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Maximal slicing for puncture evolutions of Schwarzschild and Reissner-Nordstrm black holes
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We prove by explicit construction that there exists a maximal slicing of the Schwarzschild spacetime such
that the lapse has zero gradient at the puncture. This boundary condition has been observed to hold in
numerical evolutions, but in the past it was not clear whether the numerically obtained maximal slices exist
analytically. We show that our analytical result agrees with numerical simulation. Given the analytical form for
the lapse, we can derive that at late times the value of the lapse at the event horizon approaches the value
%\/§~0.3248, justifying the numerical estimate of 0.3 that has been used for black hole excision in numerical
simulations. We present our results for the nonextremal Reissner-Nordstetric, generalizing previous
constructions of maximal slices.
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[. INTRODUCTION smoothness of the lapse is an issue, say in the currently most
advanced computations of gravitational waves from black
When decomposing the 4-dimensional Einstein equationkole merger$10]. In addition, there are shift condition&1]
into (3+1)-dimensional form, a crucial role is played by the which in many cases overcome the so-called slice stretching
lapse function that determines how the 4-dimensional maniproblem of maximal slicing that previously limited black
fold is sliced into 3-dimensional hypersurfaces. For spatiahole evolutions like Ref[9] to short evolution times.
hypersurfaces the lapse determines how time progresses be-In this paper we establish the connection between the ana-
tween hypersurfaces. There is large freedom in choosing lgtically known solutions for maximal slicing of the
lapse, but a particularly interesting possibility is to determineSchwarzschild spacetinj&,4] and the maximal slicing com-
the lapse from the condition that the mean extrinsic curvatur@uted in the puncture evolution method for black hdigg
of the slices vanishes at all times. This condition correspondi the puncture method, the left-hand asymptotically flat re-
to a certain maximal volume property of the hypersurfacegion of a black hole is effectively compactified by analyti-
[1], and the resulting gauge condition is referred to as maxieally factoring out a coordinate singularity and working on
mal slicing. R3, which can result in a significant technical simplification
Maximal slicing has played an important role in both ana-over approaches which implement an inner boundary for
lytical and numerical work using 81 decompositions. It black hole excision. However, although the general solution
was suggested as a geometrically motivated antifocusing the linear elliptic equation for the maximal slicing lapse is
slicing condition by LichnerowicZ2] already in 1944; i.e., known for Schwarzschild, this solution depends on the
maximal slices avoid certain coordinate pathologies. Furtherboundary condition imposed on the lapse. Only “odd” and
more, maximal slicing helps to deal with physical singulari-“even” boundary conditions have been considered before,
ties associated with black holes. For a single Schwarzschildnd the numerical lapse of the puncture evolutions is not of
black hole, maximal slicing can be constructed analyticallythis type. Furthermore, there was no rigorous proof that in
[3,4]. One can obtain maximal slices that extend from thethe presence of the puncture coordinate singularity a regular
“right-hand” spatial infinity to the “left-hand” inner infinity ~ solution to the lapse equation exists, and while numerically
of the extended Schwarzschild spacetime, and these slicegiite robust, it was not clear that the numerics was able to
give a complete foliation outside the event horizon whilereliably determine this lapse.
approaching a limiting slice inside that does not reach the The key idea in this paper is to impose the numerically
physical singularity. In this sense maximal slices avoid theobserved behavior of the lapse, namely that its first deriva-
physical singularity, and even in more general situationgive vanishes at the puncture, as a novel boundary condition
maximal slices have been found to be singularity avoidingon the lapse. This boundary condition we call the “zero gra-
[5]. dient at the puncture(zgp condition. Since it is the coordi-
For these reasons, maximal slicing has been used frarate singularity at the puncture that implies the “zgp” con-
quently in numerical simulations of one black hole, e.g.,dition, we refer to the resulting maximal slicing lapse also as
Refs.[3,6,7], and also in binary black hole mergers in full the puncture lapse.
3D, e.g., Refs[8,9]. The lapse for maximal slicing is ob- The main result of the paper is that we can prove by
tained in general by solving an elliptic equation, but evenexplicit construction that there exists a maximal slicing of
though there now are algebraic lapse conditions that arthe Schwarzschild spacetime such that the lapse has zero
computationally far less expensive and share the singularitgradient at the puncture, and furthermore that our analytical
avoidance property, maximal slicing is still being used wherresult agrees with numerical simulation. Concretely, we ob-

0556-2821/2004/6@)/04400621)/$22.50 69 044006-1 ©2004 The American Physical Society



B. REIMANN AND B. BRUGMANN PHYSICAL REVIEW D 69, 044006 (2004

tain the zgp or puncture lapse as a time-dependent linear V#F,,=0, 2

superposition of the odd lapse and the even lapse. As an

application of the analytical form for the puncture lapse, wefor a charged black hole, where the stress-energy téngpr

can derive that at late times the value of the lapse at thé given in terms of the Maxwell tensét,, by

right-hand event horizon approaches the valge/3

~0.3248, justifying the numerical estimate of 0.3 that has T :i

been used for black hole excision in numerical simulations. e Aqr
There are two technical difficulties to overcome. First, the

analytic formulas of Refs[3,4] are nontrivial, in particular The 3+1 split of the equations in the ADM-formalisiisee

the calculation is based on Schwarzschild coordinates whichrnowitt, Deser and Misner Ref.13] or [1]) yields the

lead to complications in the numerical evaluation of the re-Hamiltonian and momentum constraints

sulting integrals. And second, we have to establish an ex- o

plicit mapping between the coordinates used in our analytical Hi=R+K2— KijK" —16mp=0, (4)

study and the numerical simulation before we can perform a

comparison. In this paper we only consider the case of van-

1
F/.LO'FV _Zg,u,VFU'QFO—Q . (3)

M=V (K= 9]K) +878,=0, ©

ishing shift. : ; ;

Since we have to discuss Ref8,4] in quite some detail, together with the evolution equations
we take the opportun_ity to derive all relevant equatiqns not (0 L)y = —2aK;;, (6)
only for Schwarzschild, but for a nonextremal Reissner-
Nordstran black hole. This turns out to be possible without (0= Lp)Kij=(—ViV;+R;; +KK;; —ZKikKk]-)a
major changes to the formalism and extends in some places
previous result§12]. —[87S;—47(S—p)vyijla. (7)

The paper is organized as follows. In Sec. Il, we recall the ) ) )
analytic solution to the lapse equation. In Secs. Il and IV, weHere the fundamental dynamical variables are the induced,
discuss in some detail the odd and even lapse, respectiveROSitive definite 3-metrigy; and the extrinsic curvatute;; . -
since these solutions will be superimposed to obtain the zgp'0te thatLy is the Lie derivative with respect to the shift
lapse. Furthermore, in Sec. IV we make explicit contact beVector andV; is the covariant spatial derivative associated
tween the equations given in Ref8] and[4]. In Sec. V, we with ;. F_urt_hermore_Ri_j is the 3-dimensional Ricci tensor
construct the zgp lapse and discuss the late time limit of th@nd the Ricci scalaR is its trace. The stress tens8f, the
lapse at the right-hand event horizon. In Sec. VI, we compar&omentum density vecta;, and the total energy density
the analytical results for odd, even, and zgp maximal slicesare obtained as projections of the Maxwell stress-energy ten-
In Sec. VII, we construct the coordinate transformationSor T, along the normah* by
needed to make contact with the numerical zgp lapse and . B
compare with our analytical result. We conclude in Sec. VIII. p=Tu*n" s=Ty,n* and §;=Tj. ®)

The mean extrinsic curvature
Il. LAPSE FOR MAXIMAL SLICING OF THE )
REISSNER-NORDSTROM SPACETIME K:=y;K!=—-V,n# 9

To derive a differential equatign for the lapse which maxi-measures the amount of “crunch,” i.e., the fractional rate of
mally slices the Reissner-Nordstnospacetime, we follow contraction of 3-volume along a unit normal to the surface.
Ref. [3] closely. There in 1973—concentrating on even |n the following we want to restrict ourselves to maximal
boundary conditions—Estabrook and Wahlquist were thsslicing,
first to find and Christensen, DeWitt, Smarr and Tsiang to
verify numerically the analytic solution for maximal slicing K=0. (10
of a Schwarzschild black hole. However, to simplify some ) . o
calculations for a comparison of different boundary condi-1he reason for its name can be inferred from a variational
tions imposed on this lapse, as done in Secs. IlI-V, the noPrinciple maximizing the volume
tation of Ref.[4] will be used to some extent and will be
generalized to include electric charge. In the latter paper, V(Q):j vdetf ymnrd3x (12)
Beig and OMurchadha re-derived this foliation based on a Q

more geometrical ansatz and studied for even boundary con- . . )
ditions the late time behavior of the throat in the limit as©f @ bounded but arbitrary portiai of the Cauchy slice,

proper time at infinity becomes arbitrarily large. We will Where as pointed out by York in Rdf] it follows that the
make contact between formulas of those two references jliface of the extrinsic curvature has to vanish. Contracting the

Sec. IV. evolution equation foK;;, Eq. (7), in the context ofK=0
We start with the source-free Einstein-Maxwell equations®"n€ obtains the maximality condition
1 Aa=V'V,a=a[R+4m(S—3p)], (12
Guv=Ry— §R9w:87TTuV* @ which is an elliptic equation for the lapse function.
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As in Refs.[3,4,19 the calculations are performed in the gether with the maximality conditiofl.2), which for the ra-

radial gauge

2

ds?=| —a?+ ’87) dr?+2Bdrdr+ ydr+r?dQ? (13)

with «,8 and vy being functions ofr andr only. Whereas

{t,r,0,¢} are the standard Schwarzschild coordinates with

the Schwarzschild radius measuring the circumference di-
vided by 27 or the square root of area divided byr®f the
2-sphere, the functiom= r(t,r) is clearly not.

