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Abstract. We describe our present understanding of the relations between the
behavior of asymptotically flat Cauchy data for Einstein’s vacuum field equa-
tions near space-like infinity and the asymptotic behavior of their evolution
in time at null infinity.

1. Introduction

There are no doubts any longer that the idea of gravitational radiation refers to a
real physical phenomenon. Framing, however, a precise underlying mathematical
concept still poses problems. The work on gravitational radiation by Pirani [62],
Trautman [69), Sachs [63], [64], Bondi [10], Newman and Penrose [58] and others,
which was brought in a sense to a conclusion by Penrose [59], [60], is based on
the idealization of an isolated self-gravitating system. It requires information on
the long time evolution of gravitational fields which at the time could only be
guessed. Ten years before these developments Y. Choquet-Bruhat had achieved
a breakthrough in the mathematical analysis of the local Cauchy problem for
Einstein’s field equations [11]. However, the technical means to derive the fall-off
behavior of gravitational fields at far distances and late times from ‘basic principles’
were not available in the 1960’s. In the meantime there has been a considerable
progress in controlling the asymptotic structure of solutions to Einstein’s field
equations but it is still not quite clear which ‘basic principles’ to assume here.

In the following we shall report on work which aims at closing various gaps in
the study of gravitational radiation, the analysis of the Einstein equations, and the
calculation of wave forms. Sections 2-5 present a fairly detailed discussion of the
underlying analytical structures and of the recent results which led to the author’s
Present understanding of the situation. To maintain the flow of the arguments. the
reader is referred for derivations to the original literature. In Sections 6 and 7 will
be given new results and detailed arguments.



122 H. Friedrich

Penrose’s proposal to characterize far fields of isolated systemns in terms of
their conformal structure ([59], [60]) has been criticized over the years on several
grounds: various variations, alternatives, etc. have been proposed (cf. [5], [13],
(14]. [17], [26], [66], [70], [73], and references given therein). Some authors consider
the smoothness requirements on the conformal boundary as too restrictive and
suggest generalizations (cf. [17], [70], {73]). Doubts have been raised as to whether
non-trivial asymptotically simple solutions to the vacuum field equations exist at
all ({14]) and it has been argued that the smoothness of the conformal boundary
required in [59] excludes interesting physics ([13]). The wide range of opinions
on the subject is illustrated by the curious contrast between this emphasis on
subtleties of the asymptotic smoothness and claims that ‘null infinity is too far
away for modelling real physics’ (cf. [26], [66]).

In [26] even the asymptotically flat model is abandoned and replaced by a
time-like cut model. The latter introduces a spatially compact time-like hypersur-
face T which is chosen in an ad hoc fashion to cut off ‘the system of interest’ from
the rest of the ambient universe. The idea then is to study the system which has
thus been ‘isolated’ as an object of its own.

The usefulness of any such suggestion can only be demonstrated by analyzing
its mathematical feasibility. This becomes clear when one tries to calculate wave
forms numerically. Such calculations cannot be based on hand waving or physical
intuition. The design of an effective numerical computer code requires a precise
mathematical formulation.

The analysis of the time-like cut model reduces to a study of the initial
boundary value problem for Einstein’s field equations in which boundary data are
prescribed on 7 and Cauchy data are given on a space-like hypersurface § which
intersects T in the space-like surface dS. In [42] has been given a fairly complete
analysis of this problem for Einstein’s vacuum field equations. This study is only
local in time, but it provides insights into the basic problem. So far, the time-like
cut model raises many more questions than it appears able to answer.

How is T to be chosen? Physical considerations may lead to suggestions when
the system of interest is ‘sufficiently far’ away from other systems. However, there
is in general no preferred physical or geometrical choice for 7. (It is instructive to
compare this with the anti-de Sitter-type solutions, where the time-like boundary
J at space-like and null infinity is determined geometrically and the boundary
data can be prescribed in covariant form (cf. [36]).)

The boundary must be characterized by some implicit or explicit geometrical
condition. A natural choice is to prescribe its mean extrinsic curvature. Its evolu-
tion in time is then defined implicitly by a quasi-linear wave equation which itself
depends in a non-local way on the data given on S and 7 (cf. [42]). Long time
calculations thus require an extra effort to control the regularity of the boundary.

The gauge is related on the time-like boundary 7 directly to the evolution
process. It depends on the (implicit) choice of a time-like unit vector field tangent
to 7. While the data which are prescribed on the space-like hypersurface S allow
one to analyze the local geometry near S at any desired order, the data which
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can be prescribed on the boundary 7 provide very little information on the local
geometry near 7. All this makes it particularly difficult to show that the gauge
and the constraints are preserved under the evolution in time,

These properties imply in general a non-covariance of the boundary condi-
tions and data. Moreover, due to the fact that no causal direction is distinguished
on T there does not seem to exist a natural 'no incoming radiation condition’
and, in particular, no natural concept of ‘outgoing radiation’. In fact, it appears
difficult to associate with the initial boundary value problem any ‘simple’ quanti-
ties which characterize the system and its dynamics and which can be related to
observational data.

While the discussion in [42] singles out data which are mathematically ad-
missible, it is far from clear what should be prescribed on 7T from the physical
point of view. The ‘correct’ data induced by the ambient universe will never be
known. The information fed into ‘the system’ by the data prescribed on 7 can
hardly be assessed. In long time calculations it may alter the character of the
system drastically.

Because of these difficulties the time-like cut model appears not very promis-
ing. Nevertheless, it is of interest because of its similarity to the standard ap-
proach to numerical relativity, where an artificial time-like boundary is introduced
to render the computational grid finite. It is expected here that the assumption of
asymptotic flatness together with a judicious choice of the boundary will alleviate
some of the difficulties pointed out above.

At present the only satisfactory solution to the gravitational radiation prob-
lem is based on the assumption of asymptotical flatness and the most elegant and
geometrically natural definition of the latter is provided by the idea of the confor-
mal boundary at null infinity introduced in [59]. While useful physical concepts can
be associated with a conformal boundary which is sufficiently smooth (cf. [4], [46].
[61] and the references given there), the possible degree of differentiability, which
encodes the fall-off behavior of the gravitational field, still poses questions. This
article deals with this particular issue and tries to disentangle its various aspects
and difficulties.

Einstein’s field equations admit certain conformal representations which in
the following will be referred to as conformal field equations. These equations are
‘regular’ in the sense that they imply in a suitable gauge equations which are
hyperbolic even at points of null infinity ([28], [29]). This fact has been used to
show that the smoothness of the conformal boundary is preserved if it is guaranteed
on the initial slice S of an hyperboloidal initial value problem ([31], [33], cf. also
[38]). The subsequent analysis of hyperboloidal initial data ([3], [1], [2]) showed
the existence of a large class of smooth hyperboloidal data for the conformal field
equations. The construction of such data requires the ‘free data’ to satisfv a finite
number of conditions at the space-like boundary 0S8 at which the hyperboloidal
slice S intersects future null infinity J7.
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However, the work referred to above also shows the existence of a large class
of hyperboloidal data which are smooth on &\ 9S but possess a non-trivial poly-
homogeneous expansion at S, i.e., an asymptotic expansion in terms of x¥ logj T
where r is a defining function of the boundary 85, which vanishes on JS. Loga-
rithmic terms can occur as a consequence of the constraint equations even if the
free data extend smoothly to 0S. Recently, it has been shown that certain hy-
perboloidal data which are polyhomogeneous at dS evolve into solutions to the
conformal field equations which possess generalized conformal boundaries near the
initial slice ([18], [57]). While the precise behavior of these solutions near that
boundary still needs to be analyzed, the result shows that the use of the confor-
mal field equations and the characterization of the edge of space-time in terms of
its conformal structure are not restricted to asymptotically regular situations.

We conclude from these results that in the standard Cauchy problem the field
equations decide on the degree of smoothness of the conformal boundary at null
infinity in arbitrarily small neighborhoods of space-like infinity.

There are other reasons to study the region near space-like infinity. The hy-
perboloidal initial value problem is intrinsically time-asymmetric. To analyze in
the same picture incoming radiation, a non-linear scattering process, and outgoing
radiation, one needs to include space-like infinity (as pointed out already in [60]).
Also, if the hyperboloidal data are not distinguished by special features as, for in-
stance, the presence of a trapped surface, it is not clear which part of the imagined
space-time is covered by their evolution. They could represent a hypersurface close
to time-like infinity or close to a Cauchy hypersurface (a difficulty shared with the
characteristic initial value problem and the initial boundary value problem).

This should not obscure the fact that numerical calculations of space-times
from hyperboloidal data allow one to determine wave forms for many ‘realistic’
physical processes. So far the only semi-global calculations of space-times, includ-
ing their radiation fields at null infinity, are based on hyperboloidal and charac-
teristic initial value problems (cf. [27], [52], [53], and the article by L. Lehner and
0. Reula, this volume).

We are thus left with the following task: (i) characterize the data which evolve
near space-like infinity into solutions of prescribed smoothness at null infinity, (ii)
analyze for which of these data physical concepts and requirements (linear and
angular momentum at space-like and null infinity, reduction of the asymptotic
gauge (BMS) group to a Poincaré group, ... ) can be meaningfully introduced and
a satisfactory physical picture can be established.

The first step is technically the most difficult one. It requires us to control
under fairly general assumptions the effect of the quasi-linear, gauge hyperbolic
field equations over infinite regions of space-time. Moreover, the asymptotic be-
havior of the solutions has to be determined with a precision which excludes any
further refinement.

Once this step has been taken, many considerations of the second step will re-
duce to straightforward, though possibly quite lengthy, calculations. Nevertheless,
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the second step is of crucial importance. At this stage one has to observe that the
notion of asymptotic flatness is not part of the general theory; it is an idealiza-
tion which is chosen to serve a purpose. While it is suggested to us by important
solutions such as those of the Kerr family, it is far from being determined by
the equations alone. There remains a large freedom to decide on the asymptotic
behavior of the fields.

To make one’s choice, one needs to know the mathematical options and has to
decide on the physical questions to be answered. A theorem which characterizes the
most general Cauchy data on § = R? for which the maximal globally hyperbolic
Einstein development is null geodesically complete and for which the Riemann
tensor goes to zero at (null) infinity would be mathematically quite an achievement
but, by itself, insufficient from the point of view of physics.

We are not interested here in discussing ‘observations’ in asymptotically flat
solutions which refer to the roughness of the asymptotic structure as, for instance.
in [70]. We rather wish to understand whether (i) the solution models a ‘system
of physical interest’ and (ii) its far field and asymptotic structure allow one to
extract information on the system which characterizes its physical nature and can
be related to observational data.

This task is neither easy nor well defined. The studies of the last 40 vears
provide some understanding of the situations one may expect to observe (collapse
to a black hole, mergers of black holes, ...). By exploring, however, the questions
above in a general setting, new phenomena may be encountered (cf. [12]. [19] for
an example). But given that the interior is understood to some degree, what do
we do about (ii)?

Recent results on the constraint equations exhibit possibilities to modify
asymptotically flat vacuum data ‘far out’ without affecting the interior. The data
can be made to agree near space-like infinity with exact Schwarzschild or Kerr
data ([20], [21]), with even more general static resp. stationary data, or with data
which are only asymptotically static resp. stationary ([16]) (cf. also the discussion
in the article by R. Bartnik and J. Isenberg, this volume, for other techniques of
modifying or extending solutions to the constraints).

These results have been used to settle a question which has been open for a
long time. Since data which are static or stationary near space-like infinity evolve
into solutions which possess a smooth conformal boundary at null infinity (cf. {23]),
these solutions contain smooth hyperboloidal hypersurfaces. Recently P. Chrusciel
and E. Delay have shown the existence of families of Cauchy data on R* which are
static outside a fixed radius and have members of arbitrarily small ADM-mass. The
corresponding solutions contain hyperboloidal hypersurfaces to which the results
of [33] apply. This demonstrates the existence of non-trivial asymptotically simple
solutions to Einstein’s vacuum field equations with prescribed smoothness of the
asymptotic structure ([15]).

More recently S. Klainerman and F. Nicolo revisited their work in [55] and
showed ([56]) that their solutions will have the Sachs peeling property ({63]. [64]) if
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the data are subject to certain asymptotic conditions. However, the class of data
which meet these requirements still needs further analysis.

The new flexibility in constructing asymptotically flat initial data also al-
lows one to illustrate some difficulties of the asymptotically flat space-time model.
Let (S, d) denote the initial data where S is the hypersurface considered in our
discussion of the time-like cut model and d indicates the fields induced on S by
the cosmological model. Suppose that (S§’,d’) is an asymptotically flat initial data
set for which there exists an embedding ¢ : S — S’ such that the push forward
of d by ¢ is in a suitable sense ‘close’ to d’ on ¢(S). The evolution in time of
the data (S’,d’) can then be considered in some neighborhood of ¢(S) as a good
approximation of the evolution of d in the cosmological model.

If the set S is chosen large enough and close to the region where the system is
undergoing a wave generation process, the main part of the wave signal will reach
null infinity at a finite retarded time. The fact that for very late times the data
on 8’ \ ¢(S) will create a deviation of our solution from the cosmological one is
likely to be irrelevant in many interesting situations. From a pragmatical point of
view it may be considered the main purpose of the asymptotically flat space-time
extension beyond the domain of dependence of ¢(S) to allow perturbations of the
gravitational field generated near ¢(S) to unfold into a clean wave signal which
can be read off at null infinity.

Since changes near space-like infinity affect the field, however weakly, at all
later times, they may have an important effect in the case of black hole solutions.
One may envisage the collapse of pure gravitational radiation to a black hole as
being modelled by vacuum solutions which arise from smooth asymptotically flat
data on R, admit smooth, complete (cf. [47]) conformal boundaries J*, and pos-
sess future event horizons while all past directed null geodesics require endpoints
on J~. At present nothing is known about such solutions and they may not exist.
[s it conceivable then that there exist solutions which show all the (suitably gen-
eralized) features listed above but have a rough conformal boundary? Could such
boundaries allow for a ‘higher radiation content’? If that were the case the re-
striction to smooth conformal boundaries might preclude the discussion of certain
interesting physical phenomena.

Clearly, the large freedom in constructing asymptotically flat extensions
should neither be used to import irrelevant information into the system nor to sup-
press important features. The replacement of an extension by one which is strictly
Kerr (say) near space-like infinity introduces a transition zone on the initial hy-
persurface which mediates between the given and the Kerr data. The resulting
‘wrinkles’ in the solution are recorded in the radiation field at null infinity. Is this
information physically insignificant or does it indicate that something important
has been ironed out by forming the new extension?

This question points again to the need of understanding the detailed behav-
ior of the fields near space-like infinity. In the standard conformal representation
space-like infinity with respect to the solution space-time is represented by a point,
usnally denoted by i°. With respect to an asymptotically flat Cauchy hypersur-
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face S space-like infinity is then also represented by a point, denoted by i. which
becomes under conformal compactification a point in the extended 3-manifold
S = S U {i}. Unfortunately, if m.apas # 0 the conformal initial data are strongly
singular at i. This is the basic stumbling block for analyzing the field near space-
like infinity in terms of the standard conformal rescaling.

The constraint equations on the Cauchy hypersurface S impose only weak
restrictions on the asymptotic behavior of the data near space-like infinity. It is
easy to construct data which at higher orders will become quite ‘rough’ near i and
which can be expected to affect the smoothness of the fields near null infinity in a
physically meaningless way. Thus one will have to make a reasonable choice and
find a class of data which allows one to perform a sufficiently detailed analysis
of their evolution in time while still being sufficiently general to recognize basic
features of the asymptotic behavior at null infinity.

In the following it is assumed that the data on S represent a space-like slice
of time reflection symmetry, so that the second fundamental form vanishes, and
that their conformal structure, represented by a conformal 3-metric h on S, ex-
tends smoothly to the point 7. Only these conditions will be used in the following
discussion, no a priori assumptions on the evolution in time will be made. We note
that the assumptions are made to simplify the calculations, there exists a large
space for generalizations.

Somewhat unexpectedly, the attempt to analyze for data as described above
the evolution near space-like infinity 7 in the context of the conformal field equa-
tions led to a finite reqularization of the singularity at space-like infinity ([37)).

In a certain conformal scaling of the conformal initial data the choice of the
frame and the coordinates is combined with a blow-up of the point i to a sphere 7"
such that the initial data and the gauge of the evolution system become smoothly
extendable to IV in a different conformal scaling. Moreover, the general conformal
field equationsimply in that scaling a system of hyperbolic reduced equations which
also extends smoothly to ZV (Section 5.5). This allows one to define a regular finite
initial value problem at space-like infinity.

Under the evolution defined by the extended reduced system the set IV
evolves into a set Z =] — 1,1[xZ", which represents a boundary of the physi-
cal space-time. This cylinder at space-like infinity is defined solely in terms of
conformal geometry and the general conformal field equations.

In the given coordinates, the sets J* which represent near space-like infinity
the conformal boundary at null infinity are at a finite location. They ‘touch’ the
set T at certain critical sets I¥ = {£1} x I°, which can be regarded as the two
components of the boundary of 7 and, simultaneously, as boundaries of 7*. Due
to the peculiarities of the construction the solution is determined on the closure
I=7ZUT UZt =[-1,1] x TV of T uniquely by the data on S and there is no
freedom to prescribe boundary data on 7.

This setting discloses the structure which decides on the asymptotic smooth-
ness of the fields. At the critical sets % occurs a break-down of the hyperbolicity of
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the reduced equations. As explained in Section 5.3, a subtle interplay of this degen-
eracy with the structure of the initial data near Z¥. which is mediated by certain
transport equations on I. turns out critical for the smoothness of the conformal
structure at null infinity. This peculiar situation is not suggested by general PDE
theory, it is a specific feature of Einstein’s theory. the geometric nature of the field
equations, and general properties of conformal structures.

The transport equations. which are linear hyperbolic equations interior to 7,
allow one to calculate the coefficients u” of the Tayvlor series of the solution at 7
from data implied on Z” by the Cauchy data on S (cf. 5.82). Near I7 this series
can be interpreted as an asymptotic expansion. The coefficients uP are smooth
functions on Z which can be calculated order by order by following an algorithmic
procedure.

It turns out that the coefficients u” develop in general logarithmic singulari-
ties at the critical sets Z*. This behavior foreshadows a possible non-smoothness
of the conformal structure at null infinity. In the linearized setting it follows that
the logarithmic singularities are transported along the generators of null infinity
([39])- In the non-linear case their effect on the conformal structure at null infinity
is not under control yet, however, the solutions are unlikely to be better behaved
than in the linear case.

The evidence obtained so far suggests cases which range from conformal
structures of high differentiability to ones with low smoothness at null infinity.
The non-smoothness may take the form of polylogarithmic expansions in terms of
expressions ¢ (1 — 7)¥ log’ (1 — 7). Here T is a coordinate with 7 — 1 from below
on J7, the coefficients ¢ = ¢(p.t) are smooth functions of a coordinate p along
the null generators and suitable angular coordinates ¢ on the set of null generators
of 77, and k, j are non-negative integers. If £ is small enough Sachs peeling fails
and Penrose compactification results in weak differentiability.

Can one ‘loose physics’ if one insists on extensions which are smooth at null
infinity? This certainly would be true if the coefficients ¢ would encode important
physical information. The discussion of the regularity conditions in Section 5.5
suggests that at low orders the coefficients are determined by the data in an arbi-
trarily small neighborhood of space-like infinity. By the results on the constraints
referred to above these data seem to be rather arbitrary, only weakly related to ‘the
system’ characterized by the data on S, and thus of little relevance. As described
in the following the situation is more complicated at higher orders, depends then
in a more subtle way on the non-linearity of the equations, and requires further
study.

Since the coefficients u¥ can be calculated at arbitrary orders, we expect that
this analysis will also allow us to describe in detail the relations between physical
concepts defined at space-like infinity and concepts defined on null infinity (ADM
resp. Bondi linear and angular momentum, etc.). The behavior of the fields at the
sets T¥ is also critical for the possibility to reduce the BMS group to the Poincaré
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group (cf. [41]). Thus, the precise understanding of the behavior of the fields near
the critical sets should provide us with a rather complete physical picture.

Eventually one would like to make statements on the smoothness of the so-
lution space-time at null infinity in terms of properties of the initial data. Thus
one needs to control how the behavior of the asymptotic expansion at the critical
sets depends on the structure of the initial data and to derive reqularity conditions
on the initial data which are necessary and sufficient for the smoothness of the
coefficients u” at the critical sets.

The information on the coeflicients which is available so far has been used to
derive conditions which are necessary for the regularity ([37]). The derivation of
the complete condition is still difficult because of the algebraic complexities of the
calculations involved.

Recently J.A. Valiente Kroon obtained with the help of an algebraic computer
program complete and explicit expressions at higher order which are pointing at
the possibility that asymptotic staticity (or, if the time reflection symmetry is
dropped, asymptotic stationarity) may play a decisive role in deriving sufficiem
regularity conditions ([71], [72]).

We are thus led to revisit the static vacuum solutions (Sections 1.2. 6 and 7).
Because of the loss of hyperbolicity of the conformal field equations at Z%. it is not
c¢lear whether the smoothness of the conformal structure at null infinity observed
for static and stationary vacuum solution can be understood as resulting from the
possible regularity of the extended solutions at the critical sets. We show that for
static solutions our setting is smooth. in fact real analytic. in a neighborhood of
theset 7" UZUZI™.

This narrows down the range in which the final regularity condition is to
be found. We know that asymptotic staticity is sufficient and that the conditions
found in [37]. which are implied by asymptotic staticity. are necessary for the
regularity of the asymptotic expansion on Z. There is still the possibility that the
final condition ° fizzles out’ and depends on the specific data but we expect to
arrive at the end at a definite, geometric condition.

To assess how restrictive such conditions would be. it is instructive to consider
the results by Chrusciel and Delay in [16]. They allow us to conclude that there
exist large classes of solutions to the constraints, which are essentially arbitrary
on given compact subsets of the initial hypersurface S. whose evolutions in time
admit asymptotic expansions at Z% with coefficients which extend smoothly to
the critical sets Z% up to a given or at all orders.

So far we ignored a question which is of central importance for gravitational
wave astronomy: can the replacement of an asymptoticallv flat extension by an-
other one result in a drastic change of the wave signal at null infinity? If that were
the case. it would be hard to see how specific physical processes could be identified
in the wave forms calculated at J*.

There should be characteristics of wave signals which are specific to “the
svstem” and which are stable under changes of the asymptotically flat extension
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if these extensions are restricted to ‘reasonable’ classes. This problem should be
amenable to analvtical and numerical investigations and we expect our analysis to
coutribute to its solution. In fact, it appears that with the regularity conditions
mentioned above the field equations themselves hint at a first ‘reasonable’ class of
asviuptotically flat extensions.

2. Conformal field equations

Our analysis of the gravitational field near space-like and null infinity relies on
a certain conformal representation of Einstein’s vacuum field equations referred
to as the general conformal field equations. We give a short introduction to these
equations and point out various facts about the equations and the underlying
mathematical structures which will be important in the following. For derivations,
detailed arguments, and further background material such as the theory of normal
conformal Cartan connections, which is the natural home of many of the concepts
used in the following, we refer the reader to the original article [36} and the survey
article [33].
The aim is to discuss a solution (M, §) to Einsteins vacuum field equation

R.w[g] =0, (2.1)

in terms of a suitably chosen conformal factor © and the conformal metric g =
©? g. Denoting by V the Levi-Civita connection of g, the transformation law of
the Ricci tensor under the conformal rescaling above takes in four dimensions the
form

Ril9l = R, [9] - V V,0 - g, 9" <vavh@ vxevée) (2.2)

If @ is considered here as being given, equation (2.1) implies with (2.2} an equation
for g with a similar principal part as (2.1).

As explained in the next section, we will mainly be interested in the behavior
of the field in space-time domains where ® — 0. Because the right-hand side of
(2.2) is formally singular in this limit, an abstract discussion of the solutions near
the sets {© = 0} becomes very delicate. It will be seen, however, that under suit-
able assumptions on the initial data for the field and with an appropriate behavior
of the conformal factor the right-hand side of (2.2) can attain smooth limits. This
result is obtained by a more sophisticated use of the behavior of the fields and the
equations under transformations which preserve the conformal structure.

2.1. The general conformal field equations

In [28]. [29] has been obtained a system of equations which is regular in the sense
that there occur no factors © ~! on the right-hand sides or factors © in the principal
part of the equations. Its unknowns are O, g, and fields derived from them such as
the rescaled conformal Weyl tensor W' ;;; = ©71 C* ;. These have been used to
derive various results about the asymptotic behavior of solutions to the Einstein
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equations. The specific behavior of the conformal fields near space-like infinity
discussed in the next sections asks, however, for a particularly careful analvsis
of the equations and the gauge conditions. It turns out that this is considerably
simplified by making use of the full freedom offered by conformal structures.

