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Abstract
Assuming that general relativity is the correct theory of gravity in the strong-
field limit, can gravitational-wave observations distinguish between black
holes and other compact object sources? Alternatively, can gravitational-
wave observations provide a test of one of the fundamental predictions of
general relativity: the no-hair theorem? Here we describe a definitive test
of the hypothesis that observations of damped, sinusoidal gravitational waves
originate from a black hole or, alternatively, that nature respects the general
relativistic no-hair theorem. For astrophysical black holes, which have a
negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum
is characterized entirely by the black-hole mass and angular momentum and
is unique to black holes. In a different theory of gravity, or if the observed
radiation arises from a different source (e.g., a neutron star, strange matter
or boson star), the spectrum will be inconsistent with that predicted for
general relativistic black holes. We give a statistical characterization of the
consistency between the noisy observation and the theoretical predictions of
general relativity and a demonstration, through simulation, of the effectiveness
of the test for strong sources.
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1. Introduction

The formation of a black hole (BH) is the ultimate expression of strong-field gravity. Although
we lack detailed information about the gravitational radiation produced through most of the
formation process, our knowledge of the near-end point affords us important insight into the
nature of general relativity.

During the late stages in the aspherical formation of an astrophysical black hole the
gravitational waves emitted are dominated by a set of quasi-normal modes (QNMs) [1–3]:
waves with exponentially damped sinusoidal time dependence, whose frequency and damping
times are characteristic of the mass and angular momentum of the black hole7. If we observe
a QNM from a black hole and also know which particular normal mode we are observing, we
can determine, from the mode’s frequency and damping time, the black-hole mass and angular
momentum [4, 5].

If, on the other hand, we simultaneously observe two or more QNMs from the same
source and find that they are inconsistent with the spectrum predicted by general relativity in
the sense that they cannot be explained by a single value of the mass and angular momentum,
we may infer that we are not observing a black hole.

A different perspective is offered by future observations by the Laser Interferometer Space
Antenna (LISA) [6]. LISA is expected to observe mergers of compact objects with masses
in the range 106–108M� [7]. In our present understanding, these compact objects can only
be black holes. Thus, observations by LISA of QNMs inconsistent with black holes would
also conflict with the general relativistic no-hair theorem since an inconsistency in this mass
range with black-hole sources would indicate that physical scales other than mass and angular
momentum were involved in the generation of the radiation.

Here we develop this observation into an experimental test of the existence of black holes
or, alternatively, a test of general relativity itself. In either sense the test described here is of
general relativity based on gravitational-wave observations.

Damped sinusoidal motion is ubiquitous for systems approaching equilibrium and one
expects that collapse or coalescence will lead, in any theory of gravity, to some form of QNM
ringing. If we observe a QNM spectrum that is inconsistent with an isolated black hole, then
there are two possibilities. On the one hand, general relativity may not be the correct theory of
gravity in the strong-field limit. On the other hand, general relativity may yet be correct, but
we are not observing an isolated black hole approaching equilibrium8. Alternatively, we may
be observing the radiation arising from a compact body that is not a black hole, for example,
a neutron star [8], a boson star [9] or strange matter star [10], whose QNM spectrum will be
determined by the properties and configuration of the appropriate matter fields, or a black hole
carrying a previously unknown macroscopic charge (e.g., a dilaton field [11]). Thus, while
no single observation may rule out general relativity, a set of observations, each of a different
source, none of which is consistent with an isolated black hole, could suggest the need to
consider alternative theories of gravity in the strong-field limit.

Gravitational waves have been suggested before as probes of general relativity. Eardley
et al [12] proposed the first test of general relativity using gravitational-wave observations.
They investigated the polarization modes of gravitational waves in various metric theories of
gravity and described how to identify the polarization modes experimentally and use these