Note furthermore that for the Maxwell tensér,, of a
purely radial electrostatic field one can make the ansatz

0 -Eu 0 0
E 0 0 0

Fw=l o 0o o o
0 0 00

14

see, e.g., Chap. 18 of Rdfl4], and one can readily verify
that

Qany

EQ: >

(15
r

solves the source-free Maxwell’s equati¢®). For (statig
Schwarzschild coordinates the classical reBigt Q/r? for
the electric field of a point particle with charggsituated at

the origin is recovered. Finally, the stress-energy tensor can

be calculated according to E(B) and its projection$8) are

s=0, and S;=pdiad —y,r?r?sin].
(16)

In addition, we observe that the traceSf coincides withp,
S:=v"1S;=p.

dial gauge reduces to a condition involving ttreand 66
component of Eq(7) only, to obtain as further equations

,8) (,8 az)a' 3 1((12 4,8) v
log—| =—|=+—|—+-B'+5|———|—
(gayr A R 1 R
2 2 1 2 2
o3° a—y—a—>——Qay (20)
y B B]r g
and
o (2 1vy\a 279y 2y 1 Q? _
o r 2y e Ty Tty )T
(21)

Equationg18)—(21) generalize the Schwarzschild black hole

present in Eq. (2)—(5") of Ref.[3] to a black hole carrying

electric charge(Note the correction of two signs in R¢B].)
The momentum constraiil9) immediately yields

_a(rr)y(Tr)

B(7.r) . (22

C(7),

whereC is a function ofr only. This equation can be used to
replace 8 in the remaining equations such that from the
Hamiltonian constraint a first-order partial differential equa-
tion (PDE) for vy arises. Its solution is given by

One can readily show that the equation for the vanishing

of the trace of the extrinsic curvatur=0, can as in Eq.
(1") of Ref.[3] be written in the form

)

'°g(7 o

_A
(lOQ y)'T—Y

(7,1) ! r4 (23
T,r)= = ,
7 2M Q% C¥%7) Pc(mr)
1-—+ =+ —
rr? r4
where using the function
Q2
f(r):l—T'i‘r—z (24)
for convenience the polynomial
pc(7,r)=r4(r)+C?(7)
=r*=2Mr3+ Q%2+ C¥(7) (25)

which can be used in the following to eliminate derivativeshas been introduced. Note thdt which arises as a constant

of y with respect tor. After some rewriting, the Hamiltonian
and momentum constraints, Eqd) and (5), yield

Yy B 1 QZ)_
S 3a2y 7(1 T =0 (18
and
|
log —|| = 1
o9 : (19

respectively. Furthermore, th@g-component of the evolu-
tion equation of the extrinsic curvature, E@), is used to-

of integration, could in principle be a function ef however
as in Ref.[3] it follows from the evolution equatiori20)
together with Egs.(17), (22) and (23) that M must be
7-independent. It is worth pointing out that the radial metric
function we obtain in Eq(23) generalizes Eq9) of Ref.[3]
by the charge, and the same 3-metric for maximal slicing of
Reissner-Nordstro as found by Duncan in Ref12] is ob-
tained.

Finally, making use of3, Eq. (22), andy, Eq. (23), the
maximal slicing condition(17) reduces to

,}/3/2 dc
7 dr

(ay)' =—

(26)
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which is the differential equation for the lapse we were look-is recovered identifyindQ with the charge and/ with the
ing for. By integration its general solution is found to be  mass of the black hole @|Q|<M).
This result was of course expected, since it is well known

_ Vpc(T,r) dC (= y“dy that with this coordinate choice the spacelike slices given by
a(r,r)= (2 D(T)’LE - po(ry) 2 (27 t=const, being perpendicular to the timelike Killing vector

in the exterior regions, are maximal. That one can immedi-
whereC andD are functions ofr only and one integration &t€ly see from the definition of the extrinsic curvatig,
limit has been fixed without loss of generality at spatial in-Ed- (6), which for zero shift reduces to

finity. Three different boundary conditions leading to an odd,

even, and puncture lapse will be discussed next. 1. )
Kij:_z_’)/ij if BEO (33)
o
Ill. ODD LAPSE
A. Derivation Since the 3-metrigy;; is time independent, each of the com-

ponents and therefore also the trace of the extrinsic curvature
vanishes, hencKk=0. Note furthermore that by contraction

of Eq. (33) settingK=0 one immediately obtains the state-
ment that for maximal slicing with vanishing shift the deter-
minant of the 3-metric is time independent. Hence the singu-
lim alyq=*1 ¥ 7oqq. (28)  larity avoiding property comes to light as the variation of the
o local volume remains fixefiL5].

The simplest special case of the laf§g@) is, because of
its underlying antisymmetry with respect to the throat, re-
ferred to as oddin some references also as antisymmetric
and corresponds to the boundary conditions

To measure proper time at infinitpn the right-hand side of
the throat denoted by a superscript ") the lapse is unity
there and implied by the antisymmetry the lapse is minus 1 at By applying for vanishing shift a purely spatial coordinate
the puncturglon the left-hand side and hence denoted by aransformatiorr =r(R), the hypersurfaces obviously remain

C. Isotropic lapse

“—"). The odd lapse maximal. To obtain isotropic coordinates by writirdy?
=(dr/dR)2dR? and by comparing thelt?, dr? and dQ?
. c?  pe(n) terms the set of equations
' ' to4d C=0R) =f(r (R), (34)
is obtained by settin® (7,4q) = £1 anddC/d7,44=0. The
time-independent slice lab&l can be chosen independent of 4R)= 1 dr)? 35
the time at infinityr,44 and is, as pointed out for Schwarzs- (R)= f(r(R)) dr/ ’ (39
child in Appendix A of Ref.[4], purely gauge for Reissner-
Nordstram. REV4(R) = (R)? (36)

B. Schwarzschild lapse . . . .
) _ ) is read off. From Eqs(35) and(36) the ordinary differential
The outer event horizon and inner Cauchy horizom.at  equation(ODE)
=M= M?—Q? are given by the real roots d{r), which

are time independent, while the throatis obtained as a real

root of pc(r) and therefore depends on the choice @f ﬂ:i\/f(r(R)) rR) (37)
Hence, starting with the throat in the same location as the dR R
event horizon implie<C=0. In this case one obtains from
Eq. (29) the so-called Schwarzschild lapse can be inferred where can take values=r, only. By in-
. tegration the solution is found to be given by
from Eq. (23) the radial component of the metric F(R)=R| [ 1+ — 2_ Q_2
L 2R)  4R?
r=—-——, 31
Y= 15 (3D) o
and from Eq.(22) a vanishing shift. Hence the static =R+M+ 4R (38)
Reissner-Nordstrm metric written in Schwarzschild coordi-
nates, choosing an arbitrary constant of integration such thad
B o Lo R coincide at infinity. WithR, =3 VM?—Q? corresponding
ds?=—f(r)dt?+ —dr2+r2dQ?, (32 . : . I :
f(r) to r, this relation can also be piecewise inverted to yield
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1
E{_M +r[1-vf(r)]}
R(r)= for

ML T

From Eq.(34) follows the isotropic lapse

(2R+M)(2R—M) + Q?

®oad C=0R)= (2R+M)2— Q2

(40)

and from Eq.(36) one can read off the conformal factor

2 Q2

4R?

2
VY4HR)=||1+ ==

5R 47

Hence the Reissner-Nordstometric in isotropic coordi-
nates as found, e.g., in RéfL6] is recovered which for van-

ishing charge reduces to the well-known Schwarzschild cas

D. Isometry

For the case &|Q|<M, one can see from the coordinate
transformation(38) that there is an isometry present, since

the value ofr and therefore also the line elemei32) re-
mains the same under a mapping

MZ_QZ

R=—7R

(42

These two values dR for every value of >r . result in two
isometric parts of the spacetimgn terms of Kruskal-
Szekeres diagrams the regions | and ih Fig. 3 for
Schwarzschild In particular,R=0 is simply a compactified

PHYSICAL REVIEW D 69, 044006 (2004

This motivates for the differential equation obtained for the
lapse in Eq(27) the particular choic® (7¢,en) =1 made by
Estabrooket al. and generalized here, so

vloc(r)(
1+

+

@epen(C1)=

dC (= y*dy
f . (44)
" pe(y)¥?

r d7epen

Since one starts with the 3-geometry of therg,.,=0 hy-
persurface, i.e., with the initial radial component of the
3-metric given byy=1/f(r), one can infer from Eq(23)

that C(7¢,en=0)=0 initially. The functionC(7¢,en) though

is still undetermined as only single sheets of the 3-geometry
labeled byC have been looked at so far. As stated in R8f,

the 7¢,en-dependence o can be fixed by imposing the
requirement of smoothness across the Einstein-Rosen bridge
by passing to the Reissner-Nordstrdine element(32) in
Schwarzschild coordinates. For the “height function”
=1(C(7epen),l), cOmMparing drﬁven, d7eerdr and dr?

ferms of the metric the following two PDE’s:

a r? 45
ITeven " Vpelr)
at_ C 46)
I f(r)pe(r)’
are found. Making for Eq(46) the ansatz
tteedCr=— || _C (47)
= v ,r = — ,
e sc f(y)Vpe(y)

image of infinity in the other universe referred to as punc-qne finds that this equation also satisfies H¢d) and (45)

ture. The fixed point set at the event horizonis a minimal
2-sphere of an Einstein-Rosen bridd#] located aR, , the
so-called throatsee the embedding diagram of Fig. 2

for s¢ coinciding withr. The latter is the uniquédouble
counting for C=C;,,) larger real root of the polynomial
pc(r) in [rclim,r+] and determines the radial coordinate of