A Weyl connection for the conformal structure defined by g is a torsion free
connection V which satisfies

Vﬂg;w = ‘prg/w- (_).‘;)

with some 1-form f,. It is distinguished by the fact that it preserves the conformal

point p in the sense that it satisfies there g(e;.ex) = A?n;, with some A > 0 and
nk = diag (1. -1, -1, —1), then it satisfies such a relation with a point dependent
function A along a given curve « through p if it is parallely transported along
~ with respect to the connection V. In particular, if the I-form f, is closed the
connection V is locally the Levi-Civita connection of a metric in the conformal
class.
Assuming under § — g = ©? § the transformation law

fp - fﬂ = fp -0 @p@f
the defining property (2.3) is expressed in terms of the metric § equivalently by
vp Guv = 72];/) Guv Where V denotes the Levi-Civita connection of g. It follows
from (2.3) that the connection V defines with the connection V the difference
tensor V — V = S(f) given by the specific expression

S0 = 0" fu+ 0" fu = g0 9" S (2.1)

This, in turn, can be used to specify V in terms of V and the 1-form f,- The three
connections are related by

V-V=S8(f), V-V=501d0), V-V-=5(). (2.5)
Important for us will also be the 1-form
d,=0f,=0f,+V,0. (2.6)

The decomposition
R* vip — 2 {g# A Lp]u — gur Lp] “} +C* vApe (27)
of the curvature tensor of V in terms of the trace free conformal Weyl tensor
C*" ., and the Schouten tensor
1

1 .
Lpu = § R;w - E Rg;“,. (25)

which carries the information about the Ricci tensor R,,,, = R” ;... has an analogue
for V which takes the form

R“ vAp = 2 {g# A i’p]l/ - g“ v i[}\ﬂ] = Guix l:p} “} +C* pAp. {(2.9)



132 H. Friedrich

where . ! 1

L“,, = E R““/) — z R[,uz/j - D Rg;“,, (210)
contains the information about the Ricci tensor RW = R upv and the Ricci scalar
R = g"” IA?},,,. The tensors (2.8) and (2.10) are related by

vll fl/ f}l fl’ (7/11./ f/\ f - Lpl/ - L/le (211)

To take care of the specific dlrection dependence of the various fields near
space-like infinity it is convenient to express the conformal field equations in terms
of a suitably chosen orthonormal frame field. Let {ex}i—n.1.2.3 be a frame field
satisfving ¢,x = g(e;, er) = n:1.. denote by Vi and Vi the covariant derivative with
respect to V and V in the direction of e;, and define the connection coefficients
[/ and I';7 ) of V and V in this frame field by Vier = I';7 e and \vg € =
FIJA €, respectively, Then D0 =07, +67, fe + 8 4 fi — gin ¢t fi with fi =
fie' i where et . = < dat, e, > denote the frame coefficients with respect to an
as vet unspe(‘lfled coordinate system z#, u = 0.1,2,3. We note that f; = }I} "
because I'i/ 1 g1 + T/ 1 gjx = 0.

If all tensor fields (except the e;) are expressed in terms of the frame field
and the corresponding connection coefficients. the conformal field equations used
in the following are written as equations for the unknown

u= (e, Di/p. L. Wi, (2.12)
and are given by
lepoe = (@, . =T, e (2.13)
ep(Dy 7)) —e (U, ) =T (0,5, =T, * )+f,ﬁkf oD, DY (214)
=2{g [,,L] gJL[pq]~gj g TFOW L,
VoLly=VyLly =di Wi, (2.15)
VW =0. (2.16)

The square brackets in the first equation denote the commutator of vector
fields. The connection V, which appears in the last equation, can be expressed
by the relations given above in terms of V and fi.. The last equation, referred to
in the following as the Bianchi equation, is in a sense the core of the system. It
is obtained from the contracted vacuum Bianchi identity @,l CH* ,xp = 0 by using
the specific conformal identity 27! @# CH oy, =V, (Q71CH ,5,). The first three
equations are then essentially the structural equations of the theory of normal
conformal Cartan connections.

No equations are given so far for the fields © and dy. = O fi + Vi O. They
reflect the conformal gauge freedom artificially introduced here into Einstein’s field
equations. These fields cannot be prescribed quite arbitrarily. For solution for
which the limit ©® — 0 is meaningful the latter should imply d; — V0.
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The theory of normal conformal Cartan connections associates with each
conformal structure a distinguished class of curves which provides a useful wav of
dealing with the gauge freedom. A conformal geodesic for (M _g) is a curve +(7)
in A which solves, together with a 1-form f= f( 7} along it. the system of ODE's

(Vad)" + S(F)ar i & = 0. (.

(8

A7)
- - 1 - - . -
(vj‘f)u 5 fp S(f)\ : I -T)\ = L)\v 7)\ (2.1%)

where S(f) and L are given by (2.4) and (2.8) with ¢ replaced by ¢. For any given
metric in the conformal class there are more conformal geodesics than metric
geodesics because for given initial data x, € A, &, € T, Al f‘* € T: M there
exists a unique solution x(7), f(7) to (2.17). (2.18) near «r, satisfving for given
. € R .

o(r) =x.. I(n)=12.. [f(n)=f.. (2.19)
The sign of g(a. ) is preserved near r, but not its modulus.

Conformal geodesics admit, unlike metric geodesics. general fractional linear
maps as parameter transformations. rfhey are conformal invariants. Denote by b
a smooth 1-form field. Then,}f x(7), f(7) solve the conformal geodesics equations
(2.17), (2.18), the pair (1), F(r)=b|,(+) solves the same equations with v replaced
by the connection V=V+ S(b) and L by L, i.e., the curve (7). and in particular
its parameter 7, are independent of the Weyl connection in the conformal class
which is used to write the equations (cf. [40]).

Let there be given a smooth congruence of conformal geodesics which covers
an open set U of M such that the associated 1-forms f define a smooth field on

7. Denote by V the torsion free connection on U which has with the connection
V difference tensor V — V = S(f) and denote by L the tensor (2.10) derived from
V. Comparing with (2.11), we find that equations (2.17). (2.18) can be written

vi‘ T =0, i/\u i = 0. (2.20)

Let e, be a frame field satisfving along the congruence
Vier = Vier+ (fren)d + (f, dex — gld. e1)g* (/. ) =0. (2.21)
Suppose that S is a hypersurface which is transverse to the congruence. meets

each of the curves exactly once, and on which g(e,. ex) = ©2n,;. with some function
O, > 0. It follows that g(e;, ex) = ©2n;x on U with a function © which satisties

Vi:©=0(f), 0];=6,. (2.22)

The observations above allow us to construct a special gauge for the conformal
equations. Let Shea space-like hypersurface in the given vacuum solution ( M. gl
We choose on S a positive ‘conformal factor’ ©,. a frame field ¢;.,. and a 1-form
f. such that ©2§(e,.. ek*) = ni and ey, is orthogonal to S. Then there exists
through each point r, € § a unique conformal geodesic (x(7). f(7)) with 7 = 0 on

S which satisfies there the initial conditions & = e.. f fa.
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If all data are smooth these curves define in some neighborhood U of S a
smooth caustic free congruence which covers U. Furthermore, f defines a smooth
1-form on U which supplies a Weyl connection V as described above. A smooth
frame field e; and the related conformal factor © are then obtained on U by
solving (2.21), (2.22) for given initial data e; = €x., © = O, on S. The frame
field is orthonormal for the metric g = ©? §. Dragging along local coordinates =,

a =1,2,3, on S with the congruence and setting z” = 7 we obtain a coordinate
system. This gauge is characterized on U by the explicit gauge conditions
i‘Ieo :87-, fojk :0, lA/()k =0. (223)

Coordinates, a frame field, and a conformal factor as above are said to define a
conformal Gauss gauge. Since metric Gauss systems are well known to quickly
develop caustics, it may be mentioned that conformal Gauss systems can cover
large space-time domains in a regular fashion (cf. [40]).

To obtain a closed system for all the fields entering equations (2.13)—(2.16),
we could now supplement the latter by equations which are implied for the fields
© and dy, in a conformal Gauss gauge. It turns out that such a gauge implies quite
simple ordinary differential equations along the conformal geodesics defining the
gauge, it holds in fact

dy=0, ©=dy, d,=0, a=1,2,3,
where the dot denotes differentiation with respect to the parameter .
Thus, the fields © and di given by a conformal Gauss can be determined
in our situation explicitly ([36]): If § is a solution to Einstein’s vacuum equations
(2.1), the fields © and dy, are given by the explicit expressions

o-o. (147 + L0l (@@a)d(iD) ) @2

2
—o. (14 rifia+ T (#70) ).
dy =0, d,=6,(f., €as), a =123, (2.25)
where g* denotes the contravariant version of g and the quantities with a subscript
star are considered as constant along the conformal geodesics and given by their
values on S.

Assuming for © and dy the expressions (2.24) and (2.25), equations (2.13)-
(2.16) provide a complete system for u. In spite of the fact that we use a special
gauge, we refer to this system as the general conformal field equations to indicate
that they employ the full gauge freedom preserving conformal structures.

Equally important for us are the facts that the expression (2.24) offers the
possibility to control in a conformal Gauss gauge the location of the set where
© — 0 and that (2.24), (2.25) imply with the relation dp = 6 fr + V6 in
sufficiently regular situations that

ViOVFO -0 as © —0. (2.26)
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2.2. Spinor version of the general conformal field equations

Writing the conformal equations in the spin frame formalism leads to various al-
gebraic simplifications. We introduce here only the basic notions of this formalism
and refer the reader to [61] for a comprehensive introduction. It should be noted,
however, that our notation does not completely agree with that of [61]. In partic-
ular, if a specific frame field is used it will always be pointed out in the text but
not be indicated by gothic indices.

Starting with the orthonormal frame introduced above we define null frame
vector fields eqa = o g4 e with constant van der Waerden symbols o
(here and in the following indices 4, B, ..., A’, B, ... take values 0 and 1 and the
summation rule is assumed) such that

eoy = — +e3), e11r = —= (eg — e3),
00 \/5 0 3 11 \/§ 0 6.3)

1 . 1 .
egy = ﬁ (61 — 162), ey = ﬁ (61 +162).

Then eqo, €11/ are real and egy-, 1o are complex (conjugate) null vector fields and
their scalar products are given by g(e4a+,eccr) = €ac €arcr where e 4¢, € 4:¢07, €3,
eA'C" denote the anti-symmetric spinor fields with €y = g1 = € = 0V = 1.
The latter are also used to raise and lower spinor indices according to the rules
XA =eAB Xp and Xp = X% eap so that €4 ® = e4¢ €BC denotes the Kronecker
spinor (similar rules hold for primed indices).

BB’ ., are defined by writing Ve, o
Taar BB' .., epp/, the spinor connection coefficients are given by Fsa Z ¢ =
%FAA/ BE' .., and one has

If connection coefficients I' 4 4 eccn =

Taa P8 cor=TaaBoec® +Tan P crec?
Here it is observed, as usual, that the relative order of primed and unprimed indices
is irrelevant and that under complex conjugation primed indices are converted into
unprimed indices and vice versa. Covariant derivatives of spinor fields are now
given by similar rules as in the case of the standard frame formalism. Writing
Vaa for v we have, e.g., for a spinor field X4 5 €’

eAA/
A _C A _C A F _C'
Vpp XA5Y =epp (X )+ Tpp  r X €
7 —_ ! !
~Tpp P X2 r +Tpp© mX*pF.
We have similar rules for the connection V and its associated connection coeffi-
cients I' 4 4- gc and it holds
Tcca =Tccoa, Tccrap =Tccas —€ac faer, (2.27)

sothat Tee F p = fecr gives the 1-form relating the connection V to V.
The general conformal field equations are now written as equations for the
unknowns

eaa, Taapc, ©aasp, SaBcp. (2.28)
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Here ©44.5p/ is the spinor representation of the tensor field f,kj. It admits a
decomposition of the form

1 _
OaaBp =Pavps — 21 Reapeap +Papeap +Papean,

where ® 414 pp: = ®pp a4 = Pas pp Tepresents the trace-free part of the tensor
% R(jk) provided by V while R = ¢g7* Rjk is the Ricci scalar and the last two terms,
with ®,, = ®(,;), represent the anti-symmetric tensor % ﬁ[jk]. The symmetric
spinor field ¢ apcp = dapcp) represents the rescaled conformal Weyl tensor and

is related to the latter by

Waagp'cc'pp = —PaBCD €a'B €0/ — $4rB/C D €AB €CD-
The general conformal field equations in the order (2.13), (2.14), (2.15), (2.16) now
take the form

’

lespecc] = Tap Y cor — Lo A gp)eaar, (2.29)

ecce(Tpp 4 B) —epp (Lo 4 B) (2.30)

~Tee FplPep A p+Tpp Felre A s —Fee ¥ o Fpr s

+I'ppr F cler?p+Tco*rlpp 5 —Top A rlce ¥ B
= —Ogpcc ép® +Opcpp ec + 0 ¢ pep ecipr,

Ve Occan — VarOccepp = d % (dpapcerciean + bpapcrepcean),
(2.31)
V¥ a¢apcr =0, (2.32)
with the fields ©, d 4 4/ as given above. The simple form (2.32) of the spinor version
of the Bianchi equation will be useful for us.

2.3. The reduced conformal field equations

The conformal Gauss gauge is not only distinguished by the fact that it is provided
by the conformal structure itself and supplies explicit information on © and di,
but also by a remarkable simplicity of the resulting evolution equations. Setting
p=0in (2.13)—(2.16) and observing the gauge conditions (2.23) we obtain

dretq=-Tgloe s, (2.33)
0T = —Tu' ;0 0+ g'0Llg +0 1 Lo — gjo Ly +OW' o, (2:34)
I iqj + fq k 0 ﬁkj =d; wi jOg» (2.35)

ViWi jkt = 0.

While the first three equations are then ordinary differential equations along
the conformal geodesics, we still have to deduce a suitable evolution system from
the last equation. The Bianchi equation represents an overdetermined system of
16 equations for the 10 independent components of the rescaled conformal Weyl
tensor. It implies a system of wave equations for W* j; which could be used as the
evolution system. For the application studied in this article it turns out important,
however, to use the first order system.
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There are various ways of extracting from the Bianchi equations symmetric
hyperbolic evolution systems but these are most easﬂy found in the spin frame
formalism. With the spinor field 744" = eg Y eg ' + 61 €1, 4 the gauge conditions
(2.23) can be written

“ear =V20,, ™ TanPe=0, PP Oaagp =0. (2.36)

Observing 744/ BA = ¢4 B and its complex conjugate version, one obtains from
(2.27) and (2.36) the relation 7 Fccrap = =74 facr and thus

Teciap =Tcocas —€ac ™ Topep T o, (2.37)

which shows with (2.27) that ['ccrap can be expressed in our gauge in terms of
I'ccrap and vice versa.

Transvecting equations (2.29), (2.30), (2.31) suitably with 75£" thus gives
the system of ODE’s

V28, e ccr = ~Toe Y gp 785 e 4400, (2.38)

V28, Tpp 4 g+ (fDD' Felpotp+ FDD’ e Fep A B) 7 (2.39)
=Opcpp ™ + 06 pep € b,

V28, 0ccian + (Can ¥ 5Occrs +Tan ™ 5 Occrpp)rBY (2.40)

o B - '
= —d¥F ($papcepcom® 4+ dpapcencta ).

We set now Aapcar = VI 4 ¢papcr. Equation (2.32) is then equivalent to

= Aapcp = Aapea 7o On the other hand we have the decomposition
AABCD = A(ABCD) — %ED(C AAB)F F with irreducible parts
1 . .
AaBep) = —5 (Péaco —2DpF dapeyr),  Aapr’ =DFF ¢appr,
(2.41)

where P = 744 V40 = ﬂveo and Dap = 74 A’ V Byar denote covariant direc-
tional derivative operators such that Dog = —V1/, D11 = Vg, and Dy, = Dy =
% Ve, (cf. [35], [36] for more details of the underlying space-spinor formalism).

In a Cauchy problem one will in general assume ey to be the future directed
normal to the initial hypersurface 6.: The operators Dap then involve only differ-
entiation in directions tangent to S and the equations A gr ¥ = 0 are interior
equations on S. They represent the six real constraint equations implied on S by
the Bianchi equation.

For a symmetric spinor field 14, 4, we define its (independent) essential
components by 1¥; = 1(a,...4,),, where 0 < j < k and the brackets with subscript
j indicate that j of the indices in the brackets are set equal to 1 while the others
are set equal to 0.

The five equations A(4pcp)y = 0 for the components of ¢ 4pcp contain the
operator P. Multiplying by suitable binomial coeflicients (and considering the
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frame and connection coefficients as given), we find that the system

4
_ A Ty = 2.42

(A+B+C+D) (apco) =0, (242)
has the following properties. If ¢ denotes the transpose of the C?-valued ‘vector’

(¢0, D1, P2, b3, ¢4), it takes the form
A* a/_t ¢ = H(.’L‘,d)),

with a C®-valued function H (z,¢) and 5 x b-matrix-valued functions A* which are
hermitian, i.e., T A* = A*, and for which there exists at each point a covector ,
such that A#¢,, is positive definite. The system (2.42) is thus symmetric hyperbolic
([44], see also [43] and the references given there).

While the constraints implied on a given space-like hypersurface are deter-
mined uniquely, there is a large freedom to select useful evolution systems. In fact,
any system of the form

0= 2a A1,
0 = (c — d) Aco1r — 2a Agooo,
0 = (c+d) Aor1 — (¢ — d) Aooror, (2.43)
0=2eAi1r — (c+d) Ao,
0=—2eA110

with a,c,e > 0 and —(2¢e + ¢) < d < 2a + ¢, is symmetric hyperbolic (the system
(2.42) occurs here as a special case). We note that only the characteristics of these
systems which are null hypersurfaces are of physical significance.

Equations (2.33), (2.34), (2.35), respectively equations (2.38), (2.39), (2.40),
combined with a choice of (2.43), will be referred to in the following as the (gen-
eral) reduced conformal field equations. Solutions to these equations solve in fact
the complete system (2.12), (2.13), (2.15), (2.16) if the solution admits a Cauchy
hypersurface on which the latter equations hold (|36]). In other words, propagation
by the reduced field equations preserves the constraints.

2.4. The conformal constraints

To analyze solutions to the conformal field equations in the context of a Cauchy
problem one needs to study the conformal constraints implied on a space-like
initial hypersurface §. It will be convenient to discuss the evolution equations in
terms of a conformal factor © which differs on S from the one used to analyze the
constraints. We thus assume Einstein’s equations (2.1), a conformal rescaling

g = 0%, (2.44)

with a positive conformal factor 2, and denote again the Levi-Civita connection
of g by V. It is also convenient to derive the conformal constraints from the metric
conformal field equations. The latter are written in terms of the unknown fields
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g, Q’ S = iVHV“Q + % RQ, Li“/ as in (28), and W# vip = Q“lCl‘ vAp and are
given by equation (2.7), with C* 5, = QWH,,,, and the equations

2085 -V, QvHQ =0, (2.45)
VuV,Q=-QL, +Sgu, (2.46)
which are obtained by rewriting the trace and the trace free part of (2.2),
V,S8=-L,V"Q, (2.47)
VaLpw = VoLla, =V, QWH 5, (2.48)

which both can be obtained as integrability conditions of (2.46), and
V.WH s, =0. (2.49)

In these equations the Ricci scalar R is considered as the conformal gauge source
function. Its choice, which is completely arbitrary in local studies, controls together
with the initial data  and d€? on S the evolution of the conformal scaling.

To derive the constraints induced by these equations on S we choose a g-
orthonormal frame field {ex}x—0.1,2.3 near S such that n = ¢4 is g-normal to
S, write Vi = V.., Vie; = Ii!; e, and express all fields (except the e) and
equations in terms of this frame. We assume that indices a,b,c,... from the be-
ginning of the alphabet take values 1, 2,3 and that the summation convention also
holds for these indices. The inner metric h induced by g on & is then given by

hay = g(€q,€p) = —d4p and the second fundamental form by
Xab = 9(Ve,m,65) =Ta? 0 gj6 = T %s.

We set ¥ = VoQand W, , = 2 Wivage®® x,. If the tensor fields

Ly, Lun”, Wunp, Waaen'n?, Wi, n"n? W,,n",
are Projected orthogonally into S and expressed in terms of the frame {e,}a=1.2.3
on S, they are given by (the left-hand sides of)

Lap, Lo = Lo,

Wabed = Wabeds Wab = Waobo, Wap = Wogros  Wabe = Waobes

respectively and satisfy the relations

R=6L,"*=6{(Loo+La"), (2.50)

* _d 1 b
Wabed = _2{ha[cwd]b + hb[dwc]a}v Wad € be = Wabe, w;d == '“5 Wabc €d Ca

— a __ x ok *a __
Wab = Wha, Wq - 0, wab - wba7 wa - 07

Wabe = —Wach, W ac =0, Wi =0,
where indices are moved with hyp and €qpc is totally antisymmetric with €;23 = 1.
The tensors wqp and w], represent the n-electric and the n-magnetic part of W { ikl
on § respectively.
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Equation (2.7) implies Gauss’ and Codazzi’s equation on S
Tab = — 0 Wab + Lab + L(‘ ¢ hab + Xc ‘ Xab — Xac Xb (:, (251)
Dy Xca = De Xba = Wape + hab Le — hae Ly, (2.52)

while equations (2.45)-(2.49) imply the following interior equations which only
involve derivatives in the directions of e,, a = 1,2, 3, tangent to S

2085 -%%-D,QDQ =0, (2.53)

DoDpyQ =~ xap — QLas + S hap, (2.54)

D, =xD.—Q Ly, (2.55)
D,S=-DQL,, — %L, (2.56)

Dy Ly — Dy Lo = DQ Weeqp — X Weab — Xae Lb + Xbe La, (2.57)
Do Ly — Dy L, = D weap + Xa “Ltc — X Lac, (2.58)

D weap = X a Whe — X b Wac, (2.59)

D*wap = X% Wabe, (2.60)

where r,;, denotes the Ricci tensor of hqp. These equations can be read as conformal
constraints for the fields

*
Q, Ev 57 hab7 Xab, Laa Lgs, Wab, Wep-

Alternatively, if a ‘physical’ solution hgp, Xas t0 the vacuum constraints is given
and a conformal factor €2 and functions X, R have been chosen, which are gauge
dependent functions at our disposal, the equations above can be used to calculate

S, L/UJ7 1% vAp?

from the conformal first and second fundamental forms Ay, Xxap Of S , which are
related to the physical data by

Rab = Q% hap,  Xab = Q(Xab + 2 has). (2.61)

The equations above will be discussed in more detail in Section 4.

3. Asymptotic simplicity

To characterize the fall-off behavior of asymptotically flat solutions at null infin-
ity in terms of geometric concepts Penrose introduced the notion of asymptotic
simplicity ([59], [60], cf. also [61] for further discussions and references).

Definition 3.1. A smooth space-time (M,g) 1s called asymptotically simple if there
exists a smooth, oriented, time-oriented, causal space-time (M, g) and a smooth
Sfunction Q@ on M such that:

(i) M is a manifold with boundary J,

(i) >0 on M\J and Q=0,dQ2#0 on J,

(iii) there ezists an embedding ® of M onto ®(M) = M\ J which is conformal

such that Q2 d~1*g =g,
(iv) each null geodesic of (M, §) acquires two distinct endpoints on J.



Smoothness at Null Infinity and the Structure of Initial Data 141

We note that only the conformal class of (M, §) enters the definition and it
is only the conformal structure of (M, g) which is determined here. The set 7 is
referred to as the conformal boundary of (M, g) at null infinity. This definition is
the mathematical basis for the

Penrose proposal: Far fields of isolated gravitating systems behave like that of
asymptotically simple space-times in the sense that they can be smoothly extended
to null infinity, as indicated above, after suitable conformal rescalings.

Since gravitational fields are governed by Einstein’s equations, the proposal
suggests a sharp characterization of the fall-off behavior implied by the field equa-
tions in terms of the purely geometrical definition (3.1).

We will be interested in the following in solutions to Einstein’s vacuum field
equations (2.1) which satisfy the conditions of definition (3.1) (or suitable gener-
alizations). The two assumptions have important consequences for the structure
of (M, g). We shall only quote those which will be used in the following discussion
and refer the reader for further information to the references given above.