7 And electric charge, as well; however, astrophysical black holes, which are our interest here, have negligible
charge-to-mass ratio.
8 In fact, the uniqueness theorems have only been proved for vacuum spacetimes and they are not true in the presence
of arbitrary matter fields or radiation. Nevertheless, it would be a great surprise if the spacetime in the vicinity of a
black hole is not close to Kerr in some approximate sense.
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observations to identify the spin content of dynamical gravity. The first actual test of general
relativity relying on its prediction of the existence of gravitational waves was made by Taylor
and Weisberg [13], who showed that the observed orbit and orbit decay of the Hulse–Taylor
binary pulsar PSR B1913+16 led to a strong consistency check on the predictions of general
relativity. Finn [14] proposed a different test of the spin content of dynamical gravity, based on
the possibility of a space-based detector in circumsolar orbit observing the induction-zone field
associated with solar oscillations. Ryan [15] has outlined how observations of the gravitational
radiation from capture orbits of solar mass compact bodies about a supermassive black hole
may allow the determination of certain multipole moments of the central hole, thereby testing
the prediction of general relativity. More recently, Will [16] and Finn and Sutton [17, 18] have
described tests of general relativity that bound the mass of the graviton, and Scharre and Will
[19] and Fairhurst et al [20] have shown how gravitational-wave observations of pulsars may
be used to bound the value of the Brans–Dicke coupling constant.

The preceding tests can be grouped into three different classes. One set of tests, including
[13, 15, 17, 19], is based on energy conservation arguments: the observed evolution of a
system or of the radiation from a system is related to the energy loss expected owing to the
radiation. A second class of tests [12, 14, 20] focuses on the observed polarization modes
of the field. The third class [16] involves the frequency-dependent dispersion relationship
associated with a massive graviton. The test described in this paper is of a new class, based
on the unique character of the radiation spectrum associated with a disturbed black hole.

This paper is organized as follows. In section 2 we briefly describe the QNMs of a
Kerr black hole and explain how the idealized observation of two or more modes in the
absence of noise enables us to extract the mass and angular momentum of the black hole.
Real boats, of course, rock, and section 3 generalizes the discussion to include experimental
errors and describes how one can use noisy gravitational-wave observations of QNMs to test
general relativity. In section 4 we provide a proof-of-principle demonstration, via numerical
simulation, of the use of this method as applied to LISA observations. Section 5 investigates
the observable range (and associated event rate) within which we can expect LISA to observe
sources strong enough for this test to be applied. We conclude in section 6 with a summary of
our main results.

2. Ideal observations

2.1. Quasi-normal modes of Kerr black holes

Following aspherical collapse to a black hole, one expects that the final spacetime can be
described as the perturbation of a stationary Kerr hole. The dominant part of the gravitational
waves emitted as the black hole settles down can be described as a sum over a countably
infinite set of damped sinusoids, each characterized by an amplitude, phase, frequency and
damping time. (At still later times, the radiation will be dominated by power-law tails arising
from the backscatter of radiation off the spacetime curvature in the neighbourhood of the
black hole [1–3]; however, here we are interested in the earlier, and higher amplitude, QNM
ringing.) In this sub-section we review those properties of the black-hole QNM spectrum that
are important for our investigation; more detailed examinations of the spectrum itself can be
found in [21–26].

QNMs appear as solutions to the equations describing perturbations of a stationary black-
hole spacetime, subject to the boundary conditions of no in-going radiation from infinity and no
up-coming radiation from the horizon. The perturbation equations describing Schwarzschild
black holes were first described by Regge and Wheeler [27] and Zerilli [28, 29]. The first
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QNM solutions to these equations were found by Vishveshwara [30]. Teukolsky found the
corresponding perturbation equations for Kerr black holes [31, 32], and, with Press, first
investigated their QNM solutions [33].

Gravitational-wave detectors respond to a linear combination of the radiation in the two
polarization modes of the incident gravitational waves. The observable strain h(t) in, for
example, the arms of an interferometric detector may be written, for QNMs, in the form

h(t) � Re

[∑
�,m,n

A�mn e−i(ωn�mt+φn�m)

]
(1)

where the summation indices characterize the particular mode, which is related to the angular
dependence of the mode amplitude and phase on a sphere of constant (Boyer–Lindquist)
radius about the black hole through � and m, and the ‘harmonic’ through the index n:
� = 2, 3, . . . , |m| � � and n = 1, 2 . . . . For the Schwarzschild geometry the symmetry
is spherical, the appropriate decomposition of the metric perturbation is given by the usual
spherical harmonics and modes differing only in m are degenerate. For Kerr the symmetry
is axisymmetric and the orthonormal decomposition of the perturbation is by spheroidal
harmonics [32]. The amplitudes An�m and phases φn�m depend on the initial conditions and
the relative orientation of the detector and the source; however, the complex frequency ωn�m

depends only on the intrinsic parameters of the underlying black hole, i.e., its mass M and
angular momentum aM2. (We assume that the black hole carries no significant electric
charge.)

