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Maximal slicing for puncture evolutions of Schwarzschild and Reissner-Nordstro¨m black holes
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We prove by explicit construction that there exists a maximal slicing of the Schwarzschild spacetime such
that the lapse has zero gradient at the puncture. This boundary condition has been observed to hold in
numerical evolutions, but in the past it was not clear whether the numerically obtained maximal slices exist
analytically. We show that our analytical result agrees with numerical simulation. Given the analytical form for
the lapse, we can derive that at late times the value of the lapse at the event horizon approaches the value
3

16A3'0.3248, justifying the numerical estimate of 0.3 that has been used for black hole excision in numerical
simulations. We present our results for the nonextremal Reissner-Nordstro¨m metric, generalizing previous
constructions of maximal slices.
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I. INTRODUCTION

When decomposing the 4-dimensional Einstein equati
into ~311!-dimensional form, a crucial role is played by th
lapse function that determines how the 4-dimensional m
fold is sliced into 3-dimensional hypersurfaces. For spa
hypersurfaces the lapse determines how time progresse
tween hypersurfaces. There is large freedom in choosin
lapse, but a particularly interesting possibility is to determ
the lapse from the condition that the mean extrinsic curva
of the slices vanishes at all times. This condition correspo
to a certain maximal volume property of the hypersurfa
@1#, and the resulting gauge condition is referred to as ma
mal slicing.

Maximal slicing has played an important role in both an
lytical and numerical work using 311 decompositions. It
was suggested as a geometrically motivated antifocu
slicing condition by Lichnerowicz@2# already in 1944; i.e.,
maximal slices avoid certain coordinate pathologies. Furth
more, maximal slicing helps to deal with physical singula
ties associated with black holes. For a single Schwarzsc
black hole, maximal slicing can be constructed analytica
@3,4#. One can obtain maximal slices that extend from
‘‘right-hand’’ spatial infinity to the ‘‘left-hand’’ inner infinity
of the extended Schwarzschild spacetime, and these s
give a complete foliation outside the event horizon wh
approaching a limiting slice inside that does not reach
physical singularity. In this sense maximal slices avoid
physical singularity, and even in more general situatio
maximal slices have been found to be singularity avoid
@5#.

For these reasons, maximal slicing has been used
quently in numerical simulations of one black hole, e.
Refs. @3,6,7#, and also in binary black hole mergers in fu
3D, e.g., Refs.@8,9#. The lapse for maximal slicing is ob
tained in general by solving an elliptic equation, but ev
though there now are algebraic lapse conditions that
computationally far less expensive and share the singula
avoidance property, maximal slicing is still being used wh
0556-2821/2004/69~4!/044006~21!/$22.50 69 0440
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smoothness of the lapse is an issue, say in the currently m
advanced computations of gravitational waves from bla
hole mergers@10#. In addition, there are shift conditions@11#
which in many cases overcome the so-called slice stretch
problem of maximal slicing that previously limited blac
hole evolutions like Ref.@9# to short evolution times.

In this paper we establish the connection between the a
lytically known solutions for maximal slicing of the
Schwarzschild spacetime@3,4# and the maximal slicing com
puted in the puncture evolution method for black holes@8#.
In the puncture method, the left-hand asymptotically flat
gion of a black hole is effectively compactified by analy
cally factoring out a coordinate singularity and working o
R3, which can result in a significant technical simplificatio
over approaches which implement an inner boundary
black hole excision. However, although the general solut
to the linear elliptic equation for the maximal slicing lapse
known for Schwarzschild, this solution depends on t
boundary condition imposed on the lapse. Only ‘‘odd’’ an
‘‘even’’ boundary conditions have been considered befo
and the numerical lapse of the puncture evolutions is no
this type. Furthermore, there was no rigorous proof tha
the presence of the puncture coordinate singularity a reg
solution to the lapse equation exists, and while numerica
quite robust, it was not clear that the numerics was able
reliably determine this lapse.

The key idea in this paper is to impose the numerica
observed behavior of the lapse, namely that its first deri
tive vanishes at the puncture, as a novel boundary condi
on the lapse. This boundary condition we call the ‘‘zero g
dient at the puncture’’~zgp! condition. Since it is the coordi-
nate singularity at the puncture that implies the ‘‘zgp’’ co
dition, we refer to the resulting maximal slicing lapse also
the puncture lapse.

The main result of the paper is that we can prove
explicit construction that there exists a maximal slicing
the Schwarzschild spacetime such that the lapse has
gradient at the puncture, and furthermore that our analyt
result agrees with numerical simulation. Concretely, we
©2004 The American Physical Society06-1
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tain the zgp or puncture lapse as a time-dependent lin
superposition of the odd lapse and the even lapse. As
application of the analytical form for the puncture lapse,
can derive that at late times the value of the lapse at
right-hand event horizon approaches the value316A3
'0.3248, justifying the numerical estimate of 0.3 that h
been used for black hole excision in numerical simulatio

There are two technical difficulties to overcome. First, t
analytic formulas of Refs.@3,4# are nontrivial, in particular
the calculation is based on Schwarzschild coordinates w
lead to complications in the numerical evaluation of the
sulting integrals. And second, we have to establish an
plicit mapping between the coordinates used in our analyt
study and the numerical simulation before we can perform
comparison. In this paper we only consider the case of v
ishing shift.

Since we have to discuss Refs.@3,4# in quite some detail,
we take the opportunity to derive all relevant equations
only for Schwarzschild, but for a nonextremal Reissn
Nordström black hole. This turns out to be possible witho
major changes to the formalism and extends in some pla
previous results@12#.

The paper is organized as follows. In Sec. II, we recall
analytic solution to the lapse equation. In Secs. III and IV,
discuss in some detail the odd and even lapse, respecti
since these solutions will be superimposed to obtain the
lapse. Furthermore, in Sec. IV we make explicit contact
tween the equations given in Refs.@3# and@4#. In Sec. V, we
construct the zgp lapse and discuss the late time limit of
lapse at the right-hand event horizon. In Sec. VI, we comp
the analytical results for odd, even, and zgp maximal slic
In Sec. VII, we construct the coordinate transformati
needed to make contact with the numerical zgp lapse
compare with our analytical result. We conclude in Sec. V

II. LAPSE FOR MAXIMAL SLICING OF THE
REISSNER-NORDSTRÖM SPACETIME

To derive a differential equation for the lapse which ma
mally slices the Reissner-Nordstro¨m spacetime, we follow
Ref. @3# closely. There in 1973—concentrating on ev
boundary conditions—Estabrook and Wahlquist were
first to find and Christensen, DeWitt, Smarr and Tsiang
verify numerically the analytic solution for maximal slicin
of a Schwarzschild black hole. However, to simplify som
calculations for a comparison of different boundary con
tions imposed on this lapse, as done in Secs. III–V, the
tation of Ref. @4# will be used to some extent and will b
generalized to include electric charge. In the latter pa
Beig and ÓMurchadha re-derived this foliation based on
more geometrical ansatz and studied for even boundary
ditions the late time behavior of the throat in the limit
proper time at infinity becomes arbitrarily large. We w
make contact between formulas of those two reference
Sec. IV.

We start with the source-free Einstein-Maxwell equatio

GmnªRmn2
1

2
Rgmn58pTmn , ~1!
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for a charged black hole, where the stress-energy tensorTmn

is given in terms of the Maxwell tensorFmn by

Tmn5
1

4p S FmsFn
s2

1

4
gmnFs%Fs%D . ~3!

The 311 split of the equations in the ADM-formalism~see
Arnowitt, Deser and Misner Ref.@13# or @1#! yields the
Hamiltonian and momentum constraints

HªR1K22Ki j K
i j 216pr50, ~4!

Miª¹j~Ki
j2g i

jK !18psi50, ~5!

together with the evolution equations

~] t2Lb!g i j 522aKi j , ~6!

~] t2Lb!Ki j 5~2¹i¹j1Ri j 1KKi j 22KikKk
j !a

2@8pSi j 24p~S2r!g i j #a. ~7!

Here the fundamental dynamical variables are the induc
positive definite 3-metricg i j and the extrinsic curvatureKi j .
Note thatLb is the Lie derivative with respect to the shi
vector and¹i is the covariant spatial derivative associat
with g i j . Furthermore,Ri j is the 3-dimensional Ricci tenso
and the Ricci scalarR is its trace. The stress tensorSi j , the
momentum density vectorsi , and the total energy densityr
are obtained as projections of the Maxwell stress-energy
sor Tmn along the normalnm by

r5Tmnnmnn, si5Timnm, and Si j 5Ti j . ~8!

The mean extrinsic curvature

Kªg i j K
i j 52¹mnm ~9!

measures the amount of ‘‘crunch,’’ i.e., the fractional rate
contraction of 3-volume along a unit normal to the surfac

In the following we want to restrict ourselves to maxim
slicing,

K[0. ~10!

The reason for its name can be inferred from a variatio
principle maximizing the volume

V~V!5E
V
Adet$gmn%d

3x ~11!

of a bounded but arbitrary portionV of the Cauchy sliceS,
where as pointed out by York in Ref.@1# it follows that the
trace of the extrinsic curvature has to vanish. Contracting
evolution equation forKi j , Eq. ~7!, in the context ofK[0
one obtains the maximality condition

naª¹ i¹ia5a@R14p~S23r!#, ~12!

which is an elliptic equation for the lapse function.
6-2
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As in Refs.@3,4,12# the calculations are performed in th
radial gauge

ds25S 2a21
b2

g Ddt212bdtdr1gdr21r 2dV2 ~13!

with a,b and g being functions oft and r only. Whereas
$t,r ,u,f% are the standard Schwarzschild coordinates w
the Schwarzschild radiusr measuring the circumference d
vided by 2p or the square root of area divided by 4p of the
2-sphere, the functiont5t(t,r ) is clearly not.