If the vacuum field equations hold near 7, the latter defines a smooth null
hypersurface of M (cf. equation (2.45)). It splits into two components, J+ and
J~, which are generated by the past and future endpoints of null geodesics in
M and are thus called future and past null infinity (or scri+) respectively. Each
of J* is ruled by null generators, each set of null generators has topology S2,
and J* have the topology of R x S2. For the applications one will have to relax
the conditions of definition (3.1). In particular condition (v), which is important
to obtain the result about the topology of 7%, must be replaced by a different
completeness condition if one wants to discuss space-times with black holes.

One of the main difficulties in developing a well-defined concept of outgoing
radiation in the time-like cut model is related to the fact that there exists in
general no distinguished null direction field along the time-like boundary 7. In
contrast, the null generators of J* define a unique causal direction field on J,
which is represented by VA4'Q. It turns out that the field ¢4pcp 0™ of o oP
on J*, where 0 denotes a spinor field satisfying o oY = —v44' Q on J* and
¢apcp the rescaled conformal Weyl spinor field, has a natural interpretation as
the outgoing radiation field. Further important physical concepts can be associated
with the hypersurface J+ or subsets of it and questions of interpretation have been
extensively analyzed (cf. [4], [19], [46] and the references given there).

Critical however, and in fact a matter of controversy, have been the smooth-
ness assumptions in the definition, which encode the fall-off behavior imposed on
the physical fields. It is far from immediate that they are in harmony with the
fall-off behavior imposed by the field equations. No problem arises if the proposal
can be justified with C* replaced by C* with sufficiently large integer k. But there
is a lower threshold for the differentiability, which is not easily specified, at which
the definition will loose much of its elegance and simplicity.
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In [60] it is assumed that
M is of class C**! and ¢,Q € C¥(M), k > 3. (3.1)

The conformal Weyl spinor ¥ agcp = Qdapcp is then in Ck"z(M). Under the
further assumption

QVee VA 4 Wapep — 0 at JY, (3.2)
which will certainly be satisfied if £ > 4 in (3.1), and the natural assumption
the set of null generators of 77 has topology S?, (3.3)

it is then shown that W 4gcp vanishes on 7. The solution is thus asymptotically
flat in the most immediate sense and the rescaled conformal Weyl spinor ¢spcp
extends in a continuous fashion to J*. As a consequence, it follows that the
space-time satisfies the Sachs peeling property ([60], [63], [64]) which says that in a
suitably chosen spin frame the components of the conformal Weyl spinor fall-off as
U ipep = O(FATBHCHD=5) (where A, B, C, D take values 0, 1) along an outgoing
null geodesic when its {physical) affine parameter ¥ — oo at J ™.

Remarkable as it is that such a conclusion can be drawn for the spin-2 nature
of the field ¥ pcp and its governing field equation V¥ 4 Wapecp = 0, there
remains the question whether the long time evolution by the field equations is such
that assumptions (3.1), (3.2) or the conclusion drawn from them can be justified.

As discussed in the introduction, we know by now that these conditions can
be satisfied by non-trivial solutions to the vacuum field equations. What is not
known, however, is how the solutions satisfying these conditions are to be charac-
terized in terms of their Cauchy data, whether these conditions exclude solutions
modelling important physical phenomena, and if they do, what exactly goes wrong.
Obviously, these questions can only be answered by analyzing the Cauchy problem
for Einstein’ field equations with asymptotically flat Cauchy data in the large with
the goal to derive sharp results on the behavior of the field at null infinity.

The results obtained so far on the existence of solutions which admit (partial)
smooth boundaries at null infinity make it clear that the key problem here is the
behavior of the fields near space-like infinity. We shall not consider any further
the results which lead to this conclusion (cf. [38] for a discussion and the relevant
references) but concentrate on this particular problem.

To begin with we have a look at the asymptotic region of interest here in
the case of Minkowski space. If the latter is given in the form (/\;i ~ R G =
Nuw dy* dy”), the coordinate transformation ® : y* — z# = (—y, y*)~! y* renders
the metric in the domain D = {yay* < 0} = {zyz* < 0} in the form § =
Q7 2n,,dz* dz” with Q@ = —z, z*. The metric

g=0g=n,dz"dx", (3.4)
thus extends smoothly to the domain D of points in {x, z* < 0} which are obtained
as limits of sequences in D. The point z# = 0 in this set then represents space-like

infinity for Minkowski space. With this understanding it is denoted by i®. The
hypersurfaces J £ = {zxz* = 0, £2° > 0} C D represent parts of future and
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past null infinity of Minkowski space close to space-like inﬁnity and are generated
by the future and past directed null geodesics of g through 30

Consider the Cauchy hypersurface S = {y° = 0} of Mmkowskl space. The
subset SND is mapped by ® onto {z° = 0, z* # 0}. Extend{ng the latter to include
the point z# = 0 amounts to a smooth compactification S — § = S {i} ~ 8%
such that the point i with coordinates z* = 0 represents space-like infinity with
respect the metric induced on S by g. The dlstmctlon of space-like infinity ¢ with
respect to a Cauchy data set and space-like infinity i® with respect to the solution
space-time will become important and much clearer later on.

Denote by has and Xas the metric and the extrinsic curvature induced by
g on S. A global representation of the conformal structure induced on S by ilag
is obtained by using a slightly different conformal rescaling than before. Set k' =
Q%h with Q' = 2(1 + |y|?)”! where lyl = V(")? + %)% + (¥3)2. In terms of
standard spherical coordinates 6, ¢ on S and the coordinate x defined by cot 3 =
lyl, 0 < x <, the conformal metric takes the form b’ = —(d y2 + sin® xdo?) of
the standard metric on the 3-sphere and extends smoothly to the point 4, which is
given by the coordinate value x = 0 and distinguished by the property that Q = 0,
dQ =0, HessQ = ch/, with ¢ # 0 at i. Here do” = d6? + sin® § d ¢? denotes the
standard line element on the 2-sphere S2.

Since Xog = 0 and we are free to choose ¥ = 0 in (2.61), we get Xhs = 0.
By the formulas given in the previous section one can derive from the conformal
Minkowski data (S, ', x') and a suitable choice of initial data for the gauge defin-
ing fields (2.24), (2.25) a conformal initial data set for the reduced conformal field
equations. These allow us then to recover the well-known conformal embedding
of Minkowski space into the Einstein cosmos ([60]) as a smooth solution to the
regular conformal field equations ([38], {40]).

We would like to control what happens if the conformal Minkowski data are
subject to finite perturbations. Under which assumptions will the corresponding
solutions preserve asymptotic simplicity? This or the apparently simpler question
under which conditions the solutions will preserve near space-like infinity a rea-
sonable amount of smoothness of the conformal boundary cannot be answered by
immediate applications of the conformal field equations. The reason is that the
conformal data will not be smooth at the point i. The structure of the conformal
initial data as well as the initial value problem for the conformal field equations
near space-like infinity thus require a careful and detailed analysis. This will be
carried out to some extent in the next section.

4. Asymptotically flat Cauchy data

As indicated in the case of Minkowski space above we will assume that the data for
the conformal field equations are given on a 3-dimensional manifold S = S U {i}
which is obtained from a ‘physical’ 3-manifold S with an asymptotically flat end
by adjoining a point ¢ which represents space-like infinity. The data hqp, xap On S
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are thought as being obtained from the physical data hes, Yab by equations (2.61)
With suitable choices of € and ¥ such that all fields extend with an appropriate
behavior (to be specified more precisely below) to i and %(i) = 0, 2 > 0 on S,
Qi) = 0, D, Q) = 0, Dy Dy Qi) = —2 hyy,, where we assume the notation of

SUbsection 2.4.

The constraint equations (2.51)—(2.60) contain analogues of the vacuum con-
Straints. The form of these equations suggests a solution procedure which does not
require us to go back to the physical data. By taking the trace of equation (2.51),
using (2.53) and the trace of (2.54), and writing Ay, = D, D?, one gets

Dr=—-4QA0,2+6D,QD*Q—40% x4+ %((xc ©)? = Xae X*), (4.1)

where r denotes the Ricci scalar of h. With § = =% this equation takes the form
of Lichnerowicz’ equation

1 1 A 1. .
(Ap = gm0 =20 ((xe ) = Xab X*®) + 593 xe©. (4.2)
By taking the trace of (2.52) and using (2.55) one gets
DY % xbe) = Q2 Doy — 207D, X, (4.3)
Equations (4.2) and (4.3) correspond to the Hamiltonian and the momentum con-
Straint respectively. Assuming now
Xa © =0 and (the choice of gauge) ¥ =0 on S, (4.4)
which imply ¥, = 0, equations (4.2) and (4.3) suggest to proceed as follows: (i)
prescribe h on S and solve the equation D®,, = 0 for a symmetric h-trace free

tensor field 1., on S, (ii) solve equation (4.2) with x.5 = 6 %1, for a positive
function 6, i.e., solve
1 1
(Br= gm0 =207 xa X", >0 (4.5)
The fields © = 672, hap, and Xap = Q%¢ap then solve (4.1) and (4.3). If it is
required that

1
peO — 1, wasz(p—4) as p— 0, (4.6)

where p(p) denotes near i the h-distance of a point p from i, the fields hqp and Yas
related by (2.61) to hap and xgp satisfy the vacuum constraints and are asymptot-
ically flat ([34]).

Using the conformal constraints to determine the remaining conformal fields
one gets

1 1 aby 1 c
S_gAhQ+1—29(r+xabx )—QQDCQDQ, (4.7)
1
La:_ ¢ cas .
g Dx (4.8)
Lup— 2 Lechy=-2(D.Dy2— Lan0n (4.9)
ab 3 c ab — Q a /b 3 h ab | .
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1 c 1 1 b
Loo:gR—Lc :éR_Z(T_"XabX ), (4.10)
1 1 1 L1
Wep = ——62- (Da D2 — § ARQY hab> - ﬁ (Xac X6 — § Xce XCe hab + Sub) :
(4.11)
* 1 ce
Weap = _5 D, Xe(a €b) s (412)

where we set Sqp = Tab — % 7 hap. The differential identities (2.56)--(2.60), which
are not needed to get these expressions, will be then also be satisfied (cf. [31]).

In view of conditions (4.6) most of these fields will in general be singular at 7.
One will have wg, = O(r~3) near ¢ whenever the ADM mass m of the initial data
set ﬁab, Xab does not vanish. Controlling the time evolution of these data requires
a careful analysis of these singularities. As a simplifying hypothesis we assume, as
in [37], that the data are time reflection symmetric and define a smooth conformal
structure, i.e.,

hap € CZ(S),  Xab = 0. (4.13)

We note that much of the following discussion can be extended to more general
data such as those considered in [25] and the more general class of data discussed
in [24], which includes the stationary data.

The Ricci scalar R is at our disposal. With R = % 7 one gets on S

1 1 1
=——{D,DyQ— = ArQh, —rh, .
Ly Q ( b 3 Bn b) + 12rh b, (4.14)

Low=0, Loa=0, w} =0, (4.15)
1 1
Wab = _?25 (Da DbQ - g AhQ hab + QSab) . (41())

In spite of this simplification the crucial problem is still present; one finds that
wap = O(p~?) near i if m # 0 (cf. (5.28)).
4.1. Time reflection symmetric asymptotically flat Cauchy data

To allow for more flexibility in the following analysis, we also want to admit non-
trivial cases with vanishing or negative mass. The positive mass theorem ([65])
then tells us that we must allow for non-compact S. This will create no problems
because we are interested only in the behavior of the fields near space-like infinity.

Let z%, a = 1,2, 3, denote h-normal coordinates defined on some convex open
normal neighborhood U of i so that with h = hup(z°) d 2¢ d x°

(i) =0, % hap(x€) = —2%8s on U, (4.17)

All equations of this subsection will be written in these coordinates. We set |z| =
Vo ztzb and T = |z|? = 045 z° 2° so that

h*® D, YT Dy T = —4T, (4.18)

and
T(@) =0, D.T(i)=0, DoD:Y(i)=—2hg. (4.19)
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By taking derivatives of (4.18) and using (4.19) one obtains
) 4 .
Da Dy DC T(l) = O, Da Dy Dc Dd T(Z) = _gra(cd)b[h](z)a (420)

where the curvature tensor of h is given by
Tabcd[h] = 2{h'a[cld]b + hb[dlc]a}

with l,[h] = rep[h] — 1 T[R] has because dim(S) = 3. Proceeding further in this way
on can determine an expansion of T in terms curvature terms at i. The relations
above imply in particular

(ARY +6)(i) =0, Do(ARY+6)(E) =0, D, Dy(ArY +6)(i) = g Tab(i)-
(4.21)

Equation (4.5) and the first of equations (4.6) can be combined under our
assumptions into

(Ap — %1‘)0 =47mé;,

where in the coordinates z° the symbol é; denotes the Dirac-measure with weight
1 at z* = 0. In a neighborhood of i there exists then a representation 8 = I% +W

with functions U, W which satisfy

1 U 1 .
(An — 3 ) (m) =47md;, (Ap— 3 r)W =0 near 1, (4.22)

and
UG =1, WE) = % (4.23)

where m denotes the ADM-mass of the solution. The functions U, W are analytic
on U if h is analytic ([45]) and smooth if h is C™ ([25]).

The function ¢ = FT; is characterized uniquely by the conditions that it is
smooth, satisfies the equation (A) — %T) 012 = 47 6;, and the relations

o(i) =0, Dao(i)=0, D,Dyo(i)=—2ha, (4.24)

hold, which follow from (4.19) and (4.23). If ¢’ is another function satisfying these
conditions, then ¢’ = Y U =2 with U’ = 1 + O(|z|) by (4.24) and U’ € C°°(U) by
the results of [25]. The function f = 6~ '/2 — ¢'~1/2 then solves (A, — irnf=0
and it follows that f € C*°U) and |z| f = U — U’ € C>(U). Expanding f and
U — U’ in terms of spherical harmonics it follows from the last equation that f
vanishes at i at any order. Since f satisfies the conformal Laplace equation it
follows that f = 0 on U by Theorem 17.2.6 of [51]. This implies that o’ = ¢ on U.
The first of equations (4.22) can be rewritten in the form

1
2D° Y DU + (A T+ 6)U =2 (Ap — 1)U = 0. (4.25)
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This allows us to determine from (4.24) recursively an asymptotic expansion of U,
which is convergent if h is real analytic. The Hadamard parametrix construction
is based on an ansatz

U=> U, (4.26)

p=0

by which the calculation of U is reduced to an ODE problem. The functions U,
are obtained recursively by

Ak d
Uy = exp Z/ AT 4622
0 p

_ Uo T An[U) p?
(4p— 2) T Jo Uo

where the integration is performed in terms of the affine parameter p = Ti = ||
along the geodesics emanating from i. It follows that

Upy1 = dp, p=0,1,2,....

. . . 1
U(z) = 17 Da U(l) = 07 Da Db U(Z) = 6 lab[h’]v (427)
which implies
D, D, Dco'(i) =0, D,Dy,D. Dda(z') =2 (hcd lop + haqp lcd)~ (428)

Given h and the solution W of the conformal Laplace equation in (4.22), the
considerations above show us how to determine an expansion of the function

_e2- (L I
2= = () = e (429)

in terms of p at all orders. Corresponding expansions can be obtained for the
conformal data (4.7), (4.14), (4.15), (4.16).

While U is thus seen to be determined locally by the metric h, the function

W carries non-local information. Cases where 8% W (i) = 0 for all multiindices

a = (at,a?,a3) € N? with |a| = a' + o + a® < N for some non-negative integer

N or for N = oo will also be of interest in the following. In the latter case we have
in fact ([51])

W =0 near i. (4.30)

For convenience this case will be referred to as the massless case.

A rescaling
h—h' =9'h, Q-Q =9°Q,
with a smooth positive factor ¥ satisfying 9(i) = 1, leaves h = Q-2 h unchanged
but implies changes
'
-6 =91, U—»U’=%0‘1U, W W =9"'W,
T
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where |2’| is defined in terms of h’-normal coordinates = as described above. Due
to the conformal covariance of the operator on the left-hand sides of equations
(4.22), relations (4.22), (4.23) will then also hold with all fields replaced by the
primed fields.

To reduce this freedom it has been assumed in [37] that the metric k is given
near i on S in the cn-gauge. By definition, this conformal gauge is satisfied by h
if there exists a 1-form [, at 7 such that the following holds. If z(7), I(7) solve
the conformal geodesic equations (with respect to h) with x(0) = 1, I[(0) = I,
and h(z,%) = 1 at 4, then a frame e, which is h-orthonormal at ¢ and satisfies
Die, =0 (with D — D = $(1)), stays h-orthonormal near i. This gauge can be
achieved without restrictions on the mass and fixes the scaling uniquely up to a
positive real number and a 1-form given at 7. It admits an easy discussion of limits
where m — 0.

If m > 0, it is convenient to set above ¥ = % W. It follows then that W’/ = 7
whence 0 = (Ap, — %T[h']) W' = — & r[h']. Thus, if m > 0, we can always assume
h to be given such that

o

m
rlh] =0, Q= ———— with = —. 4.31
In this gauge the function o satisfies near i the equation Ay, (0~1/2) = 47 §;, which
implies by (4.24)
1
208 =D,oc D% with s= 3 An o, (4.32)

(note that an analogous equation holds with o replaced by ). Equation (4.32)
implies in turn together with (4.24) the Poisson equation above.

For later reference we note the form of the conformal Schwarzschild data in
this gauge. In isotropic coordinates the Schwarzschild line element is given by

‘ 1- A
ds® = (ﬁ%) dt* — (1+m/27)* (d7* + 2 do?).
T

Expressing the initial data h, ¥ induced on {t = 0} in terms of the coordinate
p = 1/7, one finds that x = 0 and h = Q72 h with
2 2 4 2 p’
(1+ 3 p)?

so that 0 = T = p? resp. U = 1. The metric h also satisfies a cn-gauge.

4.2. Static asymptotically flat Cauchy data

Static solutions to the vacuum field equations can be written in the form
§=v2dt’> +h,
with t-independent negative definite metric h and t-independent norm

v=+§K.K)>0
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of the time-like Killing field K = ;. With the g-unit normal of a g]jce {t = const.}

bemg glven by 7 = v~! K and the associated orthogonal Projector by h v
g ¥ —n, 1Y, one gets for the second fundamental form on this slice

X;w =v7! hp phu vp K5 =0,

because it is symmetric by 7 being hypersurface orthogonal while the second term
is anti-symmetric by the Killing equation. The solutions are thus time reflection
symmetric.

For these solutions the vacuum field equations are equivalent to the require-
ment that the static vacuum field equations

1.
Tab[h] = ; Da Db v, A;l v = 07 (434)

hold on one and thus on any slice {t = const.}. In harmonic coordinates these
equations become elliptic and h and v thus real analytic.

We consider solutions A, v to equations (4.34) with non-vanishing ADM-nass
which are given on a 3-manifold S which is mapped by suitable coordinates ¢
diffeomorphically to R? \ B, where B is a closed ball in R*. We assume that &
satisfies in these coordinates the usual condition of asymptotic flatness and v — 1

as |&| — oo. The work in [6] (cf. also [54] for a strengthening of this result) then
implies that the conformal structure defined by h can be extended analytically to
space-like infinity. The physical 3-metric A therefore belongs to the class of data
considered above.

For such solutions it follows from the discussion in [7] that the gauge (4.31)
is achieved if any of the equivalent equations

1-/ —v\?
m Q=~—-——#U, 0”——‘(31 ¢
1+ J/puo ml+v)

holds. The set S = SU {i} can then be endowed with a differential structure such
that the metric h = Q2 h extends as a real analytic metric to i. We shall consider
in the following h-normal coordinates as in (4.17) such that the functions o(z),
het(z€) are then real analytic on Y. The first of the static vacuum field equations
(4.34) then implies

0=%ap =DaDyo —shap+0 (1~ po)relh], (4.36)

where s is defined as in (4.32). The second of equations (4.34) implies r[h] = 0
and can thus be read as a conformally covariant Laplace equation for v. Using
the transformation rule for this equation and observing (4.35), we find that it
transforms into

0= (A — 5 r{b)@v) = (An = g rB)@ ~m) on &,

v=1- (4.35)

and is thus satisfied by our assumption r[h] = 0.
We shall repeat some of the considerations of [34] in the present conformal
gauge. The fact that solutions to the conformal static field equations are real
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analytic and can be extended by analyticity into the complex domain allows us to
use some very concise arguments. We note that the statements obtained here can
also be obtained by recursive arguments. This will become important if some of
the following considerations are to be transferred to €' or C* situations.

From (4.36) one gets

D.¥op =DceDyDyo — Deshay +0 (1 — ) Derap + (1 ~2p0) De o Top.

With the Bianchi identity, which takes in the present gauge the form D®rq =0,
follow the integrability conditions

0:% DY = Dos+ (1 —po)re Db o, (4.37)

and
1
0=DZap+ 5 D Sy happ (4.38)

=0 {(1 - /lO') D[cra]b - /‘L(2 D[cara}b =+ Ddo-rd[c ha]b)} .

Equation (4.36) thus implies an expression for the Cotton tensor, which is given
in the present gauge by by, = Di.7ap, and for its dualized version, which is given
by
1 1
bop = = bacd €p cd = = (DC O Tda €b ed - Tde Do €ba d)' (439)
2 1-—po 2

It follows that

D,20s—D.oD) =0 D%y, —2D% X,

which shows that equation (4.32) is a consequence of equations (4.24) and (4.36)
and that the latter contain the complete information of the conformal static field
equations.

Let e = €°,08,-, a = 1,2,3, now denote the h-orthonormal frame field
on U which is parallely transported along the h-geodesics through i and satisfies
€°a = 0, at . In the following we assume all tensor fields, except the frame
field e, and the coframe field ¢ dual to it, to be expressed in term of this frame
field and set D, = D._. The coefficients of h are then given by hap = —08ap. Any

analytic tensor field T;’_i];::f on V has an expansion of the form (cf. [37])

1 e .
Tal i (z) = = 3% .2 (Do -+ Do, Tar it )(d),
k>0

(where the summation rule ignores whether indices are bold face or not).
We want to discuss how expansions of this form can be obtained for the fields

07 'S’ rab7

which are provided by the solutions to the conformal static field equations. Once
these fields are known, the coefficients of the 1-forms o® = 02 ;, d %, which provide
the coordinate expression of the metric by the relation h = —dac 02 0 gdzbdx?,
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and the connection coefficients 'y P . with respect to e, can be obtained from the
structural equations in polar coordinates (cf. [50])

d
d—p (paab(pI) = 5ab+PFcad(px)$dUcb(Pz)a

d c c
E)(ppa elpz)0®4(pz)) = pr eda(Pz)l‘dUab(p.’I?).
For this purpose we consider the data

Ca,..a;bc = R(Dap s Dal Tbc)(i)v (440)

where R means ‘trace free symmetric part of’. These data have the following inter-
pretation. Since solutions to the conformal static field equations are real analytic
in the given coordinates z%, all the fields considered above can be extended into
a complex domain U’ C C* which comprises U as the subset of real points. The
subset N' = {T = 0} of U’, where we denote by T again the analytic extension
of the real function denoted before by the same symbol, then defines the cone
which is generated by the complex null geodesics C D O 3 ( — z*(¢) = (z? € U’
through i, where t¢ # 0 is constant with hg, 222 = 0 at i. On A the field
DY e = —22% 0, is tangent to the null generators of A/. The derivatives of
Tap £ Z? with respect to ¢ at i are given by the complex numbers

a b .
... 23 1,2, Da, ... Da,Tbe(?)

A, B Ay ,B,,C F .
E R Y A R A DA,,B,,---DA;Bl reper(i)

where the term on the left-hand side is rewritten on the right-hand side in space
spinor notation and it is used that 242 = 04F ;2% = (4P with some spinor
1A because z2 is a null vector. Allowing z¢ to vary over the null cone at i, i.c.,
allowing ¢4 to vary over P!(C), we can extract from the numbers above the real
quantities
CA, B,..AB.CDEF = Da, B, .- Da,B, rcper(i), (4.41)
which are equivalent to (4.40). Giving the data (4.40) is thus equivalent to giving
rab(C £2) #% 2° where x2 varies over a cut of the complex null cone at i or to
giving, up to a scaling, the restriction of r,, D*Y DY to A. The data (4.40) are
in one-to-one correspondence to the multipole moments considered in [6].
We consider now the Bianchi identity D®rap, = 0 and equation (4.38). In
space spinor notation they combine into the concise form
Q1 —;to‘) Dy ETBCDE =2I‘TE(BCDDA)E0'- (4.42)
Note that the contraction and symmetrization on the right-hand side project out
precisely the information contained in rap D2 DPT while the contraction which
occurs on the left-hand side prevents us from using the equation to calculate any
of the information in (4.41). We use equations (4.32), (4.37) in frame notation. By
taking formal derivatives of these equations one can determine from (4.24) and the
data (4.40) all derivatives of o, s, and rap at i. The complete set of data (4.40)
resp. (4.41) is required for this and these data determine the expansion uniquely.
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This procedure has been formalized in the theory of ‘exact sets of fields’ discussed
in [61], where equations of the type (4.42) are considered.

