations to
study it requires the geometry to be parametrized in a suitable way by the
use of coordinates or other auxiliary constructs. An important step towards
investigating the dynamics of solutions is to find parametrizations which
are at once practical and applicable in sufficient generality. Of particular
significance is finding a function which can act as a good time coordinate in
the situation of interest. This task is the focus of the following. It will be
shown that under appropriate symmetry assumptions it can be solved in a
very satisfactory way.

A central role in solving the geometric problems addressed in this paper
is played by two long-time existence results for certain systems of PDE in one
space dimension. One of these is a global in time existence theorem while
the other is a continuation criterion which says that solutions continue to
exist as long as a certain quantity does not vanish. A number of techniques
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used in the proofs are adapted from known arguments for the Vlasov-Poisson
and Vlasov-Maxwell systems while others are specific to the Einstein-Vlasov
case.

Consider a solution of the Einstein-Vlasov system evolving from initial
data on a compact spacelike hypersurface. This paper is mainly concerned
with the case where the initial hypersurface is a three-dimensional torus with
periodic coordinates (θ, x, y). Moreover solutions are considered where both
the metric and the matter fields are invariant under translations in the x and
y directions. Taking account of the periodic identifications involved we see
that these solutions admit a two-dimensional symmetry group isomorphic to
a two-torus T 2 = S1 × S1. These spacetimes will be referred to as T 2 sym-
metric. No additional symmetry assumptions will be imposed. Analogues of
the results of this paper for various cases with higher symmetry, including
certain subcases of T 2 symmetry, have been obtained previously. A survey of
these earlier results can be found in the introduction of [ARR]. The present
paper can be seen as the culmination of a development concerning global
geometrically defined time coordinates in solutions of the Einstein-Vlasov
system with at least two symmetries.

On a T 2 symmetric spacetime it is possible to define a function R, the
area function, as follows. If p is a point of the spacetime then R(p) is equal
to the area of the orbit of the action of T 2 which contains p. Evidently
the function R is itself invariant under the action of T 2. We say that a T 2

symmetric initial data set is flat if the spacetime gradient of R in a Cauchy
development of this data set vanishes identically on the initial hypersurface.
Otherwise it will be called non-flat. Whether an initial data set is flat
in this sense can be determined intrinsically from the initial data without
having to know anything about a Cauchy development. The reason for the
terminology is that, as follows from [Rl1], if an initial data set is flat in this
sense any Cauchy development of it is flat in the sense that its Riemann
curvature tensor vanishes everywhere. Cf. the discussion in Section 3.

The main theorems will now be stated. The first concerns the existence of
a global time coordinate of constant mean curvature. Consider a spacetime
which evolves from initial data on a compact hypersurface. In the following
it will always be assumed implicitly that the initial datum for the particle
density has compact support. A real-valued function t on the spacetime is
called a constant mean curvature (CMC) time coordinate if each of its level
hypersurfaces is compact and spacelike, it has constant mean curvature and
the value of the mean curvature there is equal to t.

Theorem 1 Let (M,gαβ , f) be the maximal globally hyperbolic development
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of non-flat C∞ initial data for the Einstein-Vlasov system with T 2 symme-
try. Then M can be covered by compact spacelike hypersurfaces of constant
mean curvature with each value in the range (−∞, 0) occurring as the mean
curvature of precisely one of these hypersurfaces.

The second theorem concerns the existence of an areal time coordinate.
Consider a spacetime with T 2 symmetry. A real-valued function t on the
spacetime is called an areal time coordinate if each of its level hypersurfaces
is compact and spacelike and the value of t on the hypersurface is everywhere
equal to that of the area function R.

Theorem 2 Let (M,gαβ , f) be the maximal globally hyperbolic development
of non-flat C∞ initial data for the Einstein-Vlasov system with T 2 symme-
try. Then M can be covered by compact spacelike hypersurfaces of constant
area function R with each value in the range (R0,∞) occurring as the value
of the area function on precisely one of these hypersurfaces. Here R0 is a
non-negative real number.

Notice that these theorems include the vacuum case f = 0. Theorem 2
was proved in the vacuum case in [BCIM]. Under the additional assump-
tion of Gowdy symmetry, which consists in augmenting the T 2 action by
a suitable reflection symmetry, Theorem 2 was proved in [A1]. In [ARR]
an argument was sketched which indicates that Theorem 1 also holds under
the assumption of Gowdy symmetry. The results of both theorems extend
to the case of local U(1) × U(1) symmetry, as defined in [Rl1]. Since there
is no essential difference in the proofs this generalization will not be men-
tioned further. The fact that the theorems are stated for C∞ initial data is
a matter of convenience. Keeping track of derivatives would allow analogous
results to be proved for initial data of finite differentiability.

The paper is structured as follows. The next section contains some
definitions which will be needed. The two sections after that contain the
basic PDE analysis in the contracting and expanding directions respectively.
The proofs of the main theorems are given in Section 5.

2 The Einstein-Vlasov system with T
2 symmetry

Consider the manifold M = R × T 3. Let T 2 act on T 3 in the obvious way,
arising from the action of R

2 on R
3 with Cartesian coordinates (θ, x, y) by

translations in x and y. Correspondingly T 2 acts on M with coordinates
(t, θ, x, y). A spacetime with underlying manifold M defined by a metric
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gαβ and matter fields is said to be T 2 symmetric if the metric and matter
fields are invariant under the action of T 2. The orbits of the group action
will be referred to as surfaces of symmetry and a hypersurface will be called
symmetric if it is a union of surfaces of symmetry. It is now clear how
to define abstract Cauchy data for the Einstein-matter equations with T 2

symmetry. They should be defined on T 3 and invariant under the action of
T 2. It will be assumed throughout that the metric and the matter fields are
C∞.

Suppose now that a matter model is chosen for which the Cauchy prob-
lem for the Einstein equations is well-posed. The example of interest in
the following is that of collisionless matter satisfying the Vlasov equation.
Corresponding to initial data for the Einstein-matter equations with T 2 sym-
metry there is a maximal Cauchy development. We will construct a certain
local coordinate system on a neighbourhood of the initial hypersurface in the
maximal Cauchy development. On the initial hypersurface itself we choose
periodic coordinates (θ, x, y) as above. The isometries are given by transla-
tions in x and y. These coordinates can be extended uniquely to a Gaussian
coordinate system (t, θ, x, y) on a neighbourhood of the initial hypersurface.
On general grounds the action of T 2 on the initial data extends uniquely to
an action on the maximal Cauchy development M by symmetries (see e.g.
[FR], Section 5.6). Gauss coordinates inherit the symmetries of their initial
values and the spacetime. Hence the components of the metric in these co-
ordinates depend only on t and θ. It is then a matter of simple algebra to
see that in these coordinates the metric can be written in the form

−dt2+e2(η̂−U)dθ2+e2U [dx+Ady+(G+AH)dθ]2+e−2UR2[dy+Hdθ]2. (1)

for functions (η̂, U,A,G,H,R) of t and θ which are periodic in θ. It can also
be read off that the function R in this form of the metric coincides with the
area function mentioned in the introduction.

