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Abstract

We continue the analysis of hep-th/0303060 in the one-loop sector and
present the complete psu(2, 2|4) dilatation operator of N = 4 Super Yang-
Mills theory. This operator generates the matrix of one-loop anomalous
dimensions for all local operators in the theory. Using an oscillator repre-
sentation we show how to apply the dilatation generator to a generic state.
By way of example, we determine the planar anomalous dimensions of all
operators up to and including dimension 5.5, where we also find some ev-
idence for integrability. Finally, we investigate a number of subsectors of
N = 4 SYM in which the dilatation operator simplifies. Among these we
find the previously considered so(6) and su(2) subsectors, a su(2|4) subsector
isomorphic to the BMN matrix model at one-loop, a u(2|3) supersymmetric
subsector of nearly eighth-BPS states and, last but not least, a non-compact
sl(2) subsector whose dilatation operator lifts uniquely to the full theory.
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1 Introduction and conclusions

The AdS/CFT correspondence [1] and some of its recent advances involving plane waves
and spinning string solutions [2–4] have attracted attention to the investigation of anoma-
lous dimensions in N = 4 Super Yang-Mills theory [5]. The virtue of this particular the-
ory is that it has a conformal phase which is not spoiled by quantum effects [6]. In fact,
supersymmetry merges with conformal symmetry to the symmetry group PSU(2, 2|4).
Composite local operators of the N = 4 gauge theory therefore arrange into multiplets or
modules of the algebra psl(4|4) 1 [7]. The modules are characterised by a set of numbers
which determine the transformation properties under psl(4|4). All of these numbers are
(half-)integer valued, except the scaling dimension, which may receive corrections due to
quantum effects, the so-called anomalous dimensions.

In the free theory, the action of the algebra on the space of local operators closes in a
rather trivial manner. When quantum corrections are switched on, however, the trans-
formation properties of operators change in such a way that the closure of the algebra is
preserved. This puts tight constraints on consistent deformations of the algebra genera-
tors. In fact, these constraints have been employed to determine the first few anomalous
dimensions [8]. A similar technique has later on been applied to obtain a remarkable
all-loop result for an anomalous dimension [9]. There is some hope that consistency re-
quirements uniquely fix the deformations to a one-parameter family representing different
values of the coupling constant gYM.

One way to obtain a consistent and interesting deformation of generators clearly is to
evaluate the deformations due to loop effects in N = 4 SYM. In a perturbative quantum
field theory this is however a non-trivial issue as scaling dimensions are superficially fixed
to their free theory values due to an absence of a compensating scale. Nevertheless, this
scale must be introduced in any attempt to regulate the divergencies of quantum field
theories. In the regularised theory, the infinities give rise to logarithms, which can be
interpreted as small shifts of scaling dimensions. In that sense anomalous dimensions
are intimately related to divergencies. Although the divergencies are the source for
anomalous dimensions, they are also a major complication in higher loop computations.

The first few anomalous dimensions that have been calculated directly in N = 4 SYM
and up to two-loops [10] turned out to be zero: The considered operators were BPS op-
erators whose scaling dimensions are required to be protected in a psl(4|4) symmetric
theory, thus confirming the superconformal nature of N = 4 SYM. Besides the BPS
operators there are further operators for which exceptional non-renormalisation theo-
rems have been found [11]. Non-vanishing anomalous dimensions up to two-loops have
subsequently been calculated for the most simple, non-protected operator, the Konishi
operator [12, 11]. The obtained anomalous dimension was in agreement with the ear-
lier, purely algebraic results. The complete tower of twist-two operators of which the
Konishi operator is the lowest example was investigated in [13]. Their one-loop anoma-

1The conjugation property of the algebras will not be relevant here and we will always consider the
complex versions. When we consider unitarity bounds, we will tacitly refer to the real form psu(2, 2|4).
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lous dimensions were found to be 2n + (g2
YM
N/2π2)h(2n), where h(j) are the harmonic

numbers

h(j) :=

j∑

k=1

1

k
= Ψ (j + 1) − Ψ (1), (1.1)

which can also be expressed in terms of the digamma function Ψ (x) = ∂ logΓ (x)/∂x.
Using methods of QCD deep inelastic scattering, the DGLAP and BFKL equations, as
well as by means of computer algebra systems developed for higher loop computations
in the standard model, this result has been generalised to two-loops [14]. Systematic
means to obtain anomalous dimensions involving four-point functions and superspace
techniques were worked out in, e.g. [15,16]. Finally, multi-trace operators and operators
which mix in a non-trivial way have been investigated in [17].

With the advent of the BMN correspondence [3] the attention has been shifted away
from lower dimensional operators to operators with a large number of fields [18–20].
There, the complications are mostly of combinatorial nature. It was therefore desirable
to develop efficient methods to determine anomalous dimensions without having to deal
with artefacts of the regularisation procedure. In a purely algebraic way the dilatation
operator [21, 22] generates the matrix of one-loop anomalous dimensions for any set of
operators which are made out of the six scalars of N = 4 SYM. What is more, the matrix
of anomalous dimensions can be obtained exactly for all gauge groups and, in particular,
for groups SU(N) with finite N . Even two or higher-loop calculations of anomalous
dimensions, which are generelly plagued by multiple divergencies, are turned into a
combinatorial excercise! Using the dilatation generator techniques many of the earlier
case-by-case studies of anomalous dimensions were easily confirmed. They furthermore
enabled a remarkable all-genus comparison between BMN gauge theory and plane-wave
string theory [23].

Much progress has been made in recent months due to integrable structures dis-
covered in planar gauge theory and free string theory. Minahan and Zarembo realised
that the planar one-loop dilatation operator for scalar operators is isomorphic to the
Hamiltonian of a so(6) integrable spin chain [24]. Furthermore, there are indications
that this remarkable result generalises to higher loops [22] potentially giving rise to a
novel type of integrable model. Using the Bethe ansatz [24] is was possible to find states
whose anomalous dimension can only be expressed in terms of elliptic functions [25].
Astonishingly, corresponding string states of the same energy could be found using semi-
classical methods [26]. This matching might be related to an integrable structure found
for free strings on AdS5 ×S5 [27]. It represents one of the strongest confirmations of the
AdS/CFT correspondence so far.

Most investigations of anomalous dimensions have focussed on operators made out
of scalars. For these the Feynman diagrams are comparatively easy to calculate. In a
few exceptions [28–30] scalars with covariant derivatives have been considered. These
calculations are notoriously difficult due to the complex index structures and terms that
are required by conformal covariance of the correlators. Calculations involving fermions
and field strengths have mostly been avoided, however, with the aid of computer algebra
they are feasible [14]. All in all not much is known about such operators, except maybe
by means of supersymmetry arguments [31].
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In the current work we would like to address the issue of generic operators of N = 4
SYM and their one-loop anomalous dimensions. We derive the complete one-loop non-
planar dilatation operator of N = 4 SYM (2.22). For simplicity we will refer to this as
the Hamiltonian2 H and define

D(g) = D0 +
g2

YM
N

8π2
H + O(g3). (1.2)

First of all we will investigate the form of generic local operators and how the Hamilto-
nian acts on them. Considering the structure of one-loop Feynman diagrams it is easy to
see that the Hamiltonian acts on no more than two fields within the operator at the same
time. We could now go ahead and calculate these Feynman diagrams for all combinations
of two fields. Most of these calculations would turn out to be redundant once supercon-
formal symmetry is taken into account. We therefore first investigate the independent
coefficients of a generic superconformally invariant function of two fields. These are in
one-to-one correspondence to the irreducible multiplets in the tensor product of two field
multiplets. The irreducible multiplets can be distinguished by their ‘total spin’ j. We
claim that the ‘Hamiltonian density’ H12 representing the Hamiltonian H restricted to
two fields 1, 2 is given by 3

H12 = 2h(J12), H =

L∑

k=1

Hk,k+1. (1.3)

where J12 is an operator that measures the total spin j of the two fields and where h(j)
is defined in (1.1). The above mentioned anomalous dimensions of twist-two operators
are a trivial consequence of this.

In principle this result allows the computation of all one-loop anomalous dimensions in
N = 4 SYM: For every pair of fields within the operator, we decompose into components
of definite total spin j. Each component we multiply by the harmonic number 2h(j) and
add up all contributions. For non-planar corrections, in addition we have to compute
the colour structure dictated by Feynman diagrammatics. In an explicit calculation
this procedure has the drawback that the projection to total spin j is rather involved.
Nevertheless, there is an alternative method to evaluate the action of the Hamiltonian
density 2h(J12) which we will name the harmonic action. To describe the harmonic action
we will represent fields of N = 4 in terms of excitations of a supersymmetric harmonic

oscillator, see [33]. There is a natural way to do this such that each excitation corresponds
to a spinor index of the field. The harmonic action describes how to shuffle the oscillators
(or spinor indices) between the two involved fields in order to obtain 2h(J12). We will
demonstrate the action in terms of a simple example and, as an application, we determine
the spectrum of planar anomalous dimensions for single-trace operators of N = 4 SYM
up to and including classical dimension 5.5, see Tab. 3. Here, we also see some signs of
integrability of the complete planar dilatation generator. The issue of integrability will,
however, not be discussed in detail in this work; this is discussed in [34].

2On the background R × S3 it is in fact the one-loop part of the Hamiltonian.
3Similar Hamiltonians have appeared in the context of QCD energies (BFKL kernel) and one-loop

anomalous dimensions (DGLAP kernel), see e.g. [32]. Note, however, that here the total spin operator
J12 corresponds to the quadratic Casimir of psl(4|4) instead of sl(2).
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Still, the harmonic action in its most general form requires some work to be applied.
On the other hand, when we restrict to the so(6) subsector of operators made out of scalar
fields only, the action should simplify to the effective vertex of [19]. This vertex consists
of only two terms and is straightforwardly applied. In the minimal su(2) subsector it
was even possible to derive the two-loop contribution to the dilatation generator [22].
It would therefore be desirable to investigate further subsectors within which the action
of the dilatation generator closes. Here, one should distinguish between exactly closed
subsectors (e.g. su(2)) and subsectors closed only at one-loop (e.g. so(6)). We will find
a criterion for exactly closed subsectors and determine all such sectors. Among these
we find the subsectors relevant to quarter-BPS and eighth-BPS operators. These are
the above su(2) sector and a new u(2|3) sector. We also find a simple condition (5.13)
for quarter-BPS and eighth-BPS operators which we use to determine the lowest-lying
eighth-BPS operator. Among the one-loop subsectors we find the above so(6) subsector,
a non-compact so(4, 2) brother and a su(2|4) subsector in which the Hamiltonian agrees
fully with the one-loop Hamiltonian of the BMN matrix model [3, 35].

Probably the most interesting exactly closed subsector is the non-compact brother
of the su(2) subsector, the sl(2) subsector. The main difference between the two is that
in the su(2) sector there are only two fields, Z and φ, while in the sl(2) sector there
are infinitely many, DnZ. At first sight these sectors seem quite different, in terms of
representations this is however not the case. In the complex form both algebras are the
same, the fields Z, φ transform in the fundamental spin 1

2
representations, whereas the

fields DnZ transform in the spin −1

2
representation. In this new subsector we are able

to compute the dilatation generator (3.14) by field theoretic means. To demonstrate the
usefulness of this simplified Hamiltonian we apply it to find a few anomalous dimensions,
see Tab. 2. Finally, we will show that the Hamiltonian lifts uniquely to the full psl(4|4)
Hamiltonian, i.e. it fixes all independent coefficients of the most general psl(4|4) invariant
form.

This paper is organised as follows. We start by determining the most general form
of the dilatation generator compatible with sl(4|4) invariance in Sec. 2. In Sec. 3 we
investigate the sl(2) subsector, determine the Hamiltonian and show that it lifts uniquely
to the full Hamiltonian. We then introduce the oscillator representation of fields and work
out the action of the Hamiltonian in Sec. 4. Sec. 5 contains an investigation of various
subsectors within N = 4 SYM. We give an outlook in Sec. 6.

2 The form of the dilatation generator

We start by investigating the general form of the one-loop dilatation generator. We will
see that representation theory of the symmetry group as well as Feynman diagrammat-
ics puts tight constraints on the form. What remains is a sequence of undetermined
coefficients, one for each value of ‘total spin’, which will turn out to be the harmonic
series.
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Letters and operators. Local operators O are constructed as gauge invariant com-
binations of ‘letters’ (irreducible covariant fields) WA

4

O = TrW∗ · · ·W∗ TrW∗ · · ·W∗ . . . (2.1)

The letters of N = 4 are the scalars, fermions and field strengths as well as their covariant
derivatives. Here, traces and antisymmetries in derivative indices are excluded; such
fields can be reexpressed as reducible products of letters via the equations of motion or
Jacobi identities. The index A in WA enumerates all such letters.

An alternative way of representing local operators is to use the state-operator map for
N = 4 SYM on R×S3, which is conformally equivalent to flat R

4. When decomposing the
fundamental fields into spherical harmonics on S3 one gets as irreducible states precisely
the same spectrum of letters WA. In this picture the dilatation generator maps to the
generator of shifts along R, i.e. the Hamiltonian.