The formulation given above suggests proving a Cauchy-Kowalevska type re-
sults for equations (4.32), (4.37), (4.42) with data prescribed on A. Although the
existence of the vertex at ¢ may create some difficulties in the present case, this
problem has much in common with the characteristic initial value problem for
Einstein’s field equations for which the existence of analytic solutions has been
shown ([30]). At present, no decay estimates for the ca,..a,bc as p — oo are avail-
able which would ensure the convergence of these series. To simplify the following
discussion we shall assume that the series considered above do converge.

We return to the coordinate formalism and show that this procedure provides
a solution to the original equation (4.36), i.e., the quantity 3, defined from the
fields o, s, and 43 by the procedure above does vanish. We show first that ¥,, =0
on N. Since ¢ = 0 on N, this amounts to showing that mg;, = Dy Dyo — shgs
vanishes on A. Differentiating twice the equation D,o D% — 20 s = 0, which
has been solved as part of the procedure above, observing that D¢¥.; = 0 and
restricting the resulting equation to N gives the linear ODE

D D.mg, = —D,D mep,

along the null generators of A. Observing that D, Dyo = —2h,, + O(T), this
ODE can be written along the null geodesics () = ¢ % considered above in the
form

d c
d_c((: mab) = Aa Cmey
with a smooth function A; = AS(¢). This implies the desired result. In view of
(4.37), (4.38) it shows that we solved the problem
D% =0, DiXgp=0 mear i, X5 =0 on N.

The first two equations combine in space spinor notation into D4 ¥ Xgcpr =0
with symmetric spinor field ¥ 4gcp. Following again the arguments of [61], we
conclude that X,;, = 0.

Equation (4.39) implies

D% Dbc by, =0 on V. (4.43)

A rescaling h — h’ = 9* h with a positive (analytic) conformal factor gives o —
o' = 9?0 and b,y — b, = ¥ 2b,p, whence

D%0 D°a by — (D% DP0 byy) =
97D D0 boy + 4097 "D DO by + 4029 3D DO by,

This shows that (4.43) is not conformally invariant, but it also shows that the
relation
DY DPY byy|a = 0, (4.44)
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implied by (4.43), is conformally invariant. Using again the argument which al-
lowed us to get the quantities (4.41), we can translate this onto the equivalent
relations

R(D,, - Da, bye(d)) =0, p=0,1,2,..., (4.45)
which take in space spinor notation the form (cf. (5.89))
D(a, B, " Da beper (i) =0, p=0,1,2,.... (4.46)

We note that for given integer p. > 0 the string of such conditions with 0 < p < p.
is conformally invariant.

Since these condition have a particular bearing on the smoothness of gravita-
tional fields at null infinity ([34], [37]) and it is not clear whether static equations
are of a greater significance in this context than expected so far, we take a closer
look at (4.43). If we apply the operators D, Dy and D, Dy D, to (4.43) and restrict
the resulting equation to i, we get the relations b.s(¢2) = 0 and D(abb(\)(i) =0 re-
spectively, which agree with (4.45) at the corresponding orders because D%, = 0.
However, if we proceed similarly with D,DyD_.D,, we get

DaDpbegy(i) = 0. (4.47)
Since (4.45) with p = 2 can be written in the form

) 1 )
DDy beg (i) = Z h(ab On beay (i),

the relation (4.47) implies in particular that Ap be4(i) = 0. It appears that in
general this equation cannot be deduced in the present gauge from known gen-
eral identities and (4.44) alone. There will be similar such conditions at higher
orders. While the particular form of them may depend on the conformal gauge,
the existence of properties which go beyond (4.45) does not. In any case, these ob-
servations show that there is a gap between h satisfying the regularity conditions
(4.45) and h being conformally static.

This situation is also illustrated by the following observation. If the data
provided by h are conformally flat in a neighborhood of i they trivially satisfy
conditions (4.45). Without further assumptions the solution 6 to the Lichnerowicz
equation which relates h to the induced vacuum data h = 6k can still be quite
general. However, if h is static the function 8 must be very special.

Lemma 4.1. An asymptotically flat, static initial data set for the vacuum field
equations with conformal metric h and positive ADM mass m 1s locally conformally
flat if and only if it satisfies near i in the gauge (4.31) the equation r.p[h] = 0 and
thus in the normal coordinates (4.17)

1
h=—6pdztdzb, U=1, 8=— + 2
lz| = 2
Remark: This tells us that the only asymptotically flat, static vacuum date which
are locally conformally flat near space-like infinity are the Schwarzschild data

(4.33). The result of ([71]), which suggests that conformal flatness of the data
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h near i and the smoothness requirement on the functions u? at It imply that
the solution be asymptotically Schwarzschild, can thus be reformulated as saying
that for the given data the smoothness requirement implies the solution to be
asymptotically static at space-like infinity.

Proof. By (4.38) the solution is locally conformally flat if and only if 2 Do g =
R ra}dDda. Applying D. to this equation and observing (4.36) and again
Dy Talb = 0, one gets after a contraction

D0 D.ropy=—38Tap+0(1 — po) (hapred r° — 3raeTh 9. (4.48)
This equation can be read as an ODE along the integral curves of the vector field
D¢ o. 1t follows from (4.32) that u® = (20 |s|)"2 D% is a unit vector field (with
direction dependent limits at 7). Because of
27
Is]
its integral curves run into i and cover in fact a (possibly small) neighborhood U’
of i. Equation (4.48) can be rewritten in the form

u® Da(T¥2 13) = Afe (Y2 ra.),

1/2
uaDaT:—( ) (AU'4+2U2D°UD,Y) <0,

with the matrix-valued function

A = ————E——(s+2U_l +U2DU D, TYh%, h¢ .
20|s]

1_
4T ZRO) o pde _gpd, pe
V2o |s|
which is continuous on U’. This implies that r,;, = 0 on ’. The remaining state-
ments follow immediately from (4.17) and (4.31).

Remark: We note that these data may be obtained in a different form if locally
conformally flat data are given in the cn-gauge and one asks under which conditions
they are conformally static. The data are then of the form

hat = —6ap, O F =0 = éer, AW =0, W(i)="T >0
By arescalingh — 9t h,0 - 9710 = ﬁ+% with 9 = Z W they are transformed
into the present gauge. Assuming that these data satisfy the conformal static field
equations and expressing the resulting equation again in terms of hyp = —0gp
one finds that the solution is static if and only if 2W D, Dy W —6 D, W D, W +
2hey, D.W D°W = 0. Since W > 0 the equation can be rewritten in terms of
w = W2 which gives

2wD, Dyw = hap Dew D w. (4.49)

Applying D., multiplying with w, and using twice (4.49) again, we conclude that
D, Dy D.w = 0, whence w = k + ko 2% + kqp 2 z° with some coefficients k& > 0,
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ko, kap. This function satisfies (4.49) if kop = hap ko k°/4 k. With ja = ka/2k and
m = 2/Vk this gives
m 1

W=— ,
2 \/1+42Ja2%+ jojoTpa®

with constant j¢.

That these data are equivalent to the ones considered above is seen by rescal-
i i = 2 W. By thi hi W="m F L :
ing with ¥ = = W. By this one achieves W = . For the metric 9 h to acquire
the flat standard form one needs to perform a coordinate transformation which is
given by a special conformal transformation x — (I o T o I')(z) where I denotes
the inversion ¢ — z%(6pc 2® z°)~" and T, a translation % — 7% 4 ¢@ with suitably
chosen constant c®.

5. A regular finite initial value problem at space-like infinity

In the conformal extension of Minkowski space described in Section 3 neighbor-
hoods of space-like infinity, which are swept out by future complete outgoing and
past complete incoming null geodesics, are squeezed into arbitrarily small neighbor-
hoods of the point i%. From the point of view of the causal structure it is natural to
indicate space-like infinity by a point. The discussion in Section 4 shows, however,
that in general i’ cannot be a regular point of any smooth conformal extension.
The condition for an extension to i to be C*® (under our assumption (4.13)) is
that the data are massless in the sense of (4.30) and that the free datum h satisfies
the conditions (5.89) with p. = oo ([34], [37]). Thus, smoothness at i® excludes
the physically interesting cases.

A direct discussion of the initial value problem for the conformal field equa-
tions with initial data on an initial hypersurface S = S U {1} such that W* k=
O(p_3 ) at i as discussed in Section 4 faces considerable technical problems. Not
only the functional analytical treatment of a corresponding PDE problem poses
enormous difficulties but already the choice of gauge becomes very subtle.

The setting described below has been arrived at by attempts to describe the
structure of the singularity as clearly as possible and to deduce from the conformal
field equations a formulation of the PDE problem which still preserves ‘some sort of
hyperbolicity’ at space-like infinity. It is based on conformally invariant concepts
so that possible singularities should be identifiable as defects of the conformal
structure.

In a conformal Gauss gauge based on a Cauchy hypersurface S it turns out
that after blowing up the point { into a sphere Z° and choosing the gauge suitably,
one arrives at a formulation of the initial value problem near space-like infinity
in which the data can be smoothly extended to and across Z°. In that gauge
also the evolution equations admit a smooth extension to space-like infinity. The
evolution and extension process then generates from the set 7° a cylindrical piece
of space-time boundary diffeomorphic to | — 1,1[xZ°, which is denoted by Z. It
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represents space-like infinity and can be considered as a blow-up of the point i°.
This boundary is neither postulated nor attached ‘by hand’.

In this gauge the hypersurfaces J* representing null infinity near space-like
infinity are given by finite values of the coordinates which are explicitly known
(it has to be shown, of course, that the evolution extends far enough). These
hypersurfaces touch the cylinder Z at sets Z* diffeomorphic to Z°, which can
be thought of as boundaries of 7 and of J* respectively. The structure of the
conformal field equations near the critical sets T+ appears to be the key to the
question of asymptotic smoothness.

It may appear odd to squeeze space-time regions of infinite extend into arbi-
trarily small neighborhoods of a point i° and then perform a complicated blow-up
to resolve the singularity on the initial hypersurface which has been created by
the first step. The point of the construction is that the finiteness of the sets 7%
allow us to disclose, to an extent that we can put our hands on it, a subtle feature
of the field equations which otherwise would be hidden at infinity (in the stan-
dard vacuum representation) or in the singularity at i (in the standard conformal
rescaling).

In the following the setting indicated above and its various implications will
be discussed in detail. While we shall add more recent results we shall follow to a
large extent the original article [37]. For derivations and details we refer the reader
to this or the articles quoted below.

5.1. The gauge on the initial slice and the blow-up at i

The non-smoothness of the conformal data (4.14), (4.7), (4.15), (4.16), (4.29) at ¢
arises from the presence of various factors p in the explicit expressions. To properly
take care of the specific radial and angular behavior of the various fields it is natural
to choose the frame field in the general conformal field equations such that the
spatial vector fields e,, a = 1,2, 3, are tangent to the initial hypersurface & and
one of them, e3 say, is radial. Since there is no preferred direction at i, this only
makes sense if the frame is chosen on & such that it has direction dependent
limits at ¢. This singular situation finds a well-organized description in terms of
a smooth submanifold of the bundle of frames. To discuss the field equations in
the spin frame formalism, we will consider in fact a submanifold C. of the bundle
of normalized spin frames over S near ¢. While the use of spinors leads to various
simplifications, it should be mentioned that the construction could be carried out
similarly in the standard frame formalism (cf. [38]).

5.1.1. The construction of C.. Consider now S as a space-like Cauchy hypersurface
of a 4-dimensional solution space-time (M, g) with induced metric h on S. Denote
by SL(S) the set of spin frames § = {64} .4=0,1 on S which are normalized with
respect to the alternating form €, such that

€(04,9p) = €ap, €01 =1 (5.1)
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The group
SL(2,C) = {t* p € GL(2,C) | eact® 5t p = epp},

acts on SL(S) by 8 = 6t = {64t B}B=0.1. The vector field 7 = /2 ey, with e
the future directed unit normal of S, defines a subbundle SU(S) of SL(S) which
is given by the spin frames in SL(S) with
g(1,6464) = €4 " festenV =Ta4. (5.2)
It has structure group
SU@2) = {t* p € SL(2,0) | raat* pt* p = BB}

In any frame in SU(S) the vector 7 is given by 744", In the following we use the
space spinor formalism in the notation of [36]. Using the van der Waerden symbols
for space spinors

AB A _B)A A

Oa =0, A 4B 0% aB =78 0% a4, c=1,2,3,

which satisfy
AB B_ B BB '
hop =0aaBOL ", €4 €4 = 5 TANT + 0% aptt 4B G, 5 B,
where
b _ .
hab 0" 4B0” cp = —€a(c€pyB = hapcp With  hgy, = —4,,

the covering map onto the connected component SO(3) of the rotation group is
given by

SU(Q) =) tA B X t*y = 0% aB A ctB DO'bCD c SO(3)
The induced isomorphism of Lie algebras will be denoted by ¥,.

The covering morphism of SU(S) onto the bundle O (S) of positively ori-
ented orthonormal frames on S maps the frame § € SU(S) onto the frame with
vectors e, = €,(8) = 0, AB § 15 B 85 such that h(eq,ep) = hap. We use this map
to pull back to SU(S) the h-Levi-Civita connection form on O, (S). Combining
this with the map ¥, the connection is represented by an su(2)-valued connec-
tion form &* g on SU(S). Similarly, pulling back the R3-valued solder form on
0. (S) and contracting with the van der Waerden symbols results in a 1-form 042
on SU(S) which is referred to as solder form on SU(S).

Let H denote the real horizontal vector field on SU(S) satisfying (¢4, H) =

(4 ¢, B) or, equivalently,

€9
. = 1 _ _
Ts(n) H(8) = 6oy B ép = 58080 = 8181), § € SU(S). (5.3)
It follows that Tjs.(m) H(dt) = Ts(x) H(S) if and only if

teU(l)={te SUQ)|t= ( e:’ ef’io ),qseR}.

The field H will essentially correspond to the ‘radial’ vector field mentioned above.
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We consider again the normal coordinates satisfying (4.17) near 1, set B, =
{peU]|z(p)| < e} withe >0 chosen such that the closure of B, in S is contained
in U, and denote by (SU(B.), m) the restriction of (SU(S), 7) to B.. Let 6* be in the
fiber 7~ 1(i) C SU(B.) over i. The map SU(2) 3t — §(t) = 6* -t € 7~ '(4) defines
a smooth parametrization of 77!(z). We denote by | —e,e[3 p — (p,t) € SU(B,)
the integral curve of the vector field V2 H satisfying 6(0,t) = &(t) and set C. =
{6(p,t) € SU(B:)| |p| < e, t € SU(2)}. This set defines a smooth submanifold of
SU(B.) which is diffeomorphic to | — e, e[xSU(2). The restriction of 7 to this set
will be denoted by 7’

The symbol p, which has been introduced already in Section 4.1, is used here
for the following reason. The integral curves of /2 H through 7~!(i) project onto
geodesics through ¢ with h-unit tangent vector. Thus, the projection 7' maps C.
onto B,. The action of U(1) on SU(B,) induces an action on C.. While Z° =
7=1(i) = {p = 0} is diffeomorphic to SU(2), the fiber 7 ~!(p) C C. over a point p
in the punctured disk B. = B. \ {i} coincides with an orbit of U(1) in SU(B,) on
which p = |z(p)| and another one on which p = —|z(p}|.

The map =’ factorizes as C. > C. 3 B, with ! = C./U(1) diffeomorphic to
] — e, e[xS?. For p. with 0 < |p,| < e the subsets {p = p.} of C. are diffeomorphic
to SU(2) and the restrictions of the map m; to these sets define Hopf fibrations of
the form

SU(2) 5t — V20 45t ot? | € §2 C R®. (5.4)
The set 5 '(B.) (resp. @ ~1(B,)) consists of two components C,* (resp. C%) on
which +p > 0 respectively. Each of the sets C éi is mapped by m, diffeomorphically
onto the punctured disk. If B. is now identified via o with C;+ the manifold Be is
embedded into C! such that it acquires the set m; (Z°) = 75 ' (i) as a boundary. The
set B, = B, Umy (i) ~ [0, e[xS2 is a smooth manifold with boundary. Viewing
B. again as the subset of S = S\ {i}, we get an extension S of § which can be
thought of as being obtained from S by blowing up the point ¢ into a sphere. This
is our desired extension of the physical initial manifold and the following discussion
could be carried out in terms of the 3-dimensional manifold B,.

It turns out more convenient, however, to use the 4-dimensional U (1) bundle
CH=CruI® = {6 € C.| p(8) > 0} =~ [0,e[x SU(2). It is a manifold with boundary
smoothly embedded into SU(B,), from which it inherits various structures. The
set C. is conveniently parametrized by p and the parallelizable group SU(2). The
solder and the connection form on SU(B,) pull back to smooth 1-forms on C.. We
denote the latter again by 0%® and &%, respectively. Any smooth spinor field ¢ on
B, defines on C. a smooth ‘spinor-valued function’ which is given at § € C. by the
components of £ in the frame defined by § and denoted (in the case of a covariant
field) by £a,..a..4’,...a,- We shall refer to this function as to the ‘Aift’ of €.

The structure equations induce on C. the equations

doAP = —04 g A 0P8 — @B g A 0P, (5.5)

dot g = -0 g A of p+045, (5.6)
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where

. 1
A A
Wp=gr sepra“P A oFF

denotes the curvature form determined by the curvature spinor r4gcpgr. It holds
— 1 r h 1 T
TABCDEF = \ 5 SABCE ~ 15 "ABCE | €DF + 5 SABDF — T hABDF> €CE

. (5.7)
where sapcp = S(aBcp) is the trace free part of the Ricci tensor of h and 7 its
Ricci scalar. The curvature tensor of h is given by

TAGBHCDEF = —TABCDEF€GH —TGHCDEF€ARB.

and the Bianchi identity reads 6 DAZ s spcp = Depr.
We use t € SU(2,C) and z! = p as ‘coordinates’ on C.. The vector field H
tangent to C. then takes the form V2H = 0,. Consider now the basis

_1f0 i o _1(0 -1 1/ 0
U1-2 i 0 s 2_2 1 0 ,’U,3—§ 0 —i ) (58)

of the Lie algebra su(2). Here u; is the generator of the group U(1). We denote by
Zu,, i =0,1,2, the Killing vector fields generated on SU(B,) by u,; and the action
of SU(2). These fields are tangent to 7°. We set there

X, =2y, +iZy,), Xo = —(Zy, —iZy,), X =-2i2

and extend these fields smoothly to C. by requiring J
[H,X]=0, [H ,X]=0. (5.9)
The vector fields H, X, X4, X_ constitute a frame field on C, which satisfies
besides (5.9) the commutation relations
(X, Xi]=2X,, [X, X_|]=-2X_, [X;, X_|=-X. (5.10)

The vector field X is tangent to the fibers defined by #;. The complex vector
fields Xy, X_ are complex conjugates of each other such that X_ f = X, f for
any real-valued function f.

These vector fields are related to the 1-forms above by

(U‘AB,I?)=60(A€13), (UAB,X)ZO on C., (5.11)

(0B, X, ) =peo? e B +0(p?), (648, X_)=—-pey e B +0(p%), (5.12)
(@h g, H) =0, (GJAB,X)zeerBO—quBl on C., (5.13)

)

@B, X ) =eeg' +0(p%), @B, X )=—-e%eg®+0(p%), (5.14
as p— 0.

To transfer the tensor calculus on Be to C. we define vector fields cap = ¢( 45,
on C. \ I° by requiring

(04, ccp) =€c?epy®, cocp=ccpd,+cTcp Xy +c epX-.  (5.15)
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The first condition implies that Ts(n') cap = §(a7g) B'§p for § € C.\ T, while the
second removes the freedom for the vector fields to pick up an arbitrary component
in the direction of X . It follows that

c'ap=zaB, ¢ ap= % zap+ ¢ ap, ¢ aB = %ZJAB +¢” aB, (5.16)
with smooth functions which satisfy
& ap=0(p), ¢01=0, a=1,+,~-, (5.17)
and
w48 = V24 ep) !, yap= ‘LGA ‘ep!, zap = L€A Oep?. (5.18)
V2 V2

The connection coefficients with respect to c4p satisfy
'YCDABE<LZ1AB,CCD>=%’)’Z*DAB+'$’CDAB (5.19)
with
Y* aBcD = %(GACTBD +eppzac), Yonep =0, Fascp = O(p)-

The smoothness of the 1-forms and the vector fields H, X, X_ implies that the
vector fields pccp and the functions

1 —
¢ D, PC+CDa PC cD, PYCDAB;

extend smoothly to all of C,.
A smooth function F on an open subset of C, is said to have spin weight s if

X(F)=2sF (5.20)

on this set with 2s an integer. Any spinor-valued function induced by a spinor field
on B, has a well-defined spin weight, it holds, e.g.,

X¢ABCD=2(2’A~B—C“D)¢ABCD. (521)

It follows from the construction of C. that this is also true for the functions con-
sidered above, it turns out that

XCIAB=2(1-—A—B)CIAB, XCiAB=2(1—(:|:1)——A—B)CiAB,
X'YABCD:2(2‘A‘B—C“D)’)’ABCD for A,B,C,DZO,I.

By our construction, equation (5.3), and the formula for e,(4) given above
the vectors Ts(n') (v/2 H(8)) = e3(8) are tangent to and the frame e, (d(p,t)) is
parallely propagated along the geodesics [—e,e[> p — #'(d(p, t)) through i. Thus
we have constructed the type of frame field asked for in the beginning. Working
on C, has the advantage that p and v/2 H define smooth fields and the smoothness
of the various fields considered above can easily be discussed.

The transition from B, to C. respectively to C;” amounts to a new choice of
differential structure at space-like infinity. This change is reflected in the drop of
rank of the map 7’ at the set Z°. It follows from (5.11), (5.12), that at points
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over i the vectors X, X4+ project onto the zero vector while at points in 7' ~!(p)
the real and imaginary parts of H, X, X_ have non-vanishing projections which
span the tangent space Tp B, if p € B.. The relations (5.11), (5.12), (5.13), (5.14)
show that the behavior of the map 7’ near Z° is encoded in the behavior of the
solder and the connection form.

With the structures given above we can perform tensor calculations defined on
B, now also on C \Z? and they follow the ‘usual’ rules of the spin frame formalism.
If F denotes the lift of a smooth function f on Be, the covariant differential Df is
represented on C \ Z° by the invariant function Dapf = c4p(F). In the following
we shall use the same symbol for a function and its lift. If p4p is the invariant
function induced by a spatial spinor field yu on Be its covariant differential is given
on C. \ Z° by the expression

Dagpap = cap(pap) — 4B Ecupp—vaEp LOE.
Analogous formulas hold for covariant differentials of spinor fields of higher valence.

In terms of p and t = (t* B) on C. and the normal coordinates 2° satisfying
(4.17) on B., the projection 7’ has the local expression
' (p,t) = z(p,t) = pV20% cpt©ot” . (5.22)
This can be used to pull back the functions €1, U, and W, which are related by
(4.29), to functions of spin weight zero on C.. The metric in (4.13) is built into
our formalism and the second fundamental form lifts to a symmetric spinor-valued
function x4scp which vanishes everywhere. Using the fields
¢ a8, Acpas, Sascp, T (5.23)
given by (5.16), (5.19), and (5.7), one can determine

Dag Dcp 2, (5.24)
on C} and thus also the derived data (4.14), (4.15), (4.16).