A region covered by coordinates of this type which is invariant under the
action of T 2 can be quotiented by the group action to get a two dimensional
quotient manifold Q coordinatized by t and θ. The quotient inherits a
Lorentzian metric by the rule that the inner product of two vectors on the
quotient is equal to the inner product of the unique vectors on spacetime
which project onto them orthogonally to the orbit. On Q we can pass to
double null coordinates (u, v) on a neighbourhood of the quotient of the
initial hypersurface, i.e. to coordinates whose level curves are null. Defining
new coordinates by t = 1

2 (u − v) and θ = 1
2(u + v) puts the metric on Q

into conformally flat form. By pull-back these define new coordinates on M
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where the metric takes the form

g = e2(η−U)(−dt2+dθ2)+e2U [dx+Ady+(G+AH)dθ]2+e−2UR2[dy+Hdθ]2.
(2)

for functions (η, U,A,G,H,R) of t and θ. A coordinate system of this type is
called a conformal coordinate system. It has now been seen that conformal
coordinates always exist on some neighbourhood of the initial hypersurface
in a spacetime evolving from data with T 2 symmetry. In addition it is
possible to choose the double null coordinates in such a way that the initial
hypersurface coincides with t = 0 and the metric coefficients are periodic in
θ.

To conclude this section we formulate the Einstein-Vlasov system which
governs the time evolution of a self-gravitating collisionless gas in the context
of general relativity; for the moment we do not assume any symmetry of the
spacetime. All the particles in the gas are assumed to have the same rest
mass, normalized to unity, and to move forward in time so that their number
density f is a non-negative function supported on the mass shell

PM :=
{

ηµνvµvν = −1, v0 > 0
}

,

a submanifold of the tangent bundle TM of the space-time manifold M with
metric gαβ . Here ηµν denotes the components of the Minkowski metric and
vµ denote the components of a tangent vector in an orthonormal frame eµ.
We use coordinates (t, xa) with zero shift and the frame components vi to
parametrize the mass shell; Greek indices always run from 0 to 3, and Latin
ones from 1 to 3. On the mass shell PM the variable v0 becomes a function
of the vi:

v0 =
√

1 + δijvivj .

The Einstein-Vlasov system now reads

vµeµ(f) − γl
µνvµvν ∂f

∂vl
= 0

Gµν = 8πT µν ,

T µν =

∫

vµvνf
dv1dv2dv3

−v0

where γλ
µν are the Ricci rotation coefficients, Gµν the Einstein tensor, and

T µν the energy-momentum tensor. In the case of T 2 symmetry the number
density f is assumed to be invariant under the action induced on PM by
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the action of T 2 on M . The orthonormal frame used to parametrize PM in
the following is also assumed to be invariant. As a result f is independent of
x and y and is a function of the variables (t, θ, v1, v2, v3). An explicit choice
of invariant orthonormal frame for the metric (2) is given by

eU−η ∂

∂t
, eU−η

(

∂

∂θ
− G

∂

∂x
− H

∂

∂y

)

, e−U ∂

∂x
, eUR−1

(

∂

∂y
− A

∂

∂x

)

3 Analysis in the contracting direction

As we will see in more detail later, a non-flat T 2 symmetric solution of
the Einstein-Vlasov system represents a cosmological model which, after a
suitable choice of time orientation, evolves from an initial singularity and has
a phase of unlimited expansion at late times. In this section we consider the
Einstein-Vlasov system in the contracting direction (i.e. evolving towards
the initial singularity) and use conformal coordinates in which the metric
takes the form (2). That coordinates of this type can always be found
near the initial hypersurface was shown in the last section. The invariant
orthonormal frame adapted to these coordinates exhibited there will be used
in this section. The explicit form of the Einstein-Vlasov system will now be
given. We set Γ = Gt + AHt. The quantities Γ and Ht will be referred to
as twist quantities.
The Einstein-matter constraint equations

U2
t + U2

θ +
e4U

4R2
(A2

t + A2
θ) +

Rθθ

R
− ηtRt

R
− ηθRθ

R
=

= −e−2η+4U

4
Γ2 − R2e−2η

4
H2

t − e2(η−U)ρ (3)

2UtUθ +
e4U

2R2
AtAθ +

Rtθ

R
− ηtRθ

R
− ηθRt

R
= e2(η−U)J1 (4)

The Einstein-matter evolution equations

Utt − Uθθ =
UθRθ

R
− UtRt

R
+

e4U

2R2
(A2

t − A2
θ) +

e−2η+4U

2
Γ2

+
1

2
e2(η−U)(ρ − P1 + P2 − P3) (5)

Att − Aθθ =
RtAt

R
− RθAθ

R
+ 4(AθUθ − AtUt) + R2e−2ηΓHt
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+2Re2(η−2U)S23 (6)

Rtt − Rθθ = Re2(η−U)(ρ − P1) +
Re−2η+4U

2
Γ2 +

R3e−2η

2
H2

t , (7)

ηtt − ηθθ = U2
θ − U2

t +
e4U

4R2
(A2

t − A2
θ) −

e−2η+4U

4
Γ2

−3R2e−2η

4
H2

t − e2(η−U)P3 (8)

Auxiliary equations

∂θ[Re−2η+4UΓ] = −2ReηJ2, (9)

∂t[Re−2η+4UΓ] = 2ReηS12, (10)

∂θ(R
3e−2ηHt) + Re−2η+4UAθΓ = −2R2eη−2UJ3, (11)

∂t(R
3e−2ηHt) + Re−2η+4UAtΓ = 2R2eη−2US13. (12)

The Vlasov equation

∂f

∂t
+

v1

v0

∂f

∂θ
−

[

(ηθ − Uθ)v
0 + (ηt − Ut)v

1 − Uθ
(v2)2

v0

+(Uθ −
Rθ

R
)
(v3)2

v0
− Aθ

R
e2U v2v3

v0
+ e−η(e2UΓv2 + RHtv

3)

]

∂f

∂v1

−
[

Utv
2 + Uθ

v1v2

v0

]

∂f

∂v2

−
[

(
Rt

R
− Ut)v

3 − (Uθ −
Rθ

R
)
v1v3

v0
+

e2Uv2

R
(At + Aθ

v1

v0
)

]

∂f

∂v3
= 0. (13)

The matter quantities

ρ(t, θ) =

∫

R3

v0f(t, θ, v) dv (14)

Pk(t, θ) =

∫

R3

(vk)2

v0
f(t, θ, v) dv, k = 1, 2, 3 (15)

Jk(t, θ) =

∫

R3

vkf(t, θ, v) dv (16)

Sjk(t, θ) =

∫

R3

vjvk

v0
f(t, θ, v) dv (17)
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Let a smooth T 2 symmetric solution of the Einstein-Vlasov system writ-
ten in conformal coordinates be given on some time interval (t−, t0]. We
want to show that if this interval is bounded and if R is bounded away from
zero there then f, R, η, U, A, G, H and all their derivatives are bounded
as well, with bounds depending on the data at t = t0 and the lower bound
on R, and that the supremum of the support of momenta at time t,

Q(t) := sup{|v| : ∃(s, θ) ∈ [t, t0] × S1such thatf(s, θ, v) 6= 0}, (18)

is uniformly bounded. Note that these conditions imply that the matter
quantities and their derivatives are uniformly bounded. In proving these
statements it is assumed that the initial data at t = t0 are non-flat, as in
the assumptions of the main theorems.

The description of the proofs in this section is modelled on that of [A1]
and highlights the places where there are differences due to non-vanishing
twist.