Note also that the odd lapse in isotropic coordinates, E
(40), changes its sign with positive values on the right-han
side of the throat being the original unextended space and

he throat on a given maximal slice. Hence

negative ones on the left-hand additional region obtained by tepen(C,r)=Hc(r), (48
analytic extension of the spacetime. In particular, the oddWhere we have introduced the intearal
lapse vanishes on the throat, i.e;(C=0,R.)=0 (cf. the g
lapse profile as shown for Schwarzschild in the upper plot of
Fig. 6). He() fr Cdy (49)
r):=— —_—
© re F(y)Vpely)

IV. EVEN LAPSE

for r=r-. Note that in Eq.(49) the integration across the

ole atr , is taken in the sense of the principal value, and by

The even lapse is symmetric with respect to the throat anqje same arguments as in RBf] the corresponding slices
its boundary conditions are usually stated as unit lapse a g : P g

L P : - ‘extend smoothly through the event horizonand throat ¢ .
infinity and a vanishing gradient at the throat. Since by sym The procedure of deriving Eq@l8) with (49) is nontrivial

metry time has to run equally fast at both spatial ends of the

manifold, one can also formulate even boundary condition&S pointed out in detail n Re1[_.3]: The requirement of
as smoothness across the bridgetis.,—0 and @/dr)te,en

—o0 asr approaches its smallest valug at the center of the
bridge, or in terms of Kruskal-Szekeres coordinates
(0/0X)T=0 asX—0. As mentioned in Ref.18], this fixes

A. Derivation | (via Einstein-Maxwell equation9

*

limeagen=1 V7een-

(43

r—oo
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the value ofC(r¢) such thatpc(rc)=0 holds. In particular, g, viM*]

with rc becoming at infinite times a double counting root 2
re. with the value ==
lim fim_Clim
1 1.5 E=C
rC“m=Z(3M+x/9M2—8Q2)>O (50)
1
T r C
corresponding to 0.5 b ¢ B3
L= = 0 N
Ciim=C(Tepen=) L Fr=0 rC=0=r+=2M\E=0
\/‘ Q* Q? 312 =0:34 0.5 1 1.5 2
27— 36—+8—+ 9-8 5 M2, r[M]
(51) FIG. 1. For maximal slicing of Schwarzschild the mechanical

analogue consisting of a particle of enerfy=C? travelling in a
repulsive potentiaV= —r*f(r) is shown. For the energy levels
the singularity avoidance of the maximal slicing of the ex- ={0,°c? /2,°C2 1 the innermost and outermost radial distances

tended Reissner-Nordstrospacetime as proven in corollary o unbounded and bounded particles denotediyand® ¢, re-
3.8 in Ref.[5] becomes clear. spectively, can be inferred.

Finally, sincetg,en(r) and re,en have to coincide at spa-
tial infinity modulo an arbitrary constant, which can be set tog contact between Refs[3] and [4] by a mechanical analogue

zero, from EQ.(48) in the limit r —o one can infer
To make contact between formulas found by Estabrook

) et al. [3] and those derived by Beig and Kdurchadha(4],
Teven(C) = liMte,en(C,r) =Hc(). (52 one can apply an energy conservation equation worked out in
e Appendix B of the latter paper. There two functidhrsandJ
are introduced by
We want to stress that in E¢47) the particular choice of the
larger root ofpc(r) has been made since we are interested in r W(y)dy

the “horizon-horizon” subfamily of maximal slices only, F(E)= Xe /—E—V(y)' (53
which extend to both spatial infinities. Here the slices start

with the initial hypersurface representing the 3-geometry at

the moment of time symmetry when the throat is at the event _ fr —

horizonr ;. and develop inward to approaeg, asymptoti- J(ET) VE=V(y)V(y)W(y)dy
cally and hence avoid the singularity. As pointed out in re- (54

mark 8 of Ref.[3] and in Sec. Il of Ref[12], a second
“singularity-singularity” subfamily of maximal slices can be

) ' ' : In the following, W may have a simple pole at=x andV
obtained choosing the uniquédouble counting forC

i N i ) mappingxg to E andx to 0 is a smooth functiotV:[ xq,
=Cjim) Minor real rootr of pc(r) in [r_ ,rclim] instead. o[ »R satisfying 0<E<V(xo), V(X)<E, and V'(x)<0
The initial hypersurface is now the time-symmetric slicefor x>x,. By differentiatingJ twice with respect tcE the
with the throat at the Cauchy horizan and the slices in- formula
tersecting the singularity at=0 grow outward to the limit-
ing surfacerc . As discussed in the next subsection, one

g Ciim P 2 V)W)
can compare the situation with the mechanical analogue of a 4—J(E X)=
particle of energyE=C? travelling in a repulsive potential IE? E-V(X) V'(x)

V(r)=—r*(r), wherer. andrc represent turning points « > V(y)W(y

(cf. Fig. 1. Thinking of particles with energies ranging from y ]d
E=0 to E,imZV(rC”m)ZCﬁm it is clear that both subfami- xe VE—=V(y) dy V' (y)

lies together cover the spacetime with spacelike maximal 9

slices(cf. the Kruskal-Szekeres diagram for Schwarzschild =F(E,x)+2E—=F(E,x) (55
and the Carter-Penrose diagram for Reissner-Nonisiro JE

Fig. 1 of Refs[3] and[12], respectively. For its limited use

in numerical relativity, however—as the slices lie alwaysis derived, cf. Eqs(B7) and(B9) in Ref.[4].

completely inside the event horizon and hit the Now, as pointed out in Ref.19] using proper velocity
singularity—we will not investigate the “singularity- ds/dr, i.e., the rate of change of proper time along a maxi-
singularity” subfamily further. mal hypersurface with proper distance, from
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2 2 ds\? 4 d 1
E=C-=C ar —r*f(r)=T+V (56) %HC(OO)Z—EKC(OO) (62

an energy conservation equation arises for a particle of totas found, cf. Eq.(B12) in Ref. [4].

energy E=C? moving in the repulsive potentiaV= In order to write the expressidd4) for the even lapse in
—r*f(r) with a kinetic energyl =C?(ds/d7)?. By demand- terms of the integraK(r), one can readily verify that
ing ds/d7=0 for unbounded particles starting from infinity 5 5

the closest approach to the singularity—or for bounded ones _

starting fror?1p the singulari?y th)e/ outermost radial  gC Lrevenl &1~ Teven(C)]= Sl He(r) = He(e)]
distance—is found to be given by the two real rootsand

e of the polynomialpc(r), cf. Fig. 1. Furthermore, Beig _J“ y*dy 63
and OMurchadha[4] point out that forE>E,;,, with Ejir, ), pe(y)??

=V(rc, )=Ci, maximal slices hitting the singularity at

=0 are obtained53]. They also argue tha@&(E,r) can be holds and hence the even lapse can be written as
thought of as the time it takes a particle of eneEgio travel

fromr¢ tor. In particular, in an analysis following in a later =+ (C.r)= VPc(r) dC  dtesen

paper{20] based on Refg4,21] we will be interested in the — ®°" '
way this function blows up ag& approaches WiﬂCﬁm the

r2  drgen dC

maximum of the potential in order to study the late time _ 1 1 Vpc(r) K
behavior of the slices. T Ke() 3 Q7 2 (|,
One can readily check that the identifications r— EM + 2r
W(r)=—m, V(r)=—r%(r), E=C2 (57) 4
which generalizes Eq$2.23 and(2.24) in Ref. [4] by the
and charge. By the same arguments as applied for Schwarzschild

in this reference, the termdC/d7e,epn) (dteyen/dC) in the
(58) first line of Eq.(64) blows up at the throat, i.e., for—r¢, in
such a way that the lapse has a smooth limit there. To our

satisfy the conditions oWV, V, andE as stated above also in Knowledge the lapse function formulated in E&4d) or (64)

r0=l’clim, rE:rc, r:r+

the Reissner-Nordstno case and lead to for max.imal slicing Reissner—Nord'étro(i.e'., with electric
charge includedhas not appeared in the literature yet.
Hc(r)=CF(C2r). (59) For Schwarzschild, the even lapse profile in terms of the

Schwarzschild radial coordinate for the times at infinity
Hence for the derivative oHc(r) with respect toC the  7,,.,={0,IM,2M,4M,8M} is shown in Fig. 6.
important formula Recalling that the shift is given by E(2) and the radial
component of the metric by E§23), with

J J
—Hc(r)=F+2C*—F ®epen(CoT) Yeven(CoF
9C aC? Bauen(C.r) = 22t :Z I
r* ! and
= — > Ke(r) (60) 1 rt
3 Q? 2 Cir)= = 66
A e reelCO= G p (69
27 o fr)+—
r
can be derived by straightforward calculation using &), o
where forr=r. we have introduced the integral the full 4-metric is found.
3Q2 C. Derivation Il (by a variational principle and/or via
; y|y—3M+ 2y dy construction from Reissner-Nordstrom metric)
Ke(r):= f } 3 Q2|2 (61) In this subsection we present two alternative derivations
¢ (y— “M+ _) ‘/Pc(Y) of the maximal slices, which the reader may skip without
2 2y loss of continuity.

) ) o Note that the maximal slicing conditioi=0 fixes the
Note thatK¢(r) diverges in the limitC—Cyi, asrc, be-  pDE forgt/ar as in Eq.(46) only, whereas boundary condi-
comes a double root op(r), the square root of which tions have to be specified to obtai(iC,r) by integration.
appears in the denominator of the integrand. Note furtherThe latter can always be written as the sum of the integral
more that from Eq(60) in the limit r —oo the equation Hc(r), Eg. (49), and a time translation function &, fixed
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initially by demanding that forC=0 one starts with the where d/dt is the static Killing vector. HenceN can be
time-symmetrict=0 hypersurface, and determined during viewed as the boost functiof22] of d/dt relative to o
the evolution by boundary conditions. In particular, for even=const. With Eq(9) it follows that the trace of the extrinsic
boundary conditions the throe¢ has to stay at=0 because curvature can be written as

of the symmetry, hence withl-(rc) =0 it follows that this
additional function ofC is identical zero and Eq(48) is

found. A nontrivial example, namely zgp boundary condi-

tions leading tat(C,r) as in Eq.(97), will be discussed in
Sec. V.