Note furthermore that for the Maxwell tensorFmn of a
purely radial electrostatic field one can make the ansatz

Fmn5S 0 2EQ 0 0

EQ 0 0 0

0 0 0 0

0 0 0 0

D , ~14!

see, e.g., Chap. 18 of Ref.@14#, and one can readily verify
that

EQ5
QaAg

r 2
~15!

solves the source-free Maxwell’s equation~2!. For ~static!
Schwarzschild coordinates the classical resultEQ5Q/r 2 for
the electric field of a point particle with chargeQ situated at
the origin is recovered. Finally, the stress-energy tensor
be calculated according to Eq.~3! and its projections~8! are

r5
Q2

8pr 4
, si50, and Si j 5r diag@2g,r 2,r 2sin2u#.

~16!

In addition, we observe that the trace ofSi j coincides withr,
Sªg i j Si j 5r.

One can readily show that the equation for the vanish
of the trace of the extrinsic curvature,K[0, can as in Eq.
(18) of Ref. @3# be written in the form

~ logg! ,t5
b

g F logS b2r 4

g D G8, ~17!

which can be used in the following to eliminate derivativ
of g with respect tot. After some rewriting, the Hamiltonian
and momentum constraints, Eqs.~4! and ~5!, yield

r
g8

g
23

b2

a2g
1gS 12

1

g
2

Q2

r 2 D 50 ~18!

and

S logF r 2b

ag G D 8
50, ~19!

respectively. Furthermore, theuu-component of the evolu
tion equation of the extrinsic curvature, Eq.~7!, is used to-
04400
h

n

g

gether with the maximality condition~12!, which for the ra-
dial gauge reduces to a condition involving therr and uu
component of Eq.~7! only, to obtain as further equations

S log
b

a D
,t

52S b

g
1

a2

b Da8

a
1

3

g
b81

1

2 S a2

b
2

4b

g D g8

g

1S 3
b

g
1

a2g

b
2

a2

b D 1

r
2

Q2a2g

r 3b
~20!

and

a9

a
1S 2

r
2

1

2

g8

g Da8

a
2

2

r

g8

g
2

2g

r 2 S 12
1

g
2

Q2

2r 2D 50.

~21!

Equations~18!–~21! generalize the Schwarzschild black ho
present in Eq. (28) –(58) of Ref. @3# to a black hole carrying
electric charge.~Note the correction of two signs in Ref.@3#.!

The momentum constraint~19! immediately yields

b~t,r !5
a~t,r !g~t,r !

r 2
C~t!, ~22!

whereC is a function oft only. This equation can be used t
replaceb in the remaining equations such that from t
Hamiltonian constraint a first-order partial differential equ
tion ~PDE! for g arises. Its solution is given by

g~t,r !5
1

12
2M

r
1

Q2

r 2
1

C2~t!

r 4

5
r 4

pC~t,r !
, ~23!

where using the function

f ~r !512
2M

r
1

Q2

r 2
~24!

for convenience the polynomial

pC~t,r !5r 4f ~r !1C2~t!

5r 422Mr 31Q2r 21C2~t! ~25!

has been introduced. Note thatM, which arises as a constan
of integration, could in principle be a function oft, however
as in Ref.@3# it follows from the evolution equation~20!
together with Eqs.~17!, ~22! and ~23! that M must be
t-independent. It is worth pointing out that the radial met
function we obtain in Eq.~23! generalizes Eq.~9! of Ref. @3#
by the charge, and the same 3-metric for maximal slicing
Reissner-Nordstro¨m as found by Duncan in Ref.@12# is ob-
tained.

Finally, making use ofb, Eq. ~22!, andg, Eq. ~23!, the
maximal slicing condition~17! reduces to

~aAg!852
g3/2

r 2

dC

dt
, ~26!
6-3
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which is the differential equation for the lapse we were loo
ing for. By integration its general solution is found to be

a~t,r !5
ApC~t,r !

r 2 S D~t!1
dC

dt Er

` y4dy

pC~t,y!3/2D ~27!

whereC and D are functions oft only and one integration
limit has been fixed without loss of generality at spatial
finity. Three different boundary conditions leading to an od
even, and puncture lapse will be discussed next.

III. ODD LAPSE

A. Derivation

The simplest special case of the lapse~27! is, because of
its underlying antisymmetry with respect to the throat,
ferred to as odd~in some references also as antisymmetr!
and corresponds to the boundary conditions

lim
r→`

aodd
6 561 ;todd . ~28!

To measure proper time at infinity~on the right-hand side o
the throat denoted by a superscript ‘‘1 ’’ ! the lapse is unity
there and implied by the antisymmetry the lapse is minus
the puncture~on the left-hand side and hence denoted b
‘‘ 2 ’’ !. The odd lapse

aodd
6 ~C,r !56Af ~r !1

C2

r 4
56

ApC~r !

r 2
~29!

is obtained by settingD(todd)561 anddC/dtodd50. The
time-independent slice labelC can be chosen independent
the time at infinitytodd and is, as pointed out for Schwarz
child in Appendix A of Ref.@4#, purely gauge for Reissner
Nordström.

B. Schwarzschild lapse

The outer event horizon and inner Cauchy horizon atr 6

5M6AM22Q2 are given by the real roots off (r ), which
are time independent, while the throatr C is obtained as a rea
root of pC(r ) and therefore depends on the choice ofC.
Hence, starting with the throat in the same location as
event horizon impliesC50. In this case one obtains from
Eq. ~29! the so-called Schwarzschild lapse

aodd
6 ~C50,r !56Af ~r !, ~30!

from Eq. ~23! the radial component of the metric

g~r !5
1

f ~r !
, ~31!

and from Eq. ~22! a vanishing shift. Hence the stat
Reissner-Nordstro¨m metric written in Schwarzschild coord
nates,

ds252 f ~r !dt21
1

f ~r !
dr21r 2dV2, ~32!
04400
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-
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is recovered identifyingQ with the charge andM with the
mass of the black hole (0<uQu,M ).

This result was of course expected, since it is well kno
that with this coordinate choice the spacelike slices given
t5const, being perpendicular to the timelike Killing vect
in the exterior regions, are maximal. That one can imme
ately see from the definition of the extrinsic curvatureKi j ,
Eq. ~6!, which for zero shift reduces to

Ki j 52
1

2a
g i j̇ if b[0. ~33!

Since the 3-metricg i j is time independent, each of the com
ponents and therefore also the trace of the extrinsic curva
vanishes, henceK[0. Note furthermore that by contractio
of Eq. ~33! settingK[0 one immediately obtains the stat
ment that for maximal slicing with vanishing shift the dete
minant of the 3-metric is time independent. Hence the sin
larity avoiding property comes to light as the variation of t
local volume remains fixed@15#.

C. Isotropic lapse

By applying for vanishing shift a purely spatial coordina
transformationr 5r (R), the hypersurfaces obviously rema
maximal. To obtain isotropic coordinates by writingdr2

5(dr/dR)2dR2 and by comparing thedt2, dr2 and dV2

terms the set of equations

aodd
62 ~C50,R!5 f „r ~R!…, ~34!

C4~R!5
1

f „r ~R!… S dr

dRD 2

, ~35!

R2C4~R!5r ~R!2 ~36!

is read off. From Eqs.~35! and~36! the ordinary differential
equation~ODE!

dr

dR
56Af „r ~R!…

r ~R!

R
~37!

can be inferred wherer can take valuesr>r 1 only. By in-
tegration the solution is found to be given by

r ~R!5RF S 11
M

2RD 2

2
Q2

4R2G
5R1M1

M22Q2

4R
, ~38!

choosing an arbitrary constant of integration such thatr and

R coincide at infinity. WithR15 1
2
AM22Q2 corresponding

to r 1 this relation can also be piecewise inverted to yield
6-4
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R~r !5H 1

2
$2M1r @12Af ~r !#%

1

2
$2M1r @11Af ~r !#%

for H 0<R<R1

R>R1 .

~39!

From Eq.~34! follows the isotropic lapse

aodd
6 ~C50,R!5

~2R1M !~2R2M !1Q2

~2R1M !22Q2
~40!

and from Eq.~36! one can read off the conformal factor

C4~R!5F S 11
M

2RD 2

2
Q2

4R2G 2

. ~41!

Hence the Reissner-Nordstro¨m metric in isotropic coordi-
nates as found, e.g., in Ref.@16# is recovered which for van
ishing charge reduces to the well-known Schwarzschild c

D. Isometry

For the case 0<uQu,M , one can see from the coordina
transformation~38! that there is an isometry present, sin
the value ofr and therefore also the line element~32! re-
mains the same under a mapping

R↔ M22Q2

4R
. ~42!

These two values ofR for every value ofr .r 1 result in two
isometric parts of the spacetime~in terms of Kruskal-
Szekeres diagrams the regions I and I8 in Fig. 3 for
Schwarzschild!. In particular,R50 is simply a compactified
image of infinity in the other universe referred to as pun
ture. The fixed point set at the event horizonr 1 is a minimal
2-sphere of an Einstein-Rosen bridge@17# located atR1 , the
so-called throat~see the embedding diagram of Fig. 2!.

Note also that the odd lapse in isotropic coordinates,
~40!, changes its sign with positive values on the right-ha
side of the throat being the original unextended space
negative ones on the left-hand additional region obtained
analytic extension of the spacetime. In particular, the o
lapse vanishes on the throat, i.e.,a6(C50,R1)50 ~cf. the
lapse profile as shown for Schwarzschild in the upper plo
Fig. 6!.

IV. EVEN LAPSE

A. Derivation I „via Einstein-Maxwell equations…

The even lapse is symmetric with respect to the throat
its boundary conditions are usually stated as unit laps
infinity and a vanishing gradient at the throat. Since by sy
metry time has to run equally fast at both spatial ends of
manifold, one can also formulate even boundary conditi
as

lim
r→`

aeven
6 51 ;teven . ~43!
04400
e.

-

q.
d
d
y
d

f

d
at
-
e
s

This motivates for the differential equation obtained for t
lapse in Eq.~27! the particular choiceD(teven)51 made by
Estabrooket al. and generalized here, so

aeven
6 ~C,r !5

ApC~r !

r 2 S 11
dC

dteven
E

r

` y4dy

pC~y!3/2D . ~44!