Step 1. (Monotonicity of R and bounds on its first derivatives.)
This is a key step and follows the arguments in [BCIM]. We have to check
that the matter terms have the right signs so that these arguments still hold.
The bounds on R and its first derivatives will play a crucial role when we
control the matter terms below.

First we note that ∇R is timelike. This is a consequence of Proposition
3.1 of [Rl1]. A T 2 symmetric solution of the Einstein-Vlasov system satisfies
the hypotheses of that proposition. Since the initial data set is non-flat the
Hawking mass is non-zero somewhere. Then the proposition implies that it
is non-zero everywhere. As a consequence ∇R is everywhere timelike.

Next we show that ∂tR and |∂θR| are bounded into the past. Let us
introduce the null vector fields

∂ξ =
1√
2
(∂t + ∂θ), ∂λ =

1√
2
(∂t − ∂θ), (19)

and let us set Fξ = ∂ξF, Fλ = ∂λF for any function F . The evolution
equation (7) can be written

∂λRξ =
R

2
e2(η−U)(ρ − P1) +

Re−2η

4
(e4UΓ2 + R2H2

t ), (20)

or equivalently,

∂ξRλ =
R

2
e2(η−U)(ρ − P1) +

Re−2η

4
(e4UΓ2 + R2H2

t ). (21)
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The right hand side is positive since ρ ≥ P1 and we can conclude, arguing
as in Step 1 in Section 4 of [A1], that both Rt and |Rθ| are bounded into the
past. Hence R is uniformly C1 bounded to the past of the initial surface.

Step 2. (Bounds on U,A and η and their first derivatives.)
The bounds on Ut, At, Uθ and Aθ to the past of the initial surface are ob-
tained by a light-cone estimate, which in this case, with one spatial dimen-
sion, is an application of the Gronwall method on two independent null
paths. Then, by combining these results, one obtains the desired estimate.

The functions involved in the light-cone argument are quadratic func-
tions in the first order derivatives of U and A, defined by

X =
1

2
R(U2

t + U2
θ ) +

e4U

8R
(A2

t + A2
θ), (22)

Y = RUtUθ +
e4U

4R
AtAθ. (23)

We will see below that if we let the vector fields along the null paths act on
X + Y and X −Y we obtain equations appropriate for applying a Gronwall
argument.

Let us now derive bounds on U and A and their first order derivatives.
By using the evolution equations (5) and (6) we find

∂λ(X + Y ) =
−1

2
√

2
Rξ

(

U2
t − U2

θ +
e4U

4R2
(−A2

t + A2
θ)

)

+
R

2
Uξ

(

e−2η+4UΓ2 + e2(η−U)(ρ − P1 + P2 − P3)
)

+
e2U

2R
Aξ(R

2e2(U−η)ΓHt + 2Re2(η−U)S23),

and

∂ξ(X − Y ) =
−1

2
√

2
Rλ

(

U2
t − U2

θ +
e4U

4R2
(−A2

t + A2
θ)

)

+
R

2
Uλ

(

e−2η+4UΓ2 + e2(η−U)(ρ − P1 + P2 − P3)
)

+
e2U

2R
Aλ(R2e2(U−η)ΓHt + 2Re2(η−U)S23).

It turns out that X and Y can be bounded by integrating these equations
along null paths starting at a general point (t1, θ) in the past of the initial
hypersurface and ending at the initial t0 surface t = t0. The boundedness
of the integrals which arise follows from the equations (20) and (21) and
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the boundedness of Rξ and Rλ in a similar way to the corresponding step
in Section 4 of [A1]. Up to multiplication by functions which are already
bounded and functions which can be bounded linearly in terms of X the
terms involving the twist whose integrals must be estimated are e−2η+4U Γ2

and e−2η+4U ΓHt. The first of these, multiplied by R/4, occurs as one of
the positive summands on the right hand side of (20) and (21). Since by
assumption R is bounded below the first term can be controlled. For the
second we can use the elementary inequality

e2(U−η)ΓHt ≤
1

2
e−2η(e4UΓ2 + H2

t ) (24)

and the occurrence of R3e−2η

4 H2
t as a summand in (20) and (21). Bounds

on X and Y follow by applying Gronwall’s inequality as in [A1]. Thus, as
long as R stays uniformly bounded away from zero we conclude that U and
its first order derivatives, and thus also A and its first order derivatives, are
bounded. Bounds on |η|, |ηt| and |ηθ| are obtained in a similar way since the
evolution equation (8) can be written

2∂ληξ = U2
θ −U2

t +
e4U

4R2
(A2

t −A2
θ)−

e−2η+4U

4
Γ2 − 3R2e−2η

4
H2

t − e2(η−U)P3,

(25)
or equivalently,

2∂ξηλ = U2
θ − U2

t +
e4U

4R2
(A2

t − A2
θ) −

e−2η+4U

4
Γ2 − 3R2e−2η

4
H2

t − e2(η−U)P3.

(26)
The integrals of the right hand sides of these equations along null paths are
bounded since P3 ≤ ρ − P1. The terms involving Γ and Ht can be handled
as above. Thus we find that η is uniformly C1 bounded to the past of the
initial surface as long as R stays bounded away from zero.

Step 3. (Bound on the support of the momentum.)
Note that a solution f to the Vlasov equation is given by

f(t, θ, v) = f0(Θ(0, t, θ, v), V (0, t, θ, v)), (27)

where Θ and V are solutions to the characteristic system

dΘ

ds
=

V 1

V 0
,

dV 1

ds
= −(ηθ − Uθ)V

0 − (ηt − Ut)V
1 + Uθ

(V 2)2

V 0

11



−(Uθ −
Rθ

R
)
(V 3)2

V 0
+

Aθ

R
e2U V 2V 3

V 0

−e−η(e2UΓV 2 + RHtV
3),

dV 2

ds
= −UtV

2 − Uθ
V 1V 2

V 0
,

dV 3

ds
= −(

Rt

R
− Ut)V

3 + (Uθ −
Rθ

R
)
V 1V 3

V 0

−e2U

R
(At + Aθ

V 1

V 0
)V 2,

and Θ(s, t, x, v), V (s, t, x, v) is the solution that goes through the point
(θ, v) at time t. Let us recall the definition of

Q(t) := sup{|v| : ∃(s, θ) ∈ [t, t0] × S1such thatf(s, θ, v) 6= 0}.

We also define Qj, j = 1, 2, 3 in the obvious way where |v| is replaced by
|vj |. If Q(t) can be controlled we obtain immediately from (14)-(16) bounds
on ρ, Jk, Pk, and Sjk, j, k = 1, 2, 3, j 6= k, since ‖f‖∞ ≤ ‖f0‖∞ from (27).
First we note that the quantities

eUV 2, AeUV 2 + Re−UV 3

are conserved which a simple computation shows by using the equations for
dV 2/ds and dV 3/ds above. More generally this is a consequence of the fact
that if γ is a geodesic and k a Killing field then g(γ′, k) is conserved along
the geodesic. Here γ′ is the tangent vector to γ and since the particles follow
the geodesics of spacetime the tangent vector can be expressed in terms of
vµ. We chose k = ∂x and k = ∂y as Killing fields to derive the conserved
quantities given above. Since U and A are uniformly bounded as long as
R stays bounded away from zero we conclude that V 2 and V 3 and thus Q2

and Q3 are bounded as well. In order to bound Q(t) we need to control the
remaining component Q1. From the auxiliary equations (10) and (12) we
conclude that Γ and Ht can be bounded by the quantities involving η, U,At,
which are known to be bounded, and by |S12| and |S13|. Since Q2 and Q3 are
controlled we immediately get from (17) that |S12| and |S13| are bounded
by a constant times Q1. We conclude that as long as R stays bounded away
from zero the terms involving Γ and Ht in the characteristic equation for
dV 1/ds can be estimated by C(t)Q1(t), where C(t) is uniformly bounded
on closed time intervals. Now, since the field components U,A and η and
their first derivatives are known to be bounded on (t−, t0] (as long as R stays
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bounded away from zero) we obtain from the characteristic equation for V 1

|V 1(t)| ≤ |V 1(t0)|+ C(t)

∫ t0

t
Q1(s)ds ≤ |Q1(t0)|+ C(t)

∫ t0

t
Q1(s)ds, t < t0.