For fixed a the complex frequency ωn�m scales as M−1; thus, we define the dimensionless
frequency �n�m,

�n�m := Mωn�m :=
(

2πFn�m +
i

Tn�m

)
(2)

where Fn�m and Tn�m are the real dimensionless frequency and damping time of the modes,
respectively. The corresponding physical frequency fn�m and damping time τn�m are given by

ωn�m = 2πfn�m + i/τn�m = 2πFn�m/M + i/(MTn�m). (3)

(We use geometrical units with G = 1 and c = 1.) The dimensionless �n�m (or Fn�m and Tn�m)
depend (for astrophysically relevant black holes) only on the also dimensionless black-hole
angular momentum parameter a. Figure 1 shows �n�m as a function of a for n = 1, 2 and
� = 2, 3, and |m| � �.

2.2. From quasi-normal modes to testing relativity

If we observe only one mode, characterized by its complex frequency ω (cf equation (3)),
what can we say about the underlying black hole?

Corresponding to the observed ω is the line � = Mω, M ∈ R�0, in the dimensionless �

plane (cf equation (2)). Such a line is shown in figure 1. This line will intersect some subset
of the family of �n�m curves, characteristic of black-hole normal modes. Each intersection
corresponds to a black-hole mass M, angular momentum parameter a and mode n�m consistent
with the observed ω. Knowing only f and τ , then, we cannot uniquely identify the black-hole
mass and angular momentum, but we can reduce the possibilities to a (possibly countably
infinite) set of (a,M) pairs. If we knew n�m as well, we would know a and M exactly.

Now suppose that we observe two modes from the same black hole, each characterized by
its own frequency and damping time. Figure 2(a) shows, in schematic form, the line Mω for
each of the two modes (denoted by + and ×) and their intersection with several different �n�m
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Figure 1. The dimensionless, complex QNM frequencies �n�m for rotating, uncharged black holes.
Each family of curves corresponds to one n� pair, and each branch to a possible value of m. The
large black dot at the base of each family is the Schwarzschild (a = 0) limit, where the frequencies
are degenerate in m. This degeneracy is broken for a �= 0, and the curves emanating from the dots
give the QNM frequencies for Kerr black holes as a function of positive a for different m. In this
figure a ranges from 0 to 0.9958, with the small diamonds on the � = 3, m = 3, n = 2 branch
marking the QNM frequencies for a = 0.4, 0.6, 0.8, 0.9 and 0.98. In this figure an observation,
corresponding to a (complex) frequency ω, is represented by the line � = Mω, parametrized by the
(unknown) black-hole mass M. Each intersection of this line with a QNM curve in dimensionless
� represents a candidate n�m, M and a for the mode.

Re(Ω)

Im
(Ω

)

M

a

(a) (b)

Figure 2. (a) Here we show, in schematic form, several �n�m(a) curves and their intersection with
the lines Mωi, M > 0, i = 1, 2, corresponding to two observed modes. We denote these two lines
by + and ×, respectively. (b) The candidate (a,M) pairs determined in (a) are plotted here in the
(a, M)-plane. The pairs belonging to ω1 are denoted by +, those belonging to ω2 by ×. There is
only one candidate (a, M) consistent with both observations, indicated by the overlapping + and
×, and this is the actual mass and angular momentum of the underlying black hole.

curves in the complex � plane. Corresponding to each mode is a set of candidate (a,M) pairs
that may describe the underlying black hole. Each candidate mass and angular momentum
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parameter is a point in the (a,M)-plane, as shown in figure 2(b). With two or more modes,
there must be at least one common candidate mass and angular momentum, indicated by the
intersection of a + and a ×.