To emphasize the importance of the PD®) governing
the foliation of Reissner-Nordstno into maximal slices for-
mulated as level sets of

o=t—t(C,r)=const, (67)

where C is a parameter depending only on the new timewhich for maximal slicesk =0, yields again Eq(46) by the

coordinater, two further ways of re-deriving this equation
will be outlined here.

Duncan based on a variational principle shows in Ref

[12] that for Reissner-Nordstno maximizing the 3-volume
of the line element

Gdg?=| —f(r) A 2+i dr?+r2dQ? (68
ar f(r)
the Euler-Lagrange equation
at
2 —
=0 (69

o J__ i

using the notation DY/DX=9Y/dX+ (dt/dX)(aY/Iat)
+(9?t19X?) (a1t i) is obtained. Equatiof69) is satisfied
if the expression within the square brackets is a function of
only and one may readily check that E46) is recovered by
setting this function taC(7).

Another way followed for Schwarzschild in Refgl,22]
for maximal and in Ref[19] for constant mean curvature
slices is to examine the behavior of the normal

ot
n=n.dt+ nrdr=NV[t—t(C,r)]=N(dt— Edr),
(70)

where with the underlying Reissner-Nordstrdine element
(32) the normalization constam is fixed by demanding

b N? 1 o at\? . -
n,n 0] (r) prl B (71
Note thatN is also given by
J M
N=—nu<5> ) (72)

1 d[r?n"]
_Vlunl-L: R
r2 dr

at
2f(r)—

2
fo”()

(73

:rdr

same argument as for E(9).
One may readily verify that from the normalizati¢rl) it

follows thatN coincides with the odd lapse, so

VPe(r) .

N:i r2 =a0dd. (74)
Furthermore, writingd/dt as
d\#
(—) =Nn*+ &+ with  §,n*=0 (75

ot
and using Eq(72) together withn,=—aV, 7, one can find

8
a= a_

(76)

In the context of even boundary conditions this yields
Aepen= Yodd(Mepen/ ITepen) @S in the first line of Eq(64).
Here ayqq and ag,en are linearly independent solutions of
Eq. (12) as pointed out in detail in Reff4,22].

One should furthermore mention that instead of varying
the paramete€ with time—which is the choice leading to a
foliation, i.e., a “time evolution,” made in the latter refer-
ences and in our paper—one could also as done in[R&f.
consider adding constant “time translations” t6C,r) for
fixed C.

D. Initial lapse profile

In order to calculate the initial lapse profile note that for
C=0 the primitive forK¢(r) as in Eq.(61) is given analyti-
cally by

2r(2Mr —Q?) Jf(r)

Ke=o(r)=— , 7
c=o) = = M2 08 (2 —amr+ Q7 0
and in particular in the limit —o by
Kc=o(®)=limKc_o(r) 2V (78)
—o(®@)=IimKc_o(r)=——=.
c=0 M Be=0 M2— Q2
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With Eq. (64) therefore the initial lapse profile in Schwarzs-  For evolutions, one can define conformally rescaled met-

child coordinates is found to be ric and extrinsic curvature variables,
2 0= G, kij=" K, (82
Fever(C=00)=1= T (79 \here®w =1+ M/2x is the time independent conformal fac-

tor of Schwarzschild in isotropic coordinates. As argued in
taken symmetrically across the throat with the valueRef.[8]and discussed further in R¢fl1], as a consequence
az,en(C=0r.)=V1—Q%M? there. In terms of the of this rescaling there are no singularities apart from the

Schwarzschild isotropic coordinates as in E38) with the coordinate ;ingularity ¥, in particular the rescaled metric
isometry(42) present this can be written as and extrinsic curvature are regular and do not evolve at the

puncture. What concerns us here is the regularity of the
Q? AR maximal slicing conditior(lZ). Using the conformal metric
at, (C=0R)=1— — . (80) gij » one has to solve equations of the type
even M 4R2+ 4MR+M2— Q2

A%a—0O

1
) ] ) N ) —) da=0. (83
Obviously, in the Schwarzschild casg, . (C=0r)=1is a X
solution of Eq.(12), while with increasing charge the source xg jt tyms out, standard numerical methods to solve this
term 4m(S—3p) in the maximality condition leads t0 an gjjintic equation can find a regular solution far on R?,

increasingly collapsed lapse profile. which has the feature that its gradient vanishes sufficiently
rapidly at the puncture such th&i(1/x)d« is zero at the
V. PUNCTURE LAPSE puncture, and the lapse collapses to zero near the puncture.
This was noted as an experimental fact in Réf.and ana-
lyzed in Refs[8,11], but there was no rigorous proof that a

regular solution to Eq(83) exists, and while numerically
As stated in the introduction, the motivation to define andquite robust, it was not clear that the numerics was able to

study the zgp boundary condition derives from puncture evoreliably determine this lapse.
lutions of black holes. In any numerical black hole evolution  The proposal for the zgp lapse is to impose the vanishing
one has to specify how the black hole singularity is treatedef the gradient as a boundary condition on the lapse in coor-

In particular, one can excise the black hole from the domairiinates that avoid the coordinate singularity of isotropic co-
at or inside the event horizon, thereby creating an inneprdinates.

boundary of the numerical grid, one can use the throat as an
inner boundary and impose isometry conditions there, and B. Derivation of the zgp lapse
finally one can work on a puncture®f, i.e., R> minus one

A. Motivation of the zero gradient at the puncture (zgp)
boundary condition

int (the “ " ally fi dqi In order to derive boundary conditions for the zgp lapse,
point (the “puncture’) for every asymptotically flat end in- e that at infinity and at the puncture the radial grid coor-

side a black hole. dinatex and also the isotropic Schwarzschild coordinatat

Under different names, punctures were studied as early 8S-0 given in Eq.(39), is related to the Schwarzschild radius
Refs.[23,24] for Schwarzschild and axisymmetric black hole through F=x fgr.({r);oo x—} and reclix for {r—o,x

data. The puncture topology for black hole initial data was A f ; PP

. . ) . . re w mand unit | infini
revived in Ref[25] as a simple method to construct multiple —0}. As before we demand unit lapse at v,
black hole initial data with linear momentum and sggee lim e g,= lim a;g,=1 ¥ 7p, (84)
also Refs[26,27)). As it turns out, even in the general case o 0P 0P

of orbiting black holes one can analytically separate the co- ) . o
ordinate singularity at the puncture and workR# both for such that the slices are labeled by proper time at infinity. At

initial data and evolutioni8,11]. the puncture, we impose the condition of vanishing gradient
Here we concentrate on evolutions of Schwarzschild irPY

the puncture framework. The 3-metric of Schwarzschild in lim doa

isotropic coordinates d@t=0 is N X

2o IMr20,0,0,=0 V19, (85)
r—oo

zgp—
4

making use of), « r24, in this limit.
(324 x2d0?), 81) 9 o

It turns out to be convenient to derive the zgp lapse by
making the ansatps4]

{C.N=®(C)-a

@)=

1+ M
2X

+

where the radial grid coordinatecoincides with the isotro- +
: £ e CI) W (C)- alyd(Cor)

pic Schwarzschild coordinat® as given in Eq.(39), but (86)
differs at later times depending on the shift and the boundary

conditions used during evolution. The coordinate singularityfor a time-dependent linear combination of the odd and the
at the puncturex=0, corresponds to the inner asymptoti- even lapse. This form is possible since the maximality con-
cally flat infinity of the black hole, i.e., the puncture corre- dition (12) is linear in the lapse. Furthermore, with 44 and
sponds to the left-hani® in the Carter-Penrose diagrams of ae,., two linearly independent solutions are known as dis-
Sec. VI B. cussed for Schwarzschild in Appendix A of Rpf] and as is

*
azg
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true also for Reissner-Nordstrowith 0<|Q|<M. This an- limr28,aggq=—M,

satz reveals useful insights in the properties of odd, even, r—o

and zgp lapse, leading, e.g., immediately to the conjecture of

Sec. V D regarding the lapse at the right-hand event horizon lim rzara;}en: M + ) (88)
at late times. Also, the smoothness of the la(@® and of r—o Ke()

the height function(97) follow trivially from the smoothness
shown for odd and even boundary conditions in Héi. Remembering that the integril-(«) carries units of Il
Equivalently, the puncture lapse can of course be derivednd diverges foC—Cy;,,, it turns out that for late times the
starting with the general solution for the lapse, E2j), by  gradients at the puncture fer,qq and a,., just differ by
applying directly the desired boundary conditioi@l) and  their sign. Therefore, in order to produce a vanishing gradi-
(85). ent, at late times the average of the two lapse functions has to
Care has to be taken in demanding these boundary condbe taken, i.e.,
tions analytically since conditiori84) is imposed on the
right-hand side of the throdtlenoted by a superscript*”) 1
while Eq. (85) on the left-hand sidédenoted by a “”). lim ®(C)=lim ¥(C)=3. (89
This, however, will be taken into account in the following as €=Ciim €=Clim
the odd lapse is taken in an antisymmetric manner across the
throat using the appropriate plus and minus sign in@gy  For arbitraryC, 0<C<Cy;,,, we use Eq(88) with the sec-
for the regions extending to infinity and puncture, respecond boundary conditioi85) to obtain
tively. The even lapse is symmetric with respect to the throat
by construction.
Since both of these two lapses are already one at infinity,
the first boundary conditiofB84),