Note that Q1(t0) is bounded by a positive constant since f0 has compact
support. This inequality leads to a Gronwall inequality for Q1(t) and we
conclude that Q1(t) is uniformly bounded on [t, t0].

Thus all the field components, their first derivatives and the matter terms
are known to be bounded on (t−, t0], as long as R stays bounded away from
zero.

Step 4. (Bounds on the second order derivatives of the field components
and on the first order derivatives of f .) From the Einstein-matter constraint
equations in conformal coordinates we can express Rtθ and Rθθ in terms
of uniformly bounded quantities, as long as R stays bounded away from
zero. Therefore these functions are uniformly bounded and equation (7)
then implies that Rtt is uniformly bounded as well.

In the vacuum case one can take the derivative of the evolution equa-
tions and repeat the argument in Step 2 to obtain bounds on second order
derivatives of U and A. Here we need another argument. First we write the
evolution equations for U and A in the forms

Utt − Uθθ =
(Rθ − Rt)

2R
(Uθ + Ut) −

(Rθ + Rt)

2R
(Ut − Uθ)

+
e4U

2R2
(At − Aθ)(At + Aθ) +

e−2η+4U

2
Γ2 +

1

2
e2(η−U)κ,

and

Att − Aθθ =
(Rt − Rθ)

2R
(Aθ + At) +

(Rθ + Rt)

2R
(At − Aθ)

−2(At − Aθ)(Uθ + Ut) − 2(Aθ + At)(Ut − Uθ)

+R2e−2ηΓHt + 2Re2(η−2U)S23,

where κ denotes ρ−P1 +P2−P3. Taking the θ-derivative of these equations
gives

∂λ∂ξUθ = L +
Rλ

2R
∂ξUθ +

Rξ

2R
∂λUθ +

e4U

2R2
(Aλ∂ξAθ + Aξ∂λAθ)

+
1

2
(e−2η+4UΓθ + e2(η−U)κθ), (28)

13



and

∂λ∂ξAθ = L +
Rλ

2R
∂ξAθ −

Rξ

2R
∂λAθ + 2Uξ∂λAθ + 2Aλ∂ξUθ + 2Uλ∂ξAθ

+2Aξ∂λUθ + R2e−2η(ΓHt)θ + 2Re2(η−2U)(S23)θ, (29)

Here, L contains only Γ,Ht, κ and S23, first order derivatives of U,A and
η, and first and second order derivatives of R, which all are known to be
bounded. These equations can of course also be written in a form where the
left hand sides read ∂ξ∂λUθ and ∂ξ∂λAθ, respectively. By integrating these
equations along null paths to the past of the initial surface, we get from a
Gronwall argument a bound on

sup
θ∈S1

(|∂ξUθ| + |∂λUθ| + |∂ξAθ| + |∂λAθ|),

as long as R is bounded away from zero, under the hypothesis that the in-
tegral of the differentiated terms Γθ,Htθ, κθ and (S23)θ can be controlled.
That the first two terms are bounded follows immediately from the auxiliary
equations (9) and (11) in view of the bound on Q(t). In order to bound the
matter terms we make use of a device introduced by Glassey and Strauss
[GS] for treating the Vlasov-Maxwell equation. Since there is no essential
difference to the case treated in [A1] we do not repeat the proof here. This
procedure allows the integrals of the differentiated matter terms to be con-
trolled and the Gronwall argument referred to above goes through. So we
obtain uniform bounds on |∂ξUθ|, |∂λUθ|, |∂ξAθ|, and |∂λAθ|, and therefore
also on |Uθθ|, |Utθ|, |Aθθ| and |Atθ|, as long as R is bounded away from zero.
The evolution equations (5) and (6) then give uniform bounds on |Utt| and
|Att|. Bounds on second order derivatives of G and H follow from the auxil-
iary equations. By differentiating equation (8), it is now straightforward to
obtain bounds on the second order derivatives of η, using similar arguments
to those already discussed here, in particular the integrals involving matter
quantities can be treated as above. Bounds on the first order derivatives of
the distribution function f may now be obtained from the known bounds
on the field components from the formula

f(t, θ, v) = f0(Θ(0, t, θ, v), V (0, t, θ, v)), (30)

since f0 is smooth and since ∂Θ and ∂V (here ∂ denotes ∂t, ∂θ or ∂v) can
be controlled by a Gronwall argument in view of the characteristic system
and the auxiliary equations (9)-(12).
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Step 5. (Bounds on higher order derivatives and completion of the proof.)
It is clear that the method described above can be continued for obtaining
bounds on higher derivatives as well. Hence, we have uniform bounds on the
functions R,U,A, η and f and all their derivatives on the interval (t−, t0] if
R > ǫ > 0. This implies that the solution extends to t → −∞ as long as R
stays bounded away from zero.

Later we will require a slight generalization of these results in order to
show that the arguments of Section 5 of [ARR] generalize to cover the case
of T 2 symmetry. Once it has been established that ∇R is timelike, the
estimates in the later steps hold for any subset Z of the half-plane t ≤ t0
provided Z is a future set. By definition this means that any future directed
causal curve in the region t ≤ t0 starting at a point of Z remains in Z. (For
information on concepts such as this concerning causal structures see e.g.
[HE].) Thus if R is bounded away from zero on Z and t is bounded on Z
then all the unknowns and their derivatives can be controlled on Z.

Now consider a special choice of the subset Z, namely that which is
defined by the inequalities t1 < t ≤ t0 and θ1 + t0 − t < θ < θ2 − t0 + t for
some numbers θ1, θ2 and t1 satisfying the inequalities θ1 < θ2 and t1 > t0 −
(1/2)(θ2−θ1). Suppose a solution of the Einstein-Vlasov system in conformal
coordinates defined on this region is such that R is bounded away from zero.
Then the functions defining the solution extend smoothly to the boundary
of Z at t = t1. They define smooth Cauchy data for the Einstein-Vlasov
system. Applying the standard local existence theorem (without symmetry)
allows the solution to be extended through that boundary. Repeating the
construction of conformal coordinates in Section 2 then shows that we get
an extension of the solution written in conformal coordinates through that
boundary.