Since one starts with the 3-geometry of thet5teven50 hy-
persurface, i.e., with the initial radial component of t
3-metric given byg51/f (r ), one can infer from Eq.~23!
that C(teven50)50 initially. The functionC(teven) though
is still undetermined as only single sheets of the 3-geom
labeled byC have been looked at so far. As stated in Ref.@3#,
the teven-dependence ofC can be fixed by imposing the
requirement of smoothness across the Einstein-Rosen br
by passing to the Reissner-Nordstro¨m line element~32! in
Schwarzschild coordinates. For the ‘‘height function’’t
5t(C(teven),r ), comparing dteven

2 , dtevendr and dr2

terms of the metric the following two PDE’s:

]t

]teven
5aeven

6
r 2

ApC~r !
, ~45!

]t

]r
52

C

f ~r !ApC~r !
, ~46!

are found. Making for Eq.~46! the ansatz

tªteven~C,r !52E
sC

r Cdy

f ~y!ApC~y!
, ~47!

one finds that this equation also satisfies Eqs.~44! and ~45!
for sC coinciding with r C . The latter is the unique~double
counting for C5Clim) larger real root of the polynomia
pC(r ) in @r Clim

,r 1# and determines the radial coordinate
the throat on a given maximal slice. Hence

teven~C,r !5HC~r !, ~48!

where we have introduced the integral

HC~r !ª2E
r C

r Cdy

f ~y!ApC~y!
~49!

for r>r C . Note that in Eq.~49! the integration across th
pole atr 1 is taken in the sense of the principal value, and
the same arguments as in Ref.@4# the corresponding slice
extend smoothly through the event horizonr 1 and throatr C .

The procedure of deriving Eqs.~48! with ~49! is nontrivial
as pointed out in detail in Ref.@3#: The requirement of
smoothness across the bridge isteven→0 and (]/]r )teven
→` asr approaches its smallest valuer C at the center of the
bridge, or in terms of Kruskal-Szekeres coordina
(]/]X)T50 asX→0. As mentioned in Ref.@18#, this fixes
6-5
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the value ofC(r C) such thatpC(r C)50 holds. In particular,
with r C becoming at infinite times a double counting ro
r Clim

with the value

r Clim
5

1

4
~3M1A9M228Q2!.0 ~50!

corresponding to

ClimªC~teven5`!

5
A2

8
A27236

Q2

M2
18

Q4

M4
1S 928

Q2

M2D 3/2

M2,

~51!

the singularity avoidance of the maximal slicing of the e
tended Reissner-Nordstro¨m spacetime as proven in corollar
3.8 in Ref.@5# becomes clear.

Finally, sinceteven(r ) andteven have to coincide at spa
tial infinity modulo an arbitrary constant, which can be set
zero, from Eq.~48! in the limit r→` one can infer

teven~C!5 lim
r→`

teven~C,r !5HC~`!. ~52!

We want to stress that in Eq.~47! the particular choice of the
larger root ofpC(r ) has been made since we are interested
the ‘‘horizon-horizon’’ subfamily of maximal slices only
which extend to both spatial infinities. Here the slices s
with the initial hypersurface representing the 3-geometry
the moment of time symmetry when the throat is at the ev
horizonr 1 and develop inward to approachr Clim

asymptoti-
cally and hence avoid the singularity. As pointed out in
mark 8 of Ref.@3# and in Sec. III of Ref.@12#, a second
‘‘singularity-singularity’’ subfamily of maximal slices can b
obtained choosing the unique~double counting for C

5Clim) minor real rootr̂ C of pC(r ) in @r 2 ,r Clim
# instead.

The initial hypersurface is now the time-symmetric sli
with the throat at the Cauchy horizonr 2 and the slices in-
tersecting the singularity atr 50 grow outward to the limit-
ing surfacer Clim

. As discussed in the next subsection, o
can compare the situation with the mechanical analogue
particle of energyE5C2 travelling in a repulsive potentia
V(r )52r 4f (r ), where r C and r̂ C represent turning points
~cf. Fig. 1!. Thinking of particles with energies ranging from
E50 to Elim5V(r Clim

)5Clim
2 it is clear that both subfami

lies together cover the spacetime with spacelike maxi
slices ~cf. the Kruskal-Szekeres diagram for Schwarzsch
and the Carter-Penrose diagram for Reissner-Nordstro¨m in
Fig. 1 of Refs.@3# and@12#, respectively!. For its limited use
in numerical relativity, however—as the slices lie alwa
completely inside the event horizon and hit t
singularity—we will not investigate the ‘‘singularity
singularity’’ subfamily further.
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B. Contact between Refs.†3‡ and †4‡ by a mechanical analogue

To make contact between formulas found by Estabro
et al. @3# and those derived by Beig and O´ Murchadha@4#,
one can apply an energy conservation equation worked ou
Appendix B of the latter paper. There two functionsF andJ
are introduced by

F~E,r !5E
xE

r W~y!dy

AE2V~y!
, ~53!

J~E,r !5E
xE

r
AE2V~y!V~y!W~y!dy.

~54!

In the following,W may have a simple pole atx5 x̄ andV

mappingxE to E and x̄ to 0 is a smooth functionV:@x0 ,
`@→R satisfying 0,E,V(x0), V(x),E, and V8(x),0
for x.x0. By differentiatingJ twice with respect toE the
formula

4
]2

]E2
J~E,x!52

2

AE2V~x!

V~x!W~x!

V8~x!

1E
xE

x 2

AE2V~y!

d

dy FV~y!W~y!

V8~y!
Gdy

5F~E,x!12E
]

]E
F~E,x! ~55!

is derived, cf. Eqs.~B7! and ~B9! in Ref. @4#.
Now, as pointed out in Ref.@19# using proper velocity

ds/dt, i.e., the rate of change of proper time along a ma
mal hypersurface with proper distance, from

FIG. 1. For maximal slicing of Schwarzschild the mechanic
analogue consisting of a particle of energyE5C2 travelling in a
repulsive potentialV52r 4f (r ) is shown. For the energy levelsE
5$0,0Clim

2 /2,0Clim
2 % the innermost and outermost radial distanc

for unbounded and bounded particles denoted by0r C and0r̂ C , re-
spectively, can be inferred.
6-6
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E5C25C2S ds

dt D 2

2r 4f ~r !5T1V ~56!

an energy conservation equation arises for a particle of t
energy E5C2 moving in the repulsive potentialV5
2r 4f (r ) with a kinetic energyT5C2(ds/dt)2. By demand-
ing ds/dt50 for unbounded particles starting from infinit
the closest approach to the singularity—or for bounded o
starting from the singularity the outermost rad
distance—is found to be given by the two real rootsr C and
r̂ C of the polynomialpC(r ), cf. Fig. 1. Furthermore, Beig
and ÓMurchadha@4# point out that forE.Elim with Elim

5V(r Clim
)5Clim

2 maximal slices hitting the singularity atr

50 are obtained@53#. They also argue thatF(E,r ) can be
thought of as the time it takes a particle of energyE to travel
from r C to r. In particular, in an analysis following in a late
paper@20# based on Refs.@4,21# we will be interested in the
way this function blows up asE approaches withClim

2 the
maximum of the potential in order to study the late tim
behavior of the slices.

One can readily check that the identifications

W~r !52
1

f ~r !
, V~r !52r 4f ~r !, E5C2 ~57!

and

r 05r Clim
, r E5r C , r̄ 5r 1 ~58!

satisfy the conditions onW, V, andE as stated above also i
the Reissner-Nordstro¨m case and lead to

HC~r !5CF~C2,r !. ~59!

Hence for the derivative ofHC(r ) with respect toC the
important formula

]

]C
HC~r !5F12C2

]

]C2
F

5
r 2

2S r 2
3

2
M1

Q2

2r
DApC~r !

2
1

2
KC~r ! ~60!

can be derived by straightforward calculation using Eq.~55!,
where forr>r C we have introduced the integral

KC~r !ªE
r C

r
yS y23M1

3Q2

2y
D dy

S y2
3

2
M1

Q2

2y
D 2

ApC~y!

. ~61!

Note thatKC(r ) diverges in the limitC→Clim as r Clim
be-

comes a double root ofpC(r ), the square root of which
appears in the denominator of the integrand. Note furth
more that from Eq.~60! in the limit r→` the equation
04400
al

s

r-

d

dC
HC~`!52

1

2
KC~`! ~62!

is found, cf. Eq.~B12! in Ref. @4#.
In order to write the expression~44! for the even lapse in

terms of the integralKC(r ), one can readily verify that

]

]C
@ teven~C,r !2teven~C!#5

]

]C
@HC~r !2HC~`!#

5E
r

` y4dy

pC~y!3/2
~63!

holds and hence the even lapse can be written as

aeven
6 ~C,r !5

ApC~r !

r 2

dC

dteven

]teven

]C

52
1

KC~`! S 1

r 2
3

2
M1

Q2

2r

2
ApC~r !

r 2
KC~r !D ,

~64!

which generalizes Eqs.~2.23! and ~2.24! in Ref. @4# by the
charge. By the same arguments as applied for Schwarzsc
in this reference, the term (dC/dteven)(]teven /]C) in the
first line of Eq.~64! blows up at the throat, i.e., forr→r C , in
such a way that the lapse has a smooth limit there. To
knowledge the lapse function formulated in Eq.~44! or ~64!
for maximal slicing Reissner-Nordstro¨m ~i.e., with electric
charge included! has not appeared in the literature yet.

For Schwarzschild, the even lapse profile in terms of
Schwarzschild radial coordinater for the times at infinity
teven5$0,1M ,2M ,4M ,8M % is shown in Fig. 6.

Recalling that the shift is given by Eq.~22! and the radial
component of the metric by Eq.~23!, with

beven~C,r !5
aeven~C,r !geven~C,r !

r 2
C ~65!

and
geven~C,r !5

1

f ~r !1
C2

r 4

5
r 4

pC~r !
~66!

the full 4-metric is found.

C. Derivation II „by a variational principle and Õor via
construction from Reissner-Nordström metric…

In this subsection we present two alternative derivatio
of the maximal slices, which the reader may skip witho
loss of continuity.