Tree-level algebra. Under the superconformal algebra psl(4|4), c.f. App. A, consist-
ing of the generators J0, the letters transform among themselves

J0WA = (J0)
B
AWB. (2.2)

Classically, the local operators O transform in tensor product representations of (2.2).
A generator J0 of psl(4|4) at tree-level can thus be written in terms of its action (J0)

B
A

on a single letter WA as

J0WA · · ·WB = (J0)
C
AWC · · ·WB + . . .+ (J0)

C
BWA · · ·WC . (2.3)

Using a notation for variation with respect to fields [22]

W̌A :=
δ

δWA
= T a

δ

δW a
A

(2.4)

we can also write the tree-level generators as5

J0 = (J0)
B
A TrWBW̌

A. (2.5)

The variation will pick any of the letters within an operator and replace it by the trans-
formed letter. In particular the tree-level dilatation generator is

D0 =
∑

A
dim(WA) TrWAW̌

A. (2.6)

4For convenience we will restrict to the gauge group U(N). The letters WA are N×N matrices, which
can be parametrised by the generators T a in the fundamental representation of U(N) as WA = T aW a

A.
Nevertheless, all results generalise straightforwardly to arbitrary gauge groups.

5Note the fusion and fission rules Tr XW̌A TrY WB = δA
B Tr XY , Tr XW̌AY WB = δA

B TrX Tr Y .
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a b c a′ b′ c′

Figure 1: One-loop diagrams contributing to the anomalous dimension. The lines correspond
to any of the fundamental fields of the theory.

Interacting algebra. When quantum corrections are turned on, the transformation
properties of operators change. In perturbation theory we will therefore write the full
generators J as a series in the coupling constant g,6

J(g) =
∞∑

k=0

gkJk. (2.7)

In this work we will concentrate on the first correction to the dilatation generator, D2.
It must be invariant under the tree-level algebra J0. This follows from the interacting
algebra identity

[D(g), J(g)] = [D0, J0 + gJ1 + g2J2] + g2[D2, J0] + O(g3) = dim(J) J(g) (2.8)

for every operator J of the superconformal group. In perturbation theory the bare
dimension D0 of all generators Jk must be conserved

[D0, Jk] = dim(J) Jk. (2.9)

Eq. (2.8) then implies for all J0

[J0, D2] = 0. (2.10)

In other words D2 is invariant under classical superconformal transformations. It will
turn out that D2 is invariant under another, nontrivial generator B0 of the algebra
sl(4|4) = gl(1) ⋉ psl(4|4), see e.g. [36]. We will refer to this additional gl(1) hypercharge
generator as ‘chirality’. It is conserved at the one-loop level, but at higher loops it
is broken due to the Konishi anomaly. In what follows we will therefore consider the
classical sl(4|4) algebra of generators J0; the one-loop anomalous dilatation generator
D2 will be considered an independent object, the Hamiltonian H ,

J(g) = J + O(g), D(g) = D +
g2

YM
N

8π2
H + O(g3), [J,H ] = 0. (2.11)

Generic form. The Hamiltonian has the following generic form

H = (Ca)
AB
CD :Tr[WA, W̌

C][WB, W̌
D]:

+ (Cb)
AB
CD :Tr[WA,WB][W̌C , W̌D]:

+ (Cc)
A
B :Tr[WA, T

a][T a, W̌B]:. (2.12)

6The odd powers of g are due to normalisation: Propagators are O(g0), three-vertices are O(g).
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field ∆0 sl(2) × sl(2) sl(4) B
DkF k + 2 [k + 2, k ] [0, 0, 0] +1
DkΨ k + 3

2
[k + 1, k ] [0, 0, 1] +1

2

DkΦ k + 1 [k , k ] [0, 1, 0] ±0
DkΨ̄ k + 3

2
[k , k + 1] [1, 0, 0] −1

2

DkF̄ k + 2 [k , k + 2] [0, 0, 0] −1

Table 1: Components WA of the N = 4 SYM field strength multiplet

These terms correspond to the three basic types of Feynman diagrams that arise at the
one-loop level, see Fig. 1. The diagrams a,b,c correspond to bulk interactions, where
the covariant derivatives D = ∂ − igA within the fields WA are reduced to a partial
derivative. The boundary interactions a′,b′,c′ arise when one covariant derivative emits
a gauge field, see also [28, 29]. Algebraically they have the same form as their bulk
counterparts. Diagrams with two emitted gauge fields have no logarithmic dependence
and do not contribute to the dilatation generator. We can transform the term of type c
by means of gauge invariance, see [22] for a detailed description of the procedure. The
generator of gauge transformations is

Ga = Tr[WA, W̌
A]T a (2.13)

and it annihilates gauge invariant operators, Ga =̂ 0. Therefore we can write

Ga Tr[WA, W̌
B]T a = :Tr[WC , W̌

C][WA, W̌
B]: + :Tr[WA, T

a][T a, W̌B]: =̂ 0, (2.14)

which allows us to write the term of type c as a term of type a. Furthermore the term
of type b can be transformed by means of a Jacobi-identity. We combine all coefficients
into a single one of type a

CAB
CD = −N

(
(Ca)

AB
CD + (Cb)

AB
CD − (Cb)

AB
DC − 1

2
δAC(Cc)

B
D − 1

2
(Cc)

A
Cδ

B
D

)
. (2.15)

The total Hamiltonian is

H = −N−1CAB
CD :Tr[WA, W̌

C][WB, W̌
D]:. (2.16)

Symmetry. The combined coefficient CAB
CD must be invariant under the tree-level su-

perconformal algebra. Its independent components can be obtained by investigating the
irreducible modules in the tensor product of two multiplets of fields. We list all letters
and their transformation properties in Tab. 1. We have split up the fermions and field
strengths into their chiral (Ψ,F) and antichiral parts (Ψ̄ , F̄); the scalars (Φ) are self-dual.
In the table ∆0 is the bare dimension and refers the gl(1) of dilatations, sl(2) × sl(2) is
the Lorentz algebra and sl(4) is the flavour algebra. These are the manifestly realised
parts of the full symmetry algebra psl(4|4). We have also included the chirality B of
the extended algebra sl(4|4). In sl(4|4) all letters WA combine into one single, infinite-
dimensional module which we will denote by VF. The corresponding representation is
also referred to as the ‘singleton’ representation. Its primary weight

wF = [∆0; s1, s2; q1, p, q2;B,L] = [1; 0, 0; 0, 1, 0; 0, 1] (2.17)

7



corresponds to one of the six scalars at unit dimension. Here, [q1, p, q2] are the Dynkin
labels for a weight of sl(4) and [s1, s2] are twice the spins of sl(2)2. The label L refers to
the number of fields. This will be of importance later on, here it equals one by definition.

The tensor product of two VF is given by 7

VF × VF =

∞∑

j=0

Vj (2.18)

where Vj are the modules with primary weights

w0 = [2; 0, 0; 0, 2, 0; 0, 2],

w1 = [2; 0, 0; 1, 0, 1; 0, 2],

wj = [j; j − 2, j − 2; 0, 0, 0; 0, 2]. (2.19)

Let (Pj)
AB
CD project two field-strengths WA,WB to the module Vj. Then the most general

invariant coefficients can be written as 8

CAB
CD =

∞∑

j=0

Cj (Pj)
AB
CD. (2.20)

In N = 4 SYM we propose that the coefficients are given by the harmonic numbers h(j)
or equivalently by the digamma function Ψ

Cj = h(j) :=

j∑

k=1

1

k
= Ψ (j + 1) − Ψ (1). (2.21)

The one-loop dilatation generator of N = 4 (2.11),(2.16) can thus be written as

D(g) = D − g2
YM

8π2

∞∑

j=0

h(j) (Pj)
AB
CD :Tr[WA, W̌

C][WB, W̌
D]: + O(g3). (2.22)

This is the principal result of this work. In Sec. 4 we will explain how to compute the
action of D in practice.

Planar limit. At this point we can take the planar limit of (2.16) and act on a single-
trace operator of L fields

H =

L∑

k=1

Hk,k+1, Hk,k+1 = 2CjPk,k+1,j, (2.23)

where Pk,k+1,j projects the fields at positions k, k + 1 to the module Vj. We see that
all coefficients Cj can be read off from this Hamiltonian. Therefore the Hamiltonian

7This statement can be proved by counting arguments using Polya theory (see e.g. [37]).
8In general, one might also consider Feynman diagrams in which two or three fields are transformed

into one or vice versa. These terms, however, cannot contribute to the leading order Hamiltonian, which
is psl(4|4) invariant, because VF is not included in VF × VF and VF × VF × VF.

8



density H12 generalises uniquely to the non-planar Hamiltonian H in (2.16),(2.20). In
what follows we can safely restrict ourselves to the investigation of H12. The proposed
Hamiltonian density according to (2.22) is

H12 =

∞∑

j=0

2h(j)P12,j. (2.24)

Spin functions. To simplify some expressions, we define functions f(J12) of the total
spin J12 as

f(J12) =

∞∑

j=0

f(j)P12,j. (2.25)

In other words f(J12) is a psl(4|4) invariant operator which acts on Vj as

f(J12)Vj = f(j)Vj. (2.26)

An arbitrary state with a dimension bounded by ∆0 belongs to the direct sum of modules
Vj with j = 0, . . . ,∆0. The action of f(J12) on such a state may be represented by
a polynomial in the quadratic Casimir J2

12, see (A.7). The eigenvalues of J2
12, where

J12 = J1 + J2 is the action of psl(4|4) on the tensor product VF × VF, are then given by

J2
12Vj = j(j + 1)Vj. (2.27)

This can be proved using the methods of Sec. 4.1. Note that all modules Vj can be
distinguished by the value of the quadratic Casimir. We can therefore represent f(J12)
explicitly by an interpolating polynomial in J2

12

f(J12) =
∆0∑

j=0

f(j)
∆0∏

k=0

k 6=j

J2
12 − k(k + 1)

j(j + 1) − k(k + 1)
. (2.28)

We note that this action also preserves chirality B, because the quadratic Casimir J2
12

does. Therefore any psl(4|4) invariant function acting on VF × VF also conserves sl(4|4).
Clearly, this will not be the case for higher-loop corrections to the dilatation generator
which act on more than two fields at the same time. At higher loops the Konishi
anomaly mixes operators of different chirality. The same points also hold for the length
L of a state. Nevertheless it makes perfect sense to speak of the leading order chirality
and length to describe a state. Mixing with states of different chiralities or lengths is
subleading, because the one-loop dilatation generator conserves these. Using the short
notation the Hamiltonian density becomes simply

H12 = 2h(J12). (2.29)

Examples. A straightforward exercise is to determine the spectrum of operators of
length L = 2. These so-called twist-two operators can be conveniently written as

Oj,AB = (Pj)
CD
AB TrWCWD ∼ P12,j TrW1W2. (2.30)
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This operator vanishes for odd j due to antisymmetry. Using (2.22),(2.23) or (2.29) we
find

E = 4h(j), δD =
g2

YM
N

8π2
E =

g2
YM
N

2π2
h(j) (2.31)

in agreement with the results of [13]. In fact the result of [13] could be used to fix the
even coefficients C2k (2.21).

3 The non-compact sl(2) closed subsector

In this section we will consider a closed subsector of states in N = 4 SYM. We derive the
relevant part of the HamiltonianH ′ and show that it uniquely lifts to the full Hamiltonian
H of N = 4 SYM. Finally, we apply the Hamiltonian within this subsector and obtain
a few anomalous dimensions.

Letters and operators. Let us consider single-trace operators in the planar limit
which saturate the bound ∆0 ≥ L + n, where n and L are the charges with respect to
rotations in the spacetime 12-plane and flavour 56-plane, respectively. The operators
consist only of the scalar field Φ5+i6 = Φ5 + iΦ6 = Φ34 and derivatives D1+i2 = . . . = D11

acting on it.9 A letter for the construction of operators is thus

(a†)n|0〉 =
1

n!
(D1+i2)

nΦ5+i6. (3.1)

This subsector is closed, its operators do not mix with any of the other operators in
N = 4 SYM. This is similar to the subsector considered in [22] where both charges
belong to sl(4). We have collected further interesting subsectors in Sec. 5. The weight
of a state with a total number of n excitations (derivatives) is given by

w = [L+ n;n, n; 0, L, 0; 0, L]. (3.2)

For n 6= 0 this weight is beyond the unitarity bounds and therefore it cannot be primary.
The corresponding primary weight is

w = [L+ n− 2;n− 2, n− 2; 0, L− 2, 0;L]. (3.3)

Symmetry. The subsector is invariant under an sl(2) subalgebra of the superconformal
algebra (note that L1

1 = L2
2 = 1

2
D − 1

2
L in this sector)

J ′
+ = P11 = P1+i2,

J ′
− = K11 = K1+i2,

J ′
3 = 1

2
D + 1

2
δD + 1

2
L1

1 + 1

2
L2

2 = D + 1

2
δD − 1

2
L. (3.4)

Here, the dilatation generator D is part of the algebra. At higher loops, one should keep
in mind that only half of the anomalous piece appears. The sl(2) subalgebra follows from
the relations in App. A

[J ′
+, J

′
−] = −2J ′

3, [J ′
3, J

′
±] = ±J ′

±. (3.5)
9Depending on the situation, we take the freedom to use either spinor or vector index notation.
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It has the quadratic Casimir operator

J ′ 2 = J ′ 2
3 − 1

2
{J ′

+, J
′
−}. (3.6)

The algebra may be represented by means of oscillators a, a†

J ′
− = a, J ′

3 = 1

2
+ a†a, J ′

+ = a† + a†a†a. (3.7)

We define the canonical commutator as

[a, a†] = 1 (3.8)

and assume that the vacuum state |0〉 is annihilated by a. Under this algebra the set
of letters (a†)n|0〉 transforms in the infinite dimensional spin j = −1

2
representation V ′

F

with highest weight
w′

F = [2j] = [−1]. (3.9)

The Hamiltonian density H12 acts on two fields (a†
1)
k(a†

2)
l|00〉. Of particular interest is

therefore the tensor product of two V ′
F, it splits into modules of spin −1 − j.