4 Analysis in the expanding direction

In this section we want to investigate the Einstein-Vlasov system with T 2

symmetry in the expanding direction. We write the system in areal coordi-
nates, i.e., the coordinates are chosen such that R = t. The circumstances
under which coordinates of this type exist are discussed in Section 5. We
prove that for initial data on a hypersurface of constant time corresponding
solutions exist for all future time with respect to the areal time coordinate.
In order to extend a solution defined on a finite time interval in these coor-
dinates to one which exists globally in time it is sufficient to obtain uniform
bounds on the field components and the distribution function and all their
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derivatives on a finite time interval [t0, t+) on which the local solution exists.
For in this case the functions defining the solution are uniformly continuous
and extend continuously to t = t+. Since all derivatives are bounded the
extension is smooth and we obtain new initial data on t = t+. Applying the
general local existence theorem for the Einstein-Vlasov system [CB] allows
the spacetime to be extended beyond t = t+. Conformal coordinates can be
introduced on a neighbourhood of t = t+ and from those areal coordinates
can be constructed. In this way an extension to the future of the solution
written in areal coordinates is obtained.

Below the form of the metric and the Einstein-Vlasov system are given
in areal coordinates. The functions α, η, U,A,G,H all depend on t and θ
and the function f depends on t, θ and v ∈ R

3 and as before we have set
Γ = Gt + AHt. The orthonormal frame used to parametrize PM is

α1/2eU−η ∂

∂t
, eU−η

(

∂

∂θ
− G

∂

∂x
− H

∂

∂y

)

, e−U ∂

∂x
, eU t−1

(

∂

∂y
− A

∂

∂x

)

Metric

g = e2(η−U)(−αdt2 + dθ2) + e2U [dx + Ady + (G + AH)dθ]2

+e−2U t2[dy + Hdθ]2 (31)

The Einstein-matter constraint equations

ηt

t
= U2

t + αU2
θ +

e4U

4t2
(A2

t + αA2
θ) +

e−2η

4
(e4UΓ2 + t2H2

t )

+e2(η−U)αρ (32)

ηθ

t
= 2UtUθ +

e4U

2t2
AtAθ −

αθ

2tα
− e2(η−U)√αJ1 (33)

αt = 2tα2e2(η−U)(P1 − ρ) − αte−2η(e4UΓ2 + t2H2
t ) (34)

The Einstein-matter evolution equations

ηtt − αηθθ =
ηθαθ

2
+

ηtαt

2α
− α2

θ

4α
+

αθθ

2
− U2

t + αU2
θ

+
e4U

4t2
(A2

t − αA2
θ) −

3

4
e−2ηt2H2

t − 1

4
e−2ηe4UΓ2
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−αe2(η−U)P3, (35)

Utt − αUθθ = −Ut

t
+

Uθαθ

2
+

Utαt

2α
+

e4U

2t2
(A2

t − αA2
θ)

+
e−2ηe4U

2
Γ2 +

e2(η−U)α

2
(ρ − P1 + P2 − P3) (36)

Att − αAθθ =
At

t
+

αθAθ

2
+

αtAt

2α
− 4AtUt + 4αAθUθ

+t2e−2ηΓHt + 2tαe2(η−2U)S23. (37)

Auxiliary equations

∂θ[e
−2ηα−1/2e4UΓ] = −2eηJ2, (38)

∂t[e
−2ηtα−1/2e4UΓ] = 2tα1/2eηS12, (39)

∂θ[e
−2ηα−1/2(Ae4UΓ + t2Ht)] = −2eηAJ2 − 2teη−2UJ3, (40)

∂t[e
−2ηtα−1/2(Ae4UΓ + t2Ht)] = 2tα1/2eη(AS12 + te−2US13). (41)

The Vlasov equation

∂f

∂t
+

√
αv1

v0

∂f

∂θ
−

[

(ηθ − Uθ +
αθ

2α
)
√

αv0 + (ηt − Ut)v
1

−
√

αe2UAθ

t

v2v3

v0
+

√
αUθ

v0
((v3)2 − (v2)2) + e−η(e2UΓv2 + tHtv

3)

]

∂f

∂v1

−
[

Utv
2 +

√
αUθ

v1v2

v0

]

∂f

∂v2

−
[

(
1

t
− Ut)v

3 −
√

αUθ
v1v3

v0
+

e2Uv2

t
(At +

√
αAθ

v1

v0
)

]

∂f

∂v3
= 0. (42)

The matter quantities are defined as in (14)-(17).
Step 1. (Bounds on α,U,A,G,H and η̃.)

In this step we first show an “energy” monotonicity lemma and then we
show how this result leads to bounds on η̃ := η + ln α/2 and on U and A.
Let E(t) be defined by

E(t) =

∫

S1

[

α− 1

2 U2
t +

√
αU2

θ +
e4U

4t2
(α− 1

2 A2
t +

√
αA2

θ)

+
e−2ηα−1/2

4
(e4UΓ2 + t2H2

t ) +
√

αe2(η−U)ρ

]

dθ. (43)
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Lemma 1 E(t) is a monotonically decreasing function in t, and satisfies

d

dt
E(t) = −2

t

∫

S1

[

U2
t√
α

+
e4U

4t2
√

αA2
θ +

e−2η

4
√

α
(e4UΓ2 + 2t2H2

t )

+

√
α

2
e2(η−U)(ρ + P3)

]

dθ ≤ 0. (44)

Proof. This is a straightforward but lengthy computation. Let us sketch the
steps involved. After taking the time derivative of the integrand we use the
evolution equations for U and A to substitute for the seond order derivatives,
we use the auxiliary equations to express second order derivatives of G and
H in terms of matter quantities and we express ρt by using the Vlasov
equation. Integrating by parts and using the constraint equations for ηt and
αt lead to (44).

2

Let us now define the quantity η̃ by

η̃ = η +
1

2
ln α. (45)

The difference η̃(t, θ1)− η̃(t, θ2) can be estimated by integrating the expres-
sion for η̃θ resulting from (33) and using the energy bound. Since (33) does
not contain the twist quantities this is exactly as in [A1]. The next step is
to use the constraint equations (32) and (34) to bound the integral

∫

S1 η̃dθ.
The net contribution to η̃t from the twist quantities has the opposite sign
from that of the other terms. So when obtaining an upper bound for the
integral it can be discarded and the argument proceeds as in [A1]. On the
other hand the twist terms must be taken into account when obtaining a
lower bound for the integral. The expression which has to be estimated is
equal to the twist contribution to the energy up to a factor α. This factor is
bounded since α is monotone decreasing. Knowing that the difference of η̃
at two points θ1 and θ2 at any given time and its integral at any given time
are bounded it follows that η̃(t, θ) ≤ C(t) for some bounded function C(t)

Remark. In the analysis below C(t) will always denote a uniformly
bounded function on [t0, t+). Sometimes we introduce other functions with
the same property only for the purpose of trying to make some estimates
become more transparent.
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Next we show that the boundedness of E(t), together with the constraint
equation (34), lead to a bound on |U |. For any θ1, θ2 ∈ S1, and t ∈ [t0, t+)
we get by Hölder’s inequality

|U(t, θ2) − U(t, θ1)| =

∣

∣

∣

∣

∫ θ2

θ1

Uθ(t, θ)dθ

∣

∣

∣

∣

≤
(

∫ θ2

θ1

α−1/2dθ

)1/2 (
∫ θ2

θ1

√
αU2

θ dθ

)1/2

. (46)

The second factor on the right hand side is clearly bounded by (E(t0))
1/2.