Note that the maximal slicing conditionK[0 fixes the
PDE for ]t/]r as in Eq.~46! only, whereas boundary cond
tions have to be specified to obtaint(C,r ) by integration.
The latter can always be written as the sum of the integ
HC(r ), Eq. ~49!, and a time translation function ofC, fixed
6-7
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initially by demanding that forC50 one starts with the
time-symmetrict50 hypersurface, and determined durin
the evolution by boundary conditions. In particular, for ev
boundary conditions the throatr C has to stay att50 because
of the symmetry, hence withHC(r C)50 it follows that this
additional function ofC is identical zero and Eq.~48! is
found. A nontrivial example, namely zgp boundary con
tions leading tot(C,r ) as in Eq.~97!, will be discussed in
Sec. V.

To emphasize the importance of the PDE~46! governing
the foliation of Reissner-Nordstro¨m into maximal slices for-
mulated as level sets of

s5t2t~C,r !5const, ~67!

where C is a parameter depending only on the new tim
coordinatet, two further ways of re-deriving this equatio
will be outlined here.

Duncan based on a variational principle shows in R
@12# that for Reissner-Nordstro¨m maximizing the 3-volume
of the line element

(3)ds25F2 f ~r !S ]t

]r D
2

1
1

f ~r !Gdr21r 2dV2 ~68!

the Euler-Lagrange equation

D

Dr F r 2f ~r !
]t

]r

A 1

f ~r !
2 f ~r !S ]t

]r
D 2G 50 ~69!

using the notation DY/DX5]Y/]X1(]t/]X)(]Y/]t)
1(]2t/]X2)(]Y/]t ,X) is obtained. Equation~69! is satisfied
if the expression within the square brackets is a function ot
only and one may readily check that Eq.~46! is recovered by
setting this function toC(t).

Another way followed for Schwarzschild in Refs.@4,22#
for maximal and in Ref.@19# for constant mean curvatur
slices is to examine the behavior of the normal

n5ntdt1nrdr5N¹@ t2t~C,r !#5NS dt2
]t

]r
dr D ,

~70!

where with the underlying Reissner-Nordstro¨m line element
~32! the normalization constantN is fixed by demanding

nmnm5N2F2
1

f ~r !
1 f ~r !S ]t

]r D
2G521. ~71!

Note thatN is also given by

N52nmS ]

]t D
m

, ~72!
04400
-

f.

where ]/]t is the static Killing vector. HenceN can be
viewed as the boost function@22# of ]/]t relative to s
5const. With Eq.~9! it follows that the trace of the extrinsic
curvature can be written as

K52¹mnm52
1

r 2

d@r 2nr #

dr

52
1

r 2

d

dr F r 2f ~r !
]t

]r

A 1

f ~r !
2 f ~r !S ]t

]r
D 2G ~73!

which for maximal slices,K[0, yields again Eq.~46! by the
same argument as for Eq.~69!.

One may readily verify that from the normalization~71! it
follows thatN coincides with the odd lapse, so

N56
ApC~r !

r 2
5aodd

6 . ~74!

Furthermore, writing]/]t as

S ]

]t D
m

5Nnm1jm with jmnm50 ~75!

and using Eq.~72! together withnm52a¹mt, one can find

a5N
dt

dt
. ~76!

In the context of even boundary conditions this yiel
aeven5aodd(]teven /]teven) as in the first line of Eq.~64!.
Here aodd and aeven are linearly independent solutions o
Eq. ~12! as pointed out in detail in Refs.@4,22#.

One should furthermore mention that instead of vary
the parameterC with time—which is the choice leading to
foliation, i.e., a ‘‘time evolution,’’ made in the latter refer
ences and in our paper—one could also as done in Ref.@19#
consider adding constant ‘‘time translations’’ tot(C,r ) for
fixed C.

D. Initial lapse profile

In order to calculate the initial lapse profile note that f
C50 the primitive forKC(r ) as in Eq.~61! is given analyti-
cally by

KC50~r !52
2r ~2Mr 2Q2!Af ~r !

~M22Q2!~2r 223Mr 1Q2!
, ~77!

and in particular in the limitr→` by

KC50~`!5 lim
r→`

KC50~r !52
2M

M22Q2
. ~78!
6-8
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With Eq. ~64! therefore the initial lapse profile in Schwarz
child coordinates is found to be

aeven
6 ~C50,r !512

Q2

Mr
~79!

taken symmetrically across the throat with the va
aeven

6 (C50,r 1)5A12Q2/M2 there. In terms of the
Schwarzschild isotropic coordinates as in Eq.~38! with the
isometry~42! present this can be written as

aeven
6 ~C50,R!512

Q2

M

4R

4R214MR1M22Q2
. ~80!

Obviously, in the Schwarzschild caseaeven
6 (C50,r )51 is a

solution of Eq.~12!, while with increasing charge the sourc
term 4p(S23r) in the maximality condition leads to a
increasingly collapsed lapse profile.

V. PUNCTURE LAPSE

A. Motivation of the zero gradient at the puncture „zgp…
boundary condition

As stated in the introduction, the motivation to define a
study the zgp boundary condition derives from puncture e
lutions of black holes. In any numerical black hole evoluti
one has to specify how the black hole singularity is treat
In particular, one can excise the black hole from the dom
at or inside the event horizon, thereby creating an in
boundary of the numerical grid, one can use the throat a
inner boundary and impose isometry conditions there,
finally one can work on a puncturedR3, i.e., R3 minus one
point ~the ‘‘puncture’’! for every asymptotically flat end in
side a black hole.

Under different names, punctures were studied as earl
Refs.@23,24# for Schwarzschild and axisymmetric black ho
data. The puncture topology for black hole initial data w
revived in Ref.@25# as a simple method to construct multip
black hole initial data with linear momentum and spin~see
also Refs.@26,27#!. As it turns out, even in the general ca
of orbiting black holes one can analytically separate the
ordinate singularity at the puncture and work onR3, both for
initial data and evolution@8,11#.

Here we concentrate on evolutions of Schwarzschild
the puncture framework. The 3-metric of Schwarzschild
isotropic coordinates att50 is

(3)ds25S 11
M

2xD 4

~dx21x2dV2!, ~81!

where the radial grid coordinatex coincides with the isotro-
pic Schwarzschild coordinateR as given in Eq.~39!, but
differs at later times depending on the shift and the bound
conditions used during evolution. The coordinate singula
at the puncture,x50, corresponds to the inner asympto
cally flat infinity of the black hole, i.e., the puncture corr
sponds to the left-handi 0 in the Carter-Penrose diagrams
Sec. VI B.
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For evolutions, one can define conformally rescaled m
ric and extrinsic curvature variables,

gi j 5
0C24Gi j , ki j 5

0C24Ki j , ~82!

where0C511M /2x is the time independent conformal fac
tor of Schwarzschild in isotropic coordinates. As argued
Ref. @8# and discussed further in Ref.@11#, as a consequenc
of this rescaling there are no singularities apart from
coordinate singularity in0C, in particular the rescaled metri
and extrinsic curvature are regular and do not evolve at
puncture. What concerns us here is the regularity of
maximal slicing condition~12!. Using the conformal metric
gi j , one has to solve equations of the type

Dga2OS 1

xD ]ka50. ~83!

As it turns out, standard numerical methods to solve t
elliptic equation can find a regular solution fora on R3,
which has the feature that its gradient vanishes sufficie
rapidly at the puncture such thatO(1/x)]ka is zero at the
puncture, and the lapse collapses to zero near the punc
This was noted as an experimental fact in Ref.@6# and ana-
lyzed in Refs.@8,11#, but there was no rigorous proof that
regular solution to Eq.~83! exists, and while numerically
quite robust, it was not clear that the numerics was able
reliably determine this lapse.

The proposal for the zgp lapse is to impose the vanish
of the gradient as a boundary condition on the lapse in co
dinates that avoid the coordinate singularity of isotropic c
ordinates.

B. Derivation of the zgp lapse

In order to derive boundary conditions for the zgp lap
note that at infinity and at the puncture the radial grid co
dinatex and also the isotropic Schwarzschild coordinateR at
t50 given in Eq.~39!, is related to the Schwarzschild radiu
through r 5x for $r→`,x→`% and r}1/x for $r→`,x
→0%. As before we demand unit lapse at infinity,

lim
x→`

azgp
1 5 lim

r→`

azgp
1 51 ;tzgp, ~84!

such that the slices are labeled by proper time at infinity.
the puncture, we impose the condition of vanishing gradi
by

lim
x→0

]xazgp
2 } lim

r→`

r 2] razgp
2 50 ;tzgp ~85!

making use of]x} r 2] r in this limit.
It turns out to be convenient to derive the zgp lapse

making the ansatz@54#

azgp
6 ~C,r !5F~C!•aeven

6 ~C,r !1C~C!•aodd
6 ~C,r !

~86!

for a time-dependent linear combination of the odd and
even lapse. This form is possible since the maximality c
dition ~12! is linear in the lapse. Furthermore, withaodd and
aeven two linearly independent solutions are known as d
cussed for Schwarzschild in Appendix A of Ref.@4# and as is
6-9
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B. REIMANN AND B. BRÜGMANN PHYSICAL REVIEW D 69, 044006 ~2004!
true also for Reissner-Nordstro¨m with 0<uQu,M . This an-
satz reveals useful insights in the properties of odd, ev
and zgp lapse, leading, e.g., immediately to the conjectur
Sec. V D regarding the lapse at the right-hand event hori
at late times. Also, the smoothness of the lapse~92! and of
the height function~97! follow trivially from the smoothness
shown for odd and even boundary conditions in Ref.@4#.
Equivalently, the puncture lapse can of course be deri
starting with the general solution for the lapse, Eq.~27!, by
applying directly the desired boundary conditions~84! and
~85!.

Care has to be taken in demanding these boundary co
tions analytically since condition~84! is imposed on the
right-hand side of the throat~denoted by a superscript ‘‘1 ’’ !
while Eq. ~85! on the left-hand side~denoted by a ‘‘2 ’’ !.
This, however, will be taken into account in the following
the odd lapse is taken in an antisymmetric manner across
throat using the appropriate plus and minus sign in Eq.~29!
for the regions extending to infinity and puncture, resp
tively. The even lapse is symmetric with respect to the thr
by construction.