V ′
F × V ′

F =

∞∑

j=0

V ′
j , with w′

j = [−2 − 2j]. (3.10)

The algebra acting on this tensor product is given by the generators J ′
12 = J ′

1 + J ′
2. The

quadratic Casimir reads

J ′ 2
12 = −(a†

1 − a†
2)

2a1a2 + (a†
1 − a†

2)(a1 − a2). (3.11)

The highest weight state of V ′
j , which is annihilated by J ′

12,−, is

|j〉 = (a†
1 − a†

2)
j |00〉. (3.12)

the eigenvalue of the quadratic Casimir in that representation is

J ′ 2
12 V

′
j = j(j + 1)V ′

j , (3.13)

which intriguingly matches the psl(4|4) counterpart (2.27).

The Hamiltonian. Using point splitting regularisation we find the action of the
Hamiltonian density

H ′
12 (a†

1)
k(a†

2)
n−k|00〉 =

n∑

k′=0

(
δk=k′

(
h(k) + h(n− k)

)
− δk 6=k′

|k − k′|

)
(a†

1)
k′(a†

2)
n−k′|00〉,

(3.14)
see App. B for details. It is straightforward to verify that this H ′

12 is invariant under the
generators J ′

12. In analogy to (2.24) it is therefore clear that we can write H ′
12 as

H ′
12 =

∞∑

j=0

2C ′
j P

′
12,j . (3.15)
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where P ′
12,j projects a state (a†

1)
k(a†

2)
n−k|00〉 to the module V ′

j . The coefficients C ′
j are

found by acting with H ′
12 on the highest weight states |j〉. Using the sum

n∑

k=a+1

(−1)a+k+1a!(n− a)!

k!(n− k)!(k − a)
= h(n) − h(a) (3.16)

we can show that
C ′
j |j〉 = H ′

12 |j〉 = 2h(j) |j〉. (3.17)

Note that the Hamiltonian density (3.15) has precisely the right eigenvalues (3.17) for
total spin −1 − j in order to be integrable [38]. Thus we have found that the planar
Hamiltonian in this subsector is the Hamiltonian of the XXX−1/2 Heisenberg spin chain.
This is investigated in further detail in [34].

Lift to psl(4|4). The interesting feature of this subsector is that there is a one-to-
one correspondence between the modules Vj (2.19) and V ′

j . The Hamiltonian in this
subsector lifts to the full N = 4 Hamiltonian! Clearly, as sl(2) is a subalgebra of
psl(4|4), the module V ′

j is a submodule of some Vj′. Here, it turns out, that j′ = j and

V ′
j ⊂ Vj . (3.18)

In the psl(4|4) algebra the state |j〉 has weight

w′
j = [j + 2; j, j; 0, 2, 0; 0, 2]. (3.19)

For j = 0 this is the primary weight of the current multiplet w0 = [2; 0, 0; 0, 2, 0; 0, 2].
For j > 0 the weight is beyond the unitarity bounds and cannot be primary. The corre-
sponding primary weights are wj = [j; j−2, j−2; 0, 0, 0; 0, 2] or w1 = [2; 0, 0; 1, 0, 1; 0, 2],
respectively. These are exactly the primary weights of the modules Vj in (2.19). Using
the fact that the two Hamiltonians must agree within the subsector we find

2Cj |j〉 = H12 |j〉 = H ′
12 |j〉 = 2h(j) |j〉. (3.20)

This shows that Cj = h(j) in (2.20) and proves the claim (2.21).

Examples. The expression (3.14) can be used to calculate any one-loop anomalous
dimension within this subsector. The generalisation to the non-planar sector is straight-
forward: We know that the structure of the non-planar Hamiltonian is given by (2.16).
We can therefore act with the Hamiltonian density Hkl also on non-neighbouring sites
k, l. The non-planar structure is then evaluated according to (2.16).

We go ahead and find some eigenstates of the Hamiltonian, see Tab. 2. Especially
for the ‘two-body’ problems with two sites or two excitations (derivatives) one should be
able to find exact eigenstates. For L = 2 we know the answer already, it is Tr |j〉, where
the trace projects to cyclic states, effectively removing states with odd j. The spectrum
is given by (2.31). Indeed, also for n = 2 we find exact eigenstates

OL
n = 2 cos

πn

L+ 1
Tr (a†

1)
2 |L〉 +

L∑

p=2

cos
πn(2p− 1)

L+ 1
Tr a†

1a
†
p |L〉, (3.21)
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∆0 L n δ∆P [g2
YM
N/π2]

4 2 2 3

4

+

5 3 2 1

2

−

6 4 2 1

8
(5 ±

√
5)+

3 3 15

16

±

2 4 25

24

+

7 5 2 1

4

−
, 3

4

−

4 3 3

4

±

3 4 3

4

−

∆0 L n δ∆P [g2
YM
N/π2]

8 6 2 (64x3 − 112x2 + 56x− 7)+

5 3 1

32
(25 ±

√
37)±

4 4 23

24

±
, (768x3 − 2336x2 + 2212x− 637)+

3 5 35

32

±

2 6 49

40

+

9 7 2 1

4
(2 ±

√
2)−, 1

2

−

6 3 (256x3 − 608x2 + 459x− 108)±

5 4 1

16
(13 ±

√
41)−, 1

96
(97 ± 7

√
5)±

4 5 1

96
(105 ±

√
385)±

3 6 11

12

−
, 227

160

±

Table 2: The first few states within the sl(2) subsector. The weights of the corresponding
primaries are [L + n − 2;n − 2, n − 2; 0, L − 2, 0; 0, L]. Cubic polynomials indicate three states
with energies given by the roots of the cubic equation.

which are precisely the BMN operators with two symmetric-traceless vector indices [31,
29]. Their energy is

E = 8 sin2 πn

L+ 1
, δD =

g2
YM
N

π2
sin2 πn

L+ 1
. (3.22)

In analogy to the special, unpaired three-impurity states found in [22], we might hope
to find special states of three sites or with three excitations. It turns out, that there are
no unpaired states of three excitations, but there are some for L = 3. Empirically we
find exactly one unpaired state for 2k excitations. This state has energy

E = 4h(k), δD =
g2

YM
N

2π2
h(k). (3.23)

and weight [2k + 3; 2k, 2k; 0, 3, 0; 0, 3]. The corresponding superconformal primary has
weight

[2k + 1; 2k − 2, 2k − 2; 0, 1, 0; 0, 3]. (3.24)

Interestingly, the spectrum comprises all harmonic numbers h(k), whereas the L = 2
spectrum (2.31) consists only of the even ones h(2k).

4 The oscillator picture

In the last section we have made use of an oscillator representation for a subsector of
operators in N = 4 SYM. In this section we will show how to represent a generic operator
of N = 4 SYM in terms of excitations of (different) oscillators, see also [33]. We will
then describe the action of the Hamiltonian on these states explicitly.
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4.1 Oscillator representations

Let us explain the use of oscillators for fields and generators in terms of the algebra
gl(N): We write10

Jab = a†
ba
a, with a, b = 1, . . . , N. (4.1)

Using the commutators

[aa, a†
b] = δab , [aa, ab] = [a†

a, a
†
b] = 0 (4.2)

it is a straightforward exercise to show that J satisfies the gl(N) algebra.

The gl(N) invariant vacuum. Let us introduce a state |0〉 defined by

aa|0〉 = 0 for a = 1, . . . , N. (4.3)

Then the states
a†
a1
. . .a†

ak
|0〉 (4.4)

transform in the totally symmetrised product of k fundamental representations of sl(N)
and have gl(1) central charge k.

A gl(N) breaking vacuum. Another state |n〉 can be defined by

aa|n〉 = 0, a†
a′ |n〉 = 0 for a = 1, . . . , n, a′ = n + 1, . . .N. (4.5)

In this case it is more convenient to write

bȧ = a†
ȧ+n, b†

ȧ = −aȧ+n, for ȧ = 1, . . . , n′ = N − n with [bȧ,b†

ḃ
] = δȧ

ḃ
(4.6)

and consider the subalgebra sl(n) × sl(n′), Jab = a†
ba
a, J ȧḃ = b†

ḃ
bȧ, under which |n〉 is

invariant. Now as the off-diagonal part Jȧb = a†
bb

†
ȧ of the generator J consists of only

creation operators, the state |n〉 transforms in an infinite-dimensional representation. In
a generic state

a†
a1
. . .a†

ak
b†

ḃ1
. . .b†

ḃk′
|n〉 (4.7)

the gl(1) central charge Jaa − J ȧȧ is k − k′ − n′ and it labels irreducible modules of
sl(N). The gl(1) dilatation charge (dimension) n′Jaa + nJ ȧȧ contained in sl(N) equals
kn′ + k′n+ nn′. Within each irreducible module there is a state with lowest dimension,
it has either k = 0 or k′ = 0 depending on the value of the central charge.

Fermionic oscillators. Instead of the bosonic commutators (4.2) we might choose
fermionic oscillators with anticommutators

{aa, a†
b} = δab , {aa, ab} = {a†

a, a
†
b} = 0. (4.8)

In this case it is also straightforward to show that the algebra of gl(N) is satisfied.
The oscillator representation Jab splits into N + 1 totally antisymmetric products of the
fundamental representation of gl(N). This will also be the case for a gl(N) breaking
vacuum, though not manifestly.

10Strictly speaking, the oscillators a and a
† are independent. Only in one of the real forms of gl(N)

they would be related by conjugation.
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4.2 A representation of gl(4|4)

Keeping all this in mind, let us now have a look at Tab. 1. All representations of
sl(2) × sl(2) are symmetric tensor products of the fundamental representation, while
the representations of sl(4) are antisymmetric. Using two bosonic oscillators (aα, a†

α),
(bα̇,b†

α̇) with α, α̇ = 1, 2 and one fermionic oscillator (ca, c†a) with a = 1, 2, 3, 4 we can
thus write [33]

DkF =̂ (a†)k+2(b†)k (c†)0|0〉,
DkΨ =̂ (a†)k+1(b†)k (c†)1|0〉,
DkΦ =̂ (a†)k (b†)k (c†)2|0〉,
DkΨ̄ =̂ (a†)k (b†)k+1(c†)3|0〉,
DkF̄ =̂ (a†)k (b†)k+2(c†)4|0〉. (4.9)

Each of the oscillators a†
α,b

†
α̇, c

†
a carries one of the sl(2)2, sl(4) spinor indices of the fields,

for example
Dαβ̇ Dγδ̇ Φab = a†

αa
†
γb

†

β̇
b†

δ̇
c†ac

†
b|0〉. (4.10)

The statistics of the oscillators automatically symmetrises the indices in the desired way.
The non-vanishing commutators of oscillators are taken to be

[aα, a†
β ] = δαβ ,

[bα̇,b†

β̇
] = δα̇

β̇
,

{ca, c†b} = δab . (4.11)

The canonical forms for the generators of the two sl(2) and sl(4) are

Lαβ = a†
βa

α − 1

2
δαβa

†
γa

γ ,

L̇α̇β̇ = b†

β̇
bα̇ − 1

2
δα̇
β̇
b†
γ̇b

γ̇ ,

Ra
b = c†bc

a − 1

4
δab c

†
cc
c. (4.12)

Under these the fields (4.9) transform canonically. We write the corresponding three
gl(1) charges as

D = 1 + 1

2
a†
γa

γ + 1

2
b†
γ̇b

γ̇ ,

C = 1 − 1

2
a†
γa

γ + 1

2
b†
γ̇b

γ̇ − 1

2
c†cc

c,

B = 1

2
a†
γa

γ − 1

2
b†
γ̇b

γ̇ . (4.13)

Assuming that the oscillators (a,b†, c) and (a†,b, c†) transform in fundamental and con-
jugate fundamental representations of gl(4|4) we write down the remaining off-diagonal
generators according to (4.1)

Qa
α = a†

αc
a, Sαa = c†aa

α,

Q̇α̇a = b†
α̇c

†
a, Ṡα̇a = bα̇ca,

Pαβ̇ = a†
αb

†

β̇
, Kαβ̇ = aαbβ̇.

(4.14)
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Quite naturally the algebra gl(4|4) is realised by the generators (4.12),(4.13)11,(4.14).
We have written this in a sl(2)2 × sl(4) covariant way. In fact one combine the indices a
and α into a superindex and obtain a manifest sl(2) × sl(2|4) notation. The generators
with two lower or two upper indices, P, Q̇,K, Ṡ, together with the remaining charges
complete the gl(4|4) algebra.

First, we note that all fields (4.9) are uncharged with respect to the central charge
C, it can therefore be dropped leading to sl(4|4). Furthermore, in sl(4|4) the generator
B never appears in commutators and can be projected out, this algebra is psl(4|4). The
generators (4.12),(4.13),(4.14) form a specific irreducible representation of psl(4|4). As
they transform the fields (4.9) of N = 4 SYM among themselves, this representation has
primary weight (2.17)

wF = [1; 0, 0; 0, 1, 0; 0, 1]. (4.15)

As an aside, in this representation it can be explicitly shown that the value of the
quadratic Casimir operator (A.7) is zero

J2VF = 0. (4.16)

In the same manner it can be shown that the value of the quadratic Casimir in the
module Vj , (2.27), is j(j + 1).