In particular, a detailed expression for the rescaled conformal Weyl spinor
dapcp is obtained on CJ by using (4.16) and (4.29). It takes the form

$apcp = dapcp + $iaBCD: (5.25)
where
$upcp =0 > {DapDcpyo+0sascp} (5.26)
1
= F {U2 Dag Dcpy (P2) - 8pUD(ABpDCD)U}

1
~3 {2 UD(AB DCD) U - 6D(ABUDCD)U - U2 SABCD}
p
is derived from o = p? U~2 and thus from the local geometry near i, while

1
Phsep = 3 {-6UW D(appDcpyp+UW Diag Depy ()} (5.27)
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4
+; (W Dapp DepyU —3U D(app DepyW)

2
—; (UD(AB D(;D)W-f- WD(AB DCD) U—GD(ABUDCD) W ~UW sapep)

—QWD(AB DCD) W+ 6D(ABW DCD) W4+ W? SABCD,

is the part of the rescaled conformal Weyl spinor which depends on the non-local
information in W and which vanishes in the massless case. Observing that

Dapp=2ap, DapDcp(p°) =—-4p¥as® czpyp =0(p*), DapU = O(p),

one finds that

1 - 6m 1
apcp =0(=5), S4scp = —— €4gep + O0(5); (5.28)
p p p
where we set €, 5 = eaEegFecepyfifor j=0,...,4.

5.1.2. Normal expansions at Z° and the functions 7}, 7 x. To analyze in detail the
behavior of the various fields near space-like infinity it is convenient to study a
particular type of expansion. It will be discussed here for an unprimed spinor field,
similar expansions hold for other fields. In terms of the normal coordinates z® on
B. define the radial vector field V = 2® 8,.. Let §* = §*(z*) be the smooth spin
frame field on B, which satisfies Dy 6* = 0 on B. and coincides with the spin
frame at i chosen as the starting point for our construction of C.. Denote by e 5
the orthonormal frame associated with §* and write V = VAB e*, 5

Suppose £ is a smooth spinor field on B, which is given in terms of the spin
frame field 0" by &£ 4, = &4, 4,(z®). Then its Taylor expansion at i is of the
form

p=oo 4

IWCOEDS o VECr(z%) .. VB (a%) Dp,c, ... Db,y €4, .4, (3)-

p=0
(5.29)
To determine the lift £4,. 4, of this field to CJ one has to observe its trans-
formation behaviour €%, — &4, 4, t%" 4, ...t%" 4, under changes of the frame
and the fact that the pull-back of the functions V4B are given in view of (5.22)
by
VAB(22(p, 1)) = V2ptA o tD ). (5.30)

If the expansion coefficients Dg,c, ... Dp,c,&4, . 4, (i) are then decomposed into
products of €,,’s and symmetric spinors at 7, the essential components & =
Elaran;» 0 <3 < 1,0 < j <1, which are of spin weight s = % — 7, are ob-

tained as expansion of the form

£ = Z Eip PP (5.31)

p=0



Smoothness at Null Infinity and the Structure of Initia] Data 163

where
2p+1

§ip = z Z &jprmk Tm LI (5.32)

m=max{|l—27],1-2p} k=0

with complex coefficients &y« and functions T,, 7 & of t as discussed below.

We refer to this type of expansion as to the normal expansion of £ at I°. In
the case considered above the lift of £ to C} has smooth limits at Z°. Corresponding
expansions in terms of p*, k € Z, can also be obtained for fields such as ¢apcp
on C} which are given by algebraic expressions of regular fields but which become
singular at 70

The functions T, 7 &, arise (apart from some normalizing factors) naturally by
the procedure indicated above. They are matrix elements of unitary representations

SU(2) >t — Tn(t) = (Tn? k(t)) € SU(m + 1),

which are given by

iyt
T()O[)(t):]., ijk(t):(j) (k) tb (al...tb'")jam)kv

Gk=0,...,m, m=123,....

The brackets with lower index now indicate symmetrization and taking ‘essen-
tial components’. The expansions obtained above make sense under quite general
assumptions; the functions /m + 1 T k(t) form a complete orthonormal set in
the Hilbert space L?(u, SU(2)) where p denotes the normalized Haar measure on
SU(2).

Using the identification of Z° with SU(2) built into our construction, we
consider the T}, 7 « as functions on Z° and extend them as p-independent functions
to C.. The vector fields X1, X then act as left invariant vector fields and it holds

XTw*j=(m-2j)Tn";, (5.33)

X+ Tm kj = ﬂ'm,j Tm k ji—1s X- Tm k 3= —/Bm,j+1 Tm k j+1 (534)
for 0 < k,j <m, m =0,1,2,..., with B, ; = /j(m—j+1). It follows that
functions f with spin weight s have expansions of the form

k
f = Z me.k T —s (535)
m>|2s| k=0

where the m’s are even if s is an integer and odd if s is a half-integer. All functions
considered in the following have integer spin weight.
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5.2. The regularizing gauge for the evolution equations

To obtain definite expressions for the expansions of the data at ¢ and because
the terms of lower order are then simplified, it has been assumed in [37] that the
metric h is given in a cn-gauge near i. This will be assumed also here, though
the discussion of the static case given below will show that this is not necessary
for our construction. The coordinates p, ¢t and the frame field constructed above
depend on the choice of scaling of the metric k on S. Most important is the fact
that Q = O(p?) near I°, it affects the definition of p in an essential way.

In analyzing the evolution of our data in time it turns out convenient to use
a different conformal factor © which is related to the conformal factor 2 by

O=x"1'Q on C., (5.36)
with a function
k=pkK with £ €C®C.), K >0, XKk =0, K|z =1 (5.37)

The value of x’ on IV is chosen for convenience here, nothing is gained in the
following by requiring a different (positive) boundary value for it.

The change of the conformal factor implies a map Z: § — k2 & which maps
the set C} bijectively onto a smooth submanifold C* of the bundle of conformal
spin frames over B We use the diffeomorphism Z to carry the coordinates p and
t and the vector fields 9,, X, X1, X_ to C*. The projection of C* onto B. will be
denoted again by 7’.

Assuming a conformal Gauss system for the evolution in time as described
in Section 2.1, the evolution of the spin frames constituting C* defines in the the
bundle of conformal frames over the space-time manifold Ma smoothly embedded
5-dimensional manifold A~ which is again a U(1) bundle over the space-time and
whose projection onto M we denote again by 7’. The manifold C* represents a
smooth hypersurface of .

By pushing forward the coordinates p, t and the vector fields d,, X, X4 with
the flow of the conformal geodesics ruling N, these structures can be extended to
N such that i X generates the kernel of #’. The parameter £° = 7 of the conformal
geodesics defines a further independent coordinate with £ = 7 = 0 on C*, so that
the tangent vector field of this congruence can be denoted by J..

The reduced field equations (2.38), (2.39), (2.40), (2.42) (the latter specializa-
tion of (2.43) is chosen here for only definiteness) are now interpreted as equations
on N by assuming that the e4a’ are vector fields on N which are defined at a
spin frame § € N by the requirement that they project onto the frame defined by
don M,ie, Tsn'(ean) = 6a 54, and whose X-component is fixed by requiring
an expansion of the form

1 B
€44 = ——=Taa Or — T° Ar€AB, 5.38
AA /2 AA A’ €AB (5.38)

with ‘spatial vectors’

e,,\B=e°_436,+e1A38p+e+ AB X4+ +e apX_. (5.39)
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The unknowns in the reduced field equations are then interpreted as spinor-valued
functions on A It can be shown that spin weights are preserved under the evolution
by the reduced system.

We have to express the initial data for the conformal field equations in terms
of the new scaling. With «, the fields (5.23), (5.24), and the associated covariant
derivatives (carried over to C*, observing that the local expression of = i the given
coordinates is the identity) one gets for the curvature fields

3

$ABCD = g3 (DiaB Depy+ Qsasep), (5.40)
9 1 1 B B
Qancc =K | § Dap Depy§t + 2" hapep | ™% 478 (0. (5.41)

For the frame (5.38), one gets by (5.16)

a5 =0, e ap=pK'T4aB, (5.42)

! ~ — ’ .
et ap =K zap+ K& 4B, € A=K yap+KE 4p. (5.43)

For the conformal factor © we get

@z@*zn_lﬂzwppw on C*. (5.44)

We assume that initial~data for the 1-form f, which will be related in the end to
f by the relation f = f — ©~1d O, satisfy

{f,0:) =0, pull-back of f to C* =k 1 dx. (5.45)
1t follows then that from (2.24) that © takes the form
K2 ~
0=0, (1 A —;) on N, (5.46)
w*
with a function w which is given by
2Q
w= = p(U+pW) {U? +2pUz*B D4 gU — p* DABU D 5 U

VID.QD*Q] (5.47)

+20°UaBDapW ~20° DABUDasW —p* DAPW Dy 5w}~ onC".
Here the second member is given in the notation of Section 4.1 while the term on
the right-hand side is given in the notation of Section 5.1.1. In (5.46) and in the
following formulas the subscripts * are saying that the corresponding functions are
constant along the conformal geodesics.

For d4a we get by (2.25) the explicit expression

1 . N
day = 75 TAN ©— 718 4 dap on N, (5.48)
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where the dot denotes the derivative with respect to 7 and
do =9 Uzag — pDagU — p?> DapW
AB = 4 p (U +pW)"‘ X ’

where the notation of Section 5.1.1 is used on the right-hand side.
If one uses (5.42) and (5.43) to write for a given smooth function x on C*

(5.49)

HaB = k1 (61 AB (9,; +et AB Xy +e ag X—)H,

one gets with the 1-form (5.45) and the spatial connection coefficients (5.19) the
space-time conmnection coefficients in the form

Caven = (% pleac Kgp + €Bp Kac) — PK Yapcp + %6443 kep | T8 ar,
(5.50)
Note that the " 4 4 gc in the reduced equations can be expressed by (2.37) in terms
of the FAA' BC-

Most important for us is the observation that the functions given by (5.40),
(5.41), (5.42), (5.43), (5.46), (5.48), (5.50) have smooth limits as p — 0 and can
in fact be smoothly extended into the coordinate range p < 0. For the unknowns in
the new scaling we thus obtain normal expansion in terms of non-negative powers

of p. In particular, one has

bapcp = K (S apep + PABeD) (5.51)

with (5.26), (5.27) on the right-hand side. Pushing the expansion (5.28) a bit
further and using (5.36) one gets in the cn-gauge (in which hq, = —8ap + O(p*))

bapcp = —K26medgep (5.52)

—pK 12 (X1 Wie€ apep +3W) € apcp — X- Wi € apcep)

2. /3 4 i
PR 4 4 2-) 4\ ., . ]
- Z (]) (4 6 <j) Wous — 3 2 <k bi(@) ) Ts* 5 € peps

kj=0
+0(p?).
It is assumed here that W is an arbitrary solution to (A — %r) W =0onB.. Its
normal expansion takes in the cn-gauge the form

2 2 2p
W= ZPP Wy, + O(p®) = pr (Z Whi2p.k Top kp) +0(p°)
p=0 p=0 k=0
with
m 2 3
Wooo =W(3E) =5, Wiox= (k) Doy W™ (1),

1

4\ .
( ) D(ab-Dcd)kW*(Z)~

=
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In the case where &’ is constant the right-hand side of (5.52) provides the terms of
a normal expansion up to the quadrupole term. If x depends on p and ¢ the terms
given above need to be expanded further to obtain the normal expansion.

The transition (5.36) to the conformal factor © corresponds to a transition
h — k' = k=2 h of the metric on B. (assuming that ' arise as a lift of a smooth
positive function on B, with (i) = 1) in the sense that then Q2h=h=0"24.
The coordinate p is then not adapted to the geometry defined by the metric h’.
To illustrate the situation assume that h is flat. Then

B =—k"2p2(dp* +p*do?®) = —k 2 (dr? + do?), (5.53)

with 7 = — log p near i. With respect to the new coordinate r, which is adapted to
the geometry of h', the point ¢ is shifted to infinity but the surface measure of any
sphere around ¢ remains finite and positively bounded from below. This behavior
is reflected by the fact that the frame coefficient €' 45 in (5.42) vanishes while the
frame coefficients e* 45 in (5.43) have finite and non-vanishing limits at 7°. We
shall keep the coordinate p because it ensures the finite coordinate representation
of the boundary 7" as well as the smoothness of the data near 7V.

With the gauge defined above the functions © and d4 4+ in equations (2.39),
(2.40) are given by (5.46) and (5.48) and the finite regular initial value problem
near space-like infinity for the reduced field equations (2.38), (2.39), (2.40), (2.42) is
completely determined. We write this system schematically as system of equations
for the unknown u = (w, ¢) with ¢ = (papcp) and w = (eaa, Canne, Oiapn)
or, alternatively, w = (e4a/, L aa'Bc,©@aa'85). It takes the form

3w =F(z,w,0), A* 8¢ =H(w)o, (5.54)

where the z-dependence in the first equation comes in here via the functions ©
and daa’.

Important for the following is that with any choice of k satisfying (5.37) the
functions © and daa take smooth limits as p — 0 and can be extended smoothly
into a range where p < 0. With the smooth extensibility of the initial data observed
before, we find that the initial value problem for the reduced field equations with
the data prescribed above can be extended smoothly into a range where p < 0 so
that the reduced equations form still a symmetric hyperbolic system. It may be
noted finally that the congruence of conformal geodesics (considered as point sets)
underlying our gauge does not depend on the choice of x, whereas the parameter
7 depends on it in an essential way.

5.3. Specific properties of the regular finite initial value problem
at space-like infinity

The nature of the initial value problem formulated above is conveniently discussed
by considering certain subsets of R x R x SU(2) which are defined by the range
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admitted for the coordinates (7, p,t). We define 5-dimensional subsets
N={rl<Z, 0<p<e, teSU@2)},

N={71<=, 0<p<e, tcSU2)},

T|lEx|E

where = is a function of p and ¢. It holds then
N=Nug - uJgtuzuI-uI™,
with 4-dimensional submanifolds

JE={r=42,0<p<e teSUR), T={Irl<l p=0, teSUQ),
and 3-dimensional submanifolds
ITE={7|£1, p=0,tecSUQ)}, Z'={r=0, p=0, tcSU(2)},
where it has been observed that ¥ — 1 as p — 0. We note that
©>0on N, ©=0,d0#00on J UJY*UZ, ©=0,dO=0 on I*.

The set C* = {7 =0, 0 < p <e, t € SU(2)} defines a hypersurface of N. Its
closure in AV is given by

C={r=0,0<p<e tcSU(2)}=C"UI’.

Factoring out the group U(1) implies projections (denoted again by 7n’) onto
subsets R x R x $? which are of one dimension lower than the sets above. In
particular, A projects onto a set M which represents the ‘physical space-time’.
For convenience we will usually work with the manifolds above and use for them
the same words as for the projections, so that N will be referred to as the ‘physical
space-time’ etc.

For suitable ¢ > 0 consider a smooth extension of the data given on C* to
the set Copr = {7 =0, —e < p<e, t € SU(2)} and an extension of the functions
©, day to the domain N, = {|7] < 2 —e < p < e t e SU2)}, so that
the reduced conformal field equations (2.38), (2.39), (2.40), (2.42) still represent a
symmetric hyperbolic system of the form (5.54). Then there exists a neighborhood
V of C.p; in N, on which there exists a unique smooth solution e 4 4-, f‘AA«BC
(resp. T'aa'Bc), OaaBp, dapcp to our extended initial value problem which
satisfies the gauge conditions (2.36).

It turns out, that the restriction of this solution to the set VNN is uniquely
determined by the data on C*. The data on C* have a unique smooth extension to
C and it follows from (5.38), (5.39), (5.42), and (5.43) that e! cc» — 0 as p — 0.
Equations (2.38) imply in particular

\/5(9-,— 61 ccr = —FCC’ A BB’ TBB 31 AA’- (5'55)

It follows that e¢! v = 0 on VN Z and as a consequence that the matrices A* in
(5.54) are such that
A' =0 on 7, (5.56)
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if the solution extends far enough. One can apply to the system (5.54) on subsets
of VN N the standard method of deriving energy estimates. Without further
information on the system the partial integration would yield contributions from
boundary integrals over parts of VNZ. Because of (5.56) these boundary integrals
vanish and one obtains energy estimates which allow one to show the asserted
uniqueness property. The extension above has been considered to simplify the
argument. Alternatively, the space-time N can be thought of as a solution of a
very specific ‘maximally dissipative’ initial boundary value problem where initial
data are prescribed on C and no data are prescribed on 7 because of (5.56) (cf.
[42] and the existence theory in [48], [67]).

In the present gauge the set Z, which is generated from " by the extension
and evolution process, can be considered as being obtained by performing limits of
conformal geodesics. It represents a boundary of the space-time A’ which may be
understood as a blow-up of the point i’. We refer to it as the cylinder at space-like
infinity.

Suppose that there exists on N a smooth solution e, A, Taape (resp.
Taase) ©@aasp, ¢apcp of the reduced conformal field equations (2.38), (2.39).
(2.40), (2.42) which satisfies the gauge conditions (2.36) on A and coincides on the
initial hypersurface C* = {7 = 0} C N with the data given above. The projections
Tn'(eaa’) then define a frame field on M for which exists a unique smooth metric
g on M such that g(Tn'(eaas), Tn'(€44:)) = €ap €4p'. Denote by D’ the domain
of dependence in M with respect to g of the set ©'(C*) and set D = 7 ~'(I)').
By the discussion above we can assume that the closure of D in A contains the
set 7 and the solution extends smoothly to Z. It follows from the structure of
the characteristics of the reduced equations, that the solution is determined on D
uniquely by the data on C* and it follows from the discussion in [36] and the fact
that the data satisfy the constraints that the complete set (2.29), (2.30), (2.31).
(2.32) of conformal field equations is satisfied on D. Since © has spin weight zero
it descends to a function on M and § = ©~2 g satisfies the vacuum field equations.

The restriction to D arises here because we only considered the data on C*.
Observing that the latter were obtained by restricting the data given on the initial
hypersurface S to B it is reasonable to assume that the conformal field equations
hold everywhere on N UT and g defines a solution to the vacuum field equations

on M.

Assume u is a solution of a (possibly non-linear) hyperbolic system of partial
differential equations of first order on some manifold. A hypersurface of this mani-
fold is then called a characteristic of that system (with respect to u), if the system
implies for some components of u non-trivial interior differential equations on the
hypersurface. These interior equations are called transport equations (cf. [22]).

Because of (5.56) the set 7 is then a characteristic of the extended field
equations. It is in fact of a very special type (i.e.. a total characteristic), because
the system (5.54) reduces on Z to an interior symmetric hyperbolic system of
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transport equations for the complete system of unknowns. Together with the data
on I? it allows us to determine u = (v, ¢) on .

Suppose that the solution extends in a C' fashion to the sets J*. Since
© =0, dO # 0 on J* the sets 7/(J*) form (part of) the conformal boundary at
null infinity for the vacuum solution §. Since ¢ 4pc'p is C! one finds Sachs peeling.
Of course, it will be one of our main tasks to control under which assumptions the
solutions will extend with a certain smoothness to the sets J*.

As remarked before, we can expect the decision about the smoothness of the
solution at null infinity to be made in the area where the latter ‘touches’ space-like
infinity. This location has a precise meaning in the present setting. It is given by
the critical sets T%, which can be considered either as boundaries of J* or as
the boundary components of Z. The nature of these sets is elucidated by studying
conformal Minkowski space in the present setting.

We start with the line element given by (5.53) and choose k' = 1. Since
w = p by (7.1) it follows that J* = {|7| = #1, 0 < p < e, t € SU(2)} and
M ={|r] €1, 0< p<e} xS It will be useful to express the frames considered
in the following in terms of the specific frame

Vg = 8;, v = pap, vy = Xi. (557)

The complete solution to the conformal field equations then is given by
1 ’ 7
e = — 1—T60€/0+1+T616/1)’U 5.58
= {(0-Delar sarnata Yw  (659)

’ 1] ’

’
+(ealen® —eqlen ! Jvr —€alen P vy —eqlen® v_}

N 1

Faase = g5 TAA TBC, (5.59)
eﬁA/BB/ = 0, (5~60)
¢ascp = 0. (5.61)

The conformal factor and the metric g implied by e% 4, are given by

* 2 * 2 T 1-r1? 2 2
O =p(l-7°), g =dr'+2-drdp— —5—dp*—do". (5.62)

P p

With the coordinate transformation

_ 1 ‘ T
Te-my fThasy
one gets in fact the standard Minkowski metric § = 072 ¢* = dt? — dr? — r?2 do?
in spherical coordinates. The flat metric corresponding to (3.4) is given by 2*2§ =
p? g* = d(7 p)? — dp? — p? do? with Q* = pO* = p? — (7 p)2. For this metric the
curves with constant coordinates p, 8, and ¢ are obviously conformal geodesics
and because of their conformal invariance it follows that the corresponding curves
for g* are conformal geodesics with parameter 7. Equations (5.63) can be read as
their parametrized version in Minkowski space.

(5.63)

r
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The metric g* given by (5.62) extends smoothly across null infinity but it has
no reasonable limit at Z. Its contravariant version

gt =178} +2708-(pd,) — (p3,)* — (do?)F,

does extend smoothly to Z. While it drops rank in the limit, it does imply a smooth
contravariant metric on Z whose covariant version [* = (1~72)~1 dr?~d o? defines
a smooth conformally flat Lorentz metric on Z. The coordinate transformation
7 = sin£ shows that this metric is not complete. The Killing fields of Minkowski
space, which are conformal Killing fields for g*, extend smoothly to 7 such that
they become tangent to Z, vanish there in the case of the translational Killing
fields, and act as non-trivial conformal Killing fields for the metric {* in the case
of infinitesimal Lorentz transformations.

The fields (5.58), (5.59), (5.60) extend smoothly to all of M. The property
(5.56) results from the fact that the fields e, e];, become linear dependent on
Z. Since they do not vanish there, this degeneracy does not cause any difficulties
in the field equations. On Z% and Z~ however, the field e}, and e}, respectively
vanishes. This strong degeneracy has important consequences for the (extended)
conformal field equations. To see this, we solve the transport equations on 7 to
determine the matrices A* on 7 in the general case. Extending the data (5.40),
(5.41), (5.42), (5.43), (5.50), one finds that they agree on IY, irrespective of the
choice of k' satisfying conditions of (5.37), with the implied Minkowski data. Since
the extensions of the functions © and d 4 4/ vanish on Z, the transport equations for
the frame, connection, and Ricci tensor coeflicients are independent of the choice
of initial data. It follows that the restrictions of these coefficients to Z agree with
those of the Minkowski data given above. It follows in particular that ' 4.4 = 0
on I. Applying formally the operator 8, to equation (5.55) (which is part of the
reduced field equations), restricting to Z, and observing the data d,e' 4.4/|70, one
finds that 9,e' 44 = €4%€a ¥ ~€eqles ! on Z. Writing

eaar =€ gav; with 1 =0,1,+,—,

and assuming the summation rule, we find that irrespective of the free datum h
given on S and the choice of k' the fields eaa, Uaasc, Oaa g coincide at
lowest order with the Minkowski fields above in the sense that © 4a.pg = O(p)
and
€' aar =€ an +¢& paa, Taape =Thapc+Tannc, (5.64)
with
€ aar =0(p), Taapc=0(p) as p—0. (5.65)
Assuming k = w in the general case, which by (5.47) is consistent with (5.37) if e is
chosen small enough, the similarity with the Minkowski case becomes even closer.
Then 8 = f ©* with proportionality factor f = p% which extends smoothly to A
such that f — 1 on Z. The set J* is given as in the Minkowski case above. The
discussion below shows, however, that this particular choice of k may not always
be the most useful one.
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conformal geodesics

o {e=0) :
singularity, T v =const / \
T = O i+ \\\\ . s
\ T _ Jt ; ; w =const
n / / T+
2 A
horizon, :
r=2m
N
2

FIGURE 1. A Schwarzschild-Kruskal space-time in a conformal
Gauss gauge. This is not a schematic picture but quantitatively
correct. Each point in the figure corresponds to a 2-sphere. In
Schwarzschild coordinates t and r the lower horizontal line, the
initial hypersurface S ~ S3, corresponds for m/2 < x < 7 to
the hypersurface {t = 0} of a Schwarzschild space-time. On §
the coordinate x satisfies r = tan(x/2), takes the value m/2
at the throat and the value 7 at one of the asymptotically flat
ends. The parameter T on the conformal geodesics vanishes on S.
With © = sin? x/2 (1 + sin x) the physical metric induced on &
is h = Q" 2dw? with dw? the standard line element on S3. The
initial conditions of Section 5.2 are satisfied with x = sin x so that
6 =x1Q{1l - 7%[cosx(2 + sinx)/2 (1 + sin x)]?}. In the given
gauge the maps y — m—x and 7 — —7 are space-time symmetries.
The rescaled space-time and the conformal Gauss gauge extend
smoothly through null infinity, where © = 0. The expression for ©
stops being meaningful when the conformal geodesics hit the sin-
gularity. The behavior of the hypersurfaces of constant retarded
and advanced time w and v shows that along curves which ap-
proach the cylinder Z the null cones collapse. Along curves on J+
which approach the critical set Z* this behavior does not occur.
This indicates a degeneracy at Z* of the set of characteristics.