For the first factor we use the constraint equation (34). This equation can
be written as

∂t(α
−1/2) = t

√
αe2(η−U)(ρ − P1) + tα−1/2 e−2η

2
(e4UΓ2 + t2H2

t ), (47)

so that for t ∈ [t0, t+)

α−1/2(t, θ) =

∫ t

t0

s
√

αe2(η−U)(ρ − P1) + sα−1/2 e−2η

2
(e4UΓ2 + s2H2

t )ds

+α−1/2(t0, θ). (48)

Since ρ ≥ P1, the integrand is positive and bounded by a multiple of the
integrand of E(t). Letting C denote the supremum of α−1/2(t0, ·) over S1

we get

∫ θ2

θ1

α−1/2dθ ≤
∫ t

t0

2sE(s)ds + 2πC ≤ 2E(t0)(t
2 − t20)/2 + 2πC.

Hence, for any θ1, θ2 ∈ S1 we have

|U(t, θ2) − U(t, θ1)| ≤ C(t). (49)

Next
∫

S1 U(t, θ)dθ can be estimated using the energy just as in [A1] since
the twist quantities do not play a role in that argument. Knowing that the
difference of U at any two spatial points and the modulus of its integral
over the circle are bounded we can conclude that U itself is bounded. These
arguments also apply to A, since the factor e4U is controlled by the uniform
bound on U . Bounds on e−ηΓ and e−ηHt also follow from these arguments.
Indeed, let P = e4U−2ηα−1/2Γ. We have from the auxiliary equation (38) an
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expression for Pθ in terms of J2 and we get

|P (t, θ2) − P (t, θ1)| =

∣

∣

∣

∣

∫ θ2

θ1

Pθ(t, θ)dθ

∣

∣

∣

∣

≤
∫ θ2

θ1

2eη|J2|dθ

≤ 2‖e−η̃+2U‖∞
∫ θ2

θ1

√
αe2(η−U)|J2|dθ ≤ C(t)E(t). (50)

Note that η̃ and U are known to be bounded. Similarily, using the auxiliary
equation (39) we obtain a bound on

∣

∣

∣

∣

∫

S1

P (t, θ)dθ

∣

∣

∣

∣

in the same spirit as for U. This leads to a bound on P itself which implies
that e−ηΓ is bounded. A bound on e−ηHt follows if we instead let P =
e−2ηα−1/2t2Ht. Using the auxiliary equations (38-41) we get expressions on
Pθ and Pt. In the expression for Pt we get a term containing At which we
treat as in the case of bounding U, i,e. we use a Hölder argument to bound
that term in terms of E(t). We also use that e−ηΓ, A and η̃ are bounded but
all ideas have already been used above so we leave them out and conclude
that e−η|Ht| is bounded on [t0, t+) as well.

Step 2. (Bounds on Ut, Uθ, At, Aθ, ηt, η̃θ, αt and Q(t).)
To bound the derivatives of U we use light-cone estimates in a similar way
as for the contracting direction. However, the matter terms must be treated
differently and we need to carry out a careful analysis of the characteristic
system associated with the Vlasov equation. Let us define

X =
1

2
(U2

t + αU2
θ ) +

e4U

8t2
(A2

t + αA2
θ), (51)

Y =
√

αUtUθ +
e4U

4t2
AtAθ, (52)

and

χ =
1√
2
(∂t +

√
α∂θ) (53)

ζ =
1√
2
(∂t −

√
α∂θ) (54)

A motivation for the introduction of these quantities is based on similar
arguments as those given in Step 1, Section 4. For details we refer to [BCIM].

Remark. We use the same notations, X and Y , as in the contracting
direction, and below we continue to carry over the notations. The analysis
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in the respective direction is independent so there should be no risk of con-
fusion.

By using the evolution equation (36), a short computation shows that

ζ(X + Y ) =
αt

2
√

2α
(X + Y )

− 1√
2t

(

U2
t +

√
αUtUθ +

e4U

4t2
(αA2

θ +
√

αAtAθ)

)

+
(Ut +

√
αUθ)

2
√

2
(e4U−2ηΓ2 + αe2(η−U)κ)

+
(At +

√
αAθ)

4
√

2
(e4U−2ηΓHt + 2αe2ηS23),

(55)

χ(X − Y ) =
αt

2
√

2α
(X − Y )

− 1√
2t

(

U2
t −

√
αUtUθ +

e4U

4t2
(αA2

θ −
√

αAtAθ)

)

+
(Ut −

√
αUθ)

2
√

2
(e4U−2ηΓ2 + αe2(η−U)κ)

+
(At −

√
αAθ)

4
√

2
(e4U−2ηΓHt + 2αe2ηS23),

(56)

Here κ = ρ− P1 + P2 − P3. Now we wish to integrate these equations along
the integral curves of the vector fields χ and ζ respectively (let us henceforth
call these integral curves null curves, since they are null with respect to the
two-dimensional “base spacetime”). Below we show that the quantity

W (t) := sup
θ∈S1

X(t, ·) + Q2(t), (57)

is uniformly bounded on [t0, t+) by deriving the inequality

W (t) ≤ C +

∫ t

t0

W (s) ln W (s)ds. (58)

First we note, exactly as in the contracting direction, that the symmetry
implies that

V 2(t)eU(t,Θ(t))
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and
V 2(t)AeU + V 3(t)te−U(t,Θ(t)),

are conserved. Here V 2(t), V 3(t) and Θ(t) are solutions to the characteristic
system associated to the Vlasov equation. From Step 2 we have that U and
A are uniformly bounded on [t0, t+). Hence |V 2(t)| and |V 3(t)| are both
uniformly bounded on [t0, t+), and since the initial distribution function f0

has compact support we conclude that

sup{|v2| + |v3| : ∃(s, θ) ∈ [t0, t] × S1 with f(s, θ, v) 6= 0}, (59)

is uniformly bounded on [t0, t+). Therefore, in order to control Q(t) it is
sufficient to control

Q1(t) := sup{|v1| : ∃(s, θ) ∈ [t0, t] × S1such thatf(s, θ, v) 6= 0}. (60)

Below we introduce the uniformly bounded function γ(t) to denote estimates
regarding the variables v2 and v3. As observed in [A1] there is some can-
cellation to take advantage of in the matter term (ρ−P1) which appears in
the equations for X + Y and X − Y above. It is proved there that

(ρ − P1)(t, θ) ≤ Cγ(t) ln Q1(t) (61)

In a similar fashion we can estimate P2, P3 and S23.
Let us now derive (58). As in Step 2 in Section 4 we integrate the

equations above for X +Y and X −Y along null paths. For t ≥ t0 integrate
along the two null paths defined by χ and ζ, starting at (t0, θ) and add the
results. In this way the following inequality can be derived:

sup
θ

X(t, ·) ≤ C + C(t)

∫ t

t0

[1 + sup
θ

X(s, ·)] ln Q1(s)]ds (62)

In doing this it is important to use the fact that αe2η = e2η̃ and the above
estimates for matter quantities in terms of ln Q1. What is new compared to
[A1] is the occurrence of twist quantities and these can be treated using the
fact that e−ηΓ and e−ηHt are bounded.

Let us now derive an estimate for Q1 in terms of supθ X.