Physical vacuum. As in the case of the conformal subalgebra sl(4) we can split the
flavour sl(4) into sl(2) × sl(2). In that case we define

d†
1 = c3, d†

2 = c4, d1 = c†3, d2 = c†4, (4.17)

and use a vacuum |Z〉 annihilated by a1,2,b1,2, c1,2,d1,2. It is related to |0〉 by

|Z〉 = c†3c
†
4|0〉. (4.18)

The benefit of this vacuum is that it is not charged under the central charge C and
thus physical. It corresponds to the primary weight [1; 0, 0; 0, 1, 0; 0, 1] of the module
VF. Furthermore it is the vacuum used in the BMN correspondence [3] and one of the
Bethe ansätze in [34]. The drawback is that it is not invariant under the full sl(4)
flavour algebra, but only under a subgroup sl(2)× sl(2). The expressions for the gl(4|4)
generators thus complicate. However, if the indices (a, α) and (ȧ, α̇) are combined in two
superindices, we have a manifest psl(2|2) × psl(2|2) covariance.

Weights and excitations. In this context it is useful to know how to represent an
operator with a given weight

w = [∆0; s1, s2; q1, p, q2;B,L] (4.19)

in terms of excitations of the oscillators. We introduce a vacuum operator |0, L〉 which
is the tensor product of L vacua |0〉. The oscillators a†

s,α,b
†
s,α̇, c

†
s,a. now act on site s,

11Note that a shift of B by a constant (−1) does not modify the algebra. Then the 1 in D, C, B can

be absorbed into 1 + 1

2
b
†
γ̇b

γ̇ = 1

2
b

γ̇
b
†
γ̇ to yield a canonical form.
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where commutators of two oscillators vanish unless the sites agree. A generic state is
written as

(a†)na(b†)nb(c†)nc|0, L〉 (4.20)

By considering the weights of the oscillators as well as the central charge constraint, we
find the number of excitations

na =

(
1

2
∆0 + 1

2
B − 1

2
L+ 1

2
s1

1

2
∆0 + 1

2
B − 1

2
L− 1

2
s1

)
, nb =

(
1

2
∆0 − 1

2
B − 1

2
L+ 1

2
s2

1

2
∆0 − 1

2
B − 1

2
L− 1

2
s2

)
. (4.21)

and

nc =





1

2
L− 1

2
B − 1

2
p− 3

4
q1 − 1

4
q2

1

2
L− 1

2
B − 1

2
p+ 1

4
q1 − 1

4
q2

1

2
L− 1

2
B + 1

2
p+ 1

4
q1 − 1

4
q2

1

2
L− 1

2
B + 1

2
p+ 1

4
q1 + 3

4
q2



 . (4.22)

If the physical vacuum |Z〉 is used instead of the sl(4) invariant vacuum, the numbers of
excitations of the sl(4) oscillators are given by

nc =

(
1

2
L− 1

2
B − 1

2
p− 3

4
q1 − 1

4
q2

1

2
L− 1

2
B − 1

2
p+ 1

4
q1 − 1

4
q2

)
, nd =

(
1

2
L+ 1

2
B − 1

2
p− 1

4
q1 + 1

4
q2

1

2
L+ 1

2
B − 1

2
p− 1

4
q1 − 3

4
q2

)
. (4.23)

4.3 The harmonic action

The psl(4|4) invariant Hamiltonian density H12 is given by some function of J12, see
(2.25)

H12 = 2h(J12). (4.24)

We will now describe explicitly how H12 acts on a state of two-sites.

Invariant action. We will investigate the action of a generic function f(J12) on two
oscillator sites. As the dimension of any explicit state is a finite number, we can express
f(J12) as a polynomial in the quadratic Casimir, (2.28). Let us introduce a collective
oscillator A†

A = (a†
α,b

†
α̇, c

†
a). A general state in VF × VF can be written as

|s1, . . . , sn;A〉 = A†
s1,A1

. . .A†
sn,An

|00〉 (4.25)

subject to the central charge constraints C1|X〉 = C2|X〉 = 0. The label sk = 1, 2 de-
termines the site on which the k-th oscillator acts. It is easily seen that the Casimir
operator J2

12 conserves the number of each type of oscillator; it can however move oscil-
lators between both sites. Therefore the action of f(J12) is

f(J12)|s1, . . . , sn;A〉 =
∑

s′
1
,...s′n

cs,s′,A δC1,0δC2,0 |s′1, . . . , s′n;A〉 (4.26)

with some coefficients cs,s′,A. The sums go over the sites 1, 2 and δC1,0, δC2,0 project to
states where the central charge at each site is zero. In view of the fact that oscillators
represent indices of fields, see (4.10), a generic invariant operators f(J12) acts on two
fields by moving indices between them.
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Harmonic action. The action of the harmonic numbers within the Hamiltonian den-
sity H12 = 2h(J12) turns out to be particularly simple. It does not depend on the types
of oscillators Ak, but only on the number of oscillators which change the site

H12|s1, . . . , sn;A〉 =
∑

s′
1
,...s′n

cn,n12,n21
δC1,0δC2,0 |s′1, . . . , s′n;A〉. (4.27)

Here n12, n21 count the number of oscillators hopping from site 1 to 2 or vice versa. The
coefficients cn,n12,n21

are given by

cn,n12,n21
= (−1)1+n12n21

Γ
(

1

2
(n12 + n21)

)
Γ
(
1 + 1

2
(n− n12 − n21)

)

Γ
(
1 + 1

2
n
) . (4.28)

In the special case of no oscillator hopping we find

cn,0,0 = h(1

2
n), (4.29)

which can be regarded as a regularisation of (4.28). We will refer to this action given by
(4.27),(4.28),(4.29) as the ‘harmonic action’.

Proof. To prove that H12 is given by (4.27),(4.28),(4.29) it suffices to show

[J12, H12] = 0, H12Vj = 2h(j)Vj. (4.30)

The invariance of H12 under the subalgebra sl(2) × sl(2|4) given by the generators
L̇, L, R,D,Q, S is straightforward: These generators only change the types of oscilla-
tors, whereas the harmonic action does not depend on that. In contrast, the remaining
generators K,P, Q̇, Ṡ change the number of oscillators by two.

Let us act with P
12,αβ̇ on a generic state

P12,αβ̇|s1, . . . , sn;A〉 = |1, 1, s1, . . . , sn;A
′〉 + |2, 2, s1, . . . , sn;A

′〉, (4.31)

and get a state with two new oscillators, A′ = (α, β̇, A). The action of the Hamiltonian
density (4.27) yields eight terms. In two of these terms both new oscillators end up at
site 1

cn+2,n12,n21
|1, 1, s′1, . . . , s′n;A′〉 + cn+2,n12,n21+2|1, 1, s′1, . . . , s′n;A′〉. (4.32)

Here n12, n21 refer only to the hopping of the old oscillators. Eq. (4.28) can be used to
combine the two coefficients in one

cn+2,n12,n21
+ cn+2,n12,n21+2 = cn,n12,n21

. (4.33)

We pull the additional two oscillators out of the state and get
(
cn+2,n12,n21

+ cn+2,n12,n21+2

)
|1, 1, s′1, . . . , s′n;A′〉 = P

1,αβ̇ cn,n12,n21
|s′1, . . . , s′n;A〉 (4.34)

Summing up all contributions therefore yields P
1,αβ̇H12|s1, . . . , sn;A〉. If both new oscil-

lators end up at site 2 we get an equivalent result. It remains to be shown that the other
four terms cancel. Two of these are

cn+2,n12,n21+1|1, 2, s′1, . . . , s′n;A′〉 + cn+2,n12+1,n21
|1, 2, s′1, . . . , s′n;A′〉. (4.35)
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We see that the absolute values in (4.28) match for cn+2,n12,n21+1 and cn+2,n12+1,n21
, we

sum up the signs

(−1)1+n12n21+n12 + (−1)1+n12n21+n21 = (−1)1+n12n21

(
(−1)n12 + (−1)n21

)
. (4.36)

Now, oscillators always hop in pairs due to the central charge constraint. One of the new
oscillators has changed the site, so the number of old oscillators changing site must be
odd. The above two signs must be opposite and cancel in the sum. The same is true for
the remaining two terms. This concludes the proof for [P

12,αβ̇ , H12] = 0 and similarly,

for invariance under Q̇. To prove invariance under K, Ṡ we note that these generators
remove two oscillators from one of the two sites. Assume it will remove the first two
oscillators from a state (for each two oscillators that are removed, the argument will be
the same). Now, the argument is essentially the same as the proof for P12,αβ̇ read in the
opposite direction.

To prove that the eigenvalues of H12 are given by 2h(j) we act on a special state
within Vj. We define

|j + 2, k〉 =
(a†

1,1)
k+2(b†

1,1)
k(a†

2,1)
j−k+2(b†

2,1)
j−k

(k + 2)!k!(j − k + 2)!(j − k)!
|00〉 (4.37)

which corresponds to DkF Dj−kF . Then

|j + 2〉 =

j∑

k=0

(−1)k |j + 2, k〉 (4.38)

is a representative of Vj+2. It is therefore an eigenstate of H12 and we can choose to
calculate only the coefficient of |j + 2, 0〉 in H12|j + 2〉. Using some combinatorics we
find the coefficient

h(j + 2) +
2∑

l=0

j∑

k=0

(−1)1+k+l δk+l 6=0

k + l

2

l!(2 − l)!

j!

k!(j − k)!
= 2h(j + 2), (4.39)

where l represents the number of oscillators a†
1,2 hopping to site 1. For j = 0, 1 we define

the states

|j = 0〉 = a†1,1a
†
1,1a

†
2,1a

†
2,1|00〉 + a†2,1a

†
2,1a

†
1,1a

†
1,1|00〉 − 2a†1,1a

†
2,1a

†
1,1a

†
2,1|00〉,

|j = 1〉 = a†1,1a
†
1,1a

†
2,1a

†
2,1|00〉 − a†2,1a

†
2,1a

†
1,1a

†
1,1|00〉. (4.40)

It is a straightforward exercise to show that H12|j = 0〉 = 0 and H12|j = 1〉 = 2|j = 1〉.
This concludes the proof of (4.30).

Physical vacuum. We can also describe the harmonic action using the primary vac-
uum |Z〉. Then the collective oscillator is A†

A = (a†
α,b

†
α̇, c

†
a,d

†
ȧ). A generic state in

VF × VF is defined in analogy to (4.25). Interestingly, we find that the action of the
Hamiltonian density is obtained using exactly the same expressions (4.27),(4.28),(4.29).
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Invariance of H12 can be shown as above and the proof for the eigenvalues is very similar.
We might use the states

|j, k〉 =
(a†

1,1)
k(b†

1,1)
k(a†

2,1)
j−k(b†

2,1)
j−k

k!2(j − k)!2
|ZZ〉, (4.41)

which correspond to the state k!(j − k)!(a†
1)
k(a†

2)
j−k|00〉 of Sec. 3. Then

|j〉 =

j∑

k=0

(−1)k |j, k〉 (4.42)

corresponds to j! |j〉 of (3.12) and belongs to the module Vj. As above we consider only
the coefficient of |j, 0〉 in H12|j〉. It is given by

h(j) +

j∑

k=1

(−1)1+kj!

k k!(j − k)!
= 2h(j), (4.43)

which proves that H12 = 2h(J12).

4.4 Some examples

We will now determine the planar anomalous dimension of a couple of operators to
demonstrate how to apply the above Hamiltonian.

Konishi. The Konishi operator has weight [2; 0, 0; 0, 0, 0; 0, 2]. Using (4.21),(4.22) we
find that we have to excite each of the four oscillators c once. There must be two oscilla-
tors on each site due to the central charge constraint and the three distinct configurations
are

|2112〉 = c†2,1c
†
1,2c

†
1,3c

†
2,4|00〉 = Tr X̄X,

|1212〉 = c†1,1c
†
2,2c

†
1,3c

†
2,4|00〉 = Tr Ȳ Y,

|1122〉 = c†1,1c
†
1,2c

†
2,3c

†
2,4|00〉 = Tr Z̄Z.

(4.44)

These can also be written in terms of three complex scalars X, Y, Z of N = 4 SYM and
their conjugates. We can define them as

X = c†1c
†
4|0〉, Y = c†2c

†
4|0〉, Z = c†3c

†
4|0〉,

X̄ = c†2c
†
3|0〉, Ȳ = c†3c

†
1|0〉, Z̄ = c†1c

†
2|0〉.