M +

P(C)- —[1-®(C)]-M=0 VC. (90)

Ke()

Hence from Eqgs(87) and(90) the multiplicator functions

d(C)+¥(C)=1 VC, (87) @ andV¥ are found to be given by
simply yields that the sum of the dimensionless multiplicator 1 Kg()
functions® andV is one for all times, so one can substitute d(C)=1-¥(C)== C—, (91
V(C)=1-®(C) VC. This (trivial) outer boundary condi- Ke()+ —
M

tion already allows us to formulate a conjecture regarding the

value of the lapse at the right-hand event horizon at late

times as stated in Sec. V D. where the divergence df(«) in the limit C—C,;,, gives
Continuing in the derivation of the puncture lapse, thethe average of the odd and even lapse for late times as for-

gradients of the odd and even lapse at the puncture can lmsulated already in Eq89).

obtained by calculating The zgp or puncture lapse now can be written as

Vpc(r) dC dt,q,

aggp(C,r): r2 dTng oC

=®(C)- agen(C,1)+W¥(C)- agydC,r)

1 1 1 Vpe(r)
Q? r2

2
Kc(r)i<Kc(°°)+M } , (92)

making use of the ansat86). Similar to the even case, the 28 C.1) Y2g C.T)
first line is obtained by passing to Schwarzschild coordi- Bzgd C.1)= g 29
nates, which leads to Eq$45) and (46) with the subfix r
“zgp” instead of “even.” and
We show the zgp lapse profile in these coordinates at
times at infinity 7,4,={0,1M,2M,4M,8M } when we discuss 1 r4
the numerical evolutions, see Fig. 6. Y2go(C,1) = 2 pl) (94
The shift and the radial component of the 3-metric are fr)+ — ¢
again given by ré

- C (93)
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In order to fix ther,4, dependence of one may from Eq. Nordstran with increasing charge the balance is shifted more

(92 by analogy with Eq(64) conjecture that and more to the odd lapse to produce a “pre-collapsed” lapse
profile.
J r2 So the initial puncture lapse profile in terms of the
Etz‘gp(C,rF 3 > Schwarzschild radial coordinateusing Eq.(92) is found to
2( re EM n - m be given on the right-hand and left-hand side of the throat as
r
M?r —Q2M = Q?r Vi (r
1 2 a4 (C=0r)= Q 5 ? ( ). (101
3 Ke(r) = Kc(OCHM (95 (M+Q)r
Applying the transformatiori38) one can derive this profile
and hence also for the Schwarzschild isotropic coordin&e
d _d 1 2 2_ 2
ETZQP(C)ZIlm%t;gp(c,r):—Kc(oc)—M. (96) : (CoOR)=1- 2Q 4R+M°-Q
e “zgp T M2+ Q2 4R2+AMR+M?—Q?’

By going back to the differential equation for the maximal (102

lapse, EQ.(26), one can readily verify that Eq95) and Note that for the t | the isome is o
hence Eq(96) are correct and therefore the time dependencqeo(r)]ger parlese:n puncture lapse the isome() is n
is consistently fixed by the height function '

(97) horizon

Based on the ansat86) we want to state a conjecture for
using Egs.(60) and (62). Furthermore, time is measured at the lapse at the right-hand event horizon at late times that is
right-hand spatial infinity by of some importance for black hole excision. Although one
can use the apparent horizon as the location for the excision
boundary, finding the apparent horizon is usually time con-
suming, and a simpler prescription for some surface that co-
incides or is located inside the event horizon can serve the
Note, however, that the time measured at the puncture af2Me purpose for excision. For example, one sometimes can
proaches the finite value deflne_the excision surfe}ce by a surfapg of constant lapse. In

numerical simulations with maximal slicing, a lapse between
_ o im 0.3[28] and 0.34[29] turned out to mark the location of the
lim limt,q(C.r)=—— (99 right-hand event horizon. A value in this range can also be
CoClimr == inferred from some graphs in the literature showing the lapse
. . L as a function of time, cf. Fig.(®) in Ref.[30], Fig. 6 in Ref.
We are not aware of a physical meaning of this finite time at[gl] or Fig. 13 in Ref[32].

the puncture. . . For very general boundary conditions we can state the
Finally, we want to point out that using our result for the following conjecture:

zgp lapse, Eq(92)’ t'ogether withrocl/x for {r—>oc,x—'>0}., For maximal slicing of the nonextremal extended
one can readily verify that the first and second derivative 0z aissner-Nordstim spacetime with the throat of the
the Iapzse at the puncture both vanish. So the zgp lapse is @i, gtein-Rosen bridge coinciding initially with the event ho-
leastC“ there. However, vyhen caIcngtmg higher .denvgtlvesrizon and with boundary conditions imposed on the lapse
of the lapse, terms of higher order in the relationship beyer than the odd ones, the lapse at late times at the right-

tweenr andx can be of importance, and these terms depengl, 4 event horizon is found to approach the vahu|e+

on the chosen shift. For a vanishing shift the transformation 2 , ,
r(C(7),x) will be derived in Sec. VII C. =Cim /1% asymptotically. In particular for the Schwarzs-

child spacetime with®Cy;,=3\3M? and %, =2M this
value turns out to béa/|, = %3~0.3248.

- ) . . Without attempting a complete proof, we can argue as
For the initial lapse profile with Eq78) the multiplicator follows. Since for fixed time, i.e., for fixed slice lab€| the

. C D. Late time limit for the lapse at the right-hand event
tzgp(C,r):Hc(r)i(Hc(oo)_ M)

C
rzgp(C):rlinlt;gp(c,r)=2Hc(oc)—M. (99

C. Initial lapse profile

function® as in Eq.(91) for C=0 is found to be lapse arises from the maximality conditiéh?), i.e., a sec-
2 ond order linear ODE with smooth coefficients, the theory of
d(C=0)= _ (100 ODE states that the set of solutions forms a 2-dimensional

M2+ Q? real linear space, cf. theorem | in Chap. 15 of R88]. As a

consequence, every lapse using the superposition principle
In particular, for Schwarzschild witfP®(C=0)=1 one can be constructed as(time-dependentinear combination
starts with the even lapse only, whereas for Reissneref the odd and even lapse, which are evidently linearly inde-
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pendent for G<|Q|<M. From Eqgs.29) and(64) evaluated 3-geometry becomes Euclidean far from the throat, which is
for C—Cj,, one can see that odd and even lapse at théhe minimal 2-sphere of the bridge.

right-hand event horizon in this limit are given by

. N Clim
lim agenr. =——
evenlr 2 -

C—Ciim rs

C—Ciim

Note, however, that Einstein’s field equations fix only the
local geometry of the spacetime but not its topology. A geo-
metrically  identical—but  topologically  different—
embedding could be found for example by identifying both
sheets in order to obtain the “throat of a wormhole” in the

Furthermore, any other lapse constructed by a linear combgense of Misner and Wheelg3]. Here in one flat space two
nation with coefficients adding up to one in order to havedistant regions are connected in the limit when the separation
unit lapse at infinity has the same limiting value. Finally, we Of the wormhole mouths is large compared to the circumfer-

argue that as the slices approach wi@h—>rcnm>0 a limit-

ing surface and hence avoid the singulafiy, the limit C

—C,im considered so far carries over to the limit of infinite
time, 7—o0. Although reasonable, it is not yet clear to us

whether the last step holds without exception.

VI. COMPARISON OF THE ANALYTICAL ODD, EVEN,
AND ZGP MAXIMAL SLICES

A. Embedding diagrams

Embedding diagrams are useful tools for the visualizatio
of geometric properties of slicings. Following Appendix F of
Ref.[34] and Sec. IV of Ref[35] in suppressing one of the

angular coordinates, by embedding a 2-dimensic2al)

Riemannian hypersurface into flat 3D space the intrinsic g
ometry of this surface is preserved. The embedding of th
Reissner-Nordstra {r,¢} line element, i.e., the equatorial
hypersurfaced= 7/2 corresponding to fixed time at infinity
7, in Euclidean space written in cylindrical coordinates

{z,r=x?+y?, ¢} is obtained by demanding
Glds?=dZ+dr?+r2d¢?

g\ 1
:[—f(l’)(&—r +m}dr2+r2d¢2
r4 2 2 2
= pc(r)dr +redgc. (109

For fixedC(7) this results in the differential equation

dz 4

dr

LA
pc(r)

==+

1 (105

C=const

for the embedding functioa(C,r). For 0<|Q|<M andr
=r¢ its solution is found by integration,

-+ ' y4 _
Z(C'r)_‘Jrc N pety) 19

(106)

where without loss of generality symmetry with respect to

e_

ence of the throat, cf. Fig. 31.5 in R¢B6].

For the general &|Q|<M, 0<C=<Cy,, case we evalu-
ated the integral106) numerically using for the relationship
C(7) equationg52) and(98) for the even and zgp boundary
conditions, respectively. The embeddings of these two cases
therefore only differ by their time labeling and are less in-
formative than their corresponding spacetime diagrams
shown in Sec. VI B. In particular, information about any un-
derlying symmetry of the slices—like th@ant)symmetry
with respect to the throat fgpdd) even boundary conditions
and the more complicated behavior for zgp conditions—has

"been lost. The results are shown for Schwarzschild in Fig. 2,

which should be compared for the even boundary conditions
with Fig. 4.18 in Ref[34] or Fig. 2 in Ref.[3]. Reflecting
the curves at the=0 plane and rotating them around the
axis, a set of throats is obtained starting with a parabola of

Fevolution with the minimal 2-sphere initially at the event

horizon °r . =2M and degenerating at late times to an infi-
nitely long cylinder with radiusr=°rcnm=3M/2 as the

slices approach the maximal hypersurface with this radius
asymptotically. The plots for charge in the range: |@)]
<M, which are not shown here, are qualitatively very simi-
lar.