Lemma 2 Let Q1(t) and X(t, θ) be as above. Then

|Q1(t)|2 ≤ C + D(t)

∫ t

t0

[(Q1(s))2 + sup
θ

X(s, ·)]ds, (63)

where C is a constant and D(t) is a uniformly bounded function on [t0, t+).
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Proof. The characteristic equation for V 1 associated to the Vlasov equation
and the constraint equations (32) and (33) imply that

d

ds
(V 1(s))2 = 2V 1(s)

d

ds
V 1(s) = T1 + T2 + T3 + T4, (64)

Here T1, T2 and T3 are expressions given in [A1] and they can be estimated
just as in the corresponding lemma of that reference. The additional term
T4, which collects together the contributions involving the twist quantities,
is

T4 = −2s(V 1)2
e−2η

4
(e4UΓ2 + s2H2

t ) − 2V 1(s)[e−η(e2UΓV 2 + sHtV
3)] (65)

It is easily seen that |T4| ≤ Cγ(t)(Q1(t))2 and this suffices to obtain the
desired estimate.

2

Combining the estimate for (Q1(t))2 in the lemma and the estimate (62)
for supθ X(t, ·), we find that W (t) satisfies the estimate (58) and is thus
uniformly bounded. The constraint equation (32) now immediately shows
that |ηt| is bounded by

2tX +
te−2η

4
(e4UΓ2 + t2H2

t ) + te2(η̃−U)ρ ≤ C(t)[1 + sup
θ

X(t, ·) + (Q(t))3],

since

ρ =

∫

R3

fdv ≤ ‖f0‖∞
∫

|v|≤Q(t)
dv ≤ C(Q(t))3.

Recall that e−2η(e4UΓ2 + t2H2
t ) is known to be bounded. Thus also η is

bounded which implies that both |Γ| and |Ht| are bounded. The bound on
η also provides a bound on |η̃θ| using the constraint equation (33), where
|J1| is estimated in terms of Q(t). Analogous arguments show that |αt| is
uniformly bounded. The uniform bound on X provides bounds on |Ut| and
|At|, but to conclude that |Uθ| and |Aθ| are bounded we have to show that
α stays uniformly bounded away from zero. Equation (34) is easily solved,

α(t, θ) = α(t0, θ)e
∫ t

t0
F (s,θ)ds

, (66)

where
F (t, θ) := −2te2(η̃−U)(ρ − P1) − te−2η(e4UΓ2 + t2H2

t ),
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which is uniformly bounded from below. Hence |Uθ| and |Aθ| are bounded
and Step 2 is complete.

Step 3. (Bounds on ∂f , αθ and ηθ.)
The main goal in this step is to show that the first derivatives of the dis-
tribution function are bounded. In view of the bound on Q(t) we then also
obtain bounds on the first derivatives of the matter terms ρ, Jk, Sjk and Pk,
j, k = 1, 2, 3; j 6= k. Such bounds together with bounds on the θ derivatives
of the twist quantities almost immediately lead to bounds on αθ and ηθ.

Recall that the solution f can be written in the form

f(t, θ, v) = f0(Θ(0, t, θ, v), V (0, t, θ, v)), (67)

where Θ(s, t, θ, v), V (s, t, θ, v) is the solution to the characteristic system

dΘ

ds
=

√
α

V 1

V 0
, (68)

dV 1(s)

ds
= −(ηθ − Uθ +

αθ

2α
)
√

αV 0 − (ηt − Ut)V
1

−
√

αUθ

V 0
((V 2)2 − (V 3)2) +

√
αAθ

sV 0
e2UV 2V 3

−e−η(e2UΓV 2 + sHtV
3), (69)

dV 2

ds
= −UtV

2 −
√

αUθ
V 1V 2

V 0
, (70)

dV 3

ds
= −(

1

s
− Ut)V

3 +
√

αUθ
V 1V 3

V 0

−e2U

s
(At +

√
αAθ

V 1

V 0
)V 2, (71)

with the property Θ(t, t, θ, v) = θ, V (t, t, θ, v) = v. Hence, in order to estab-
lish bounds on the first derivatives of f it is sufficient to bound ∂Θ and ∂V
since f0 is smooth. Here ∂ denotes the first order derivative with respect to
t, θ or v. Evolution equations for ∂Θ and ∂V are provided by the character-
istic system above. However, the right hand sides will contain second order
derivatives of the field components, but so far we have only obtained bounds
on the first order derivatives (except for ηθ, αθ). Yet, certain combinations
of second order derivatives can be controlled. Behind this observation lies
a geometrical idea which plays a fundamental role in general relativity. An
important property of curvature is its control over the relative behaviour of
nearby geodesics. Let γ(u, λ) be a two-parameter family of geodesics, i.e.
for each fixed λ, the curve u 7→ γ(u, λ) is a geodesic. Define the variation
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vector field Y := γλ(u, 0). This vector field satisfies the geodesic deviation
equation (or Jacobi equation) (see eg. [HE])

D2Y

Du2
= RY γ′γ′, (72)

where D/Du is the covariant derivative, R the Riemann curvature tensor,
and γ′ := γu(u, 0). Now, the Einstein tensor is closely related to the cur-
vature tensor and since the Einstein tensor is proportional to the energy
momentum tensor which we can control from Step 2, it is meaningful, in
view of (72) (with Y = ∂Θ), to look for linear combinations of ∂Θ and
∂V which satisfy an equation with bounded coefficients. More precisely, we
want to substitute the twice differentiated field components which appear
by taking the derivative of the characteristic system by using the Einstein
equations. The geodesic deviation equation has previously played an impor-
tant role in studies of the Einstein-Vlasov system ([Rl4], [Rn] and [Rl3]).

Lemma 3 Let Θ(s) = Θ(s, t, θ, v) and V k(s) = V k(s, t, θ, v), k = 1, 2, 3 be
a solution to the characteristic system (68)-(71). Let ∂ denote ∂t, ∂θ or ∂v,
and define

Ψ = α−1/2∂Θ, (73)

Z1 = ∂V 1 +

(

ηtV
0

√
α

− UtV
0

√
α

(V 0)2 − (V 1)2 + (V 2)2 − (V 3)2

(V 0)2 − (V 1)2

+ Uθ
V 1((V 2)2 − (V 3)2)

(V 0)2 − (V 1)2
− Ate

2U

√
αt

V 0V 2V 3

(V 0)2 − (V 1)2

+Aθ
V 1V 2V 3

(V 0)2 − (V 1)2

)

∂Θ, (74)

Z2 = ∂V 2 + V 2Uθ ∂Θ, (75)

Z3 = ∂V 3 − (V 3Uθ −
e2U

s
V 2Aθ) ∂Θ. (76)

Then there is a matrix A = {alm}, l,m = 0, 1, 2, 3, such that

Ω := (Ψ, Z1, Z2, Z3)T

satisfies
dΩ

ds
= AΩ, (77)

and the matrix elements alm = alm(s,Θ(s), V k(s)) are all uniformly bounded
on [t0, t+).
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Sketch of proof. Once the ansatz (73)-(76) has been found this is only a
lengthy calculation. To illustrate the type of calculations involved we show
the easiest case, i.e. the Z2 term.

dZ2

ds
=

d

ds
(∂V 2 + V 2Uθ∂Θ)

= ∂(
d

ds
V 2) +

dV 2

ds
Uθ∂Θ

+V 2(Utθ + Uθθ
dΘ

ds
)∂Θ + V 2Uθ∂(

dΘ

ds
).