(4.45)

Let us now act with H12 on these states, we find

H12|1122〉 = c4,0,0|1122〉 + c4,1,1|1221〉 + c4,1,1|1212〉
+ c4,1,1|2121〉+ c4,1,1|2112〉+ c4,2,2|2211〉

= 3

2
|1122〉 + 1

2
|1221〉 + 1

2
|1212〉 + 1

2
|2121〉 + 1

2
|2112〉 − 1

2
|2211〉

= |2112〉 + |1212〉+ |1122〉 (4.46)
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using (4.27),(4.28),(4.29) and cyclicity of the trace. Evaluating the Hamiltonian for the
remaining two states |1212〉 and |1221〉 we find the energy matrix

H =




2 2 2
2 2 2
2 2 2



 , (4.47)

the factor of 2 is due to H = H12 +H21. One eigenstate is

K = |2112〉 + |1212〉 + |1122〉 = Tr X̄X + Tr Ȳ Y + Tr Z̄Z. (4.48)

with energy

E = 6, δ∆ = E × g2
YM
N

8π2
=

3g2
YM
N

4π2
(4.49)

which clearly corresponds to the Konishi operator. The other two, |2112〉 − |1122〉 and
|1212〉 − |1122〉, have vanishing energy and correspond to half-BPS operators.

Physical vacuum. Let us repeat this example using the physical vacuum |Z〉. Here,
we can define

X = c†1d
†
1|Z〉, Y = c†2d

†
1|Z〉, Z = |Z〉,

X̄ = d†
2c

†
2|Z〉, Ȳ = c†1d

†
2|Z〉, Z̄ = c†1c

†
2d

†
2d

†
1|Z〉.

(4.50)

The three states are

|1212′〉 = c†1,1c
†
2,2d

†
1,1d

†
2,2|ZZ〉 = Tr X̄X,

|1221′〉 = c†1,1c
†
2,2d

†
2,1d

†
1,2|ZZ〉 = Tr Ȳ Y,

|1111′〉 = c†1,1c
†
1,2d

†
1,1d

†
1,2|ZZ〉 = −Tr Z̄Z.

(4.51)

In the same way as above we get the energy matrix

H =




2 2 −2
2 2 −2

−2 −2 2



 . (4.52)

The eigenstates and energies are the same as above, e.g.

K = |1212′〉 + |1221′〉 − |1111′〉 = Tr X̄X + Tr Ȳ Y + Tr Z̄Z. (4.53)

Pseudovacua. In the previous paragraph we have worked with the physical vacuum
made from the scalar field |Z〉. This vacuum is the ground state, it is a protected half-
BPS state with zero energy. There are, however, similar configurations where we assume
the same field at each site. We find three possible fields to choose (including the above)

|Z〉 = c†3c
†
4|0〉, |Ψ〉 = a†

1c
†
4|0〉, |F〉 = a†

1a
†
1|0〉. (4.54)

In each case the states of two sites |ZZ〉, |ΨΨ〉, |FF〉 are eigenstates of the Hamilto-
nian density, the corresponding eigenvalues are 0, 2, 3. Thus the energies of the vacua
|Z,L〉, |Ψ, L〉, |F , L〉 constructed from L such fields are

EZ = 0, EΨ = 2L, EF = 3L, (4.55)
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where |Ψ, L〉 exists only for odd L. The sl(4|4) weights of these vacua and the corre-
sponding primaries are given by

wZ = [L; 0, 0; 0, L, 0; 0, L], wZ,0 = [L; 0, 0; 0, L, 0; 0, L],

wΨ = [3
2
L;L, 0; 0, 0, L; 1

2
L,L], wΨ,0 = [3

2
L− 5

2
;L− 3, 0; 0, 0, L− 3; 1

2
L− 3

2
, L− 1],

wF = [2L; 2L, 0; 0, 0, 0;L,L], wF ,0 = [2L− 2; 2L− 4, 0; 0, 0, 0;L− 2, L].
(4.56)

Of these three states, only |Z,L〉 is stable, it does not receive corrections at higher loops.
The other two states are expected to receive corrections to their form; to determine their
higher-loop energy becomes a non-trivial issue.

Spectrum of operators with a low dimension. We have used the harmonic ac-
tion to compute the planar one-loop spectrum of low-lying states in N = 4 SYM. First
of all we have determined the primary states using the algorithm proposed in [37]. In
analogy to the sieve of Eratostene the algorithm subsequently removes descendants from
the set of all states. What remains, are the primary states. For the primaries we have
determined the number of oscillator excitations using (4.21),(4.22),(4.23). Next we have
spread the oscillators on the sites in all possible distinct ways. The harmonic action
(4.27),(4.28),(4.29) then yields an energy matrix that was subsequently diagonalised.
For all the descendants that were removed in the sieve algorithm, we remove the corre-
sponding energy eigenvalue. The remaining eigenvalue is the one-loop planar anomalous
dimension of the primary operator.

The single-trace superconformal primaries of N = 4 SYM for ∆0 ≤ 5.5 and their
planar one-loop anomalous dimensions are given in Tab. 3.12 For a given primary weight
we write the anomalous dimensions along with a parity P . Here, parity is defined such
that for a SO(N) or Sp(N) gauge group the states with negative parity are projected
out.13 Parity P = ± indicates a pair of states with opposite parity but degenerate
energy. Furthermore, we have indicated states with conjugate representations for which
the order of sl(2)2 and sl(4) labels as well as the chirality B is inverted.

There are two important points to note looking at the energies in Tab. 3. Firstly,
we note the appearance of paired states with P = ±. As was argued in [22] this is an
indication of integrability. Indeed, not only the planar so(6) Hamiltonian of Minahan
and Zarembo [24] is integrable, but also the complete planar sl(4|4) Hamiltonian [34]!
Secondly, we find some overlapping primaries in Tab. 2,4, clearly their energies do agree.
What is more, we find that a couple of energies repeatedly occur. These are for ex-
ample, 3

4
, 5

4
, 5

8
, 9

8
, but also 1

8
(5 ±

√
5) and 1

16
(13 ±

√
41). As these states are primaries

transforming in different representations, they cannot be related by sl(4|4). Of course,
these degeneracies could merely be a coincidence of small numbers. Nevertheless the

12The table was computed as follows. A C++ programme was used to determine all superconformal
primary operators up to and including classical dimension 5.5 as well as their descendants. For the details
of the implementation of the sieve algorithm see [39]. In a Mathematica programme all operators with
a given number of excitations of the oscillators were collected; this involved up to hundreds of states
for ∆0 = 5.5. In a second step, the harmonic action was applied to all these operators to determine the
matrix of anomalous dimensions; this took a few minutes. The relevant eigenvalue corresponding to the
primary operator was sorted out by hand.

13Therefore, our definition of parity differs from the one of [22] by a factor of (−1)L.
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∆0 sl(2)2 sl(4) B L δ∆P [g2
YM
N/π2]

2 [0, 0] [0, 2, 0] 0 2 0+

[0, 0] [0, 0, 0] 0 2 3

4

+

3 [0, 0] [0, 3, 0] 0 3 0−

[0, 0] [0, 1, 0] 0 3 1

2

−

4 [0, 0] [0, 4, 0] 0 4 0+

[0, 0] [0, 2, 0] 0 4 1

8
(5 ±

√
5)+

[0, 0] [1, 0, 1] 0 4 3

4

−

[0, 0] [0, 0, 0] 0 4 1

16
(13 ±

√
41)+

[2, 0] [0, 0, 0] 1 3 9

8

−
+ conj.

[1, 1] [0, 1, 0] 0 3 15

16

±

[2, 2] [0, 0, 0] 0 2 25

24

+

5 [0, 0] [0, 5, 0] 0 5 0−

[0, 0] [0, 3, 0] 0 5 1

4

−
, 3

4

−

[0, 0] [1, 1, 1] 0 5 5

8

±

[0, 0] [0, 0, 2] 0 5 1

8
(7 ±

√
13)+ + conj.

[0, 0] [0, 1, 0] 0 5 5

4

−
, 5

4

−
, 1

8
(5 ±

√
5)−

[2, 0] [0, 0, 2] 1 4 5

4

−
+ conj.

[2, 0] [0, 1, 0] 1 4 1

8
(8 ±

√
2)+ + conj.

[1, 1] [0, 2, 0] 0 4 3

4

±

[1, 1] [1, 0, 1] 0 4 5

8

±
, 5

4

±

[1, 1] [0, 0, 0] 0 4 9

8

±

[2, 2] [0, 1, 0] 0 3 3

4

−

5.5 [1, 0] [0, 2, 1] 1

2
5 1± + conj.

[1, 0] [1, 1, 0] 1

2
5 1

8
(8 ±

√
2)± + conj.

[1, 0] [0, 0, 1] 1

2
5 1

32
(35 ±

√
5)± + conj.

[2, 1] [0, 1, 1] 1

2
4 9

8

±
+ conj.

[2, 1] [1, 0, 0] 1

2
4 1

32
(37 ±

√
37)± + conj.

[3, 2] [0, 0, 1] 1

2
3 5

4

±
+ conj.

Table 3: All one-loop planar anomalous dimensions of primary operators with ∆0 ≤ 5.5. Posi-
tive parity P indicates a state that survives the projection to gauge groups SO(N), Sp(N), par-
ity ± indicates a degenerate pair. The label ‘+conj.’ indicates conjugate states with sl(2)2, sl(4)
labels reversed and opposite chirality B.
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reappearance of e.g. 1

16
(13 ±

√
41) is striking. This could hint at a further symmetry

enhancement of the planar one-loop Hamiltonian. It might also turn out to be a conse-
quence of integrability. Furthermore, one might speculate that it is some remnant of the
broken higher spin symmetry of the free theory, see e.g. [40] and references in [37].

5 Subsectors

Especially in view of some recent advances of the AdS/CFT correspondence [3,4] it has
become interesting to determine anomalous dimensions of specific operators in N = 4
SYM. In principle, the Hamiltonian (2.22),(2.24) provides the answer, but it is hard
to apply. The harmonic action (4.27),(4.28),(4.29) is more explicit, but still requires a
reasonable amount of combinatorics to be applied. Nevertheless, some operators corre-
sponding to stringy states have special quantum numbers and often one can restrict to
certain subsectors of N = 4, see e.g. [25]. For instance, in Sec. 3 we have investigated
a subsector of N = 4 SYM. Within this subsector the number of letters as well as the
symmetry algebra is reduced. This reduction of complexity leads to a simplification of
the Hamiltonian (3.14) within the subsector. Thus, restricting to subsectors one can
efficiently compute anomalous dimensions.

To construct subsectors, we note that the number of excitations in the oscillator pic-
ture, (4.21),(4.22), naturally puts constraints on the weights of operators. Certainly,
there cannot be negative excitations. Furthermore, the oscillators c† are fermionic.
Therefore there can only be one excitation on each site. In total we find twelve bounds

na ≥ 0, nb ≥ 0, nc ≥ 0, L− nc ≥ 0. (5.1)

At the one-loop level all these excitation numbers are conserved. We can therefore
construct ‘one-loop subsectors’ by considering operators for which several of these bounds
are met. In certain cases these subsectors remain closed even at higher loops, we will
refer to these as ‘closed subsectors’.

5.1 Closed subsectors

Let us demonstrate this procedure for a rather trivial subsector. We will consider the
subsector of operators with

na12
= n

b
†
12

= nc12
= 0, nc34

= L. (5.2)

In conventional language these operators consist only of the fields

Z = c†3c
†
4|0〉 = |Z〉 = Φ34 = Φ5+i6 = Φ5 + iΦ6. (5.3)

These are the half-BPS operators TrZL and its multi-trace cousins. The Hamiltonian
within this subsector vanishes identically, as required by protectedness of BPS operators.
Using (4.21),(4.22) the constraints (5.2) allows only the weight

w = [L; 0, 0; 0, L, 0; 0, L]. (5.4)
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So far we know only that this subsector is closed at one-loop. To prove closure at higher
loops we consider a strictly positive combination of the bounds

na1
+ na2

+ nb1
+ nb2

+ nc1
+ nc2

+ (L− nc3
) + (L− nc4

) = 0. (5.5)

Together with the bounds (5.1) this implies that each of the individual terms is zero as
in (5.2). Using (4.21),(4.22) this combination implies

∆0 = p. (5.6)

The label p as well as the bare dimension ∆0 is preserved in perturbation theory.14

Therefore the condition (5.6) restricts to this subsector at all orders in perturbation
theory which means that this subsector is exactly closed. We also have that L = p, which
implies that the length is protected even at higher loops. Equivalently, the chirality is
exactly zero.

Let us investigate all closed subsectors. For a closed subsector we need to find a
positive linear combination of the bounds that is independent of B and L. Put differently,
it must be independent of L − B and L + B. The number of excitations nb involves
the combination −B − L. This can only be cancelled by B + L in L − nc. Therefore,
we can remove oscillators of type b only iff we also fully excite oscillators of type c.
Equivalently, we can remove oscillators of type a only iff we also remove oscillators of
type c. We find the following cases:

• If no oscillator is removed we get the full theory.

• If we set nb2
= 0 and nci

= L, i = k + 1, . . . , 4, the remaining symmetry algebra
will be u(1, 2|k). The non-compact form of the algebra is meant to indicate that
there are infinitely many letters within this subsector. Furthermore, B +L can be
expressed in terms of p, q1, q2, it is therefore conserved.

• If we set nb1,2
= 0 then we should only set nc4

= L in order to get a nontrivial
subsector. The remaining symmetry algebra is u(2|3) and will be discussed in
Sec. 5.3. It has conserved B + L.

• If we set na2
= nb2

= nci
= 0, i = 1, . . . k, and ncj

= L, j = l + 1, . . . 4 the
remaining symmetry algebra will be u(1, 1|l − k). Here, B and L are conserved.
For k = l = 2 we get the subsector considered in Sec. 3. For k = l = 1, 3 we get a
similar subsector in which the spin of the letters equals −1 instead of −1

2
.