This is, in essence, our proposed test: interpreting the observation of several normal
modes ωk, k � 2, as arriving from a single, general relativistic black hole, and assuming that
the no-hair theorem is true, then the observed ωk will be consistent with at least one black
hole (a,M). If no such (a,M) exists for the observed ωk either we have observed something
other than an isolated black hole or we have a contradiction with the predictions of the theory.

(As an aside, it is possible (though unlikely) that we get more than one value of (a,M)

consistent with the observed frequencies. This can happen if we have two mode pairs
(n1�1m1; n2�2m2) and (ñ1�̃1m̃1; ñ2�̃2m̃2), which give rise to the same frequency ω. In this
case the observations would still be consistent with general relativity though we could not use
that observation to measure M and a. The important point of our test is the existence of at
least one (a,M) pair consistent with the observations.)

Noise and other experimental realities ensure that there will be no exact agreement between
the observed ωk and a general relativistic black hole even if general relativity is correct. The
challenge, then, in developing a practical test is to determine when the differences between
the candidate (a,M) pairs associated with the different observed modes are so great as to be
statistically inconsistent with general relativity. In the following section we face this challenge.

3. A test of relativity

3.1. A reformulation of the test

Before we discuss the role that noise plays in our analysis it is helpful to reformulate the test
described in section 2.2 and figure 2. Consider an ordered N-tuple of QNMs,

Q := {(nk�kmk) : k = 1, . . . , N}. (4)

This may be regarded as a function that maps a source (a,M) to a set of observable frequencies

Q(a,M) := {
M−1�nk�kmk

(a) : k = 1, . . . , N
}
. (5)

Each N-tuple Q thus describes a two-dimensional surface in the (2N + 2)-dimensional space
S,

S := (a,M,ω1, . . . , ωN), (6)

with different N-tuples corresponding to different sets of N modes. (In section 3.3 we will
understand the ωk to represent observed QNM frequencies and damping times.)

An observation ω consists of an N-tuple

ω := (ω1, . . . , ωN) . (7)

The observation ω also corresponds to a surface in S. The observation is consistent with a
black hole if the surface of constant ω intersects one of the surfaces Q. Figure 3 shows a
low-dimensional projection of such an observation ω together with several surfaces (which
appear as curves) for different N-tuples Q. A moment’s consideration should convince one
that this new criterion is equivalent to the test as described in section 2.2.

In practice the situation is less than ideal: noise distorts our observation, so that—even
if we are observing black-hole QNMs—the measured ω will not intersect a surface Q. In the
remainder of this section we describe how this test is made practical and meaningful for real
observations.
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Figure 3. A reformulation of the consistency criterion. A set of quasi-normal modes
Q = {(nk�kmk) : k = 1, . . . , N} corresponds to a surface in the (2N + 2)-dimensional space
depicted in this figure. A measurement ω = (ω1, . . . , ωN ) is consistent with general relativity if
the constant surface that is obtained by ranging over all (a, M) while keeping the frequencies ω
fixed intersects at least one of the surfaces corresponding to one of the sets Q. This intersection is
indicated in this figure by a dot.

3.2. Confidence intervals and testing general relativity

In a frequentist analysis, the observation, the sampling distribution, an ordering principle and a
probability combine to determine a confidence interval. In this section we use this construction
to form a confidence region in the (a,M)-plane, given a noisy observation ω.

We begin by reviewing the construction of a classical confidence interval for the one-
dimensional case following [34] (alternatively, see, e.g., [35]). We suppose that we make
measurements of a random variable x from which a quantity µ is determined. The sampling
distribution P(x|µ) is the probability of making the observation x given a particular µ.
Formally, an ordering principle is a function R(x|µ), which we use to identify a sub-interval
J of x according to

J (µ|r) := {x : R(x|µ) > r)}. (8)

The parameter r is chosen such that the region J (µ|r) encloses a fixed probability p:∫
J (µ|r)

P (x|µ) dx = p. (9)

Given an observation x0, the probability-p confidence interval R is the range of µ for which
J (µ|r(p)) includes x0 as shown in figure 4. In an actual experiment, the choice of the value
of the parameter p is made by the experimentalist. Typical choices are 90%, 95% and 99%.