Since both of these two lapses are already one at infin
the first boundary condition~84!,

F~C!1C~C!51 ;C, ~87!

simply yields that the sum of the dimensionless multiplica
functionsF andC is one for all times, so one can substitu
C(C)512F(C) ;C. This ~trivial! outer boundary condi-
tion already allows us to formulate a conjecture regarding
value of the lapse at the right-hand event horizon at
times as stated in Sec. V D.

Continuing in the derivation of the puncture lapse, t
gradients of the odd and even lapse at the puncture ca
obtained by calculating
e
di

r

04400
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lim
r→`

r 2] raodd
2 52M ,

lim
r→`

r 2] raeven
2 5M1

2

KC~`!
. ~88!

Remembering that the integralKC(`) carries units of 1/M
and diverges forC→Clim , it turns out that for late times the
gradients at the puncture foraodd and aeven just differ by
their sign. Therefore, in order to produce a vanishing gra
ent, at late times the average of the two lapse functions ha
be taken, i.e.,

lim
C→Clim

F~C!5 lim
C→Clim

C~C!5
1

2
. ~89!

For arbitraryC, 0<C<Clim , we use Eq.~88! with the sec-
ond boundary condition~85! to obtain

F~C!•S M1
2

KC~`! D2@12F~C!#•M50 ;C. ~90!

Hence from Eqs.~87! and~90! the multiplicator functions
F andC are found to be given by

F~C!512C~C!5
1

2

KC~`!

KC~`!1
1

M

, ~91!

where the divergence ofKC(`) in the limit C→Clim gives
the average of the odd and even lapse for late times as
mulated already in Eq.~89!.

The zgp or puncture lapse now can be written as
azgp
6 ~C,r !5

ApC~r !

r 2

dC

dtzgp

]tzgp

]C

5F~C!•aeven
6 ~C,r !1C~C!•aodd

6 ~C,r !

52
1

2

1

KC~`!1
1

M
H 1

r 2
3

2
M1

Q2

2r

2
ApC~r !

r 2 FKC~r !6S KC~`!1
2

M D GJ , ~92!
making use of the ansatz~86!. Similar to the even case, th
first line is obtained by passing to Schwarzschild coor
nates, which leads to Eqs.~45! and ~46! with the subfix
‘‘zgp’’ instead of ‘‘even.’’

We show the zgp lapse profile in these coordinates
times at infinitytzgp5$0,1M ,2M ,4M ,8M % when we discuss
the numerical evolutions, see Fig. 6.

The shift and the radial component of the 3-metric a
again given by
-

at

e

bzgp~C,r !5
azgp~C,r !gzgp~C,r !

r 2
C ~93!

and

gzgp~C,r !5
1

f ~r !1
C2

r 4

5
r 4

pC~r !
. ~94!
6-10
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In order to fix thetzgp dependence ofC one may from Eq.
~92! by analogy with Eq.~64! conjecture that

]

]C
tzgp

6 ~C,r !5
r 2

2S r 2
3

2
M1

Q2

2r
DApC~r !

2
1

2
FKC~r !6S KC~`!1

2

M
D G ~95!

and hence

d

dC
tzgp~C!5 lim

r→`

]

]C
tzgp

1 ~C,r !52KC~`!2
1

M
. ~96!

By going back to the differential equation for the maxim
lapse, Eq.~26!, one can readily verify that Eq.~95! and
hence Eq.~96! are correct and therefore the time depende
is consistently fixed by the height function

tzgp
6 ~C,r !5HC~r !6S HC~`!2

C

M D ~97!

using Eqs.~60! and ~62!. Furthermore, time is measured
right-hand spatial infinity by

tzgp~C!5 lim
r→`

tzgp
1 ~C,r !52HC~`!2

C

M
. ~98!

Note, however, that the time measured at the puncture
proaches the finite value

lim
C→Clim

lim
r→`

tzgp
2 ~C,r !5

Clim

M
. ~99!

We are not aware of a physical meaning of this finite time
the puncture.

Finally, we want to point out that using our result for th
zgp lapse, Eq.~92!, together withr}1/x for $r→`,x→0%,
one can readily verify that the first and second derivative
the lapse at the puncture both vanish. So the zgp lapse
leastC 2 there. However, when calculating higher derivativ
of the lapse, terms of higher order in the relationship
tweenr andx can be of importance, and these terms dep
on the chosen shift. For a vanishing shift the transformat
r „C(t),x… will be derived in Sec. VII C.

C. Initial lapse profile

For the initial lapse profile with Eq.~78! the multiplicator
function F as in Eq.~91! for C50 is found to be

F~C50!5
M2

M21Q2
. ~100!

In particular, for Schwarzschild with0F(C50)51 one
starts with the even lapse only, whereas for Reissn
04400
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Nordström with increasing charge the balance is shifted m
and more to the odd lapse to produce a ‘‘pre-collapsed’’ la
profile.

So the initial puncture lapse profile in terms of th
Schwarzschild radial coordinater using Eq.~92! is found to
be given on the right-hand and left-hand side of the throa

azgp
6 ~C50,r !5

M2r 2Q2M6Q2rAf ~r !

~M21Q2!r
. ~101!

Applying the transformation~38! one can derive this profile
also for the Schwarzschild isotropic coordinateR,

azgp
6 ~C50,R!512

2Q2

M21Q2

4R1M22Q2

4R214MR1M22Q2
.

~102!

Note that for the puncture lapse the isometry~42! is no
longer present.

D. Late time limit for the lapse at the right-hand event
horizon

Based on the ansatz~86! we want to state a conjecture fo
the lapse at the right-hand event horizon at late times tha
of some importance for black hole excision. Although o
can use the apparent horizon as the location for the exci
boundary, finding the apparent horizon is usually time co
suming, and a simpler prescription for some surface that
incides or is located inside the event horizon can serve
same purpose for excision. For example, one sometimes
define the excision surface by a surface of constant lapse
numerical simulations with maximal slicing, a lapse betwe
0.3 @28# and 0.34@29# turned out to mark the location of th
right-hand event horizon. A value in this range can also
inferred from some graphs in the literature showing the la
as a function of time, cf. Fig. 3~a! in Ref. @30#, Fig. 6 in Ref.
@31# or Fig. 13 in Ref.@32#.

For very general boundary conditions we can state
following conjecture:

For maximal slicing of the nonextremal extend
Reissner-Nordstro¨m spacetime with the throat of th
Einstein-Rosen bridge coinciding initially with the event h
rizon and with boundary conditions imposed on the lap
other than the odd ones, the lapse at late times at the rig
hand event horizon is found to approach the valueaur 1

5Clim /r 1
2 asymptotically. In particular, for the Schwarzs-

child spacetime with0Clim5 3
4 A3M2 and 0r 152M this

value turns out to be0aur 1
5 3

16A3'0.3248.
Without attempting a complete proof, we can argue

follows. Since for fixed time, i.e., for fixed slice labelC, the
lapse arises from the maximality condition~12!, i.e., a sec-
ond order linear ODE with smooth coefficients, the theory
ODE states that the set of solutions forms a 2-dimensio
real linear space, cf. theorem I in Chap. 15 of Ref.@33#. As a
consequence, every lapse using the superposition princ
can be constructed as a~time-dependent! linear combination
of the odd and even lapse, which are evidently linearly in
6-11
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pendent for 0<uQu,M . From Eqs.~29! and ~64! evaluated
for C→Clim , one can see that odd and even lapse at
right-hand event horizon in this limit are given by

lim
C→Clim

aodd
1 ur 1

5 lim
C→Clim

aeven
1 ur 1

5
Clim

r 1
2

. ~103!

Furthermore, any other lapse constructed by a linear com
nation with coefficients adding up to one in order to ha
unit lapse at infinity has the same limiting value. Finally, w
argue that as the slices approach withr C→r Clim

.0 a limit-

ing surface and hence avoid the singularity@5#, the limit C
→Clim considered so far carries over to the limit of infini
time, t→`. Although reasonable, it is not yet clear to
whether the last step holds without exception.

VI. COMPARISON OF THE ANALYTICAL ODD, EVEN,
AND ZGP MAXIMAL SLICES

A. Embedding diagrams

Embedding diagrams are useful tools for the visualizat
of geometric properties of slicings. Following Appendix F
Ref. @34# and Sec. IV of Ref.@35# in suppressing one of th
angular coordinates, by embedding a 2-dimensional~2D!
Riemannian hypersurface into flat 3D space the intrinsic
ometry of this surface is preserved. The embedding of
Reissner-Nordstro¨m $r ,f% line element, i.e., the equatoria
hypersurfaceu5p/2 corresponding to fixed time at infinit
t, in Euclidean space written in cylindrical coordinat
$z,r 5Ax21y2,f% is obtained by demanding

(3)ds25dz21dr21r 2df2

5F2 f ~r !S ]t

]r D
2

1
1

f ~r !Gdr21r 2df2

5
r 4

pC~r !
dr21r 2df2. ~104!

For fixedC(t) this results in the differential equation

dz

dr U
C5const

56A r 4

pC~r !
21 ~105!

for the embedding functionz(C,r ). For 0<uQu,M and r
>r C its solution is found by integration,

z~C,r !56E
r C

r A y4

pC~y!
21dy, ~106!

where without loss of generality symmetry with respect
the z50 plane has been chosen. In particular for the ini
Schwarzschild slice, i.e., forQ5C50, the solution@34# is
found to be

0z~C50,r !52A2A~r 22M !M . ~107!

The embedding is a parabola of revolution referred to
Einstein-Rosen bridge@17#. Here in both ‘‘universes’’ the
04400
e

i-

n

-
e

l

s

3-geometry becomes Euclidean far from the throat, which
the minimal 2-sphere of the bridge.

Note, however, that Einstein’s field equations fix only t
local geometry of the spacetime but not its topology. A ge
metrically identical—but topologically different—
embedding could be found for example by identifying bo
sheets in order to obtain the ‘‘throat of a wormhole’’ in th
sense of Misner and Wheeler@23#. Here in one flat space two
distant regions are connected in the limit when the separa
of the wormhole mouths is large compared to the circumf
ence of the throat, cf. Fig. 31.5 in Ref.@36#.