In the general case the first deviation from the Minkowski case is found in

the value of the rescaled conformal Weyl spinor on Z. On ZV it is given by (5.52).

Restricting the Bianchi equation to Z and using the coefficients determined above
one finds that

bapcp = —6mesgop on I. (5.66)

The discussion above shows that the matrices A# are determined on Z by the

Minkowski data and the structure of the characteristics of the evolution equations
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for the rescaled conformal Weyl tensor agrees on Z with that of the equations
which are obtained by linearizing the Bianchi equation on Minkowski space. These
(overdetermined) spin-2 equations take in the gauge above the form

(1 + T) Orhr ~ pa/ﬂ/’k + X, Y +(2 - k) Y =0, (5.67)

(1 =7)0rrs1 + pOpthrsr + X + (1 — k) thry1 = 0, (5.68)
where k = 0,1,2,3 and the ¢; denote the essential components of the linearized
conformal Weyl spinor.

The most conspicuous feature of these equations is the factor (1+7) in (5.67),
which vanishes on J~ UZ™, and the factor (1 — 7) in (5.68), which vanishes on
JTUZI*. On J* these factors arise because the coordinate T is constant on J*
and these sets are characteristics for the equations. By choosing «’ differently, this
degeneracy can be removed on J* (cf. [39]). At Z%, however, this degeneracy can-
not be removed in the present setting. Any symmetric hyperbolic system extracted
from these equations, like, e.g.,

(L +7)0- Y0 — p0yvho + Xyt = =2y,
(4+27)0- 1 —2p0p b1 + Xotho + 3 Xy 3p2 = —4d 9y,
68, s +3X_ b +3X 0 =0,

(4—=27)0, Y3 +2p0p 3 +3 X b2+ Xithy = 49y,
(1 =7)0r s 4+ p0ytpo + Xy9pr = 294,

must contain such factors at least in the equations for 1y and ¢;. Writing this in
the form A* 8, ¢ = H v, and writing &, = (97,€), &, = (0,,8), €+ = {(£. X4) we
find

det(A* fu) =24¢&; (g™ &, £)(3 '572' + g* &u &)
with

1
g’wﬁuﬁu:(1—72)§3+27P€T€p—92€§~§(€+£—+€—£+)-

It follows that characteristics pertaining to the quadratic terms which start on
I, stay on Z and that those starting in the physical space-time never end on
ZUZ~ UZ' but always run out to J*. Most importantly however, and this also
holds true for the general system (5.54), the quadratic form g+* £, £, degenerates

at T and there is a loss of real characteristics (cf. Figure 1)!. This follows also
directly from

det(A™) =0 on T%. (5.69)

It appears that this loss of hyperbolicity at the critical sets IT, is the key to the
smoothness problem for the conformal structure at null infinity.

'I am grateful to Anil Zenginoglu for doing the calculations and preparing the figure for me.
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5.4, The s-jet at space-like infinity

The relations (5.56) and (5.69) are the dominant features of the regular finite initial
value problem at space-like infinity. The consequences of (5.69) are not deduced
by the standard textbook analysis, we have to rely on the specific properties of our
problem. It turns out that a considerable amount of information on the behavior
of the solution near the critical sets can be obtained by exploiting (5.56). We know
already that the solution is smooth in some neighborhood of C in N and that u
can be calculated on Z by solving intrinsic equations on Z. It will be shown in the
following that a full formal expansion of u in terms of p can be calculated on T by
solving certain transport equations.

The following notation will be convenient in the following. For p = 0,1,2,...
and any sufficiently smooth (possibly vector-valued) function f defined on NUI
we write fP for the restriction to 7 of the p-th radial derivative % f. The set of
functions f9, f1,..., f? on T will be denoted by JZ(f) and referred to as the jet of
order p of f on I (and similarly with 7 replaced by 7°.) If u = (w, ¢) is a solution
of equations (5.54) we refer to J7(u) (respectively JZ(w), JZ(¢)) as to the s-jet of
u (resp. w, ¢) of order p and to the data J7,(u) (respectively J7,(w), J5:(¢)) on
70 as to the d-jet of u (resp. w, ¢) of order p. A s-jet JZ(u) (respectively J7(w),
J7(¢)) of order p will be called regular on

I=TUuI - UIlt,
(or simply regular) if the corresponding functions on 7 extend smoothly to the
critical sets Z%.

An initial data set on S will be called asymptotically static of order p, where
p € NU {00}, if its d-jet JZ,(u) coincides with the d-jet of order p of some static
asymptotically flat data set defined on some neighborhood of ¢ in S. It will be seen
later that asymptotic staticity (of order p) is an important feature of initial data
sets.

Applying the operator 8% formally to the first of equations (5.54) and re-
stricting to Z, one obtains for w? an equation of the form

3T wP = G(T,t,woy .- ',wp—l,wp’ ¢07 s ,¢P—1)’ p= 17 27- ‘e (570)

where the right-hand side is an affine function of wP. The functions ¢* do not
appear here, because the rescaled conformal Wey! spinor occurs in the equations
for the frame, connection, and Ricci coefficients with the factors © and d g, which
vanish on Z. It follows that the s-jet J7(w) can be determined by the integration
of an (easily solvable) linear system of ODE’s, if the s-jet J2 (u) and the d-jet
JZ(w) are known.

With the notation (5.64) the Bianchi equation can be written

V*F 4 ¢BcDF = —baBCDs (5.11)

where

daBcp = dansep) = €7 avi(dsepr) — AT 4 F (8 dcpryE- (5.712)
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Then
(\/EV* A ¢BCDF _\/—¢ A'BCD: (573)
provides equations with left-hand sides given by
L+, ¢f+ X 8l +(2—j-p) e =.... (5.74)
(1-7)8, ¢ + X +(L—j+p)dl, =, (5.75)

where j = 0,...,3, and right-hand sides given by (cf. (5.65))

$asop = Z Z( ) Y v (@%nr) (5.76)

1=0.4+.—

p P
(PN i p—J Py ¥ S NG P
+Z(P ) <]> (@'F Y dadpr — 4 Z (]) (CFaf 8)’ 2‘1)71-‘)11“
j=1 J=

1

We note that these expressions depend on JZ(w) but only on JE7}(#). Thus, given
these s-jets, the s-jet J7(¢) can be obtained by solving a linear system of ODE’s,
if J2,(¢) is given. Because the system is singular at the critical sets it is not clear

a priori that JE(¢) is regular, even if J2(w) and J2~'(¢) are regular.

To obtain more detailed information on the solutions, it is useful to consider
a system system of second order. From (5.71) follows

EE’ M E’ E ME'
e VY papep =2V T V¥ piépepE =2V T dEnen,
which is equivalent to
Vig VEE = = ~2Vj 4 0" (5.77)
EE’ ¢aBcp = fapcp = ~2VE 4 ¢ BeD) 5.

0=gpc=V"" " baanc. (5.78)
While the right-hand side of
(V*EE’ V*EE( ¢ABCD)p = fZBCD’ (579)

depends again, similar to (5.76), on JZ(w) and J2~'(¢), the left-hand side takes
the decoupled form

(L-7)o2 +2{(p-1)7—j+2}0- ¢ +C —plp-1)¢, =... (5.80)
where the spin weight relations X ¢; = 2(2 — j)¢; and the Casimir operator
C=-3(X4yX_+ X_X,)+ 3 X? on SU(2) have been used to arrive at this
express1on

The fields 4% have expansions

p 2q
P _ 2 k
Z ¢, Where ¢?-q - Z gk Trq" g-245:
k=0

q=2—j|

with coefficients ¢% gk = ¢! .« (7). Since the Casimir operator satisfies

C(T2qkq—2+j) =q(qg+ 1)T2qkq—2+]"
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equation (5.80) implies for ¢! ODE’s of the form
Diyasny®),=(1—-7)02¢" +{B-a—(a+8+2)7}0.¢", (5.81)
tn(n+ta+B+1)¢h, =...
with
a=j—-—p—2 f=—7j—p+2, n=n=pt+qorn=ny=p—q—1.
The equations above allow us to calculate recursively a formal expansion of

the solution u = (w, ¢) to (5.54) in a series of the form

o0

u=>y_ %UP o7, (5.82)
n=0
on 7 (note the different meanings of the superscripts p) with coefficients u? =
uP(7,t) € C>*(Z). In some neighborhood of 7° in A this series represents in fact
the Taylor series of smooth functions and it converges near Z° if the datum h is
real analytic. We shall try to deduce from it information on the behavior of u near
the critical sets.

5.5. Behavior of the s-jets near the critical sets

Because J9(u) is regular, the integration gives a regular s-jet J}(w). The calcula-
tion of J}(¢) gives (in the cn-gauge and with x’ = 1) the regular solution

Phpen = —{W136(1—7%) +m? (1872 =37} €% apco (5.83)
~12(1 -7 Xy Wi€e apep +12(14+7)2 X_ Wi € apep-
Thus J#(w) will again be regular. It turns out that J2(¢) will not necessarily be

regular. The integration {cn-gauge, &’ = 1) gives

2 _ 4ih2 W2 1’2
dapcp = ®agep + Papcp + PApcD

with
i ih :
¢(231l9(*1))0 0, ¢(2ABCD)2 = co(T) m Wi + e3(7) ,m;’ ¢(ABCD)4 0,
on 4’}900 =ci(1)m X4 W, ?_Z’}BCD),J =—c(-T)mX_Wh,

where the ¢;(7) are polynomials in 7 of order < 8,

Slabcp), = —4 \ 6 < ) (A +7y (1 -7 Z Waur Ty * 5, (5.84)

4

1 4\ .
¢anep), = ai(7) 3 Z 2 (k) blercmy, T1" 5 (5.85)
k=0

and

with
ao(t) =2(1 = ) K(—7) = —ay(—7),

ar(r) =40 =7 (1 + 1) K(=7) = 12 = —ag(-),
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as(r) = \/6{(12—;—:55 L2001 = )2 (14 72K (r)} = —a(—7),

T ds
K0 =1-3 [ T

While the first two terms extend smoothly to Z%, the third term has logarithmic
singularities at the critical sets unless the regularity condition bapcp(i) = 0 is
satisfied (the quadrupole term W,, which looks so innocent here, reappears in
obstructions to smoothness at higher order [71], [72]).

It is thus clearly important to control the behavior of the s-jets at Z% at all
orders. Equations D, , 3yu = 0 are well known from the theory of Jacobi poly-
nomials and they have been used in [37] to derive a certain representation of the
solutions in terms of polynomials built from the generalized Jacobi polynomials
P (1) ([68]). By the overdeterminedness of the system (5.74), (5.75) the prob-
lem can be reduced to the integration of the functions ¢f ,, ¢} ,. The functions
& 4 8540 95, can be calculated from them algebraically.

One finds for p > 3 and ¢ = p the representation

b =1 =72 (1+7)P7% (¢ .+ (5.86)

P+1)(p+2) T dr’
T ((158_1,* - ¢I4j.p*) /0 (1 I T/)p_l (1 — T/)p+3) 3

R =1+ (1 —1)P2 (8], (5.87)

p+1)(P+2) , p -7 dr’
- (¢O_p* - ¢4.p ‘) Np—1 Np+3 |
4p o Q7P -r)p
where the subscript * indicates initial data on Z°.

Denoting by y, 4 the column vector formed from ¢ ,, ¢}, one obtains for
p>3and0<g<p-1

Yp.g(T) = Xpo(T) (X;l* Yp.q +/ Xpg(r) ™! Bp,q(T')dT') ) (5.88)
0

The functions By, , are derived from the right-hand sides of (5.73) and (5.79) and

can thus be calculated from J2(w) and J~'(#). The matrix-valued functions X, 4
are given by

Q-2 @-7)

Xou= (1 D).

= Q1p.q(7) (=19 Q3.p.4(7)
Xpqg = ( (—1)2Q45:pq(—7) Q1ipg(—T7) ) , 2<qg<p-1,

X0 = ( (1+ T)p_(f (p+1) 0 ) 7
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with polynomials

ot iy
Ql:pAq(T) = (T)IH-Z Pq(igz p+))(7‘)’

1+7.. . 2
Qupa(r) = (5= )" 2 BT (7).
of degree ny = p+q.

The solutions to the transport equations can be calculated, order by order,
explicitly. The only difficulty is the calculation of the functions

Byq=Bpg [sz(w), JIp_l(d’)}

which become more and more complicated at each step.

The most conspicuous feature of these expressions is the occurrence of loga-
rithmic singularities at Z%. The latter can arise, as a consequence of the evolution
process and the structure of the data, even under the strongest smoothness as-
sumptions on the conformal datum k. We will have to discuss to what extent the
occurrence of such singularities can be related to the structure of the initial data
and whether it can be avoided by a judicious choice of the latter.

5.6. Regularity conditions
Expanding the integrals in (5.86), (5.87) one finds

#h, ~ (1—7)P*2 (1 +7)P % log(1 — 7) + analyticin 7 as 7 — 1

and a similar behavior for ¢§_p as 7 — —1, unless the initial data on ZV satisfy the

condition

P — AP
O.px — ¥Ydpx'

(Note that the singularities get less severe with increasing p.) This raises the
question whether data can be given which satisfy these conditions. By a lengthy
recursion argument it can be shown ([37]) that for given integer p, > 0 the fields
P resulting from (5.86), (5.87) extend smoothly to T for 2 < p < p. + 2 if and

J-p
only if the free datum h satisfies the regularity condition

D(Aqu~'~DAlB1 bABCD)(i):O, q=0,1,2,...,p*. (589)

By (4.46) these conditions are satisfied for static data with p, = oo. This
allows one to construct a large class of data satisfying (5.89) by gluing with a par-
tition of unity an asymptotically flat static end to a given time reflection symmetric
data set and solving the Lichnerowicz equation.

Condition (5.89) has been observed as a regularity condition before. In [34]
has been derived under the strong assumption that the solution be massless (cf.
(4.30)) a necessary and sufficient condition on h that space-like infinity can be
represented by a regular point i° in a smooth conformal space-time extension
(so that J#* will be smooth near space-like infinity). This condition, referred to
as radiativity condition, implies (5.89). It has been shown in [37] that these two
conditions are in fact equivalent.
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The first term in {5.88) is polynomial and thus regular. The second term is not
s0 easy to handle. If (5.89) is not assumed the corresponding log-terms will enter
the integral in a non-linear way and the solution will have at Z* polyhomogeneous
expansions in terms of expressions (1 F 7)* log? (1 ¥ 7) with k,j € No. We shall
assume therefore that (5.89) holds with p, = oo.

From the expressions above it follows that the Wronskian det(X,,) has a
factor (1 — 72)P~2, The regularity of the integrals in (5.88) thus depends on the
precise structure of the functions By, 4(7), which get quite complicate with increas-
ing p. It has been shown in [37] and [41] that J7(u) is regular for p < 3 if (5.89) is
satisfied with p, < 1.

Because the functions B,, are getting increasingly complicated with p,
J.A. Valiente-Kroon studied the case where h is conformallly flat on B, with the
help of an algebraic computer program ([71]). In that case condition (5.89) is triv-
ially satisfied but there still exists a large class of non-trivial data for which A is
not conformally flat outside B.. In the conformal factor (5.44) one has U = 1 on B,
but W will be a non-trivial solution to the conformally covariant Laplace equation
with m = 2 W (i) # 0. It turns out that J}(u) is again regular. For J3(u) however,
logarithmic terms are observed. They come with certain coefficients which depend
on the data. Choosing the data such that these coefficients vanish, still new log-
arithmic terms are observed for J2(u). Restricting to the axially symmetric case
to keep the expressions manageable, new logarithmic terms crop up for p = 7 and
p=2_8.

The form of the conditions obtained at these orders suggests a general for-
mula which needs to be satisfied to excluded logarithmic terms at any given order
p ([71]). If this formula is correct, all derivatives of W must vanish at ¢ if the
logarithmic terms are required to vanish at all orders. As a consequence the so-
lution must become asymptotically Schwarzschild at ¢ (cf. Lemma 4.1). Since W
is governed on B, by an elliptic equation with analytic coefficients it would follow
that the solution is precisely Schwarzschild near .

How seriously do we need to take the singularities at I¥? To answer this
question one needs to control the evolution of the field in a full neighborhood of
T in M. This has not been achieved yet. However, the analysis of the linearized
setting, which is given by the spin-2 equations (5.67), (5.68) on Minkowski space
in the gauge (5.58), gives some insight ([39]).

While the functions B, vanish in that case, the singularities arising from
(5.86), (5.87) do in general survive the linearization process. The analysis then
shows that for prescribed integer j the function

p—1 1 .,
Yy — Z IW 1/’5 p’ on M

p'=0
extends to a function of class C7 on M, if one chooses p > j + 6 in the expansion
above. Here wil, p = 0,1,...,p — 1, are understood as p-independent functions

on M UZ, which agree on 7 with the s-jet J§_1(¢) (defined by equations (5.67),
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(_5-68)). Note that the sum above provides the first terms of an asymptotic expan-
S1on of the solution at J*.

It follows that the solution will extend smoothly to all of M if the linearized
Version of (5.89) is satisfied with p, = oco. If the condition is satisfied only with
SOme finite p, > 2 but violated at p = p. +1, the solution will develop a logarithmic
SIngularity at Z* which will be transported along the null generators of J* so that
the solution will be only in CP-~2(M). While it remains to be seen whether the
solutions to the non-linear equations admit similar asymptotic expansions at J*,
the discussion shows clearly that the regularity of the s-jets J7(u) is a prerequisite
for the smooth extensibility of the solutions to J=.

If the solutions to the non-linear equations show a singular behavior on J*
as indicated above, does it refer to something ‘real’ or to a failure of the gauge?
If the underlying conformal structure where smooth at null infinity, the confor-
mal geodesics should pass through J* where © — 0 and the 1-form, the V-
barallely transported frame, and therefore also the rescaled conformal Weyl spinor
In that frame should be represented by smooth functions of T along the conformal
geodesics because these as well as their natural parameter 7 depend only on the
conformal structure. Singularities as indicated above therefore refer to intrinsic
features of the underlying conformal structure.

The results of ([71]) show first of all that the regularity condition (5.89) with
P+ = oo are not sufficient for the regularity of J7(u), p = 0,1,2,.... It appears
that the Lichnerowicz equation, which breaks the conformal invariance by fixing
the scaling of the physical metric A = Q-2 h, does play a role in the smoothness
of the conformal structure at null infinity. This is remarkable because it shows
that besides the local condition (5.89) there are other conditions to be observed
which are ‘not so local’. However, the Lichnerowicz equation is introduced only
as a device to reduce the problem of solving the underdetermined elliptic system
of constraints to an elliptic problem. The results of [16], [20], [21] exploit the
underdeterminedness of the constraints in quite a different way. They teach us to
be careful with the words ‘local’ and ‘global’ in the present context.

The main purpose of calculating J7(u) for the first few p is to get an insight
into (5.88) which would allow us to control the behavior of J?(u) near I% in
dependence of the data given on S. One may speculate that the results above are
telling us that asymptotic staticity, or more generally asymptotic stationarity, at
space-like infinity is of more importance in the present context than expected so
far. Recent generalizations of the calculations in ([71]) to non-conformally flat data
seem to support this view ([72]).

This raises the question whether the setting proposed in {37] is for static
solutions as smooth as one would expect. This is far from obvious because of the
loss of hyperbolicity at the critical sets. Giving an answer to this question for
general static solutions will be the purpose of the following chapters.
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6. Conformal extensions of static vacuum space-times

For static asymptotically flat vacuum solutions with positive ADM mass we shall
construct in the following a conformal extension which will include null infinity
and will also allow us to discuss the cylinder at space-like infinity. The extension
will be defined in terms of explicitly given coordinates and conformal rescaling. In
Section 7 will it be shown that it coincides with the extension (not the coordinates
etc.) as defined in Section 5.3.

Because one expects usually ‘not much to happen at space-like infinity’ for
static asymptotically flat solutions, one may wonder why the detailed discussion
of the fields near space-like infinity should be so complicated. An obvious reason is
that a gauge which is chosen to discuss space-like and null infinity must introduce
a ‘time dependence’, it cannot be adapted to a Killing field whose flow lines run
out to time-like infinity. However, the main reason is that the static field equations
play an important role in discussing the regularity of the field near the critical sets;
we will have to make extensive use of them.

The static vacuum solution is assumed in the form
G=02dt2 + Q7 ?%h,

with v = v(z°), h = hap(z°) dz® dz’ and a conformal factor Q = Q(z¢), where
we assume h-normal coordinates ® which satisfy (4.17) and the conformal gauge
which achieves (4.31) on the set R x U, where U = {|z| < p.} with a sufficiently
small p, > 0. We set

1

T=|z|?, e=r==—-Y"12D*YT for |z|>0, p=
|| 2

Coordinates 1, A = 2, 3, on the sphere S? = {|z| = 1} can be used to parametrize

e® and we write then e® = e%(") and de® = e, a d+*. For convenience the coor-

dinates 1 will be assumed in the following to be real analytic. If z* = je*(y¥*).
the metric h takes the form

h=—dp*+ p*k,
with (p-dependent) 2-metrics
k=kac dp? dyp® = hoo(pe®) de® def,
on the spheres p = const. > 0. For p — 0 the metric k approaches the standard line

element d 02 = —k(0, %) on the 2-dimensional unit sphere in the coordinates ¢

We write now z° = ¢t and 2% = 7, z1’ = p, 24 = ¢4 and consider the map
& : ¢ — x#(z#’) defined by

u'y ds ar 'y _ = =\ .a
t(z) = /) W) (@)’ %z ) = p(1-7)e*(p?). (6.1)

p(l—7
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It follows that the four differentials

=@ ~7)dp—pd7)e’ +p(1-T)de", (6.2)
- 1 B 1—7 F; .
dt_((vﬂ)(ﬁea) @EA-1)e ) T eoGa e Tt 63
with )
— A
l=14dy”, ([ (vﬂ sea)> wAds, (6.4)

are independent for 0 < 7 < 1 and 0 < p < j. and we can consider the z* as
smooth coordinates on an open neighborhood of space-like infinity in {t > 0}. For
s > 0 we set . . .
h(se®) = (UQ)(;e ) = Ulse®) =55 .
s Ulse?) + s 2)°

To indicate the different arguments replacing s in this and other functions of
se® or of s and ¥*, we write out the argument replacing s explicitly but suppress
the dependence on e® or . Thus h(s) will be written for h(se®) and k(p) for
k(p,v™), etc.

With this notation and the conformal factor

(6.5)

A=QT"1/2
a conformal representation of § is defined by
g=d"(A25) =2 (&1(1—(7@ dpp+ph(p(l ))z) d7 (6.6)
51— 42 _
207 (M A s - 2E)
_ 2
+(1-7)2 (@,(l(ﬁ—)”l dp" +ph(p( - T))l) +k(5(1 7).

The new coordinates do not reflect the symmetries of the underlying space-
time, but they are sufficient to discuss the part of the space-time in the future of
the initial hypersurface {t = 0}. We replace S by the manifold with boundary §
introduced in Section 5.1.1. The points of S are thought of as ideal end points
attached to the curves p — z%(p) = pe®(¥?) in S as p — O for fixed value of
¢4, The coordinates p and ¥“ extend (by definition) to analytic coordinates on
S with p = 0 on 3S. We set

M={0<7<1,0<p}, M=MuJgTuTuzt,

where it is understood that the unspecified coordinate systems 1? ‘cover’ the
sphere S2, and
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While the notation alludes to related sets introduced in Section 5.3, the prime
should warn the reader that the sets defined above differ in various aspects from
those considered in 5.3. The range of g should be also bounded from above in
these definitions. We leave this bound unspecified because its specific value is
unimportant here, we will be concerned only with the behavior of the metric in a
neighborhood of 7’ in M.