B. Kruskal-Szekeres and Carter-Penrose diagrams

Spacetime diagrams such as the Kruskal-Szekg3&p
and Carter-Penrosg88,39 diagrams provide a convenient
way of visualizing spacetime properties like causality, see,
e.g., Refs[36,4Q. In this paper we want to limit ourselves to
the discussion of the Schwarzschild spacetime, the results for
the nonextremal Reissner-Nordstrepacetime can be found
in Ref.[21].

For the Schwarzschild metri82), radial null geodesics
motivate for re[°  =2M,»[ the introduction of the
Regge-Wheeler radial coordinate

‘1 M e]—oo,oo[_

(108

the z=0 plane has been chosen. In particular for the initialas d(t=r,)=0 on radial null geodesics, ingoing

Schwarzschild slice, i.e., fa@=C=0, the solution34] is

found to be

02(C=0,)=22(r—2M)M. (107

Eddington-Finkelstein coordinatés,r, 6, ¢} with
(109
leading tods?= —(1—2M/r)dv2+ 2dvdr+r2dQ? can be

U:t+r*, UE]_OO,OO[

The embedding is a parabola of revolution referred to aslefined as in Ref[41]. Similarly, outgoing Eddington-
Einstein-Rosen bridg¢l7]. Here in both “universes” the Finkelstein coordinategu,r,, ¢} given by
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z [M] are nonsingular afr . =2M. However, it should be men-
8 tioned that the regiong<2M in ingoing and outgoing
odd Eddington-Finkelstein coordinates do not coincide, since one
can readily verify that for all timelike or null worldlines from
6 ds?<0 it follows that Mvdr=<0, while 2dudr=0. There-
Yo fore, the nature of the singularity a&=0 is different; An

analysis in ingoing Eddington-Finkelstein coordinates shows
that no signal can escape back to infinity once it passed the
event horizon. The time reverse of a black hole, a white hole,
is found by performing a similar analysis in outgoing
Eddington-Finkelstein coordinates.

With the exterior region covered by both in- and outgoing

0 Eddington-Finkelstein coordinates, one can write the
0 ' r=2M 3 4 - [5M] Schwarzschild metric as
z [M] 2M
8 ; ds?=—|1— —|dudv +r2dQ?
Teveﬂ__m ! r
32m° 2 2402
6 =— Te*' MdudV+r2dQ (112
4l 5 by introducing forr >2M the Kruskal-Szekeres coordinates
Teven_ [37]
ol U=—-e YM<0 and V=+e'"M>0, (112
which are analytically extendable 19>0 andV<0. The
0 Schwarzschild radial coordinatels now given implicitly as
0 1 5 :
r r[M] a function ofU andV by
z [M]
8 /= — @l /2M _ __ |af2m
u-v e 1 oM e'’M, (113
6} Note that the singularity at=0 corresponds t&) - V=1 and
the event horizon afr ., =2M to U-V=0, i.e., to eithetU
=0 or V=0. It is convenient to introduce new time and
4af space coordinates by
1 1
2} TZE(V+U) and X=§(V—U) (1149
. i in order to produce Kruskal-Szekeres diagrams. Note that
0 1 . 3 4 5 with t expressed in terms af and X by
G2 ¥ r[M]
T
FIG. 2. In the embedding diagrams for maximally slicing the arctanhg L
Schwarzschild metric using odd, even, and zgp boundary condi- t=4M in the regions ’ (115

tions, the Einstein-Rosen bridges are obtained by reflecting the i,
curves corresponding to={0,1IM,2M,4M ,8M} displayed from the
bottom up atz=0 and rotating them around tteaxis. They start
with the throat at’r , =2M and degenerate for—c in the even the lines of constarttcorrespond to straight lines through the

and zgp case—which just differ by their time labeling—to an infi- origin, whereas curves of constanare hyperbolae with as-

X
arctan h]:

nitely long cylinder with radiué’rcnm:3M/2. ymptotesT = + X.
In Fig. 3, we show Kruskal-Szekeres diagrams for odd,
u=t—-r,, ue]—o,0[ (110 even, and zgp lapséNote the difference to the hand-drawn

Fig. 1 in Ref.[11].) Since the in- and outgoing radial null
lead tods’= — (1—2M/r)du®—2dudr+r2dQ2. These line geodesics are given by lines of constahandV, the light
elements can now be analytically extended 00, and the cones are unit light cones appearing at 45°. One can infer
corresponding Eddington-Finkelstein diagrams are showrfrom the Kruskal-Szekeres diagram that the Schwarzschild
e.g., in Ref[40]. In these coordinates the metric componentsgeometry consists of four regions separated by (ithet-
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T3ry dashed plottedevent horizon afr . =2M, namely the re-

gions | and 1, two identical but distinct asymptotically flat
universes, where the isometfR— M?2/4°R corresponds to
the mapping T,X)«— (—T,—X), and the regions Il and 'l
two identical but time-reversed regions in which physical
singularities(a black hole and a white holare present.

As discussed in Sec. lll, the maximal slices with odd
boundary conditions correspond to surfaces of constant
Schwarzschild time coordinaten the outer regions | and |
since 9/t generates a Killing vector field thefd,42]. In
particular, in the upper plot of Fig. 3 the solid black straight
lines in regions | and’l are (starting with the horizontal
time-symmetrict=0 slice) the spacelike maximal hypersur-
faces t={0,1M,2M ,4M ,8M}, whereas the gray timelike
lines correspond to={2.5M,3M,3.5M,4M}. In regions Il

-2

-3k and II' the spacelike limiting maximal slica = OrC”m
=3M/2 is plotted as a dashed line, the singularityO by a
zigzag line.

In the even case, plotting the height function
tepen(C(7even),r) a@s in Eq.(48) for the previously stated
times at infinity, an observer moves forward in Schwarzs-
child time t in region and backward in regiorl in a sym-
metric manner in order to reach the limiting maximal slice,
cf. the plot in the middle of Fig. 3, and, e.g., Fig. 1 in Ref.
[3] or Fig. 3 in both Refs[7] and[18]. However, in terms of
the new time coordinate,,.,, time runs forwarddue to the
always positive lapgeequally fast(due to the symmetpjyin
both regions so that the asymptotic values tf@at puncture
and infinity differ by the amount 2,,.,. Due to the symme-
try with respect to theT axis, the throafr. (plotted as an
unfilled boy moving fronfr, =2M to °rc =3M/2 re-

mains on this axis and the slices penetrate into the left-hand
and right-hand event horizdenoted by downward and up-
ward pointing trianglessymmetrically.

Demanding for zgp boundary conditions neither symme-
try nor antisymmetry, the slices are “lopsided” as can be
seen by plotting,4(C(7,4p).r), EQ.(97), in the graph on
the bottom of Fig. 3. In particular, one can observe that as a
function of time the throafr. moves “to the right” along
the shown curve corresponding te-H() —C/M. From
Eqg. (97) one can infer that as in region | at infinity the time
measured a&zgp(C)=IimHoctz+gp(C,r) goes to infinity in
the limit C— °C;;,,,, as stated in Eq99) in region I' at the
puncture the finite time°C;,/M=3\3M~1.299M is
found. Taking care of the sign as for even boundary condi-
tions, the maximal hypersurfaces approach in regiothé
line t=—9Cy;,,/M asymptotically in the limitr—o with
C—> OC”m .

In Fig. 4, we show Carter-Penrose diagrams correspond-
ing to Fig. 3. These are obtained by a conformal compacti-
fication of the formds?=Q?(t,x")-ds? which—leaving the
underlying causal structure unchanged—map points at infin-

FIG. 3. The Kruskal-Szekeres diagrams for the extendedty IN the original metricds® to a finite affine parameter in
Schwarzschild spacetime show the maximal slices for time at infinthe compactified metrids?. See Ref[40] for further tech-
ity 7={0,1IM,2M,4M,8M} for the odd, even, and zgp boundary nical conditions on the spacetime and on tnet unique
conditions. Note that the puncture corresponds to the spatial infinitghoice of() to guarantee that this construction will work. As
of region I located to the left of the plot. shown in this reference, on the conformal boundary one can
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readily verify that for the compactification carried out here
these slices arrive af with a slope given by

dT
dX

It]
=tanh—-. (117
0 4M

In our case, starting with the horizontal time-symmetric hy-
persurface=0 the slices for all three boundary conditions
fan out to hugJ" asymptotically, while for zgp boundary
conditions at the puncture a finite angle given by
arctafitanh(Ci,/4M?) ]=~17.4° is found in the limit of late
times.

VII. COMPARISON WITH NUMERICAL SIMULATIONS

A. Numerical method

Maximal slicing has been studied numerically for the evo-
lution of a single Schwarzschild black hole already in Ref.
[3], and was later on implemented and used as a standard test
case in 1D[7], 2D [31] and 3D codeg6,11] based on a
Cartesian grid and by using a smooth lattice metf2&.

For comparison with the analytical result for the puncture
lapse, we have performed simulations with treTUS code
[43]. We evolved a single Schwarzschild puncture with
maximal slicing and vanishing shift with the Baumgarte-
Shapiro-Shibata-Nakamur&aBSSN system of evolution
equations, see Refll] for details. The maximal slicing
lapse is obtained by solving the elliptic equatid®) using
the multigrid solver BAM_Elliptic{ 44,45, without imposing
any additional boundary condition at the puncture.