For the general 0<uQu,M , 0<C<Clim case we evalu-
ated the integral~106! numerically using for the relationship
C(t) equations~52! and~98! for the even and zgp boundar
conditions, respectively. The embeddings of these two ca
therefore only differ by their time labeling and are less
formative than their corresponding spacetime diagra
shown in Sec. VI B. In particular, information about any u
derlying symmetry of the slices—like the~anti!symmetry
with respect to the throat for~odd! even boundary conditions
and the more complicated behavior for zgp conditions—
been lost. The results are shown for Schwarzschild in Fig
which should be compared for the even boundary conditi
with Fig. 4.18 in Ref.@34# or Fig. 2 in Ref.@3#. Reflecting
the curves at thez50 plane and rotating them around thez
axis, a set of throats is obtained starting with a parabola
revolution with the minimal 2-sphere initially at the eve
horizon 0r 152M and degenerating at late times to an in
nitely long cylinder with radiusr 5 0r Clim

53M /2 as the
slices approach the maximal hypersurface with this rad
asymptotically. The plots for charge in the range 0,uQu
,M , which are not shown here, are qualitatively very sim
lar.

B. Kruskal-Szekeres and Carter-Penrose diagrams

Spacetime diagrams such as the Kruskal-Szekeres@37#
and Carter-Penrose@38,39# diagrams provide a convenien
way of visualizing spacetime properties like causality, s
e.g., Refs.@36,40#. In this paper we want to limit ourselves t
the discussion of the Schwarzschild spacetime, the result
the nonextremal Reissner-Nordstro¨m spacetime can be foun
in Ref. @21#.

For the Schwarzschild metric~32!, radial null geodesics
motivate for r P@ 0r 152M ,`@ the introduction of the
Regge-Wheeler radial coordinate

r * 5E dr

12
2M

r

5r 12M lnUr 22M

2M U, r * P] 2`,`@ .

~108!

As d(t6r * )50 on radial null geodesics, ingoin
Eddington-Finkelstein coordinates$v,r ,u,f% with

v5t1r * , vP] 2`,`@ ~109!

leading tods252(122M /r )dv212dvdr1r 2dV2 can be
defined as in Ref.@41#. Similarly, outgoing Eddington-
Finkelstein coordinates$u,r ,u,f% given by
6-12
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u5t2r * , uP] 2`,`@ ~110!

lead tods252(122M /r )du222dudr1r 2dV2. These line
elements can now be analytically extended tor .0, and the
corresponding Eddington-Finkelstein diagrams are sho
e.g., in Ref.@40#. In these coordinates the metric compone

FIG. 2. In the embedding diagrams for maximally slicing t
Schwarzschild metric using odd, even, and zgp boundary co
tions, the Einstein-Rosen bridges are obtained by reflecting
curves corresponding tot5$0,1M ,2M ,4M ,8M % displayed from the
bottom up atz50 and rotating them around thez axis. They start
with the throat at0r 152M and degenerate fort→` in the even
and zgp case—which just differ by their time labeling—to an in
nitely long cylinder with radius0r Clim

53M /2.
04400
n,
s

are nonsingular at0r 152M . However, it should be men
tioned that the regionsr ,2M in ingoing and outgoing
Eddington-Finkelstein coordinates do not coincide, since
can readily verify that for all timelike or null worldlines from
ds2<0 it follows that 2dvdr<0, while 2dudr>0. There-
fore, the nature of the singularity atr 50 is different: An
analysis in ingoing Eddington-Finkelstein coordinates sho
that no signal can escape back to infinity once it passed
event horizon. The time reverse of a black hole, a white ho
is found by performing a similar analysis in outgoin
Eddington-Finkelstein coordinates.

With the exterior region covered by both in- and outgoi
Eddington-Finkelstein coordinates, one can write t
Schwarzschild metric as

ds252S 12
2M

r Ddudv1r 2dV2

52
32M3

r
e2r /2MdUdV1r 2dV2 ~111!

by introducing forr .2M the Kruskal-Szekeres coordinate
@37#

U52e2u/4M,0 and V51e1v/4M.0, ~112!

which are analytically extendable toU.0 and V,0. The
Schwarzschild radial coordinater is now given implicitly as
a function ofU andV by

U•V52er
*

/2M5S 12
r

2M Der /2M. ~113!

Note that the singularity atr 50 corresponds toU•V51 and
the event horizon at0r 152M to U•V50, i.e., to eitherU
50 or V50. It is convenient to introduce new time an
space coordinates by

T5
1

2
~V1U ! and X5

1

2
~V2U ! ~114!

in order to produce Kruskal-Szekeres diagrams. Note
with t expressed in terms ofT andX by

t54MH arctanh
T

X

arctanh
X

T

in the regions H I,I8

II,II 8,
~115!

the lines of constantt correspond to straight lines through th
origin, whereas curves of constantr are hyperbolae with as
ymptotesT56X.

In Fig. 3, we show Kruskal-Szekeres diagrams for od
even, and zgp lapse.~Note the difference to the hand-draw
Fig. 1 in Ref. @11#.! Since the in- and outgoing radial nu
geodesics are given by lines of constantU and V, the light
cones are unit light cones appearing at 45°. One can i
from the Kruskal-Szekeres diagram that the Schwarzsc
geometry consists of four regions separated by the~dot-

i-
e
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FIG. 3. The Kruskal-Szekeres diagrams for the exten
Schwarzschild spacetime show the maximal slices for time at in
ity t5$0,1M ,2M ,4M ,8M % for the odd, even, and zgp bounda
conditions. Note that the puncture corresponds to the spatial infi
of region I8 located to the left of the plot.
04400
dashed plotted! event horizon at0r 152M , namely the re-
gions I and I8, two identical but distinct asymptotically fla
universes, where the isometry0R↔M2/40R corresponds to
the mapping (T,X)↔(2T,2X), and the regions II and II8,
two identical but time-reversed regions in which physic
singularities~a black hole and a white hole! are present.

As discussed in Sec. III, the maximal slices with o
boundary conditions correspond to surfaces of cons
Schwarzschild time coordinatet in the outer regions I and I8
since ]/]t generates a Killing vector field there@4,42#. In
particular, in the upper plot of Fig. 3 the solid black straig
lines in regions I and I8 are ~starting with the horizontal
time-symmetrict50 slice! the spacelike maximal hypersu
faces t5$0,1M ,2M ,4M ,8M %, whereas the gray timelike
lines correspond tor 5$2.5M ,3M ,3.5M ,4M %. In regions II
and II8 the spacelike limiting maximal slicer 5 0r Clim

53M /2 is plotted as a dashed line, the singularityr 50 by a
zigzag line.

In the even case, plotting the height functio
teven„C(teven),r … as in Eq. ~48! for the previously stated
times at infinity, an observer moves forward in Schwar
child time t in region and backward in region I8 in a sym-
metric manner in order to reach the limiting maximal slic
cf. the plot in the middle of Fig. 3, and, e.g., Fig. 1 in Re
@3# or Fig. 3 in both Refs.@7# and@18#. However, in terms of
the new time coordinateteven , time runs forward~due to the
always positive lapse! equally fast~due to the symmetry! in
both regions so that the asymptotic values fort at puncture
and infinity differ by the amount 2teven . Due to the symme-
try with respect to theT axis, the throat0r C ~plotted as an
unfilled box! moving from0r 152M to 0r Clim

53M /2 re-
mains on this axis and the slices penetrate into the left-h
and right-hand event horizon~denoted by downward and up
ward pointing triangles! symmetrically.

Demanding for zgp boundary conditions neither symm
try nor antisymmetry, the slices are ‘‘lopsided’’ as can
seen by plottingtzgp„C(tzgp),r …, Eq. ~97!, in the graph on
the bottom of Fig. 3. In particular, one can observe that a
function of time the throat0r C moves ‘‘to the right’’ along
the shown curve corresponding tot5HC(`)2C/M . From
Eq. ~97! one can infer that as in region I at infinity the tim
measured astzgp(C)5 limr→`tzgp

1 (C,r ) goes to infinity in
the limit C→ 0Clim , as stated in Eq.~99! in region I8 at the
puncture the finite time0Clim /M5 3

4 A3M'1.2990M is
found. Taking care of the sign as for even boundary con
tions, the maximal hypersurfaces approach in region I8 the
line t52 0Clim /M asymptotically in the limitr→` with
C→ 0Clim .

In Fig. 4, we show Carter-Penrose diagrams correspo
ing to Fig. 3. These are obtained by a conformal compa
fication of the formds̃25V2(t,xi)•ds2 which—leaving the
underlying causal structure unchanged—map points at in
ity in the original metricds2 to a finite affine parameter in
the compactified metricds̃2. See Ref.@40# for further tech-
nical conditions on the spacetime and on the~not unique!
choice ofV to guarantee that this construction will work. A
shown in this reference, on the conformal boundary one

d
-
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identify past and future null infinityJ 7, past and future
timelike infinity i 7 and spacelike infinityi 0, i.e., the begin-
ning and end of null, timelike and spacelike geodesics.

For the Schwarzschild metric, compactification can
carried out@42# by introducing as in Eq.~114! new time and
space coordinatesT̃ and X̃ based on

Ũ5arctanU and Ṽ5arctanV, ~116!

whereŨ and Ṽ are in the range2p/2<Ũ,Ṽ<p/2.
It is worth pointing out that as radial null geodesics a

again unit light cones the maximal slices are obviou
spacelike. Furthermore, at the right-handi 0, with the lapse
being one at infinity for all three boundary conditions, ess
tially t5const slices are found, whereas in particular for z
boundary conditions at the puncture, i.e., the left-handi 0, the
line t52 0Clim /M is approached at late times. One m

FIG. 4. Carter-Penrose diagrams are obtained by compactif
the Kruskal-Szekeres diagrams of Fig. 3 as stated in the text. N
the behavior of the slices at spatial infinity, the movement of
throat r C and of the left-hand and right-hand event horizon, wh
are again plotted as unfilled box, downward and upward poin
triangles, respectively.
04400
e

y

-
p

readily verify that for the compactification carried out he
these slices arrive ati 0 with a slope given by

UdT̃

dX̃
U

i 0

5tanh
utu

4M
. ~117!