The choice of the ordering principle R(x|µ) is a key ingredient in the construction of
confidence intervals. Different choices will lead to different confidence intervals for the same
observation: for example, one choice of ordering principle will always determine intervals of
the form (−∞, x), while another choice will always determine intervals of the form (x,∞).
Neither choice is a priori right or wrong. Here we will choose R(x|µ) = P(x|µ) so that the
intervals are given by level surfaces of the distribution P(x|µ). The main advantage of this
ordering principle is that it is simple and it works in any dimension. Consider, for example,
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Figure 4. The construction of classical confidence intervals. A sampling distribution P(x|µ),
an ordering principle R and a probability p are needed to construct a confidence interval. The
ordering principle is used to find the intervals J (µ) such that

∫
J (µ)

dxP (x|µ) = p. The classical
confidence interval R is then given by the set of µ for which J (µ) contains the measured value x0.

a two-component observation depending on one parameter a. There is, as before, a sampling
distribution P(x, y|a) and an ordering principle R(x, y|a) = P(x, y|a). Confidence intervals
can be defined in the same way as in the case of a one-dimensional observation; the interval J

is now a two-dimensional region. Since this system is over-determined—we are now trying to
determine one parameter a by measuring two quantities x and y—the measured x and y will
have to satisfy additional constraints in order to give a non-vanishing confidence region. This
is in fact precisely what happens in the black-hole quasi-normal mode problem: any single
measurement of ω can be explained by some (a,M), but a measurement of two or more ω can
be simultaneously consistent with at least one (a,M) pair only if the no-hair theorem is true
and the modes arise from a single black hole.

We can now describe our test of relativity: note that some observations ω will lead to
an empty confidence interval; i.e., for some ω there will be no (a,M) consistent with the
observation. If we make an observation ω for which the probability-p confidence interval is
empty, then we say that the observed normal modes are inconsistent with an isolated black
hole with confidence p. Conversely, if there does exist a non-empty probability-p confidence
interval, then we have verified that general relativity is self-consistent at this confidence level.

Finally, we should point out an aesthetic flaw of our choice of ordering principle. The
function P(x|µ) is a density and, therefore, not invariant under a reparametrization of x. If
we were to use a new parameter x ′ = f (x) for some smooth monotonic function f , the
confidence region obtained for µ using a measurement of x may not coincide with the region
obtained using a measurement of x ′. In the one-dimensional case, there exists another ordering
principle based on the likelihood ratio [36] which is reparametrization invariant; however, we
have not been able to generalize this to higher dimensions. While aesthetically displeasing,
there is nothing wrong with the choice we have made, which is natural given the physical
association of the parameters M and a with the black-hole mass and angular momentum.

3.3. Generalization to quasi-normal modes

The generalization to QNM observations is straightforward. Each observation consists of
N complex QNM frequencies ωk and associated amplitude signal-to-noise ratios ρk , which
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Figure 5. The construction of classical confidence intervals generalized to higher dimensions.
Given a sampling distribution P, an ordering principle R and a probability p one can construct
classical confidence regions R just as in the one-dimensional case. The difference here is that
we are now trying to determine a small number of parameters (a, M) from a larger number of
observations ω = (ω1, . . . , ωN ). There are thus additional consistency conditions that need to be
satisfied to obtain a non-empty confidence region R.

characterize both the amplitude of the signal at that frequency and the uncertainty in the
determination of ωk (cf [5]):

ω := (ω1, . . . , ωN) (10)

ρ := (ρ1, . . . , ρN). (11)

For definiteness suppose that ωk and ρk are identified via maximum likelihood techniques
[5]. There is a minimum signal-to-noise associated with each mode, which is set by the
requirement that the observation must identify N modes.

Observations ω corresponding to a black hole characterized by (a,M) and signals-to-
noise ρ are distributed according to the sampling distribution

P(ω|a,M,Q, ρ) :=

Probability of making observation

ω given the actual N -tuple Q
and signals-to-noise ρ.