• If we set na2
= nb1,2

= nci
= 0, i = 1, . . . k, and nc4

= L the remaining symmetry
algebra will be u(1|3− k). Here, B and L are conserved.

• If we set na1,2
= nb1,2

= nc1
= 0, and nc4

= L the remaining symmetry algebra
will be su(2). Here, B and L are conserved. This subsector will be discussed in
Sec. 5.2.

14The scaling dimension is obviously not preserved. The bare dimension is, however, for mixing occurs
only among operators of equal bare dimension.
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5.2 The nearly quarter-BPS su(2) subsector

In Sec. 5.1 we have found that we can express the half-BPS condition ∆0 = p in terms of
the excitation numbers of oscillators. We can do the same for the quarter BPS condition

∆0 = p + q1 + q2. (5.7)

This is equivalent to

na1
+ na2

+ nb1
+ nb2

+ 2nc1
+ 2(L− nc4

) = 0, (5.8)

which implies that this subsector is closed. The letters of this subsector are

Z = c†3c
†
4|0〉, φ = c†2c

†
4|0〉. (5.9)

The weights are
w = [L+ δ∆; 0, 0;n, L− 2n, n; 0, L], (5.10)

where n counts the number of φ’s. The length can be expressed in terms of sl(4) charges,
L = p + q1 + q2, it is therefore protected within the subsector. The residual symmetry
is su(2)× u(1). The su(2) factor transforms Z and φ in the fundamental representation,
whereas u(1) measures the anomalous dimension δ∆. A state with δ∆ = 0 is (at least)
quarter-BPS, a generic state, however, will not be protected. Then the weight w is
beyond the unitarity bounds and cannot be primary. The corresponding primary weight
is (assuming a highest weight state of the residual su(2))

w0 = [L− 2 + δ∆; 0, 0;n− 2, L− 2n, n− 2; 0, L− 2], (5.11)

This su(2) subsector was studied in [22], where also the two-loop contribution to the
dilatation operator was found

δD(g) = −g
2
YM

8π2
:Tr[φ, Z][φ̌, Ž]:

− 1

2

(
g2

YM

8π4

)2 (
:Tr
[
[φ, Z], Ž

][
[φ̌, Ž], Z

]
: + :Tr

[
[φ, Z], φ̌

][
[φ̌, Ž], φ

]
:

+ :Tr
[
[φ, Z], T a

][
[φ̌, Ž], T a

]
:
)

+ O(g6). (5.12)

Using this, the first few states and their planar anomalous dimensions were found, we
list the one-loop part in Tab. 4.

Furthermore, it was confirmed that the quarter-BPS operators found in [17, 41] are
annihilated by the two-loop anomalous dilatation operator δD(g). Here, we make the
observation that they are indeed annihilated by the much simpler operator Q (which
takes values in the gauge algebra, Q = T aQa)

Q = [Ž, φ̌]. (5.13)

As all terms of δD(g) contain this operator, it is clear that δD(g) annihilates those
quarter-BPS operators. We conjecture that all quarter-BPS operators are in the kernel
of Q

QO1/4−BPS = 0. (5.14)
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L n δ∆P [g2
YM
N/π2]

4 2 3

4

+

5 2 1

2

−

6 2 1

8
(5 ±

√
5)+

3 3

4

−

7 2 1

4

−
, 3

4

−

3 5

8

±

L n δ∆P [g2
YM
N/π2]

8 2 (64x3 − 112x2 + 56x− 7)+

3 1

2

±
, 3

4

−

4 (64x3 − 160x2 + 116x− 25)+

9 2 1

4
(2 ±

√
2)−, 1

2

−

3 (512x3 − 1088x2 + 720x− 147)±

4 5

8

±
, 1

4
(3 ±

√
3)−

Table 4: The first few states within the su(2) subsector [22]. The weights of the corresponding
primaries are [L − 2; 0, 0;n − 2, L − 2n, n − 2; 0, L − 2]. Cubic polynomials indicate three states
with energies given by the roots of the cubic equation.

This should simplify the search for quarter BPS operators drastically. We furthermore
conjecture that Q is an essential part in the first correction to the superboosts,

δS(g) ∼ g TrΨQ, δṠ(g) ∼ g Tr Ψ̄Q. (5.15)

These generators would join the quarter-BPS multiplet at primary weight w with three
semi-short multiplets into the long interacting multiplet at primary weight w0. In the
case of the a quarter-BPS operator, this does not happen and the multiplet remains
short [7, 42].

5.3 The nearly eighth-BPS u(2|3) subsector

In analogy to Sec. 5.2 we investigate the sector of nearly eighth-BPS operators. One of
the two eighth-BPS conditions is (the other one would lead to a similar subsector)

∆0 = p+ 1

2
q1 + 3

2
q2. (5.16)

This is equivalent to
nb1

+ nb2
+ 2(L− nc4

) = 0, (5.17)

which again implies that this subsector is closed. The letters of this subsector are

φa = c†ac
†
4|0〉, ψα = a†

αc
†
4|0〉, (a = 1, 2, 3, α = 1, 2) (5.18)

These transform in the fundamental representation of u(2|3). The central charge of u(2|3)
is given by the anomalous dimension δ∆. We also note that, although L and B are not
protected in this subsector, the combination L+B = ∆0 is. The weights are

w = [L+B + δ∆; s, 0; 2B + 2L− 2p− 3q2, p, q2;B,L], (5.19)

where the numbers of individual letters are given by

nφ =




p+ 2q2 − 2B − L,
L− p− q2,
L− q2,



 nψ =

(
B + 1

2
s,

B − 1

2
s.

)
(5.20)
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This subsector has only finitely many letters. The Hamiltonian would therefore have
only a few terms and it could be applied easily. Also an investigation of the two-loop
contribution to the dilatation operator along the lines of [22] seems feasible. Such an
investigation would be very interesting for two reasons. On the one hand one could see
effects of the Konishi anomaly. The O(g3) (‘3/2-loop’) contribution to the dilatation
operator transforms three scalars εabcφaφbφc into two fermions εαβψαψβ or vice versa.
In other words it changes the length of the operator. On the other hand, this sector
contains the subsector of Sec. 5.2. In [22] evidence for the integrability of the planar
two-loop dilatation operator was found. Possibly the two-loop integrability extends to
this subsector and maybe to the full theory.

The lowest-dimensional eighth-BPS operator is expected to be a triple-trace operator
with weight

w = [6; 0, 0; 0, 0, 4; 0, 6]. (5.21)

We find this operator, it is

O1/8−BPS = εabcεdef
[
N(N2 − 3) Trφaφd Trφbφe Trφcφf

+ 6(N2 − 1) Trφaφd Trφbφcφeφf

− 12N Trφaφbφcφdφeφf

+ 8N Trφaφdφbφeφcφf

+ 4 Trφaφbφc Trφdφeφf
]
. (5.22)

It is annihilated by the generalisation of (5.13)

Qa = εabc[φ̌
b, φ̌c] (5.23)

which implies that it is protected at one-loop. It is also annihilated by the operator

D3 ∼ εabcε
αβ Trψα[φ̌

a, [φ̌b, [φ̌c, ψβ]]]. (5.24)

An investigation of diagrams shows that the relevant 3/2-loop contribution to the dilata-
tion generator should be proportional to this operator. This supports the claim that the
operator (5.22) is eighth-BPS.

5.4 The so(6) subsector

This is the subsector where the scalars are the only letters

na12
= nb12

= 0. (5.25)

The allowed weights are
w = [L; 0, 0; q1, p, q2; 0, L]. (5.26)

The residual symmetry is sl(4) = so(6). This subsector is a one-loop subsector. All
bounds na, nb have a negative coefficient of L. Therefore all positive combinations of
bounds involve L, which is broken at higher loops.
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We will investigate the non-planar Hamiltonian in this sector. Two scalars Φp, Φq
can be symmetrised in three different ways, symmetric-traceless, antisymmetric and sin-
glet. These correspond to the modules V0, V1, V2, respectively. The projectors to these
representations are

(P0)
pq
mn = 1

2
δpmδ

q
n + 1

2
δpnδ

q
m − 1

6
δmnδ

pq,

(P1)
pq
mn = 1

2
δpmδ

q
n − 1

2
δpnδ

q
m,

(P2)
pq
mn = 1

6
δmnδ

pq, (5.27)

The coefficient (2.20) of the Hamiltonian using the harmonic eigenvalues (2.21) is

Cpq
mn = 0 · (P0)

pq
mn + 1 · (1

2
δpmδ

q
n − 1

2
δpnδ

q
m) + 3

2
· (1

6
δmnδ

pq) (5.28)

We substitute this in the Hamiltonian (2.16) and get

H = N−1
(
−1

2
:Tr[Φm, Φ̌

m][Φn, Φ̌
n]: + 1

2
:Tr[Φm, Φ̌

n][Φn, Φ̌
m]: − 1

4
:Tr[Φm, Φ̌

n][Φm, Φ̌
n]:
)

= N−1
(
−1

2
:Tr[Φm, Φn][Φ̌

m, Φ̌n]: − 1

4
:Tr[Φm, Φ̌

n][Φm, Φ̌
n]:
)
. (5.29)

After multiplication with g2
YM
N/8π2 this is exactly the effective vertex found in [19] and

yields the dilatation generators in [24, 21, 22].

5.5 The so(4, 2) subsector

One might choose to set
nc12

= 0, nc34
= L, (5.30)

or, more conveniently, nc12
= nd12

= 0 using the primary vacuum. This is a generalisation
of the subsector discussed in Sec. 3, which is, however, closed only at one-loop. In this
subsector the letters are the scalars Z with any number of the four spacetime derivatives
acting

(a†
1)
k1(a†

2)
k2(b†

1)
l1(b†

2)
k1+k2−l1|Z〉. (5.31)

The weight of a state is given by

w = [∆0; s1, s2; 0, L, 0; 0, L] (5.32)

where the total numbers of excitations are

k1 = 1

2
∆0 − 1

2
L+ 1

2
s1, k2 = 1

2
∆0 − 1

2
L− 1

2
s1, l1 = 1

2
∆0 − 1

2
L+ 1

2
s2. (5.33)

This sector might be useful to investigate semiclassical strings spinning on one circle in
S5 and two circles in AdS5.

5.6 The su(2|4) one-loop BMN matrix model

The BMN matrix model [3] in the one-loop approximation [35] is obtained by setting

nb12
= 0. (5.34)
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Again, this yields only a one-loop subsector. The letters W ′′
A of the matrix model are

c†ac
†
b|0〉, a†

αc
†
b|0〉, a†

αa
†
β |0〉 (5.35)

corresponding to the so(6) vectors, fermions and so(3) vectors. The residual symmetry
is su(2|4). The multiplet of letters V ′′

F is given by the primary weight

V ′′
F = [q1, p, q2]

∆0

s = [0, 1, 0]10. (5.36)

The irreducible modules of two multiplets of letters are

V ′′
F × V ′′

F = V ′′
0 + V ′′

1 + V ′′
2 (5.37)

with
V ′′

0 = [0, 2, 0]20, V ′′
1 = [1, 0, 1]20, V ′′

2 = [0, 0, 0]20. (5.38)

In sl(2) × sl(4) these modules split into

V ′′
0 = [0, 2, 0]20 + [0, 1, 1]2.51 + [0, 1, 0]32 + [0, 0, 2]30 + [0, 0, 1]3.51 + [0, 0, 0]40,

V ′′
1 = [1, 0, 1]20 + [0, 1, 1]2.51 + [1, 0, 0]2.51 + [0, 0, 2]32 + [0, 1, 0]32 + [0, 1, 0]30

+ [0, 0, 1]3.53 + [0, 0, 1]3.51 + [0, 0, 0]42,

V ′′
2 = [0, 0, 0]20 + [1, 0, 0]2.51 + [0, 1, 0]32 + [0, 0, 1]3.53 + [0, 0, 0]44. (5.39)

In [35] it was found that the one-loop spectrum for the matrix model in the so(6) vector
sector matches the so(6) sector of N = 4 SYM. The complete set of modules V ′′

j of
the full su(2|4) matrix model is already realised in the so(6) subsector. Therefore the
so(6) subsector lifts uniquely to the full su(2|4) matrix model. Thus the restriction of
the one-loop N = 4 SYM dilatation operator to this subsector agrees with the complete
matrix model Hamiltonian. In other words the matrix model Hamiltonian H ′′ = MD′′/2
is given by

D′′(1/M) = D′′
0−

4

M3

(
(P ′′

1 )ABCD + 3

2
(P ′′

2 )ABCD
)
:Tr[W ′′

A, W̌
′′C ][W ′′

B, W̌
′′D]:+O(M−4), (5.40)

where the precise form of the projectors P ′′
1,2 remains to be evaluated. Alternatively, the

Hamiltonian density could be determined using (4.27),(4.28),(4.29).