In Fig. 5, we show an example for the numerical grid. The
runs are carried out in three dimensions on an octafi®pf
which is possible for spherically symmetric systems. The
) , _ . puncture is located at the origin, and we choose a staggered
FIG. 4. Carter-Penrose diagrams are obtained by compactifying5 tesian grid with uniform grid spacing such that the punc-

the Kruskal-Szekeres diagrams of Fig. 3 as stated in the text. NOtg e is not part of the grid but rather is located half way
the behavior of the slices at spatial infinity, the movement of thebetween grid points in all three directions

throatr and of the left-hand and right-hand event horizon, which The outer boundary condition for the lapse is imple-

?r::nZ?:Sm rglscgteegi\?eslyl.mﬂlled box, downward and upward IOOIr‘tmgmented nu_merically gt the edge of the finite pumgrical grid
’ by employing a Robin conditiof46] as described in Ref.

[47]. In order to study errors introduced by the Robin bound-

ary condition implemented at the edge of the grid, runs have

identify past and future null infinity7*, past and future

“T“e"ke infinity i ¥ and.spa'celike infinityo,' i.e., the begin— been carried out using a uniform spacing’oK=0.05M and

hing and end of null, “”_‘e“"e af_‘d spacellke_ geo_desms. (multiplied by a courant factor of) time steps OfA 754

For the Schwarzschild metric, compactification can be—lAX—00125M for a series of 32 64 and 128 grid
=1AX=0.

carried ouff42] by introducing as in Eq(114) new time and points to place the outer boundaryXg,~1.6M, 3.2M and

space coordinates and X based on 6.4M, respectively. Similarly, we checked for second order

- - convergence using different numbers of grid points for the
U=arctand and V=arctarV, (116 outer boundary close in. These numerical tests are described

5 5 o in Ref. [21]. For the resolutions considered here, there are

whereU andV are in the range- w/2<U,V=<7/2. limitations in the numerical convergence near the puncture,

It is worth pointing out that as radial null geodesics areand it is known that higher resolution is required to see clean
again unit light cones the maximal slices are obviouslyconvergence near the puncture, see REf] for algebraic
spacelike. Furthermore, at the right-haifd with the lapse  slicings. For the present purpose of comparison with the ana-
being one at infinity for all three boundary conditions, esseniytical results, the goal was only to establish that these runs
tially t=const slices are found, whereas in particular for zgpare approximately in the convergent regime. All the results in
boundary conditions at the puncture, i.e., the left-hendhe  the remainder of this section are forX=0.05M, 128 grid
line t=—°C;,/M is approached at late times. One may points, andX,,~6.4M.
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We will show that the numerical evolution obtained in this the metric is also expected in numerical simulati¢B5].
way agrees nicelywithin a certain errorwith the analytical Hence the Schwarzschild radial coordinate can be obtained
result for the puncture lapse. In order to carry out this comby calculating

parison, we have to establish an explicit mapping between ) 5 .
the coordinates used in the numerical simulation and our  '(7,X)=%2(X)\/ge(7,x)="¥(x) \sir 99¢¢(T,X)&

analytical study. 118
Figure 6 shows the odd, even, and zgp lapse profiles for
B. Schwarzschild radial coordinate times7={0,1M,2M ,4M ,8M} measured at infinity. The solid

lines show the analytic results based on the evaluation of
One has to remember that for 3D Cartesian coordinateEgs. (29), (64) and (92). For the zgp boundary condition,
{X,Y,Z} the system has no spherical symmetry from thedata points obtained from the largest simulation are plotted
point of view of the code. However, looking at radial output as boxes in Fig. 6 and lie virtually on top of the analytical
the radial coordinatex defined as the Euclidean distance results.
from the puncture is readily obtained. Because of the spheri- Evaluating the analytic integrals is a nontrivial task due to
cal symmetry the expressiartd()? for the angular part of the late time divergence of the involved integrelg(r) and
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oy odd Kc(r) as discussed in more detail in RE21] based on Ref.
i [48]. The value of the lapse at the thro¥t. is marked on
these slices by an unfilled box and similarly for the left-hand
V14 and right-hand event horizon correspondind’tq =2M by
0.5 downward and upward pointing triangles. Being motivated

geometrically these “markers” essentially allow one to
sketch for a certain time at infinity the corresponding lapse
0 profile and are hence suited for a study of their late time
behavior which will be carried out in a later pap20]. Note,

for example, that for the collapsing lapse profiles obtained

05 for even and zgp boundary conditions the radial coordinate
of the throat approach%rs;”mz 3M/2 and that the conjecture
-1 of Sec. V D regarding the lapse at the right-hand event hori-
0 toream 3 s = 2 L = zon holds
r[M] ' N .
L even . o C. Radial isotropic grid coordinates
1F 5 = From the analytical point of view the task of finding the

foliation of the extended Reissner-Nordstranetric using
maximal slices with zgp boundary conditions has been
solved already in Sec. V in the sense that in a well-suited
coordinate system, namely the radial gal#®), the maxi-

mal slices arising as level setg, ,= const of the height func-
tion t,g(C(7,4p),r), EQ.(97), have been found. Keeping in
mind the 3+1 split, the foliations shown previously in
Kruskal-Szekeres and Carter-Penrose diagrams are uniquely
determined by the lapse functiarfgp(C(rzgp),r), Eq. (92),
telling one how to progress from sli¢g, to the consecutive
onel ., s . Since for puncture data ioACTUS neither the
Schwarzschild coordinate§,r, 8, ¢}, nor the previously in-
troduced coordinatesr,r, 6, ¢}, but depending on the shift
different “grid coordinates,{ 7,X, 6, ¢}, are used, it is for a
comparison with numerical results important to find the co-
ordinate transformations relating these gauges. Above all we

0.8l are now interested in using the freedom of choosing different
Tgp= SM coordinates X') on these slices in order to construct coordi-
i.&k nates such that the 4-metric coincides at all times with output

from a numerical evolution of black hole puncture data and
hence to prove by construction the existence of an underly-
ing analytical solution. The radial coordinates of this punc-
ture data line element we shall call “isotropic grid coordi-
nates” in the case of a vanishing shift and “isothermal grid
coordinates” for a nontrivial shift to emphasize the connec-
tion both to the isotropic and isothermal gauge and to the
numerical grid. Unless stated otherwise, here and in the fol-
r[M] lowing the expressions are valid for arbitrary boundary con-
ditions imposed on the lapse. However, one should note that
Schwarzschild  radial coordinater for times 7={0,1M, Mfor od_d boundary conditions the time-indgpendent isotr(_)pic
2M,4M ,8M} measured at infinity. The solid lines show the analytic coorqutes of S(_EC' Il are recovered, which are not horizon
results, while the numerical results for the zgp lapse are plotted a_Be’?e”a“r_‘g- In this paper we concentrate on the case Of_ van-
solid boxes. The numerical data points lie virtually on top of the'Sh'”g_ shift, B=0, _Whe.reB. denotes the_ S(h'ﬁ fOT Isotropic
analytical result. Note that in the odd case the time-independergoordinates to distinguish it from the shgtin radial gauge.
lapse is negative on the left-hand side of the thdanoted by an  The more general case of a shift~0 is discussed in Ref.
unfilled box coinciding with the event horizon, whereas for the [21] and subject of a later paper. ‘
even case the collapsing lapse is symmetric in the sense that in Independent of the coordinate choice)(on the maximal
particular left-hand and right-hand event horizshown as down-  slices, time at infinity is still measured by So the task is to
ward and upward pointing triangleand also infinity and puncture find a radial coordinate transformation of the form
coincide. These symmetries are lost for the zgp lapse with the lapse r(C(7),x) to a line element with zero shi,
remaining one at infinity and collapsing at the puncture.

0 1M w3 4 5 6 7 8

FIG. 6. Shown are the odd, even, and zgp lapse versus t
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B? In the following we use the observation that the puncture
dSZ:( —a’+ —) d7?+2pdrdr+ ydr?+r?dQ? data line element for zero shift has to have a 3-metric with a
Y time-independent determinant. As remarked in Sec. lll, this

= — A2d 2+ Gdxe+r2dnz2. (119 is a consequence of maximal slicing=0, in combination

with a vanishing shiftB=0. Considering the ansat21),

Here,dr/dr=(ar/dC)(dC/dr) has been used, and the lapseOne can see that due to the time independence of the confor-
Aand the 3-metric;; with its radial componen@ as func- mal factor the determinant of the rescaled 3-meujig

tions of 7 andx have been introduced and are given by ~ =Gij/¥*(x) also has to be time independent and hence to
be a function ofx only. The latter can be determined on the
A(7,X)=a(r,r(r,Xx)), initial slice to be given by dé,.+ =x*sir? using the initial
conditions(124) and (125. So it follows that the rescaled
ar\? radial part of the 3-metric can be written as
G(7.x)=y(7,r (7)) - (120
. . . . x*W8(x)
To allow for a direct comparison with numerical puncture g(C(7),x)= ———. (126
evolutions as produced lgaCTUS, the 3-metric is written in r*(C(7),x)
the form ) o ]
It is from G=W¥4*g=x*W¥1%r4= y(dr/9x)? now trivial to in-
r2 fer for fixed slice labelC the ODE
Glds?=Gdx2+r2dQ%=* gdx*+ @dﬂz ,
ar Vpc(r
(121 = ip+()xz\lf6(x), (127)
obtained by rescaling the 3-metric with the conformal factor '
5 5,12 which relates the Schwarzschild radial coordinat® the
wix)=| 1+ M\® QT (122 radial coordinatex for puncture evolutions. This can be inte-
2X 4x2 grated as
. . o . ry*dy X
Here the coordinatex of puncture evolutions is given in f :iJ y2W(y)dy (128
terms of the 3D Cartesian coordinaté¥,Y,Z} by x re VPc(y) Xc

= X2+ YZ+ZZ, which measures the Euclidean distance to

the puncture at the origin, and using the throat as lower integration limit. Hexg denotes

the location of the throat on the grid as a function of time and
G (7,X) (7.%) the “+” and “ —" sign applies for the right-hand or left-

0ij(7.X) = J4 —~ with g(7,X):=—— (123  hand side of the throat, respectively. One may readily check
W(x) that for C=0 the ODE(127) coincides with the ODE37)

. found for Schwarzschild isotropic coordinates leading in that

has been introduced. case tox=R with the throat atrc_q=r, and Xc_o=X.