 . (12)

In general, the sampling distribution depends upon the nature of the detector noise and the
analysis procedure that identifies the modes ωk . For large signal-to-noise ratios it will generally
reduce to a multivariate Gaussian in Re(ωk) and Im(ωk) and for smaller signal-to-noise ratios
it can be determined via simulation.

Now consider the region of the space S (cf section 3.1) defined by

P(ω|a,M,Q, ρ) > p0 (13)

with p0 such that∫
P(ω|a,M,Q,ρ)>p0

P(ω|a,M,Q, ρ) d2Nω = p (14)

for a fixed p. We say that the observation ω is consistent with a black hole if the actual
observation ω is included in this region for some (a,M). Figure 5 illustrates the comparison
of an observation with the region defined by equations (13), (14).
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To help in specifying p it is useful to examine its meaning more closely. Suppose we
have chosen a value of p. That value determines a confidence region. Now consider an
ensemble of identical detectors, each observing simultaneously the same black-hole event
and its corresponding QNMs. The fraction of these observations that does not intersect the
confidence region is the false alarm probability α(p), so-called because it is the probability
that an observation will be falsely deemed to be inconsistent with a black hole. The probability
α is a monotonic function of p; therefore, we can specify α in lieu of p. For observations that
we are confident originate with black holes (because their characteristic frequency corresponds
to masses greater than neutron star masses), we propose setting p so that α(p)—the probability
of falsely rejecting the hypothesis that we have in fact observed a black hole—is small (e.g.,
less than 1%). In other words, the standard of evidence for declaring that we have discovered
‘new physics’ should be high.

The false alarm probability function α(p) will depend on the signal strength, as
characterized by the signal-to-noise ratios; consequently, it will need to be determined on an
observation-by-observation basis. Thus the calculation of α(p) by a Monte Carlo simulation
is the final ingredient we need. In the following section we demonstrate the test through a
numerical example where we calculate α(p).

4. A numerical example

In the previous section we described a general procedure for testing general relativity by
observing QNMs. In this section we explore its effectiveness numerically through a set of
simulated observations drawn from a hypothetical black-hole population inspired by potential
LISA observations, and a hypothetical population of non-black-hole compact object sources,
or NBHs. (We say ‘inspired’ because, in fact, for the purpose of this analysis the observations
are characterized entirely by the dimensionless signal-to-noise ratio and mode quality factor,
with the dimensioned mode frequency simply setting a scale. Thus, the conclusions we reach
are as valid for LISA observations as they are for observations at the same signal-to-noise with
ground-based detectors.)

For the black-hole (BH) observations we find the relationship between the false alarm
probability α and the probability p that appears in equation (14). For the NBH observations
there are no ‘false alarms’: every observation is of something not a black hole. Instead, there
are false dismissals: observations that we mistakenly classify as consistent with a black hole.
The probability of a false dismissal, denoted by β, depends on the choice of p or, alternatively,
the choice of false alarm probability α(p) that we make for the purpose of defining the test.
(The false dismissal probability depends also on how the spectra of BHs and NBHs differ.)
The smaller the false dismissal probability the more sensitive the test is to discovering ‘new
physics’ or identifying non-black-hole sources. For the NBH observations we evaluate the
false dismissal probability as a function of the false alarm probability.

4.1. Mode detection

Our concern here is with the question of statistical inference from QNM observations,
characterized by their signal-to-noise, frequency and damping time. We do not venture
to explore how, from a signal-processing standpoint, these events are identified and so
characterized and none of the qualitative conclusions drawn in this section depend on the
method of event identification and characterization. Nevertheless, it is worthwhile to comment
briefly on the challenges associated with detecting and characterizing damped sinusoidal
signals.
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Matched filtering is often invoked as the preferred method for detecting signals in noise
when the signal is known exactly, up to a few parameters. This does not mean, however, that
matched filtering is the most computationally efficient means of detection. Similarly, while
matched filtering may be optimal for these problems, it does not mean that there is necessarily
a large difference in efficiency between matched filtering and other less optimal methods
of event identification. Matched filtering stands-out only when the signal being sought has
significant defining features that allow it to be discriminated from noise events. This is not the
case for damped sinusoids with low quality factor Q.