6 Outlook

Here we have constructed the highly intricate, first radiative corrections to the (trivial)
classical dilatation operator. One might also investigate radiative corrections to the
other generators of psl(4|4). The generators that receive corrections are the momenta
and boosts, P,K,Q, Q̇, S, Ṡ. The closure of the algebra, see App. A, should put tight
constraints on these as well as on the dilatation generator. In fact, these might determine
the dilatation operator at one-loop or even higher! Let us demonstrate this using the
related issue of multiplet splitting at the unitarity bounds [42]: We have constructed H as
an invariant operator under the classical psl(4|4). In the classical psl(4|4), long multiplets
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at the unitarity bounds split up. In the interacting theory these multiplets must rejoin.
This is, however, only possible if all submultiplets have degenerate anomalous dimensions.
For instance, we find the following three energies for the Konishi submultiplets

E = 4C2 = 6C1 = 6C1 − 2C0, (6.1)

where we have left the independent coefficients (2.20) unfixed. This consistency require-
ment determines C0, C1, C2 up to an overall constant. A similar argument was used in [8]
to determine some anomalous dimensions. One might hope that an investigation of the
twist-two operators (2.30) might constrain all independent coefficients to Cj = c h(j). If
this works out, all one-loop anomalous dimensions can be obtained purely algebraically
without evaluating a single Feynman diagram up to one overall constant! This constant
can finally be fixed by a different consistency argument [8], which merely requires com-
puting the quotient of two tree-level diagrams. In that spirit it would be very interesting
to find out if these consistency arguments or, more generally, the closure of the interact-
ing algebra, can be used to fix the higher-loop contributions to the dilatation generator
as well. This is not inconceivable, given that the N = 4 action is known to be unique.

It would be great to obtain higher-loop contributions to the dilatation generator. If
the one-loop contribution turns out to be completely fixed by symmetry, only higher-loop
anomalous dimensions could provide truly dynamical information about N = 4 SYM and
the dynamical AdS/CFT correspondence. Even better, one might find that all radiative
corrections are somehow fixed by symmetry and thus kinematical. Also the question of
higher-loop integrability raised in [22] could be addressed. As a starting point, one might
restrict to the u(2|3) subsector of Sec. 5.3 or the non-compact sl(2) subsector of Sec. 3 to
simplify the computations. Eventually a treatment of the complete dilatation generator
at two-loops would be desirable. This might be feasible using computer algebra packages
developed for higher-loop calculations within QCD.

The idea of investigating the dilatation operator can be generalised to a wider range
of QFT’s. For instance, a few theories with N = 2 supersymmetry are conformal at
the quantum level. For these the determination of the dilatation generator might shed
some light on holographic dualities correspondence away from the well-studied case of
AdS5 × S5. Even in a QFT without conformal invariance the techniques developed
in [21, 22] can be used to investigate logarithmic corrections to two-point functions and
scattering amplitudes in a systematic way. In particular in QCD at large Nc and deep in-
elastic scattering, similar techniques are at use (see e.g. [32]). There, following pioneering
work of Lipatov [43], methods of integrability have also had much impact.

An intriguing feature of Tab. 2,3,4 is that several states have degenerate energies, al-
though they are not related by sl(4|4) symmetry, see the discussion at the end of Sec. 4.4.
The occurrence of parity pairs provides some evidence for integrability. Integrability of
the full planar theory at one-loop and the corresponding Bethe ansatz equations are
presented in [34], reproducing the anomalous dimensions in the above tables. Apart
from these, we find more examples of degeneracies. Could this be the result of a further
symmetry enhancement due to or beyond integrability?
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A The algebra gl(4|4)

The algebra gl(4|4) consists of the generators J = (Q, S, Q̇, Ṡ, P,K, L, L̇, R,D,C,B).
These are the (super)translations Q, Q̇, P , the (super)boosts S, Ṡ,K, the gl(2) × gl(2)
rotations L, L̇, the gl(4) rotations R as well as the dilatation generator D, central charge
C and chirality B.

Under the rotations L, L̇, R, the indices of any generator J transform canonically
according to

[Lαβ, Jγ] = δαγ Jβ − 1

2
δαβJγ, [Lαβ, J

γ] = −δγβJα + 1

2
δαβJ

γ,

[L̇α̇β̇, Jγ̇] = δα̇γ̇ Jβ̇ − 1

2
δα̇
β̇
Jγ̇, [L̇α̇β̇, J

γ̇] = −δγ̇
β̇
J α̇ + 1

2
δα̇
β̇
J γ̇,

[Ra
b, Jc] = δacJb − 1

2
δabJc, [Ra

b, J
c] = −δcbJa + 1

2
δabJ

c.

(A.1)

The charges D,C,B of the generators are given by

[D, J ] = dim(J) J, [C, J ] = 0, [B, J ] = chi(J) J (A.2)

with non-vanishing dimensions

dim(P ) = − dim(K) = 1, dim(Q) = dim(Q̇) = − dim(S) = − dim(Ṡ) = 1

2
(A.3)

and non-vanishing chiralities

chi(Q) = −chi(Q̇) = −chi(S) = chi(Ṡ) = 1

2
. (A.4)

The translations and boosts commuting into themselves are given by

[Sαa, Pβγ̇] = δαβ Q̇γ̇a, [Kαβ̇, Q̇γ̇c] = δβ̇γ̇S
α
c,

[Ṡα̇a, Pβγ̇] = δα̇γ̇Q
a
β, [Kαβ̇ , Qc

γ] = δαγ Ṡ
β̇c,

{Q̇α̇a, Q
b
β} = δbaPβα̇, {Ṡα̇a, Sβb} = δabK

βα̇,

(A.5)

while the translations and boosts commuting into rotations are given by

[Kαβ̇, Pγδ̇] = δβ̇
δ̇
Lαγ + δαγ L̇

β̇
δ̇ + δαγ δ

β̇

δ̇
D,

{Sαa, Qb
β} = δbaL

α
β + δαβR

b
a + 1

2
δbaδ

α
β (D − C),

{Ṡα̇a, Q̇β̇b} = δab L̇
α̇
β̇ − δα̇

β̇
Ra

b + 1

2
δab δ

α̇
β̇
(D + C). (A.6)
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The chirality B never appears on the right hand side, it can be dropped. Furthermore,
the central charge can be set to zero. The resulting algebra is psl(4|4).

The quadratic Casimir of gl(4|4) is

J2 = 1

2
D2 + 1

2
LγδL

δ
γ + 1

2
L̇γ̇ δ̇L̇

δ̇
γ̇ − 1

2
Rc

dR
d
c

− 1

2
[Qc

γ, S
γ
c] − 1

2
[Q̇γ̇c, Ṡ

γ̇c] − 1

2
{Pγδ̇, Kγδ̇} −BC. (A.7)

For psl(4|4) the last term BC is absent.

B Calculation of diagrams

The two-point function of operators with vector indices is restricted by conformal sym-
metry to

〈
Oa,µ1...µm

(x)Ob,ν1...νn
(y)
〉

=
δab(Na + g2N ′

a)

(x− y)2∆0+2g2δ∆a
Jµi1

νi1
Jµi2

νi2
δµi3

µi3
δνi4

νi4
. . . (B.1)

The symbols

Jµν = δµν − 2
(x− y)µ(x− y)ν

(x− y)2
(B.2)

relate conformal tangent spaces at different space-time points. The vectors x − y with
open indices do not carry essential information, they can be discarded and reconstructed
later by replacing δµν by Jµν where appropriate. Also the corrections to the normal-
isation constants N ′ are irrelevant to the anomalous dimension at one-loop. Before
diagonalisation we thus expect the correlator to have the following structure

Nac(δ
c
b + g2δ∆c

b log |x− y|−2)

(x− y)2∆0

δµi1
νi1
δµi2

νi2
δµi3

µi3
δνi4

νi4
. . . (B.3)

We use the letters

Zk = (a†)k|0〉 =
1

k!
(D1 + iD2)

k(Φ5 + iΦ6). (B.4)

The expansion of the covariant derivative D = ∂ − igA can move one ‘bulk’ vertex to
the position of the field and become a ‘boundary’ vertex. At one-loop there can only be
one boundary vertex, the contribution from two boundary vertices has no logarithmic
behaviour. The relevant part of the letter Zk is thus

Zk =
1

k!
∂kΦ− ig

k∑

j=1

1

j!(k − j)!
[∂j−1A, ∂k−jΦ]. (B.5)

We go ahead and calculate the relevant parts of the correlator

〈
Zk(x1)Zn−k(x2) Z̄k′(x3) Z̄n−k′(x4)

〉
. (B.6)
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We restrict to the planar sector and use point splitting regulatisation. The matrix of
anomalous dimensions δ∆ is generated by the Hamiltonian, we which we assume the
generic form

H12 (a†
1)
k(a†

2)
n−k|00〉 =

n∑

k′=0

cn,k,k′ (a
†
1)
k′(a†

2)
n−k′|00〉. (B.7)

Each diagram contributes a set of constants cn,k,k′, which we will list below. We list the
contributions separately, they can be reused for a calculation within a different theory.

The diagrams Fig. 1a with an intermediate gluon (up to terms where one scalar line
has been collapsed to a point by the equations of motion) yield the vertex

g2
YM
N

32π2

∂k1∂
n−k
2 ∂k

′

3 ∂
n−k′

4

k!(n− k)!k′!(n− k′)!

(r − s)Φ(r, s)

x2
13x

2
24

(B.8)

where r, s are the conformal cross ratios

r =
x2

12x
2
34

x2
13x

2
24

, s =
x2

14x
2
23

x2
13x

2
24

. (B.9)

We use the expansion [15] of Φ in the limit x2 → x1, x4 → x3 (r → 0, s→ 1)

Φ(r, s) = −
∞∑

n,m=0

(n+m)!2

m!(1 + 2n+m)!
rn(1 − s)m log r + . . . (B.10)

and obtain the coefficient

cn,k,k′ =
1

2(n+ 1)
+ δk=k′

(
1

2
h(k) + 1

2
h(n− k)

)
− δk 6=k′

2|k − k′| . (B.11)

Diagram Fig. 1a with a four-point interaction is given by

g2
YM
N

32π2

∂k1∂
n−k
2 ∂k

′

3 ∂
n−k′

4

k!(n− k)!k′!(n− k′)!

Φ(r, s)

x2
13x

2
24

(B.12)

and the corresponding coefficient is

cn,k,k′ = − 1

2(n+ 1)
. (B.13)

Diagrams Fig. 1a with an intermediate gluon where one scalar line has been collapsed
to a point by the equations of motion is given by

g2
YM
N

32π2

∂k1∂
n−k
2 ∂k

′

3 ∂
n−k′

4

k!(n− k)!k′!(n− k′)!

(s′ − r′)Φ(r′, s′)

x2
13x

2
24

+ 3 perm. (B.14)

with

r′ =
x2

12

x2
24

, s′ =
x2

14

x2
24

(B.15)
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and the corresponding coefficient is

cn,k,k′ = δk=k′
(
−1

2
h(k + 1) − 1

2
h(n− k + 1)

)
− δk 6=k′

|k − k′|

+
δk 6=k′

4(k + 1)
+

δk 6=k′

4(k′ + 1)
+

δk 6=k′

4(n− k + 1)
+

δk 6=k′

4(n− k′ + 1)
. (B.16)

Diagrams Fig. 1a′ yields

g2
YM
N

32π2

k∑

j=1

(
∂k−j1 ∂k

′

3

(k − j)!k′
1

x2
13

)(
∂j−1

1 (∂1 + 2∂2)∂
n−k
2 ∂n−k

′

4

j!(n− k)!(n− k′)!

Φ(r′, s′)

x2
24

)

+ 3 perm. (B.17)

and the corresponding coefficient is

cn,k,k′ =
δk 6=k′

2|k − k′| −
δk 6=k′

4(k + 1)
− δk 6=k′

4(k′ + 1)
− δk 6=k′

4(n− k + 1)
− δk 6=k′

4(n− k′ + 1)
. (B.18)

The contributions from diagrams Fig. 1c with an intermediate gluon, with intermediate
fermions and the contributions from Fig. 1c’, respectively, are given by

cn,k,k′ = −δk=k′,
cn,k,k′ = 2δk=k′,

cn,k,k′ = δk=k′
(

1

2
h(k) + 1

2
h(n− k) + 1

2
h(k + 1) + 1

2
h(n− k + 1) − 1

)
. (B.19)

The sum of all coefficients is

cn,k,k′ = δk=k′
(
h(k) + h(n− k)

)
− δk 6=k′

|k − k′| . (B.20)

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity”,
Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200. • E. Witten, “Anti-de Sitter
space and holography”, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150. •
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from
non-critical string theory”, Phys. Lett. B428 (1998) 105, hep-th/9802109.

[2] R. R. Metsaev, “Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond
background”, Nucl. Phys. B625 (2002) 70, hep-th/0112044.

[3] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space and pp waves
from N = 4 Super Yang Mills”, JHEP 0204 (2002) 013, hep-th/0202021.

[4] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A semi-classical limit of the
gauge/string correspondence”, Nucl. Phys. B636 (2002) 99, hep-th/0204051. •
S. Frolov and A. A. Tseytlin, “Semiclassical quantization of rotating superstring in
AdS5 × S5”, JHEP 0206 (2002) 007, hep-th/0204226.

[5] F. Gliozzi, J. Scherk and D. I. Olive, “Supersymmetry, Supergravity theories and the dual
spinor model”, Nucl. Phys. B122 (1977) 253. • L. Brink, J. H. Schwarz and J. Scherk,
“Supersymmetric Yang-Mills Theories”, Nucl. Phys. B121 (1977) 77.