Important for the following are the observations:
(i) the function h(se®(»?)) as given by the right-hand side of (6.5) and considered
as function of s and ¢4 extends as a real analytic function into a domain where
s < 0. This follows immediately from the values taken by U and its analyticity.
(ii) similarly, the 1-form ! given by (6.4) extends as a real analytic function into a
domain where g < 0 and 7 > 1. This follows from

( 1 ) (s)_i2(U(s)—sm)(U(s)+s%)2U
A

vQ T 82 (U(s) — s &)2 s

and (4.27) with s = T.
For the following it is convenient to slightly modify the frame (5.57) and set

vg =0z, v1 = p0p, va = Oya, (6.7)
a® =d7, o = l_dﬁ, aB® =dy®, A,B=23.
p

One then gets § = gix @' o* with metric coefficients

o =0, g = "= gus = ph(p(1 - ),
B _Rh(p(1—7)) L h(p(1-7)
g“:_(l_T)—h—(ﬁ)—@_(l_T)—hW)’
] I _ h(p(1~7)
gia=-1=7p (1 -) (1- -0 ML=,

gap ={p(L—7) h(p(1 — 7N}’ lalp + kan(p (1 - 7).

In terms of the new coordinates the metric given by (6.6) extends analytically
through the set J +'. The latter is a null hypersurface for the extended metric
and represents future null infinity for the space-time defined by §. By contrast,
the right-hand side of (6.6) does not extend smoothly to Z’. However, the frame
coefficients g;; and their contravariant versions §** do extend analytically to all
of M'. It will be shown later how I’ relates to (part of) the cylinder at space-like
infinity denoted in 5.3 by 7.

One has g;x = g}y + O(p?) with

0 142mp7 0 0
e _ | 142mp7 —(1-F)(1+T+4mp7?) 0 0 (6.8)
ik = 0 0 k22(0) ka3(0) |’ '

0 0 k32(0)  k33(0)
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SO that det(g),) <0for > 0,0<7 < 1and g% = g** + O(p%) with

1—7) (14+7+4m 5 72) 1
( (l+21}1;31:)ngp 1+2mp7 0 0
wik $2mpr 0 0 0 . 6.9
g 0 0 k22(0) k23 (0) ( )
0 0 k32(0) lc33(0)

Since the conformal factor A does not depend on ¢, the static Killing vector
field represents a Killing field also for the metric §. In the new coordinates it takes
the form

K=M{(l_f)a?+p8ﬁ}:ﬁh(ﬁ){(l—?)vo+v1}, (6.10)

and extends smoothly to all of M’.
Denote by V the Levi-Civita connection of . Since the commutators of the

frame fields v vanish, the connection coeflicients defined by V_7ivj = ?Uzvj =
7k J Uk are given by the formula

ykj= %ﬁkl (v {(ga) + vi(Gy) — vi(9:5)) -
Again, the connection coefficients y; k ; in the frame vy extend analytically through
{p =0} and {7 = 1}. One finds
3* = 0™ (uyg3) + wlaiy) = ulei) + O,
which implies
=t {2806, - (1-70) 840N} - 7%16:0%; on {/72%-11)

As a consequence of the behavior of g; ; and 7; k ;j the components of all tensor
fields in the frame v;, which are derived by standard formulas from the metric and
the connection coefficients, such as those of the Ricci tensor and the conformal
Weyl tensor of g, extend analytically through J +" and 7, ie., the metric g and
its connection V imply in the frame v; a smooth frame formalism on M’.

It follows that the coordinate expressions of these tensor fields, such as
Ry (gl = Ry ol w & . and, by the argument given’in [60] (cf. also [38]), the
rescaled conformal Weyl tensor W* ,x (9] = A7 C* v/x[g] extend smoothly
to J+. Unfortunately, this does not give us the needed details about the com-
ponents Rj; and it does not tell us anything about the behavior of the fra.m.e
components W* j, [g] of the rescaled conformal Weyl tensor on Z’ and the cntl-.
cal set I+ This requires detailed calculations. Only the an:alyticity of h near i
is required to control the smoothness of the fields near J +'. This follows from
the ellipticity of the conformal static field equations near i. To deduce the f:lesued
behavior near f’, however, one will have to invoke at least, as discussed in Sec-
tion 5.6, the regularity condition (5.89) with p. = oco. The (.jetailed form of the
conformal static field equations will thus become much more important.
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With equations (4.36) and the relations

D,Q=Q%0"2D,0=(1+ /o) *Dao, (6.14)
D.Dy0 = s \/u_a)3 D, D, a—g\/g (—IT\I/—WDQUDM (6.15)
which are implied by (4.35), one gets
TD*ND,A
_ Q{ 25(1-2/F6)  (2-3y@0)Y'DYDeo 1 }
—VBo)(1+/po)*  2(1—y/mo)(1+po)®  U?(1+,/uo)?

-1 c
TD“ADaAzﬂ{ 2s T DT D.o 1 }

(1+ypo)?! (+ o)} U2Z(1+ . po)?
Shep —0(1 —po)Ray 3 /1o 0 ' Deo Dyo

1/2 n* n*
T* DI Dy A= 1+ o) T2 (1+ Jmo)
D,DyT €a €b
20 (14 yue)? | UZ(L+ Jia)?
—hab( 1 +T_1DCTDCU)
U1+ yEo)? = 2(1+ yEoe) )’

which allow us to obtain the following expressions for the L.
In the case of Ly there occurs a cancellation of the second terms in (6.12),
(6.13) respectively, so that (with the understanding that e® o & = e%(y?))

Loo = ( (I; [?2];; + L[§lab €° eb) o® (6.16)

=—ﬁ2< E {TD ND*A+vQTY2D: D} Ae®e }>o<1>,

with
YD, ND*A+vQYY2D* D} Ae® b

“vﬂ{(1—4\/ﬁ+ya)(s+2) o(1 —po)Rype®e®

(1-yEo)(1+yro)t 1+ po)
6\/;ﬁ [(_1_ D“TDQU)Q_I]
T+ \/;75)4 202
(1-2,/E9) [2—2U2+D“TDQU}}
TA—vEO U+ iR | U g '
Since the term in curly brackets is of the order O(Y), the function Ly extends
smoothly to {5 =0} with Lyp — 0 as p — 0.

It holds , .
N Ll o _(1-#
o= Gy () o8 () Fa
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with
% =o' (gDaAD“A—DaND“A)
_ 1 (1-3Ea)s
-7 {w?(lwrra)? T U= yEo) 1+ Vo)
1-2/uc [_2_+D“TDGU}}
(- mo)(1+ Jma)d |U? iE ’

so that Lo, extends smoothly to {p = 0} with Ly; — 3 as 5 — 0.

Lig
Loa=0p (%) o® 14— p*(1—7)(L[Glapo®)e” ef’w,,,,
with
L[g]ab e’ e?wA
o b pUya 1 1 TD*Y D, U
(= Vo) Rav e’ con &+ R Tr Vo R [m * s
so that Loa extends smoothly to {p = 0} with Logs — 0 as p— 0.

L = (f’2 E1=7) _, 7 (1-7) ) (L[ﬁ]zt

) O(I)+(1 —‘T')Z L()(),

(vQ2)2(p) (v)(p) v
extends smoothly to {p = 0} with L,; — — 1_;2 as p— 0.
Lia

(_p __p(1-T7) T 0® ls 5 (1 (L] o ®) e b
= (o~ oy ) Moo ® 14 =7 0= W 9)

extends smoothly to {p = 0} with L4 — 0 as g — 0.

Lap =L[ghto® lalp — (T L[glas) o ® €%a €’
extends smoothly to {p = 0} with Lap — —3 kag(0) as p — 0.
6.2. The rescaled conformal Weyl tensor of § near 7’

In this section we shall make a few general observations concerning the rescaled
conformal Weyl tensor and then specialize to the conformal static case. After a
remark about the radiation field on J* we will analyze the smoothness of the
rescaled conformal Weyl tensor near the set Z'.

Let § be a Lorentz metric and S a space-like hypersurface with unit normal 7
and induced metric by, = Gu — Ry . We set B, = Ry — Ry iy, Enp = 7 Euunps
and denote by &,, = Cuua[d] A*2* and &, = Crapl0)7* 2> (the star on the
right-hand side indicating the dual) the fi-electric and the fi-magnetic part of
the conformal Weyl tensor respectively. The latter are symmetric, trace-free, and
spatial, i.e.,, n¥ ¢é,, = 0, n” ¢, = 0. The conformal Wey! tensor of g is then given
in terms of its electric and the magnetic part by (cf. [42])

Cuvaplg) =2 (i"/[/\ Colu ~ Pur Cojy — T é;]& ¢ pr = Ny 5:]& ¢ Ap) : (6.17)
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6.1. The Ricci tensor of g near 7’

1 _ 1
L[@]p’l/’ = 3 (R[QJP’V’ 6 R[QJ gp’u’) ,
is needed to integrate the conformal geodesic equations which define the setting

introduced in Section 5. The purpose of this section is to demonstrate
"« extend as real analytic

The tensor

Lemma 6.1. The frame components Ljx = L[g]y ., v” VY

functions to I’ with
172 1 _
Lia—0, Lap— —3 kap(0) as p— 0.

b

1
Lok — 5511;, Li; ——
Proof. Under the rescaling § — § = A% g the tensor
. 1 ~ 1 ..
Ll = 5 (Rl - § Rldlan ).
transforms into

Liglov = L[glov
Suppose § = v? dt® +h is a static vacuum solution and § = A2 § = A? (v? dt?+h)

——v VoA + —— A ViAVEA G

N2dt? + h* with
N=Av, h*=A’h=A?Q%h=~h}(z°)dz*d®,
p=px?), v=v(z"), Q=0(z%), A=A@?).

In the following the gauge (4.31) and coordinates satisfying (4.17) will be assumed

The connection coeflicients of the metric g in the coordinates ¢, % are given by

I,%.[3] =Ta®:[h*] (the Levi-Civita connection of h*),
T %fgl=0, T:%:[g)=—-Nh**Dy,N, T,"[g]=T:"s[g] =0,

1
Ty'clg] =0, Ty'i[g] =T:"s[g] = 7 Do N.

and L[g],. is given by
’UQQ v 92
Glee = o N D? . A D® .12
L[!?Jta = L[gla: =0,
— 1 * * C
L[g}ab:—KDanA+2A2D A DA hg, (6.13)
where D and D* denote the h- and h*-Levi-Civita connections respectively. With

A = QT2 and the map ® defined by (6.1) one can determine from these

formulas the frame coefficients
Ly = (®*(L[A? g]); vi, v) =

(L[g]se o ®) dtdt + (L[Glap o ®) dz® dxb; vy, vi).
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Suppose that g is a solution to the vacuum field equations. Then the first and
second fundamental form hq, and X induced by g on S satisfy the Gauss and
the Codazzi equation (expressing the pull-back of spatial tensors to S in terms of
spatial coordinates z%)

Tab[il] = —éab + ic ¢ Xab - ira S(b C7 (618)
Dy Xa(a €0 = — 5. (6.19)

This allows us to express the conformal Weyl tensor in terms of hup and Xgp. If Sis
a hypersurface of time reflection symmetry, so that ¥, = 0, these equations imply

rablh] = ~éap, i, =0, (6.20)
and the Weyl tensor assumes the form

Cuu)xp[é] =2 (ﬁu[/\ 6p],u - i)u[/\ ép]l/) = _(p~ @ 5)/»“’)\!’7 (621)

where © denotes the bi-linear Kulkarni-Nomizu product of two symmetric 2-
tensors (cf. [8]).

If A is an arbitrary conformal factor, the rescaled conformal Weyl tensor of
g = A?§ is given by W* ,,[g] = A~1 C* ,»,[g]. In view of the behavior of the
conformal Weyl tensor under conformal rescalings, one gets {observe the index
positions)

Wouvap (9] = ACuurp [g]- (6.22)
Its electric part with respect to the g-unit vector A~! 7 is then given by
wu (9] = A7 (3] (6.23)

With h = Q2 h, the gauge (4.31), the general transformation law
rab[R] = Tap[B] + Q7Y DaDpQ + hap (7! D.D°Q — 2072 DN D°Q),

and the equation 2Q A, Q = 3 D,Q D*Q), one gets from (6.20) and (6.23) in the
general time reflection symmetric case

wasld] = —(A Q)= (Do Dy Q— % has Do D° Q-+ Qrap[h]) on S = SU{i}. (6.24)

A conformal scaling which represents space-like infinity {with respect to the
initial hypersurface S and with respect to the solution space-time) by a point is
achieved by choosing A = Q on §. With this particular choice one has

1
weblg] = —Q (D, Dp Q2 — 3 hav De D°Q + Q raplh]) (6.25)

=0(Y™3?%) as T —0 unless m=0.

We note that in the massless case the precise behavior depends on the freely
prescribed metric A on S near ¢. In the massless case one has 2 = o and the
comparison of the expression for wes[g] with (4.36) shows that in the case where
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h represents conformally static vacuum data one has

wa(g] = —praslh], (6.26)
i.e., the rescaled conformal Weyl tensor is smooth.
We return to the case where A = Q Y~1/2. With (6.14), (6.15) we get then

VT

wab[g]z—? {(1+\/p—5’-)(Dan0~%Ah0hab) (6.27)

1 9
—3 E(3Daana~Dcchcahab)+a(1+,/pa)”rab}
o

=™ Y 3Dy 0 Dyo — Deo D0 has) — %U(l + VT raslh]

4 o2

VT
Py (1+ uo)Zas,
where we use X,p as defined by the right-hand side of (4.36) without assuming h
to be conformally static. If h is conformally static the electric part of the rescaled
conformal Weyl tensor on § is given by the right-hand side of (6.27) with £, = 0.
In the present conformal gauge, defined by (4.31), one has

Yap = O(T*?) near i,

for any time reflection symmetric initial data h.

If the solution is static and written again in the form § = v2d¢? + h, then
equations (6.17), (6.20) hold with 7 = 1 8, and t-independent fields for each slice
S = {t = t.} with t, = const. The relations above then imply for all (¢, z°)

Ww//\p[g] = “T‘l(p QW) uurp (6.28)
with
Puv =hw —mpn,, n, =Qn0,.
With ® denoting the tensor product, we write for arbitrary 1-forms a, ¢
aQ@;c=aQc+cRa, a® =a®a,
and note that the Kulkarni-Nomizu product is symmetric, i.e.,
mon=nQm, (6.29)
for symmetric 2-tensors m, n, and satisfies for arbitrary 1-formsa, c, e
(e®a)2(a®;¢) =0, (a®;e)@(a®;¢c)=—(a®a)d(c®.e). (6.30)
We show how it follows in the present setting that the radiation field vanishes

on J*'. Since the extended Killing vector field K is tangent to the null generators
of J* without vanishing there, the complete information on the radiation field is
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contained in the field
K* K* Waplg)de# da* = ~T =1 K* K° (p @ wap da* dz
=T 'K"K*p,,wspdz® deb = —T7 ' (v Q)  wap dz® d z°

1— )2
:%ET;:—* ﬁgﬁ{%(25’%'7'3"#1”“"1)"")“”‘”1’
m

+2§(1 + VB0) roplh] d z° dacb}

with s as given in (4.32). Because of the relation

0 ' DyoDyo =4U* (U%eqey —UYY2 (e Do U + €, Do U) + Y D, U Dy U),
(6.31)
and the factor o in the second term it follows that

K'KPW,,lgldzt dz* - —2mp?d7? as 7— 1, p>0. (6.32)
HrAp

Thus, the pull-back of K¥ K* W,,»,[g] d2# dz* to J+, which provides the radia-
tion field up to a scaling, vanishes everywhere on J+.

Lemma 6.2. The components Wiiki[g] = A~ Cpron (3] v v j v g P of the
rescaled conformal Weyl tensor of § in the frame vy extend as analytic functions
toZ’.

Proof. In the coordinates z* given by (6.1) the rescaled conformal Weyl tensor is
obtained as the product of
—(To®)™' =~(p(1-7)72
with the Nomizu-Kulkarni product of
P = (hap o ®)dz®dz’ — ((vQ) 0 ®)*dt? = p} + p} + p} + Pl
and w' = w} + wh + wh + w} + wh, where
Py =-2((1-%)dp— pd7)?,
(w)(p(1-7))
(vQ)(p)
_ - 2
vy= (YR s+ v o -)1)
py=p"(1-7)k,

wh = — ({% U+ \/,ﬁ)%ab[h]} o q>) dz°®dz®,

v} =((1—?)dﬁ*ﬁd?)®s< dﬁ+(vm<ﬁ<1—f>>l)

and

g(Qshab — 3071 Daono)} 0<I>) dz®dzb,

w3

w'1+w'2+w§+w2=—({
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U
wi=-2 ({S 6 +ovfon),

'LUIQI—({%UBS}O(I))IC,

with

We used above the relation (6.31) and set
J=(D,Uo®)dz®.

_ The desired result on the behavior of the rescaled conformal Weyl tensor near
T’ is obtained now by showing that for arbitrary frame vector fields v, one has

(P @ w5 v, vy, vk, v, ) = O(p° (1 — 7)%).
From (6.29) it follows that
P1 QW = p) © wh = phOwy =0.
Observing (4.27) one finds by inspection
(B vi, v3) = 0(P%),  (Phss vi, v;) = O(p° (1= 7)%), for M =2,3,4,
(wh; vi, v;) = 0(P* (1 — 7)?), (wh; vi, v;) =0(1), for N =2,3,5,
and thus
(Phs © Wiy Vi, v, U, v1) = O(P* (1 — 7)?) for M =2,3,4, N =23,4,5,
() @ wi; vs, v;, vk, i) = O(p” (1 — 7)?).
The remaining term is given by
p1 @ (wy +ws) + (p3 +Py) Qwy =pyom
with
=yt ui - ({56 +ou}on)oh+r)

==_%(u1@sv2+sno¢)k—({%Lm1+vﬂﬁﬁrwwﬁo®)dfdxb

m eVEA-7) . @YE1-) )
+— ({sU+6U}o® (- L tdp+ |
a o) Ga-nean =7
For the three summands to be considered here we get the following. From 3sU? +
6 = O(TY) it follows that

(P ({UBsU?*+6)} o ®) k; v;, vj, vk, w) = O(F* (1 — 7)?).

Because of

dz@dz® = p? (1 - 7)2de® @ de

1
—5piete’ +p(1-7)el de? ®, (1) dp-pd?),
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it follows by (6.30) that
V%) ({% U(l+ o) rab[h]} ) <I>) dz®dzb; v, U5, Uk, Ur)
=0(p* (1 - 7)*).
It holds that s U3 4+ 6 U = O(1) and by inspection it follows that

/ (MEL-7) ,_ (e)@E0A-7) Q.U_ ' §
1@(;3(1—%)(119)(;3)”’”* P(L-7) l) Vi Uy ks V1)
= 0(p* (1 = 7)%).

(p

7. Static vacuum solutions near the cylinder at space-like infinity

The conformal extension considered in the previous section relies on specific fea-
tures of static fields. We use it to show that the construction of the cylinder at
space-like infinity in Section 5, which is based on general concepts and applies to
general solutions, is for static vacuum solutions as smooth as can be expected.

Theorem 7.1. For static vacuum solutions which are asymptotically flat the con-
struction of Section 5 is analytic in the sense that in the frame (5.57) all conformal
fields, including the rescaled conformal Weyl tensor, extend to analytic fields on
some neighborhood O of T in N'. This statement does not depend on a particular
choice of (analytic) scaling of the (analytic) free datum h on S.

This result will be obtained as a consequence of Lemmas 7.2, 7.3, and 7.4
below.

The construction of Section 5 will be discussed here for static solutions in
terms of the initial data 2 and Q in the gauge given by (4.31), and the field g given
on M’ in the coordinates defined by (6.1). The effect of a rescaling of h will be
discussed separately because it is of interest in itself.

The conformal factor © is assumed in the form (5.44), (5.46) with

K=w=2Q|DODQ"% =201 + /u5) "% 2]s|o. (7.1)
It follows that w = T2+ O(T) and © = 1/2 |D,QD*Q|z = T/2 4+ O(T) so that
on §: ImYT"?w ! =limwA '=1lmOA" ! =1. (7.2)

p—0 p—0 p—0

The metric h induced by g = 62§ on § is given by w2 h.

The main ingredient of the gauge for the evolution equations used in Section
5.2 are the conformal geodesics generating the conformal Gauss system described
in Section 2.1. We shall try to control their evolution on M’ near Z’. Following
the prescription in Section 2.1, we assume that the tangent vectors £ = dz/d T of
the conformal geodesics with parameter 7 satisfy

#1S, ©%j(,i)=1 on S. (7.3)
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With the frame (6.7) and the coordinates (6.1) this translates into the initial
condition

w(p)
p

o)

7(9f +W(ﬁ)6p = (U0+U1) EXi’l)i at ’T_'ZO, (74)

with
X =6§¢+61+0(p) as p— 0.
For the following we need to observe besides § = A2 § the relations
g=T’§=0%§ with I=A"'6.
For the connections V, V, and V of g, 9, and g respectively we have relations

V=V+5(f), V=V+S(), V=V+S5().

V=V+801d0),, V=V+SA'dA).

The comparison gives f = f — ©~1d© and f = f — A~'dA which imply the
relation

f=f+0"1dOo—A"1dA=f+II1dII, (7.5)

between the 1-form f which is obtained if the conformal geodesic equations are
written in terms of the metric g, the 1-form f which is supplied by the conformal
geodesic equations written in terms of the metric g, and the conformal factor which
relates g to g.

By the choices of Section 5.2 we have {f, ) = 0 everywhere on the space-time
and (d©,z) = 0 on S. Since A has been chosen to be independent of ¢ and d; is
orthogonal S, it follows that (d A,d) = 0 and thus (f, %) = 0 on S. Observing the
pull-back of f to S given by {(5.45) and the relation

O=YY2u"1 on S, (7.6)

we find that the pull-back of f to S is given by 1 /2 X~ 1dY. From this one gets
in the frame (6.7) and the coordinates (6.1) with 7 =0

f=1/2YT Dy Y)od dz® = fia' with f;=—-8°;+6'; on S. (7.7)
The relation (f, £) = 0 and equation (7.5) imply the ODE
I = I{f, &), (7.8)

along the conformal geodesics, which, together with (7.6), will allow one to deter-
mine IT once (f, &) is known.
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7.1. The extended conformal geodesic equation on
With respect to the metric (6.6) a solution to the conformal geodesic equations
is given by a space-time curve z*(7) = (7(7), p(1),¥*(7)) and along that curve a
vector field X (7) and a 1-form f(r) such that

z=X,

vX)( = *2<f7X>X+g(X7X) f_‘ga
I S
Vx f={X)f- Eg(f,f)X” + L(X, .).
With the expansions X = X'v;, f = fial, § = g o? o, gt = g'Fvjup, L =
Lol ¥, e, = €', v;, the equations above take in the domain where p > 0 the
form

d _ o d _ 4 d a4 oa
E—%T—X , d—T‘P—PX , d—Tw =X,
which is the equation # = X®v#;, relating the coordinate to the frame expres-
sions,
ixi e XIXE = -2 i XE X+ g XD XEGY S,
Xk =2 fi + ik a" fi,

%fk — "€ fi= A X fi - %gl]flfjglle + L X7,

Note that the functions gk, §'', v; * 1, L;x entering these equations extend by
analyticity through Z’ into a domain where p < 0. Assuming such an extension,
we get the extended conformal geodesic equations. Since also the data are analytic
on S, it makes sense to consider these equations in a neighborhood of Z'.

Lemma 7.2. With the values of Lji, on I’ found in Lemma 6.1, the initial data
x = (0,0,9") and (cf. (7.4), (7.7)) X' = 6o+ 6y, fi = =" + 8 on I¥
determine a solution (1), X (1), f(7) of the extended conformal geodesic equations
with =0 on I° and

2(r) = (7(r), p(7), (7)) = (7,0,9*).
By analyticity it extends as a solution into a domain 0 < 7 < 1 4 2¢€ for some

€ > 0. The extension to I’ of the conformal factor I1 which is determined by (7.6)
and (7.8) takes the value I =1 on I'.

Proof. With the ansatz z(r) = (7(7),0,94), X(7) = X vo + XY M) w1, f =
fo(r)a® + fi(7) a' those of the extended conformal geodesic equations which are

not identically satisfied because of (6.8), (6.9), (6.11) are given by
d _ 0
E;T—X s
;;—X0+27‘X0X1—'T'(1—7"2)X1X1
==2(oX°+ AXH X+ 2X° X' - (1 -7)X' X) (1 -7°) fo+ fu),
di X'—7X'X'= 2(HX°+ AAXH X 4+ 22X X - (1 -7H)XE XY fo,
T
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%f—o_?foXl :(f_()X0+f1X1)f0—%((1—7_'2)f_0f_0+2f0f1)X1+%X1,

LR TR (X ==X+ HX = (R X+ XY f

—%((1 _?2)f0f0+2f_0f1)(X0_(1_,7.2)X1)+3X0_in.