In our case, starting with the horizontal time-symmetric h
persurfacet50 the slices for all three boundary condition
fan out to hugJ 1 asymptotically, while for zgp boundary
conditions at the puncture a finite angle given
arctan@ tanh(Clim/4M2)#'17.4° is found in the limit of late
times.

VII. COMPARISON WITH NUMERICAL SIMULATIONS

A. Numerical method

Maximal slicing has been studied numerically for the ev
lution of a single Schwarzschild black hole already in R
@3#, and was later on implemented and used as a standard
case in 1D@7#, 2D @31# and 3D codes@6,11# based on a
Cartesian grid and by using a smooth lattice method@32#.

For comparison with the analytical result for the punctu
lapse, we have performed simulations with theCACTUS code
@43#. We evolved a single Schwarzschild puncture w
maximal slicing and vanishing shift with the Baumgart
Shapiro-Shibata-Nakamura~BSSN! system of evolution
equations, see Ref.@11# for details. The maximal slicing
lapse is obtained by solving the elliptic equation~12! using
the multigrid solver BAM_Elliptic@44,45#, without imposing
any additional boundary condition at the puncture.

In Fig. 5, we show an example for the numerical grid. T
runs are carried out in three dimensions on an octant ofR3,
which is possible for spherically symmetric systems. T
puncture is located at the origin, and we choose a stagg
Cartesian grid with uniform grid spacing such that the pu
ture is not part of the grid but rather is located half w
between grid points in all three directions.

The outer boundary condition for the lapse is imp
mented numerically at the edge of the finite numerical g
by employing a Robin condition@46# as described in Ref
@47#. In order to study errors introduced by the Robin boun
ary condition implemented at the edge of the grid, runs h
been carried out using a uniform spacing ofnX50.05M and
~multiplied by a courant factor of14 ) time steps ofntzgp
5 1

4 nX50.0125M for a series of 323, 643 and 1283 grid
points to place the outer boundary atXob'1.6M , 3.2M and
6.4M , respectively. Similarly, we checked for second ord
convergence using different numbers of grid points for
outer boundary close in. These numerical tests are descr
in Ref. @21#. For the resolutions considered here, there
limitations in the numerical convergence near the punctu
and it is known that higher resolution is required to see cle
convergence near the puncture, see Ref.@11# for algebraic
slicings. For the present purpose of comparison with the a
lytical results, the goal was only to establish that these r
are approximately in the convergent regime. All the results
the remainder of this section are fornX50.05M , 1283 grid
points, andXob'6.4M .
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FIG. 5. The Cartesian grid used in numeric
solutions is shown~suppressing theZ direction!
for 323 grid points and a resolution ofnX
5nY5nZ50.05M , which places the outer
boundary atXob'1.6M . The domain is one oc-
tant with appropriate boundary conditions fo
spherical symmetry imposed at the planesX
50, Y50, andZ50. Note that the puncture is
staggered at the origin. The numerically foun
locations of the throatxC and the left-hand and
right-hand event horizon,xC

2 andxC
1 , are super-

imposed as dark solid lines for the timestzgp

50 andtzgp58M .
is

m
ee
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We will show that the numerical evolution obtained in th
way agrees nicely~within a certain error! with the analytical
result for the puncture lapse. In order to carry out this co
parison, we have to establish an explicit mapping betw
the coordinates used in the numerical simulation and
analytical study.

B. Schwarzschild radial coordinate

One has to remember that for 3D Cartesian coordina
$X,Y,Z% the system has no spherical symmetry from
point of view of the code. However, looking at radial outp
the radial coordinatex defined as the Euclidean distan
from the puncture is readily obtained. Because of the sph
cal symmetry the expressionr 2dV2 for the angular part of
04400
-
n
r

s
e

ri-

the metric is also expected in numerical simulations@55#.
Hence the Schwarzschild radial coordinate can be obta
by calculating

r ~t,x!5C2~x!Aguu~t,x!5C2~x!Asin2ugff~t,x!.
~118!

Figure 6 shows the odd, even, and zgp lapse profiles
timest5$0,1M ,2M ,4M ,8M % measured at infinity. The solid
lines show the analytic results based on the evaluation
Eqs. ~29!, ~64! and ~92!. For the zgp boundary condition
data points obtained from the largest simulation are plot
as boxes in Fig. 6 and lie virtually on top of the analytic
results.

Evaluating the analytic integrals is a nontrivial task due
the late time divergence of the involved integralsHC(r ) and
6-16
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FIG. 6. Shown are the odd, even, and zgp lapse versus
Schwarzschild radial coordinater for times t5$0,1M ,
2M ,4M ,8M % measured at infinity. The solid lines show the analy
results, while the numerical results for the zgp lapse are plotte
solid boxes. The numerical data points lie virtually on top of t
analytical result. Note that in the odd case the time-independ
lapse is negative on the left-hand side of the throat~denoted by an
unfilled box! coinciding with the event horizon, whereas for th
even case the collapsing lapse is symmetric in the sense th
particular left-hand and right-hand event horizon~shown as down-
ward and upward pointing triangles! and also infinity and puncture
coincide. These symmetries are lost for the zgp lapse with the la
remaining one at infinity and collapsing at the puncture.
04400
KC(r ) as discussed in more detail in Ref.@21# based on Ref.
@48#. The value of the lapse at the throat0r C is marked on
these slices by an unfilled box and similarly for the left-ha
and right-hand event horizon corresponding to0r 152M by
downward and upward pointing triangles. Being motivat
geometrically these ‘‘markers’’ essentially allow one
sketch for a certain time at infinity the corresponding lap
profile and are hence suited for a study of their late ti
behavior which will be carried out in a later paper@20#. Note,
for example, that for the collapsing lapse profiles obtain
for even and zgp boundary conditions the radial coordin
of the throat approaches0r Clim

53M /2 and that the conjecture

of Sec. V D regarding the lapse at the right-hand event h
zon holds.

C. Radial isotropic grid coordinates

From the analytical point of view the task of finding th
foliation of the extended Reissner-Nordstro¨m metric using
maximal slices with zgp boundary conditions has be
solved already in Sec. V in the sense that in a well-sui
coordinate system, namely the radial gauge~13!, the maxi-
mal slices arising as level setstzgp5const of the height func-
tion tzgp„C(tzgp),r …, Eq. ~97!, have been found. Keeping i
mind the 311 split, the foliations shown previously in
Kruskal-Szekeres and Carter-Penrose diagrams are uniq
determined by the lapse functionazgp

6
„C(tzgp),r …, Eq. ~92!,

telling one how to progress from sliceSt to the consecutive
one St1dt . Since for puncture data inCACTUS neither the
Schwarzschild coordinates,$t,r ,u,f%, nor the previously in-
troduced coordinates$t,r ,u,f%, but depending on the shif
different ‘‘grid coordinates,’’$t,x,u,f%, are used, it is for a
comparison with numerical results important to find the c
ordinate transformations relating these gauges. Above al
are now interested in using the freedom of choosing differ
coordinates (xi) on these slices in order to construct coord
nates such that the 4-metric coincides at all times with out
from a numerical evolution of black hole puncture data a
hence to prove by construction the existence of an unde
ing analytical solution. The radial coordinates of this pun
ture data line element we shall call ‘‘isotropic grid coord
nates’’ in the case of a vanishing shift and ‘‘isothermal g
coordinates’’ for a nontrivial shift to emphasize the conne
tion both to the isotropic and isothermal gauge and to
numerical grid. Unless stated otherwise, here and in the
lowing the expressions are valid for arbitrary boundary co
ditions imposed on the lapse. However, one should note
for odd boundary conditions the time-independent isotro
coordinates of Sec. III are recovered, which are not horiz
penetrating. In this paper we concentrate on the case of
ishing shift, B[0, whereB denotes the shift for isotropic
coordinates to distinguish it from the shiftb in radial gauge.
The more general case of a shiftBÞ0 is discussed in Ref
@21# and subject of a later paper.

Independent of the coordinate choice (xi) on the maximal
slices, time at infinity is still measured byt. So the task is to
find a radial coordinate transformation of the formr
5r „C(t),x… to a line element with zero shiftB,
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ds25S 2a21
b2

g Ddt212bdtdr1gdr21r 2dV2

ª2A2dt21Gdx21r 2dV2. ~119!

Here,]r /]t5(]r /]C)(dC/dt) has been used, and the lap
A and the 3-metricGi j with its radial componentG as func-
tions of t andx have been introduced and are given by

A~t,x!5a„t,r ~t,x!…,

G~t,x!5g„t,r ~t,x!…S ]r

]xD 2

. ~120!

To allow for a direct comparison with numerical punctu
evolutions as produced byCACTUS, the 3-metric is written in
the form

(3)ds25Gdx21r 2dV25C4Fgdx21
r 2

C4
dV2G ,

~121!

obtained by rescaling the 3-metric with the conformal fac

C4~x!5F S 11
M

2xD 2

2
Q2

4x2G 2

. ~122!

Here the coordinatex of puncture evolutions is given in
terms of the 3D Cartesian coordinates$X,Y,Z% by x
5AX21Y21Z2, which measures the Euclidean distance
the puncture at the origin, and

gi j ~t,x!ª
Gi j ~t,x!

C4~x!
with g~t,x!ª

G~t,x!

C4~x!
~123!

has been introduced.
Again it is worth pointing out that for the initial slice th

radial grid coordinatex is identical to the Schwarzschild iso
tropic coordinateR defined in Eq.~38! and hence related to
the Schwarzschild radial coordinater by

r ~t50,x!5xC2~x! ~124!

as discussed in Sec. III. Note, furthermore, that for bla
hole puncture initial data the 3-metricGi j is implemented in
isotropic coordinates, hence

G~t50,x!5C4~x! and g~t50,x!51 ~125!

has to hold initially.
Notice that as a time-independent, trivial case the o

boundary conditions are included and lead to the isotro
lapse of Sec. III together with the formulas~124! and ~125!
valid at all times, which yields the static Reissner-Nordstr¨m
metric in isotropic coordinates. However, due to the nega
values of the lapse in the region between the puncture
the throat, with an observer going backward in time, its n
merical implementation has been found to be unstable i
least one example@49#.
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In the following we use the observation that the punctu
data line element for zero shift has to have a 3-metric wit
time-independent determinant. As remarked in Sec. III, t
is a consequence of maximal slicing,K[0, in combination
with a vanishing shift,B[0. Considering the ansatz~121!,
one can see that due to the time independence of the co
mal factor the determinant of the rescaled 3-metricgi j
5Gi j /C4(x) also has to be time independent and hence
be a function ofx only. The latter can be determined on th
initial slice to be given by det$gmn%5x4sin2u using the initial
conditions~124! and ~125!. So it follows that the rescaled
radial part of the 3-metric can be written as

g„C~t!,x…5
x4C8~x!

r 4
„C~t!,x…

. ~126!