35

http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/0112044
http://arXiv.org/abs/hep-th/0202021
http://arXiv.org/abs/hep-th/0204051
http://arXiv.org/abs/hep-th/0204226


[6] M. F. Sohnius and P. C. West, “Conformal invariance in N = 4 Supersymmetric
Yang-Mills Theory”, Phys. Lett. B100 (1981) 245. • P. S. Howe, K. S. Stelle and
P. K. Townsend, “Miraculous ultraviolet cancellations in supersymmetry made
manifest”, Nucl. Phys. B236 (1984) 125. • L. Brink, O. Lindgren and B. E. W. Nilsson,
“N = 4 Yang-Mills theory on the light cone”, Nucl. Phys. B212 (1983) 401.

[7] V. K. Dobrev and V. B. Petkova, “All positive energy unitary irreducible representations
of extended conformal supersymmetry”, Phys. Lett. B162 (1985) 127.

[8] D. Anselmi, M. T. Grisaru and A. Johansen, “A Critical Behaviour of Anomalous
Currents, Electric-Magnetic Universality and CFT4”, Nucl. Phys. B491 (1997) 221,
hep-th/9601023. • D. Anselmi, “The N = 4 quantum conformal algebra”,
Nucl. Phys. B541 (1999) 369, hep-th/9809192.

[9] A. Santambrogio and D. Zanon, “Exact anomalous dimensions of N = 4 Yang-Mills
operators with large R charge”, Phys. Lett. B545 (2002) 425, hep-th/0206079.

[10] E. D’Hoker, D. Z. Freedman and W. Skiba, “Field theory tests for correlators in the
AdS/CFT correspondence”, Phys. Rev. D59 (1999) 045008, hep-th/9807098. •
S. Penati, A. Santambrogio and D. Zanon, “Two-point functions of chiral operators in
N = 4 SYM at order g4”, JHEP 9912 (1999) 006, hep-th/9910197. • S. Penati,
A. Santambrogio and D. Zanon, “More on correlators and contact terms in N = 4 SYM
at order g4”, Nucl. Phys. B593 (2001) 651, hep-th/0005223.

[11] G. Arutyunov, B. Eden, A. C. Petkou and E. Sokatchev, “Exceptional
non-renormalization properties and OPE analysis of chiral four-point functions in N = 4
SYM4”, Nucl. Phys. B620 (2002) 380, hep-th/0103230.

[12] M. Bianchi, S. Kovacs, G. Rossi and Y. S. Stanev, “On the logarithmic behavior in
N = 4 SYM theory”, JHEP 9908 (1999) 020, hep-th/9906188. • M. Bianchi, S. Kovacs,
G. Rossi and Y. S. Stanev, “Anomalous dimensions in N = 4 SYM theory at order g4”,
Nucl. Phys. B584 (2000) 216, hep-th/0003203.

[13] A. V. Kotikov and L. N. Lipatov, “NLO corrections to the BFKL equation in QCD and
in supersymmetric gauge theories”, Nucl. Phys. B582 (2000) 19, hep-ph/0004008. •
A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL evolution equations in the N = 4
supersymmetric gauge theory”, hep-ph/0112346. • F. A. Dolan and H. Osborn,
“Superconformal symmetry, correlation functions and the operator product expansion”,
Nucl. Phys. B629 (2002) 3, hep-th/0112251.

[14] A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL equations in the N = 4
supersymmetric gauge theory”, Nucl. Phys. B661 (2003) 19, hep-ph/0208220. •
A. V. Kotikov, L. N. Lipatov and V. N. Velizhanin, “Anomalous dimensions of Wilson
operators in N = 4 SYM theory”, Phys. Lett. B557 (2003) 114, hep-ph/0301021.

[15] G. Arutyunov, S. Frolov and A. C. Petkou, “Operator product expansion of the lowest
weight CPOs in N = 4 SYM4 at strong coupling”, Nucl. Phys. B586 (2000) 547,
hep-th/0005182.

[16] S. Penati and A. Santambrogio, “Superspace approach to anomalous dimensions in
N = 4 SYM”, Nucl. Phys. B614 (2001) 367, hep-th/0107071.

[17] A. V. Ryzhov, “Quarter BPS operators in N = 4 SYM”, JHEP 0111 (2001) 046,
hep-th/0109064. • M. Bianchi, B. Eden, G. Rossi and Y. S. Stanev, “On operator
mixing in N = 4 SYM”, Nucl. Phys. B646 (2002) 69, hep-th/0205321. •

36

http://arXiv.org/abs/hep-th/9601023
http://arXiv.org/abs/hep-th/9809192
http://arXiv.org/abs/hep-th/0206079
http://arXiv.org/abs/hep-th/9807098
http://arXiv.org/abs/hep-th/9910197
http://arXiv.org/abs/hep-th/0005223
http://arXiv.org/abs/hep-th/0103230
http://arXiv.org/abs/hep-th/9906188
http://arXiv.org/abs/hep-th/0003203
http://arXiv.org/abs/hep-ph/0004008
http://arXiv.org/abs/hep-ph/0112346
http://arXiv.org/abs/hep-th/0112251
http://arXiv.org/abs/hep-ph/0208220
http://arXiv.org/abs/hep-ph/0301021
http://arXiv.org/abs/hep-th/0005182
http://arXiv.org/abs/hep-th/0107071
http://arXiv.org/abs/hep-th/0109064
http://arXiv.org/abs/hep-th/0205321


G. Arutyunov, S. Penati, A. C. Petkou, A. Santambrogio and E. Sokatchev,
“Non-protected operators in N = 4 SYM and multiparticle states of AdS(5) SUGRA”,
Nucl. Phys. B643 (2002) 49, hep-th/0206020.

[18] C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, “A new double-scaling
limit of N = 4 super Yang-Mills theory and PP-wave strings”,
Nucl. Phys. B643 (2002) 3, hep-th/0205033. • D. J. Gross, A. Mikhailov and
R. Roiban, “Operators with large R charge in N = 4 Yang-Mills theory”,
Annals Phys. 301 (2002) 31, hep-th/0205066. • N. R. Constable, D. Z. Freedman,
M. Headrick, S. Minwalla, L. Motl, A. Postnikov and W. Skiba, “PP-wave string
interactions from perturbative Yang-Mills theory”, JHEP 0207 (2002) 017,
hep-th/0205089.

[19] N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, “BMN
correlators and operator mixing in N = 4 super Yang-Mills theory”,
Nucl. Phys. B650 (2003) 125, hep-th/0208178.

[20] N. R. Constable, D. Z. Freedman, M. Headrick and S. Minwalla, “Operator mixing and
the BMN correspondence”, JHEP 0210 (2002) 068, hep-th/0209002.

[21] N. Beisert, C. Kristjansen, J. Plefka and M. Staudacher, “BMN gauge theory as a
quantum mechanical system”, Phys. Lett. B558 (2003) 229, hep-th/0212269.

[22] N. Beisert, C. Kristjansen and M. Staudacher, “The dilatation operator of N = 4
conformal super Yang-Mills theory”, Nucl. Phys. B664 (2003) 131, hep-th/0303060.

[23] M. Spradlin and A. Volovich, “Note on plane wave quantum mechanics”,
Phys. Lett. B565 (2003) 253, hep-th/0303220.

[24] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills”,
JHEP 0303 (2003) 013, hep-th/0212208.

[25] N. Beisert, J. A. Minahan, M. Staudacher and K. Zarembo, “Stringing Spins and
Spinning Strings”, JHEP 0309 (2003) 010, hep-th/0306139.

[26] S. Frolov and A. A. Tseytlin, “Rotating string solutions: AdS/CFT duality in
non-supersymmetric sectors”, Phys. Lett. B570 (2003) 96, hep-th/0306143.

[27] I. Bena, J. Polchinski and R. Roiban, “Hidden symmetries of the AdS5 × S5

superstring”, hep-th/0305116.

[28] U. Gürsoy, “Vector operators in the BMN correspondence”, JHEP 0307 (2003) 048,
hep-th/0208041.

[29] T. Klose, “Conformal Dimensions of Two-Derivative BMN Operators”,
JHEP 0303 (2003) 012, hep-th/0301150.

[30] C.-S. Chu, V. V. Khoze and G. Travaglini, “BMN operators with vector impurities, Z2

symmetry and pp-waves”, JHEP 0306 (2003) 050, hep-th/0303107.

[31] N. Beisert, “BMN Operators and Superconformal Symmetry”,
Nucl. Phys. B659 (2003) 79, hep-th/0211032.

[32] L. D. Faddeev and G. P. Korchemsky, “High-energy QCD as a completely integrable
model”, Phys. Lett. B342 (1995) 311, hep-th/9404173. • V. M. Braun, S. E. Derkachov
and A. N. Manashov, “Integrability of three-particle evolution equations in QCD”,
Phys. Rev. Lett. 81 (1998) 2020, hep-ph/9805225. • A. V. Belitsky, A. S. Gorsky and

37

http://arXiv.org/abs/hep-th/0206020
http://arXiv.org/abs/hep-th/0205033
http://arXiv.org/abs/hep-th/0205066
http://arXiv.org/abs/hep-th/0205089
http://arXiv.org/abs/hep-th/0208178
http://arXiv.org/abs/hep-th/0209002
http://arXiv.org/abs/hep-th/0212269
http://arXiv.org/abs/hep-th/0303060
http://arXiv.org/abs/hep-th/0303220
http://arXiv.org/abs/hep-th/0212208
http://arXiv.org/abs/hep-th/0306139
http://arXiv.org/abs/hep-th/0306143
http://arXiv.org/abs/hep-th/0305116
http://arXiv.org/abs/hep-th/0208041
http://arXiv.org/abs/hep-th/0301150
http://arXiv.org/abs/hep-th/0303107
http://arXiv.org/abs/hep-th/0211032
http://arXiv.org/abs/hep-th/9404173
http://arXiv.org/abs/hep-ph/9805225


G. P. Korchemsky, “Gauge/string duality for QCD conformal operators”,
Nucl. Phys. B667 (2003) 3, hep-th/0304028.

[33] M. Gunaydin and N. Marcus, “The spectrum of the S5 compactification of the chiral
N = 4, D = 10 supergravity and the unitary supermultiplets of U(2, 2|4)”,
Class. Quant. Grav. 2 (1985) L11.

[34] N. Beisert and M. Staudacher, “The N = 4 SYM Integrable Super Spin Chain”,
Nucl. Phys. B670 (2003) 439, hep-th/0307042.

[35] N. Kim, T. Klose and J. Plefka, “Plane-wave Matrix Theory from N = 4 Super
Yang-Mills on R × S3”, hep-th/0306054.

[36] K. A. Intriligator, “Bonus symmetries of N = 4 super-Yang-Mills correlation functions
via AdS duality”, Nucl. Phys. B551 (1999) 575, hep-th/9811047.

[37] M. Bianchi, J. F. Morales and H. Samtleben, “On stringy AdS5 × S5 and higher spin
holography”, JHEP 0307 (2003) 062, hep-th/0305052.

[38] L. D. Faddeev, “How Algebraic Bethe Ansatz works for integrable model”,
hep-th/9605187.

[39] N. Beisert, M. Bianchi, J. F. Morales and H. Samtleben, work in progress.

[40] S. E. Konshtein and M. A. Vasiliev, “Massless representations and admissibility
condition for higher spin superalgebras”, Nucl. Phys. B312 (1989) 402. • B. Sundborg,
“Stringy gravity, interacting tensionless strings and massless higher spins”,
Nucl. Phys. Proc. Suppl. 102 (2001) 113, hep-th/0103247. • E. Sezgin and P. Sundell,
“Doubletons and 5D higher spin gauge theory”, JHEP 0109 (2001) 036,
hep-th/0105001. • A. Mikhailov, “Notes on higher spin symmetries”, hep-th/0201019.

[41] E. D’Hoker, P. Heslop, P. Howe and A. V. Ryzhov, “Systematics of quarter BPS
operators in N = 4 SYM”, JHEP 0304 (2003) 038, hep-th/0301104.

[42] L. Andrianopoli, S. Ferrara, E. Sokatchev and B. Zupnik, “Shortening of primary
operators in N-extended SCFT4 and harmonic-superspace analyticity”,
Adv. Theor. Math. Phys. 3 (1999) 1149, hep-th/9912007.

[43] L. N. Lipatov, “High-energy asymptotics of multicolor QCD and exactly solvable lattice
models”, JETP Lett. 59 (1994) 596, hep-th/9311037.

38

http://arXiv.org/abs/hep-th/0304028
http://arXiv.org/abs/hep-th/0307042
http://arXiv.org/abs/hep-th/0306054
http://arXiv.org/abs/hep-th/9811047
http://arXiv.org/abs/hep-th/0305052
http://arXiv.org/abs/hep-th/9605187
http://arXiv.org/abs/hep-th/0103247
http://arXiv.org/abs/hep-th/0105001
http://arXiv.org/abs/hep-th/0201019
http://arXiv.org/abs/hep-th/0301104
http://arXiv.org/abs/hep-th/9912007
http://arXiv.org/abs/hep-th/9311037

	Introduction and conclusions
	The form of the dilatation generator
	The non-compact sl(2) closed subsector
	The oscillator picture
	Oscillator representations
	A representation of gl(4|4)
	The harmonic action
	Some examples

	Subsectors
	Closed subsectors
	The nearly quarter-BPS su(2) subsector
	The nearly eighth-BPS u(2|3) subsector
	The so(6) subsector
	The so(4,2) subsector
	The su(2|4) one-loop BMN matrix model

	Outlook
	The algebra gl(4|4)
	Calculation of diagrams