2 2

A calculation shows that the solution of this system for the prescribed initial
is given by

1 = 1 F
=177 fo___l——{—:_?’ fi=1 (7.9)

This proves the first assertion. With the solution above equation (7.8) reads IT = 0
and we have II = 1 on I° by (7.2). This proves the second assertion.

=1, X°=1, X!

Remark: The ODE above is sufficiently complicated so that giving the solution
explicitly deserves an explanation. In (5.62) is given the conformal factor and
the conformal representation of Minkowski space which result from the general
procedure of Section 5. In (5.63) is given the coordinate transformation which,
together with the conformal factor, relates the conformal metric to the standard
representation of Minkowski space in coordinates ¢ and r.

If the Minkowski values m = 0, U = 1, ha, = —684p are assumed in Section 6
the metric § reduces by (6.8) to the metric g}; o’ a* with m = 0. One can consider
this as the lowest order (in p) approximation of the general version of g. Tracing
back how the functions 7, g, A in Section 6 are related in the flat case to ¢t and r,
one finds
_ 1 ‘o 7 _1

pa-7 TRa-n T
The conformal factors in the conformal representations thus agree but the coordi-
nates are related by the transformation

T=71, p=p(l+71). (7.10)

T

This implies
_ d5\2 do\ 2
2g_£d'?—(1—'?2) (——_ﬁ) —do? =dr*+271 er—(l—rz) <_p> —do?. (7.11)
p P p p
The left-hand side is the conformal Minkowski metric (6.8) with m = 0 while
the right-hand side is the metric ¢* given by (5.62). The conformal geodesics
underlying (5.62) have tangent vector X = 9, and l-form f = ipﬁ. With (7.10)
these transform into
1 1
X—8;+1—+_—‘Fp6,;—v0+1+—%v1,
dp 1 _ 1

f= g T T Tty

from which one can read off (7.9).
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The hypersurfaces {p = px = const. > 0} are in general time-like for the
metric {(6.6). The form of g¢ suggests that these hypersurfaces approximate null
hypersurfaces in the limit as px — 0, but the conclusion is delicate because of
the degeneracy of g* on 7’. The discussion above shows that they do become null
asymptotically in the sense that for the metric on the left-hand side of (7.11) the
hypersurfaces {p = const.} are in fact null. To some extent this explains why the
coordinates given by (6.1) had a chance to extend smoothly to J* and to provide
a description of the cylinder at space-like infinity.

7.2. The smoothness of the gauge of Section 5 for static asymptotically flat vacuum
solution near 7

Let Sex: denote an analytic extension of S into a range where p < 0 so that p, ¥4
extend to analytic coordinates. If the set S.xt \S is sufficiently small, the following
statements make sense. The initial conditions (7.4), (7.7) extend analytically to
Scxt and determine near S,,, an analytic congruence of solutions to the extended
conformal geodesic equations. It therefore follows from Lemma 7.2 and well-known
results on ODE’s that, with the € of Lemma 7.2, there exists a px > 0 such that
for initial data 7(0) = 0, 5(0) = p’ with |p'| < pg, ¥*(0) = ¥*" and those implied
at these points by (7.4), (7.7) the solution

T=7(r,09"Y), p=prp YY), Bt =y (e, 9,

Xi:Xi(T,p/,¢A )a f_k:f_k(T,p,awA )7
of the extended conformal geodesic equations exists for the values 0 < 7 < 1+¢
of their natural parameter and the function II is positive in the given range of p/
and 7.
Taking a derivative of the equation satisfied by p and observing (7.9) gives

4 (o N_ (% 1
dr 6_;)”’I:0 N 8p’pl:0 1+ 7

which implies by (7.9)
<8P]p,:0) =14+7>1.

ap’
It follows that the Jacobian of the analytic map
(.0, ™) — 2 (1,0, %),

takes the value 1 + 7 on Z’ and for sufficiently small p4 > 0 the Jacobian does
not vanish in the range 0 < 7 < 1+¢, |p| < px. The relations A = O, I > 0,
and © = (w™! ), (1 — 72) imply that the curves with p’ > 0 cross J* for 7 = 1.
It follows that 7, p/, and ¥’ define an analytic coordinate system in a certain
neighborhood O’ of 7’ in M’, such that (suppressing again the upper bounds for
pP)ONTY ={r=1, p >0, T ={0<7<1, p=0},T" ={r=1, p =0},
and (0 is ruled by conformal geodesics.
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The metric g = I1? §, the connection coefficients of the connection V and the
tensor fields {(cf. (2.11))

. ~ T
Luu = Luv[g] - vu fu+ fu fo— Eg;w x f)\v
f=F-T7d0, Wapalgl = TWung)
in the frame (6.7) extend in the new coordinates as analytic fields to O'.
Given these structures and the conformal geodesics on (¥, the construction

of the manifold A/ as described in Section 5 poses no problems. With the given

analytic initial data on & it only involves solving linear ODE’s corresponding to
(2.21), such as

d ; i j F i F i = j 1 —im F
TrE Rt 1 Xk =-fiX'er— fie k X'+ g X ek g™ fmy (712)
or its spinor analogue, along the conformal geodesics. This allows us to conclude

Lemma 7.3. Starting with static asymptotically flat initial data in the gauge (4.31},
the construction of Section 5 leads to a conformal representation of the static
vacuum space-time which is real analytic in a neighborhood O of the set T in N.

7.3. Changing the conformal gauge on the initial slice

It will be shown now how the construction described in Section 5 depends for static
vacuum solutions on rescalings

wlh—->h=0%w?h Q-0=9Q on S,

with analytic, positive conformal factors .

There are harmless consequences such as the change of the normal coordinates
2% — 2% = x'%(2°) with £ *(0) = 0 and a related change e, — €/, = 97! s, e. of
the frame vector fields tangent to S. Here s¢, denotes an analytic function on S
with values in SO(3) such that s, — §°, as p — 0. These changes will simply be
propagated along the new conformal geodesics.

Critical is the transition from the congruence of conformal geodesics related
to  (the Q-congruence) to the new one related to Q' (the §¥'-congruence). If the
curves are considered as point sets, the two families of curves will be different if
Q-1dQY - Q1 dQ =91 dd # 0 (cf. [40)).

The rescaling above implies on S the transitions

ldQfln — NdQ[n = & [[dQln,
2Q , 29V wé
w=-———— W = — = ——
lldln lavlly, €
Ols=w Q- Os=w 10 =¢06,
with the function

1
e |1_ 391220 3 a0 D9 D9

Al 2 A

which extends to S as an analytic function of p and ¥4.
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It follows from the initial conditions for the £-congruence that
el S e e ) =1, (7.13)
and for the transformed 1-form that

(fl.e)=0, fs—fa=w 'du' =fs+97"dv—¢1dg,

where the subscripts indicate the pull-back to S. These two lines give the initial
data for the (’-congruence if the conformal geodesic equations are expressed with
respect to the rescaled metric g’ and its connection V'.

To compare the ¥'-congruence with the {}-congruence we observe the con-
formal invariance of conformal geodesics {(cf. [38]) and express the equations for
the ©'-congruence in terms of g and its connection V. The space-time curves,
including their parameter 7/, then remain unchanged. The 1-form is transformed
because of g = (80'~1)? ¢’ according to f' — f* = f' - (@O0 ~1)~1d(©@61),
which implies (f*, ) = 0, f% = fe +971dd on S. If this 1-form is expressed in
terms of the g-orthonormal frame e; with g L S , one finds

fi=(re) =0, f1=(f"ed = Lt 07 db e a=1,2,3.  (T14)
The fields 7!z, f are the initial data for the §¥'-congruence in terms of g, ¢,
and V. Since £ — 1 and (d¥,e,) = O(p) as p — 0, it follows that

!
§—>1, g—¢ ' —0, fi—fi—0 as p—0.

As a consequence, the initial data for the Q'- and the Q-congruence have coinciding
limits on Z° and the corresponding curves are identical on Z'.

Assuming now the conditions of Section 7.2 and using arguments similar to
the ones used there, we conclude that in a certain neighborhood O’ of Z' in M/
the gauge related to the €’-congruence is as smooth and regular as the one related
to the Q-congruence. Thus we have

Lemma 7.4. In the case of static asymptotically flat space-times the construction
of the set I' is independent of the choice of 2 and the set I’ introduced in Section
6 coincides with the projection n'(Z) of the cylinder at space-like infinity as defined
in Section 5.

We note that the comparison of the (¥~ with the {2-congruence leads in the
case where the solution is not static and thus not necessarily analytic still to similar
results if the solution acquires a certain smoothness near J* UZ*. In the case of
low smoothness, however, the detailed behavior of the different congruences needs
to be analyzed in the context of an existence theorem.
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8. Concluding remarks

Concerning the regularity conditions we have now the following situation. For static
asymptotically flat solutions with m s 0 the conformal extensions to Z are smooth
(in the sense discussed above) and their data satisfy the regularity condition (5.89)
with p, = co. In the massless case condition (5.89) with p, = oo is necessary and
sufficient for space-like infinity to be represented by a regular point in a smooth
conformal extension. In the general time reflection case with m # 0 conditions
(5.89) are necessary but not sufficient for the s-jets JZ(u), p € N, to be regular
at the critical sets Zt. Thus, the mass m = 2W(i) and also the derivatives of
%W (i), @ € N3, play a crucial role for the behavior of the J7(u) at I*. The
mechanism which decides on the smoothness remains to be understood.

Only the d-jet JZ,(u) and the s-jets J2™!(u) are needed to obtain J5(u) by
integrating the transport equations on Z. Since the left-hand sides of the transport
equations are universal in the sense that they do not depend on the data, it follows
that JZ(u) is uniquely determined by J7,(u) for p € N. In the static case the s-jets
JZ(u) are regular. In [16] has been exhibited a class of data which are asymptot-
ically static of order p for given p € NU {oo} and which are essentially arbitrary
on given compact sets. It follows that for prescribed differentiability order p there
exists a large class of data for which the s-jet J7(u) is regular on 7.

We expect there to be a threshold in p beyond which the regularity of J7(u)
ensures peeling resp. asymptotic smoothness of a given order of differentiability
and below which the singularity of JZ(u) implies a failure of peeling. This order is
likely to be low enough such that the behavior of J}(u) with ¢ < p can be controlled
by a direct, though tedious, calculation. However, if asymptotic staticity does play
a role here, one should try to understand the underlying mechanism. It would be
quite a remarkable feature of Einstein’s equations if asymptotic staticity could be
deduced from asymptotic regularity at null infinity.

References

(1] L. Andersson, P.T. Chrusciel. On hyperboloidal Cauchy data for the vacuum Einstein
equations and obstructions to the smoothness of scri. Comm. Math. Phys. 161 (1994)
533-568.

[2] L. Andersson, P.T. Chrusciel. Solutions of the constraint equations in general rel-
ativity satisfying hyperboloidal boundary conditions. Dissertationes Mathematicae
Polska Akademia Nauk, Inst. Matem., Warszawa, 1996.

[3] L. Andersson, P.T. Chrusciel, H. Friedrich. On the regularity of solutions to the Yam-
abe equation and the existence of smooth hyperboloidal initial data for Einstein’s
field equations. Comm. Math. Phys. 149 (1992) 587-612.

[4] A. Ashtekar. Asymptotic properties of isolated systems: Recent developments. In:
B. Bertotti et al. (eds.) General Relativity and Gravitation Dordrecht, Reidel, 1984.



200 H. Friedrich

[5] R.A. Bartnik, A.H. Norton. Numerical experiments at null infinity. In: J. Frauendie-
ner, H. Friedrich (eds.), The Conformal Structure of Spacetime: Geometry, Analysis,
Numerics. Springer, Berlin, 2002.

[6] R. Beig, W. Simon. Proof of a multipole conjecture due to Geroch. Comm. Math.
Phys. 79 (1981) 581-589.

(7] R. Beig, B. Schmidt. Time-independent gravitational fields. In: B.G. Schmidt (ed.):
Einstein’s field equations and their physical implications. Springer, Berlin, 2000.

[8] A L. Besse. Einstein Manifolds. Springer, Berlin, 1987.

(9] L. Blanchet. Post-Newtonian Gravitational Radiation. In: B. Schmidt (ed.), Ein-
stein’s Field Equations and Their Physical Implications. Berlin, Springer, 2000.

(10] H. Bondi, M.G.J. van der Burg, A.W.K. Metzner. Gravitational waves in general
relativity VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc A 269
(1962) 21-52.

[11] Y. Choquet-Bruhat. Théorémes d’existence pour certains systémes d’équations aux
dérivées partielles non linéaires. Acta. Math. 88 (1952) 141-225.

[12] M.W. Choptuik. Universality and scaling in gravitational collapse of a massless scalar
field. Phys. Rev. Lett. 70 (1993) 9.

{13] D. Christodoulou. The Global Initial Value Problem in General Relativity. In: V.G.
Gurzadyan et al. (eds.) Proceedings of the 9th Marcel Grossmann Meeting World
Scientific, New Jersey, 2002.

[14] D. Christodoulou, S. Klainerman. The Global Nonlinear Stability of the Minkowski
Space. Princeton University Press, Princeton, 1993.

[15] P.T. Chrusciel, E. Delay. Existence of non-trivial, vacuum, asymptotically simple
spacetimes. Class. Quantum Grav., 19 (2002) L 71-L 79. Erratum Class. Quantum
Grav., 19 (2002) 3389.

[16] P.T. Chrusciel, E. Delay. On mapping properties of the general relativistic constraints
operator in weighted function spaces, with application. Mém. Soc. Math. France
submitted. http://xxx.lanl.gov/abs/gr-qc/0301073

[17] P.T. Chrusciel, M.A.H. MacCallum, D. B. Singleton. Gravitational Waves in General
Relativity. XIV: Bondi Expansions and the “Polyhomogeneity” of Scri. Phil. Trans.
Royal Soc., London A 350 (1995) 113-141.

[18] P.T. Chrusciel, O. Lengard. Solutions of wave equations in the radiation regime.
Preprint (2002). http://xxx.lanl.gov/archive/math.AP /0202015

[19] P.T. Chrusciel, J. Jezierski, J. Kijowski. Hamiltonian Field Theory in the Radiating
Regime. Springer, Berlin, 2002.

{20] J. Corvino. Scalar curvature deformation and a gluing construction for the Einstein
constraint equations. Comm. Math. Phys. 214 (2000) 137-189.

[21] J. Corvino, R. Schoen On the Asymptotics for the Vacuum Einstein Constraint
Equations. http://xxx.Janl.gov/abs/gr-qc/0301071

[22] R. Courant, D. Hilbert. Methods of mathematical physics, Vol II. J. Wiley, New
York, 1962.

[23] S. Dain. Initial data for stationary space-times near space-like infinity. Class. Quan-
tum Grav., 18 (2001) 4329-4338.



Smoothness at Null Infinity and the Structure of Initial Data 201

[24] S. Dain. Asymptotically Flat Initial Data with Prescribed Regularity 1I. In prepa-
ration

[25] S. Dain, H. Friedrich. Asymptotically Flat Initial Data with Prescribed Regularity.
Comm. Math. Phys. 222 (2001) 569-609.

[26] Ellis, G.F.R. (1984) Relativistic Cosmology: Its Nature, Aims, and Problems, Gen-
eral Relativity and Gravitation, B. Bertotti et al. {eds.), Reidel, Dordrecht.

[27) J. Frauendiener. Some aspects of the numerical treatment of the conformal field equa-
tions. In: J. Frauendiener, H. Friedrich (eds.), The Conformal Structure of Spacetime:
Geometry, Analysis, Numerics. Springer, Berlin, 2002.

(28] H. Friedrich. On the regular and the asymptotic characteristic initial value problem
for Einstein’s vacuum field equations. Proceedings of the 3rd Gregynog Relativity
Workshop on Gravitational Radiation Theory MPI-PEA /Astro 204 (1979) 137-160
and Proc. Roy. Soc., 375 (1981) 169-184.

[29] H. Friedrich. The asymptotic characteristic initial value problem for Einstein’s vac-
uum field equations as an initial value problem for a first-order quasilinear symmetric
hyperbolic system. Proc. Roy. Soc., A 378 (1981) 401-421.

[30] H. Friedrich. On the Existence of Analytic Null Asymptotically Flat Solutions of
Einstein’s Vacuum Field Equations. Proc. Roy. Soc. Lond. A 381 (1982) 361-371.

[31] H. Friedrich. Cauchy Problems for the Conformal Vacuum Field Equations in Gen-
eral Relativity. Comm. Math. Phys. 91 (1983) 445-472.

[32] H. Friedrich. On the hyperbolicity of Einstein’s and other gauge field equations.
Comm. Math. Phys. 100 (1985) 525-543.

[33] H. Friedrich. On the existence of n-geodesically complete or future complete solutions
of Einstein’s equations with smooth asymptotic structure. Comm. Math. Phys. 107
(1986) 587-609.

[34] H. Friedrich. On static and radiative space-times. Comm. Math. Phys., 119 (1988)
51-73.

[35] H. Friedrich. On the global existence and the asymptotic behaviour of solutions to
the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom., 34 (1991) 275-345.

[36] H. Friedrich. Einstein equations and conformal structure: existence of anti-de Sitter-
type space-times. J. Geom. Phys., 17 (1995) 125-184.

[37] H. Friedrich. Gravitational fields near space-like and null infinity. J. Geom. Phys.
24 (1998) 83-163.

[38] H. Friedrich. Conformal Einstein Evolution In: J. Frauendiener, H. Friedrich (eds.),
The Conformal Structure of Spacetime: Geometry, Analysis, Numerics. Springer,
Berlin, 2002.

[39] H. Friedrich. Spin-2 fields on Minkowski space near spacelike and null infinity. Class.
Quantum. Grav. 20 (2003) 101-117.

[40] H. Friedrich. Conformal geodesics on vacuum space-times. Commun. Math. Phys.
235 (2003) 513-543.

[41] H. Friedrich, J. Kannar Bondi systems near space-like infinity and the calculation of
the NP-constants. J. Math. Phys. 41, (2000), 2195-2232.

[42] H. Friedrich, G. Nagy. The initial boundary value problem for Einstein’s vacuum
field equations. Comm. Math. Phys. 201 (1999) 619-655.



202 H. Friedrich

[43] H. Friedrich, A. Rendall. The Cauchy Problem for the Einstein Equations. In: B.
Schmidt (ed.), Einstein’s Field Equations and Their Physical Implications. Berlin,
Springer, 2000.

[44] K.O. Friedrichs. Symmetric hyperbolic linear differential equations. Comm. Pure
Appl. Math. 7 (1954) 345-392.

[45] P. Garabedian. Partial Differential Equations. J. Wiley, New York, 1964.

[46] R. Geroch. Asymptotic structure of space-time. In: F.P. Esposito, L. Witten (eds.)
Asymptotic Structure of Space-Time. New York, Plenum, 1977.

{47] R.P. Geroch, G. Horowitz. Asymptotically simple does not imply asymptotically
Minkowskian. Phys. Rev. Lett. 40 (1978) 203-206.

[48] O. Gues. Probleme mixte hyperbolique quasi-linéaire charactéristique. Commun.
Part. Diff. Equ., 15 (1990) 595-645.

[49] C. Gundlach. Critical Phenomena in gravitational collapse. Physica Reports 367
(2003) 339-405.

[50] S. Helgason. Differential Geometry and Symmetric Spaces. Academic Press, New
York, 1962.

[51] L. Hormander. The Analysis of Linear Partial Differential Operators III. Springer,
Berlin, 1985.

[52] P. Hibner. From now to timelike infinity on a finite grid. Class. Quantum Grav. 18
(2001) 1871-1884.

[53] S. Husa. Problems and successes in the numerical approach to the conformal field
equations. In: J. Frauendiener, H. Friedrich (eds.), The Conformal Structure of Space-
time: Geometry, Analysis, Numerics. Springer, Berlin, 2002.

[54] D. Kennefick, N. O'Murchadha. Weakly decaying asymptotically flat static and sta-
tionary solutions to the Einstein equations. Class. Quantum. Grav. 12 (1995) 149~
158.

[55] S. Klainerman, F. Nicold. The Evolution Problem in General Relativity. Birkhauser,
Basel, 2003.

(56] S. Klainerman, F. Nicolo. Peeling properties of asymptotically flat solutions to the
Einstein vacuum equations. Class. Quantum Grav. 20 (2003) 3215-3257.

[57} O. Lengard. Solution of the Einstein equation, wave maps, and semilinear waves in
the radiation regime. Ph. D. thesis, Université de Tours, 2001. http://www/phys.uni-
tours.fr/ piotr/papers/batz

[58] E.T. Newman, R. Penrose. An approach to gravitational radiation by a methods of
spin coefficients. J. Math. Phys. 3 (1962) 566-578.

[59] R. Penrose. Asymptotic properties of fields and space-time. Phys. Rev. Lett., 10
(1963) 66—68.

[60] R. Penrose. Zero rest-mass fields including gravitation: asymptotic behavior. Proc.
Roy. Soc. Lond., A 284 (1965) 159-203.

[61] R. Penrose, W. Rindler. Spinors and space-time, Vol. 1 and 2. Cambridge University
Press, 1984.

[62] F.A.E. Pirani. Invariant Formulation of Gravitational Radiation Theory. Phys. Rev.
105 (1957) 1089-1099.



Smoothness at Null Infinity and the Structure of Initial Data 203

[63] R.K. Sachs. Gravitational waves in general relativity VI. The outgoing radiation
condition. Proc. Roy. Soc A 264 (1961) 309-338.

[64] R.K. Sachs. Gravitational waves in general relativity VIII. Waves in asymptotically
flat space-time. Proc. Roy. Soc A 270 (1962) 103-126.

[65] R. Schoen, S.-T. Yau. Proof of the positive mass theorem II. Commun. Math. Phys.,
79 (1981) 231-260.

[66] B.F. Schutz. Mathematical and Physical Perspectives on Gravitational Radiation.
Talk given at the summer school “50 years of the Cauchy problem in general rela-
tivity”, Cargese July 29-August 10, 2002. http://fanfreluche.math.univ-tours.fr

[67] P. Secchi. Well-Posedness of Characteristic Symmetric Hyperbolic Systems. Arch.
Rational Mech. Anal., 134 (1996) 155-197.

[68] G. Szegd. Orthogonal Polynomials. 4th Edition. A.M.S. Colloqu. Publ. Vol. 23, Prov-
idence, 1978.

[69] A. Trautman. Radiation and boundary conditions in the theory of gravitation. Bull.
Acad. Pol. Sci., Série sci. math., astr. et phys. VI (1958) 407-412.

[70] J.A. Valiente Kroon. Can one detect a non-smooth null infinity? Class. Quantum
Grav. 18 (2001) 4311-4316.

[71] J.A. Valiente Kroon. A new class of obstructions to the smoothness of null infinity.
Commun. Math. Phys. 244 (2004) 133-156.

[72] J.A. Valiente Kroon. Does asymptotic simplicity allow for radiation near spatial
infinity? Commun. Math. Phys. (2004) to appear.

[73] J. Winicour. Logarithmic Asymptotic Flatness. Foundations of Physics 15 (1985)
605-616.

Helmut Friedrich

Max-Planck-Institut fiir Gravitationsphysik
Am Miihlenberg 1

D-14476 Golm, Germany

e-mail: hef@aei-potsdam.mpg.de



	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 
	Page 6 
	Page 7 
	Page 8 
	Page 9 
	Page 10 
	Page 11 
	Page 12 
	Page 13 
	Page 14 
	Page 15 
	Page 16 
	Page 17 
	Page 18 
	Page 19 
	Page 20 
	Page 21 
	Page 22 
	Page 23 
	Page 24 
	Page 25 
	Page 26 
	Page 27 
	Page 28 
	Page 29 
	Page 30 
	Page 31 
	Page 32 
	Page 33 
	Page 34 
	Page 35 
	Page 36 
	Page 37 
	Page 38 
	Page 39 
	Page 40 
	Page 41 
	Page 42 
	Page 43 
	Page 44 
	Page 45 
	Page 46 
	Page 47 
	Page 48 
	Page 49 
	Page 50 
	Page 51 
	Page 52 
	Page 53 
	Page 54 
	Page 55 
	Page 56 
	Page 57 
	Page 58 
	Page 59 
	Page 60 
	Page 61 
	Page 62 
	Page 63 
	Page 64 
	Page 65 
	Page 66 
	Page 67 
	Page 68 
	Page 69 
	Page 70 
	Page 71 
	Page 72 
	Page 73 
	Page 74 
	Page 75 
	Page 76 
	Page 77 
	Page 78 
	Page 79 
	Page 80 
	Page 81 
	Page 82 
	Page 83 