It is from G5C4g5x4C12/r 45g(]r /]x)2 now trivial to in-
fer for fixed slice labelC the ODE

]r

]x
56

ApC~r !

r 4
x2C6~x!, ~127!

which relates the Schwarzschild radial coordinater to the
radial coordinatex for puncture evolutions. This can be inte
grated as

E
r C

r y4dy

ApC~y!
56E

xC

x

y2C6~y!dy ~128!

using the throat as lower integration limit. HerexC denotes
the location of the throat on the grid as a function of time a
the ‘‘1 ’’ and ‘‘ 2 ’’ sign applies for the right-hand or left-
hand side of the throat, respectively. One may readily ch
that for C50 the ODE~127! coincides with the ODE~37!
found for Schwarzschild isotropic coordinates leading in t
case tox5R with the throat atr C505r 1 and xC505x1

5R15 1
2 AM22Q2. For later times, though,xC has to be

found from Eq. ~128! by demanding that the coordinat
transformationr 5r (C(t),x) is consistent with the require
ment of a vanishing shift. See@20# for details and for a
discussion of the late time behavior ofxC in the case of the
even and the ‘‘zgp’’ boundary conditions.

Given these coordinates, we can finally compare the a
lytically given 4-metric withcactusoutput for maximal slic-
ing of a Schwarzschild black hole with zgp boundary con
tion and vanishing shift. The time-dependent profile
namely the coordinate transformation relatingr and x, the
‘‘outward moving shoulder’’ obtained for the collapse of th
lapse and the growing peak in the radial component of
3-metric, are plotted in Figs. 7, 8, and 9, respectively. Sim
numerical results can also be found in the literature, see,
Fig. 3.16 in Ref.@50# or Figs. 2 and 6 in Ref.@31# and Fig. 2
in Ref. @6#, where instead ofx in the latter references usuall
a logarithmic radial coordinate has been used.

For Figs. 7–9 the reader should bear in mind that for o
boundary conditions the time-independent coordinate tra
formation relating Schwarzschild radial and isotropic coor
nates is given by Eq.~38!, the isotropic lapse by Eq.~40! and
6-18
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FIG. 7. The Schwarzschild radial coordinater as given by Eq.~128! in the context of ‘‘zgp’’ boundary conditions is shown as a functi
of the isotropic radial coordinatex for maximal slices with times at infinitytzgp5$0,1M ,2M ,4M ,8M %. The slices are horizon penetratin
and approach the limiting slicer 5 0r Clim

53M /2 asymptotically. Data points from aCACTUS run have been plotted as filled boxes, whic
agree well with analytic results. The throat~located as minimum of the radial coordinate and depictured by a box! is found to move to the
right-hand side of its initial location0x15M /2, whereas the left-hand and right-hand event horizon~both now corresponding tor 5 0r 1

52M and denoted by downward and upward pointing triangles! move to the left and right, respectively.
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the rescaled radial part of the 3-metric is simplyg5G/C4

[1. Although both the evaluation of the underlying analy
cal expressions~as described in Ref.@21#! on the one hand
and the numerical simulations~with errors introduced by fi-
nite differencing and the outer boundary! on the other hand

FIG. 8. The analytically derived collapse of the lapse is sho
for ‘‘zgp’’ boundary conditions as solid lines for the slice aga
corresponding totzgp5$0,1M ,2M ,4M ,8M %. These curves have
been obtained by evaluatingazgp

6 (C,r ), Eq. ~92!, in the context of
the coordinate transformation~128! shown in Fig. 7.CACTUS results
from the best resolved run are shown as boxes lying almost on
of the analytically found collapsing lapse profile. An ‘‘outwar
moving shoulder’’ is obtained as the lapse decreases exponen
to zero at the puncture, at the left-hand event horizon, and at
throat, but approaches the finite value0Clim / 0r 1

2 5
3

16A3'0.3248
at the right-hand event horizon.
04400
contain numerical errors, theCACTUS data points virtually
lay on top of the analytic curves.

We want to emphasize that for arbitrary boundary con
tions the coordinate transformationr 5r (C,x), Eq. ~128!,
holds, with differences in the time dependence of the s
label C(t) and the~in general time-dependent! location of
the throat xC. For this—an exception being the time
independent odd case discussed previously—e.g., the
bounded growth of the radial metric functiong(C,x)
5x4C8(x)/r 4(C,x), Eq.~126!, as shown in Fig. 9 for ‘‘zgp’’
boundary conditions, is not only a feature of the punctu
lapse. Even worse, in the context of zero shift this sl
stretching effect is a fundamental property of maximal sl
ings when avoiding singularities as will be discussed furt
in @20#.

The development of the peak in the metric shown in F
9 is the combined effect of local observers falling into t
black hole and the collapse of the lapse function shown
Fig. 8. The coordinate points at smaller values of the iso
pic coordinate have larger infall speeds, causing the ra
metric componentg to increase towards smallerx. However,
at the same time, there is a competing effect due to the us
the singularity avoiding slicing. The motion of the gri
points close to the puncture atx50 is frozen as the lapse
collapses there. Well inside, the latter effect dominates, ang
cannot increase in time. This causes the radial metric fu
tion to develop a peak at a place slightly inside the rig
hand event horizon. At this location, the difference in t
infalling speed of the grid points is large, but the lapse h
not completely collapsed.

Finally, we want to mention that if one demands a tim
independent 3-metricGi j , by looking at the angular part o
bothGi j andg i j given byr 2dV2 it is obvious that the coor-
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B. REIMANN AND B. BRÜGMANN PHYSICAL REVIEW D 69, 044006 ~2004!
dinate transformation relatingr and x has to be time inde-
pendent and hence to be given by Eq.~124!. Therefore this
requirement inevitably leads to the isotropic lapse. This
servation is relevant for the construction of initial data f
black hole punctures on a maximal slice. Such data can
isfy some of the necessary conditions for the existence
helical Killing vectors@51#, which is appropriate when look
ing for binary black holes in a quasiequilibrium orbit. A
initial condition on the gauge one may want to impose
only the condition that the lapse is a maximal slicing lap
but furthermore that it is everywhere positive. But as
have just argued, for Schwarzschild it is only the isotro
lapse for which the metricGi j is time independent, and con
versely we conclude that for positive lapse the metric w
not be time independent, which conflicts with the quasieq
librium condition. This was first noted in Refs.@21,51# and
independently in Ref.@52#.

VIII. CONCLUSION AND OUTLOOK

We have introduced the ‘‘zero gradient at the punctu
boundary condition for maximal slicing of the Schwarzsch
and Reissner-Nordstro¨m spacetimes. Comparing analytic
and numerical results for Schwarzschild, this boundary c
dition leads to convincing agreement with the numerica
computed evolutions for maximal slicing and vanishing sh
As an application of the analytical form for the zgp or pun
ture lapse, we can derive a late time limit for the lapse at
right-hand event horizon, which is consistent with previo
numerical estimates.

Let us mention several directions for further investig
tions. First of all, in Ref.@20# we will give a detailed late
time analysis for the maximal slicing of Reissner-Nordstro¨m

FIG. 9. For the radial componentg of the conformally rescaled
3-metricgi j for the ‘‘zgp’’ Schwarzschild case in the manner of th
previous figures, a comparison of the analytical resultg(C,x)
5x4C8(x)/r 4(C,x), Eq. ~126!, andCACTUS output is made. Note
that whereasg[1 holds for the odd case, for other boundary co
ditions similar slice stretching effects are present in the radial m
ric component as will be discussed further in@20#.
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puncture data, extending the results for Schwarzschild
tained in Ref.@4#. We will discuss there the late time beha
ior of the 4-metric at the puncture, the throat and the ev
horizons. Note that all of our numerical results refer to t
Schwarzschild spacetime. Future numerical work could
clude an electric charge in the range 0,uQu,M .

Maximal slicing is a special case of constant mean cur
ture slicings, see for example Ref.@19#. It would be interest-
ing to see whether constant mean curvature slicing is a
nable to a similar analysis as presented here, and whe
there is a promising avenue for numerical simulations.

As mentioned in the introduction, maximal slicing has
some cases been replaced with algebraic slicings of the
1log’’ type, see Ref.@11# for recent work on puncture evo
lutions. It may be possible to gain analytic insight into 11log
slicing, which in fact in some regards mimics maximal sli
ing. For example, one would like to understand the singu
ity avoidance properties of 11log slicing better. A first at-
tempt to study this problem has met with technic
difficulties, but further work is certainly warranted.

Of particular interest from the point of view of numeric
relativity is an analytical study of elliptic shift conditions i
Schwarzschild, say the minimal distortion shift condition.
maximal slicing lapse together with a minimal distortio
shift have been suggested as a natural coordinate choic
numerical simulations@1#. While the minimal distortion shift
has not been successful for puncture evolutions, a clo
related shift condition called Gamma freezing or conform
3-harmonic has to some extent solved the long standing s
stretching problem of maximal slicing for single black ho
and head-on collision simulations@11#. In that reference this
shift is implemented as an evolution equation for the sh
but it is the elliptic version which is more easily studie
analytically. A key feature of the Gamma freezing shift
that when it is combined with maximal or 11log slicing an
approximately time independent metric is obtained for
final, static black hole. While in the present paper we a
swered the question whether there exists a maximal slic
corresponding to the numerically obtained zgp lapse, we n
can ask the question whether for zgp maximal slices th
exists a shift condition such that the evolution of the met
in the resulting coordinates is minimized. Some steps in
direction can already be found in Ref.@21#.
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