In fact, matched filtering is known to be a very poor way to search for damped sinusoids.
A matched filter search for a damped sinusoid of unknown frequency and damping time in a
time-series h(t) is equivalent to taking the Laplace transform of h(t), which is computationally
difficult to do accurately. (A set of ‘matched filter templates’, consisting of damped
sinusoids, applied to a time-series h(t) corresponds to a sample of the Laplace transform
of h.) Fortunately, the problem of analysing noisy data for damped sinusoidal signals
is not unique to gravitational-wave physics and other methods, beyond matched filtering,
exist (cf, e.g., [37, 38]).

While none of the results below depend on the method of detection, we chose, where
choices need to be made, to use theoretical results from matched filtering studies to describe
the uncertainties associated with frequency and damping time determination. Such choices
do not affect our qualitative conclusions and, in any event, relevant quantitative conclusions
could not be drawn without both LISA data and the choice of a specific analysis method.

4.2. Simulating black-hole QNM observations

For definiteness we focus on observations of two QNMs (this corresponds to N = 2 in
section 3). For the purpose of illustration we consider black-hole masses and angular momenta
consistent with potential observations by the LISA detector [7]. We first draw an (a,M) pair
from the distribution

P(a,M) = P(a)P (M) (15)

P(a) ∝
{

1 for a ∈ [0, 0.986)

0 otherwise
(16)

P(M) ∝
{
M−1 for M ∈ (2.5 × 105M�, 4.5 × 108M�)

0 otherwise.
(17)

The range of M is determined by the frequency band where LISA is expected to be most
sensitive; the range of a is determined by the maximum angular momentum expected of a
black-hole spun-up by thin-disc accretion [39].

Corresponding to each (a,M) pair we choose the QNMs corresponding to (n = 1, � =
2,m = 2) and (n = 1, � = 4,m = 4). We assign each mode the same signal-to-noise ratio,
which we treat here as sufficiently large that the errors associated with the measurements are
normally distributed with covariance matrix Cij equal to the inverse of the Fisher information
matrix Iij (see, e.g., [35]) as given in [5, equation (4.14)]. This is in fact a mathematical
lower bound—the Cramer–Rao bound—on the covariance matrix. We draw from this error
distribution errors in the frequencies and damping times that we add to the ‘real’ frequencies
and damping times to determine the simulated observations: noisy QNM frequencies and
damping times.

Given this pair of QNM frequencies and damping times with errors we ask whether the
two modes are in fact observationally distinguishable: if the frequencies and damping times
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are not sufficiently different, then no real observation would ever result in the given pair. For
instance, the five (n = 1, l = 2) modes are degenerate at a = 0; consequently, no matter how
large the signal-to-noise ratio, if a is sufficiently small it is impossible to resolve these five
modes observationally.

To decide whether the two modes we investigate are observationally distinguishable we
invoke a ‘resolvability criterion’: denoting the frequencies (damping times) of the two modes
as f1, f2 (τ1, τ2) we say that the two modes are distinguishable if

|f1 − f2| >
1

min(τ1, τ2)
. (18)

We discard any mode pair that does not satisfy this criterion.
The result of this procedure is an observation, which consists of a pair of signal-to-noise

ratios and associated distinguishable frequencies and damping times. (The observation does
not include knowledge of the black-hole mass or angular momentum, or the n�m associated
with the frequencies or damping times.)

4.3. False alarm probability α

For each simulated observation ω, constructed as described in section 4.2, we evaluate the
smallest probability p = pmin such that equations (13) and (14) describe a region S that covers
ω for some (a,M). The false dismissal fraction α(p) is the fraction of pmin determinations
that are greater than p, i.e., the fraction of BH observations that we would reject as originating
from a black hole for threshold p.

Ideally, in evaluating p we would consider every possible n�m for each ωk . In practice,
we consider only a finite subset of low-order (in both n and �) modes, corresponding to our
expectation that these are the modes most likely to be excited to large amplitude. In our
simulations we considered only modes corresponding to (n = 1, � = 2,m = 0), (n = 1, � =
2,m = 2), (n = 1, � = 3,m = 3) and (n = 1, � = 4,m = 4). Since for these simulations
we observed two distinguishable QNMs there were 12 possible ordered pairs of modes.
Figure 6 shows α as a function of p for four different signal-to-noise ratios. Each α(p) curve
is constructed from 104 simulated observations with that amplitude-squared signal-to-noise in
each mode.