Again it is worth pointing out that for the initial slice the —R.=1/MZ=02 For later times. thou has to be
radial grid coordinate is identical to the Schwarzschild iso- foun+d f2rom Eq(.?(izs) by demandi'ng thgtbiﬁe coordinate

tropic coordinateR defined in Eq(38) and hence related to transformationr =r(C(7),x) is consistent with the require-

the Schwarzschild radial coordinateby ment of a vanishing shift. Seg20] for details and for a

(124) discussion of the late time behavior xf in the case of the
even and the “zgp” boundary conditions.

as discussed in Sec. Ill. Note, furthermore, that for black Given these coordinates, we can finally compare the ana-

hole puncture initial data the 3-meti@; is implemented in !ytically given 4-metr_ic Withcactusou'gput for maximal slic- _
isotropic coordinates, hence ing of a Schwarzschild black hole with zgp boundary condi-

tion and vanishing shift. The time-dependent profiles,
G(r=0x)=¥*x) and g(r=0x)=1 (125 namely the coordinate transformation relatingnd x, the
“outward moving shoulder” obtained for the collapse of the
has to hold initially. lapse and the growing peak in the radial component of the
Notice that as a time-independent, trivial case the odd-metric, are plotted in Figs. 7, 8, and 9, respectively. Similar
boundary conditions are included and lead to the isotropiciumerical results can also be found in the literature, see, e.g.,
lapse of Sec. Il together with the formulés24) and (125 Fig. 3.16 in Ref[50] or Figs. 2 and 6 in Ref31] and Fig. 2
valid at all times, which yields the static Reissner-Nordstro in Ref.[6], where instead of in the latter references usually
metric in isotropic coordinates. However, due to the negativea logarithmic radial coordinate has been used.
values of the lapse in the region between the puncture and For Figs. 7—9 the reader should bear in mind that for odd
the throat, with an observer going backward in time, its nu-boundary conditions the time-independent coordinate trans-
merical implementation has been found to be unstable in drmation relating Schwarzschild radial and isotropic coordi-
least one exampl49]. nates is given by Eq38), the isotropic lapse by E¢40) and

PA(x)

r(7=0x)=x¥?(x)
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FIG. 7. The Schwarzschild radial coordinatas given by Eq(128) in the context of “zgp” boundary conditions is shown as a function
of the isotropic radial coordinate for maximal slices with times at infinity,,,={0,1IM,2M,4M,8M}. The slices are horizon penetrating
and approach the limiting slice= 0rc”m=3M/2 asymptotically. Data points from @cTus run have been plotted as filled boxes, which
agree well with analytic results. The thrg&tcated as minimum of the radial coordinate and depictured by aibdaund to move to the
right-hand side of its initial locatiofix, =M/2, whereas the left-hand and right-hand event horigmth now corresponding to="°r .
=2M and denoted by downward and upward pointing trianghesve to the left and right, respectively.

the rescaled radial part of the 3-metric is simply G/¥*  contain numerical errors, theacTus data points virtually
=1. Although both the evaluation of the underlying analyti- lay on top of the analytic curves.

cal expressionsas described in Ref21]) on the one hand ~ We want to emphasize that for arbitrary boundary condi-
and the numerical simulatior(@ith errors introduced by fi- tions the coordinate transformatian=r(C,x), Eg. (128),

nite differencing and the outer boundh[}n the other hand holds, with differences in the time dependence of the slice
label C(7) and the(in general time-dependeniocation of
the throat x;. For this—an exception being the time-

]OL To=0 independent odd case discussed previously—e.g., the un-
| bounded growth of the radial metric functiog(C,x)
MWW =x*"W8(x)/r%(C,x), Eq.(126), as shown in Fig. 9 for “zgp”
0.8 wer T e T =M | boundary conditions, is not only a feature of the puncture
‘,,f"’..y’_,,»-" > lapse. Even worse, in the context of zero shift this slice
0.6 o~ sy stretching effect is a fundamental property of maximal slic-
“/ )/‘;// ings when avoiding singularities as will be discussed further
0ar 4 A in [20]. _ _ o

/ /// The development of the peak in the metric shown in Fig.
" 9 is the combined effect of local observers falling into the

0. 2 black hole and the collapse of the lapse function shown in
__,_,:’i_,// Fig. 8. The coordinate points at smaller values of the isotro-

00 : ] 5 5 ; : pic coordinate have larger infall speeds, causing the radial

metric componeng to increase towards smallgr However,
at the same time, there is a competing effect due to the use of

FIG. 8. The analytically derived collapse of the lapse is shownthe singularity avoiding slicing. The motion of the grid

for “zgp” boundary conditions as solid lines for the slice again points close to the p_ungture a0 is frozen as _the lapse
corresponding tor,q,={0,1M,2M,4M,8M}. These curves have collapse_s there. V_VeII_mS|de,_the latter effect do_mmate_s,gand
been obtained by evaluating;,{C,r), Eq.(92), in the context of cannot increase in time. This causes the radial metric func-
the coordinate transformaticti28) shown in Fig. 7cacTusresults ~ tlon to develop a peak at a place slightly inside the right-
from the best resolved run are shown as boxes lying almost on topand event horizon. At this location, the difference in the
of the analytically found collapsing lapse profile. An “outward Infalling speed of the grid points is large, but the lapse has
moving shoulder” is obtained as the lapse decreases exponentialljot completely collapsed.

to zero at the puncture, at the left-hand event horizon, and at the Finally, we want to mention that if one demands a time-
throat, but approaches the finite val@;,/°r2 = =.3~0.3248  independent 3-metriG;; , by looking at the angular part of

at the right-hand event horizon. both G;; andy;; given byr2dQ? it is obvious that the coor-

6
x[M]
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Gy puncture data, extending the results for Schwarzschild ob-
g T4 tained in Ref[4]. We will discuss there the late time behav-
5 ior of the 4-metric at the puncture, the throat and the event
=5 horizons. Note that all of our numerical results refer to the
Schwarzschild spacetime. Future numerical work could in-
clude an electric charge in the range Q| <M.

Maximal slicing is a special case of constant mean curva-
ture slicings, see for example RgL9]. It would be interest-
ing to see whether constant mean curvature slicing is ame-
nable to a similar analysis as presented here, and whether
there is a promising avenue for numerical simulations.

As mentioned in the introduction, maximal slicing has in
some cases been replaced with algebraic slicings of the “1
0O ] 5 3 7 5 3 +I_og” type, see Ref[l_l] for recgnt work_ on puncf[ure evo-

x[M] Iu_tl(_)ns. It may _be pos_5|ble to gain analytl_c |p$|ght m_tel(bg _
slicing, which in fact in some regards mimics maximal slic-

FIG. 9. For the radial componegtof the conformally rescaled ing. For example, one would like to understand the singular-
3-metricg;; for the “zgp” Schwarzschild case in the manner of the ity avoidance properties of-log slicing better. A first at-
previous figures, a comparison of the analytical reg(€,x)  tempt to study this problem has met with technical
=x"W(x)/r*(C,x), Eq. (126, andcacTus output is made. Note djfficulties, but further work is certainly warranted.
that whereag=1 holds for the odd case, for other boundary con-  of particular interest from the point of view of numerical
d.ItIOHS similar slice §tretch!ng effects are present in the radial met'relativity is an analytical study of elliptic shift conditions in
ric component as will be discussed further #0]. Schwarzschild, say the minimal distortion shift condition. A

maximal slicing lapse together with a minimal distortion

dinate transformation relating and x has to be time inde- shift have been suggested as a natural coordinate choice for

pendent and hence to be given by EtR4). Therefore this numerical simulationgl]. While the minimal dis_tortion shift
requirement inevitably leads to the isotropic lapse. This obh@s not been successful for puncture evolutions, a closely
servation is relevant for the construction of initial data for 'elated shift condition called Gamma freezing or conformal
black hole punctures on a maximal slice. Such data can sag-harmonic has to some extent solved the long standing slice
isfy some of the necessary conditions for the existence o$tretching problem of maximal slicing for single black hole
helical Killing vectors[51], which is appropriate when look- and head-on collision simulatiof$1]. In that reference this
ing for binary black holes in a quasiequilibrium orbit. As shift is implemented as an evolution equation for the shift,
initial condition on the gauge one may want to impose notbut it is the elliptic version which is more easily studied
only the condition that the lapse is a maximal slicing lapseanalytically. A key feature of the Gamma freezing shift is
but furthermore that it is everywhere positive. But as wethat when it is combined with maximal or+log slicing an
have just argued, for Schwarzschild it is only the isotropicapproximately time independent metric is obtained for the
lapse for which the metriG;; is time independent, and con- final, static black hole. While in the present paper we an-
versely we conclude that for positive lapse the metric willswered the question whether there exists a maximal slicing
not be time independent, which conflicts with the quasiequitorresponding to the numerically obtained zgp lapse, we now
librium condition. This was first noted in Reff21,51 and  can ask the question whether for zgp maximal slices there
independently in Ref.52]. exists a shift condition such that the evolution of the metric
in the resulting coordinates is minimized. Some steps in this
direction can already be found in R¢R1].

VIIl. CONCLUSION AND OUTLOOK

We have introduced the “zero gradient at the puncture”
boundary condition for maximal slicing of the Schwarzschild ACKNOWLEDGMENTS
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