(78)

Now we use (68) and (70) to substitute for dΘ/ds and dV 2/ds. We find that
the right hand side equals

∂(−UtV
2 −

√
αUθ

V 1V 2

V 0
) + (−UtV

2 −
√

αUθ
V 1V 2

V 0
)Uθ∂Θ

+V 2(Utθ + Uθθ

√
α

V 1

V 0
)∂Θ + V 2Uθ

(

αθV
1

2
√

αV 0
∂Θ +

√
α∂(

V 1

V 0
)

)

.

Taking the ∂ derivative of the first term we find that all terms of second
order derivatives and terms containing αθ cancel. Next, since

−
√

αUθ∂

(

V 1V 2

V 0

)

+
√

αUθV
2∂

(

V 1

V 0

)

= −
√

αUθ
V 1

V 0
∂V 2, (79)

we are left with

dZ2

ds
= −(UtV

2 +
√

αUθ
V 1V 2

V 0
)Uθ∂Θ − (Ut +

√
αUθ

V 1

V 0
)∂V 2. (80)

Finally we express this in terms of Ψ, Z1, Z2 and Z3. Here this is easy and
we immediately get

dZ2

ds
= −(Ut +

√
αUθ

V 1

V 0
)Z2.

Clearly, the map (∂Θ, ∂V k) 7→ (Ψ, Zk) is invertible so that this step is
easy also in the other cases. It follows that the matrix elements a2m, m =
0, 1, 2, 3, are uniformly bounded on [t0, t+) (only a22 is nonzero here). The
computations for the other terms are similar. For the Z1 term we point out
that the evolution equations (36) and (37) should be invoked and that the
matrix element a10 contains ηθ and αθ/2α, but they combine and form η̃θ,

26



and that derivatives of e−ηΓ and e−ηHt appear. The latter terms are easily
seen to be bounded in view of the auxiliary equations. For example, from
(38) we get a bound on ∂θ(e

−ηΓ),

∂

∂θ
(e−ηΓ) = −2eη+η̃−4UJ2 − eη̃−η−4UΓ

∂

∂θ
(e−η̃+4U ).

The right hand side is bounded since U,Uθ, η, η̃, ∂θ η̃, and Γ are all bounded
as was shown in Step 1 and 2.

2

From the lemma it now immediately follows that |Ω| is uniformly bounded
on [t0, t+). Moreover, since the system (73)-(76) is invertible with uniformly
bounded coefficients we also have uniform bounds on |∂Θ| and |∂V k|, k =
1, 2, 3. In view of the discussion at the beginning of this section we see that
the distribution function f and the matter quantities ρ, Jk, Sjk and Pk, are
all uniformly C1 bounded. From the constraint equation (34) we now obtain
a uniform bound on αθ by a simple Gronwall argument using as usual the
identity αe2(η−U) = e2(η̃−U). Finally this yields a uniform bound on ηθ since

ηθ = η̃θ −
αθ

2α

and α stays uniformly bounded away from zero.
Step 4. (Bounds on second and higher order derivatives.)

It is now easy to obtain bounds on second order derivatives on U and A by
using light cone arguments. We define X and Y by

X =
1

2
(U2

tt + αU2
tθ) +

e4U

8t2
(A2

tt + αA2
tθ), (81)

Y =
√

αUttUtθ +
e4U

4t2
AttAtθ, (82)

and use the differentiated (with respect to t) evolution equations for U and
A to obtain equations similar to (55) and (56). In this case a straightforward
light cone argument applies since we have control of the differentiated matter
terms. Uθθ and Aθθ are then uniformly bounded in view of the evolution
equations (36) and (37). Bounds on second order derivatives on f then
follows from (77) by studying the equation for ∂Ω. The only thing to notice
is that η̃θθ is controlled by (33). It is clear that this reasoning can be
continued to give uniform bounds on [t0, t+) for higher order derivatives as
well.

2
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5 Proofs of the main theorems

In this section the analytical and geometrical information obtained in pre-
vious sections is combined to obtain the main results of the paper.
Proof of Theorem 2. For a spacetime satisfying the hypotheses of the the-
orem we know from Section 2 that a conformal coordinate system can be
introduced on a neighbourhood of the initial hypersurface S0 corresponding
to the original data. The direct analogues of the results of Section 5 of
[ARR] hold and can be proved by the same arguments. In fact the situa-
tion is slightly simpler since in the case of T 2 symmetry there is an obvious
choice of two Killing vectors while in [ARR] it was necessary to worry about
choosing two from a total of three Killing vectors in an appropriate way. Cf.
also [BCIM] where this type of argument was introduced for the first time.
By these results it follows that the region where the solution exists can be
extended to the past so as to include a Cauchy surface SA of constant areal
time. Moreover, either the conformal time coordinate extends to all negative
values, or R tends to zero as the past boundary of the region covered by
conformal coordinates is approached. In the first of these cases the region
covered by the conformal time coordinate includes the entire past of the ini-
tial hypersurface in the maximal Cauchy development, as follows from the
arguments of Section 5 of [ARR]. Also the past of SA in that region admits
a foliation by hypersurfaces of constant R. In that region we can transform
to areal coordinates. For we can choose a new spatial coordinate θ so that
its coordinate lines in Q are orthogonal to that foliation. In the second case
(where R tends to zero on the boundary of the region covered by conformal
coordinates) the past of SA is also covered by areal coordinates. It exhausts
the past of SA in the maximal Cauchy development, as will now be shown.
If the spacetime could be extended to the past there would be a sequence of
points tending to the boundary of the original spacetime in the extension.
Along this sequence R would have to tend to zero. However the function R
which is globally defined on the maximal Cauchy development must tend to
a non-zero limit along the sequence approaching a point of the extension.
Thus the existence of an extension leads to a contradiction. It follows that
in both cases the entire past of S0 in the maximal Cauchy development is
covered. As a consequence of the results of Section 4 the spacetime and the
areal time coordinate can be extended so that the time coordinate covers
the interval (R0,∞). It can then be concluded by the argument at the end
of Section 5 of [ARR] that the entire future of S0 in the maximal Cauchy
development is covered.
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2

Proof of Theorem 1. The mean curvature of the hypersurfaces of constant
areal time is

trk = −e−η+Uα−1/2(ηt − Ut + t−1) (83)

From the field equations it follows that

ηt − Ut + t−1 ≥ tU2
t − Ut + t−1 =

3

4
tU2

t + t(
1

2
Ut − t−1)2 (84)

Hence there are Cauchy surfaces with everywhere negative mean curvature.
Under these circumstances it was shown by Henkel [H] that the initial singu-
larity is a crushing singularity and thus a neighbourhood of it can be foliated
by CMC hypersurfaces. Given one CMC hypersurface the statement in The-
orem 1 about the range of the CMC time coordinate follows from [Rl1]. It
remains to see that the CMC foliation covers the entire future of the initial
hypersurface. This can be proved by an argument used in the case of hyper-
bolic symmetry in [ARR] which will now be recalled. It is enough to show
that if p is any point of the spacetime there is a compact CMC hypersurface
which contains p in its past. Let S1 be the Cauchy surface of constant areal
time passing through p. Equation (83) shows that the mean curvature of
S1 is strictly negative. Hence it has a maximum value H1 < 0. Let S2

be the compact CMC hypersurface with mean curvature H1/2. Then the
infimum of the mean curvature of S2 is greater than the supremum of the
mean curvature of S1 and a standard argument [M] shows that S2 is strictly
to the future of S1. Hence p is in the past of S2, as required.

2
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