4.4. False dismissal probability calculation

Complementary to α, the probability that we incorrectly decide we have observed QNMs from
something other than a black hole, is the probability that we falsely conclude we have observed
QNMs from a black hole. This probability is referred to as the false dismissal probability and
commonly denoted as β.

The false dismissal probability depends on the detailed character of the source, which
is not a black hole. Strong gravitational-wave sources are compact, with radius R not much
greater than their mass GM/c2 and oscillation periods of order GM/c3. At the frequencies
where LISA will have its greatest sensitivity, 10−2–10−4 Hz, corresponding to masses of
order 106–108M�—we know of no compact sources that are not black holes. For the purpose
of illustration and to give a sense of the ability of the test described here to ‘discover’ new
physics, we suppose a population of sources whose frequencies and damping times share the
same relationship as certain neutron star w-modes calculated in [8]. Referring to [8, table 1,
column 1, lines 3, 5] we consider observations consisting of two modes

Mω1 = 0.471 + 0.056i, Mω2 = 0.654 + 0.164i, (19)
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ρ2 = 10

ρ2 = 100
ρ2 = 50
ρ2 = 20

Figure 6. False alarm probability α as a function of the probability p appearing in equation (14).
A false alarm is a misidentification of a QNM pair as arising from something other than a general
relativistic black hole.

where M is drawn from the distribution given in equation (17). In exactly the same way that
we used simulations in section 4.3 to determine α as a function of p we calculate from these
simulations β as a function of p. Together α(p) and β(p) determine β(α), which we show
in figure 7. A measure of the effectiveness of the test is the degree to which the curves for
different signal-to-noise fall below the β = 1 − α diagonal. (A ‘test’ that randomly picked
a fraction α of observations as not black holes would have β = 1 − α. Any ‘test’ that can
do better than randomly choosing in this way will have a β(α) curve that falls below this
diagonal.) As expected the test also does better with stronger signals. Consider a false alarm
threshold of 1%. Then for observations with ρ2 = 10 we have a better-than-40% chance of
distinguishing NBH sources from BH sources. This climbs to better-than-90% chance for
observations with ρ2 = 100.

5. Potential for application

We have shown that, given at least two QNM signals from the same source and with sufficiently
large signal-to-noise we can clearly distinguish black holes from other astrophysical sources.
We have also demonstrated how this can be used as a test of general relativity. In this section,
we investigate the potential for application of this test in future LISA observations by asking,
first,

• How distant can LISA-scale black-hole sources be and still have multiple QNMs detected
at sufficiently high signal-to-noise?

and, secondly,

• What is the rate of sources that we may expect within this distance?
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ρ2 = 10

ρ2 = 100
ρ2 = 50
ρ2 = 20

αΒΗ

βNS

Figure 7. False dismissal probability as a function of false alarm probability β(α). The false
dismissal probability depends on the non-black-hole QNM spectrum, which we have taken to have
the same ratio of frequencies and relationship between frequencies and damping times as neutron
star w-modes.

To begin we evaluate, as a function of distance and energy radiated in a QNM, the signal-
to-noise in the LISA detector. We focus attention on an individual QNM. The signal strength,
characterized by the signal-to-noise ratio at the detector, depends on the energy radiated in the
mode the radiation pattern associated with the mode and the relative orientation of the detector
and the source. Following [40, equation (2.30)] we can average over these latter angles to
obtain the mean-square signal-to-noise associated with the n�m mode as a function of the
mode energy

〈ρ2〉 = 2(1 + z)2

5π2D(z)2

∫ ∞

0
df

1

f 2Sn(f )

dEe

dfe

[(1 + z)f ] (20)

where z and D(z) are, respectively, the redshift and the luminosity distance to the source.
For the mode, we assume the form

hn�m(t) = An�m exp

(
−πfn�mt

Qn�m

)
sin (2πfn�mt) (21)

where Qn�m ≡ πfn�mτn�m. Note that Qn�m, which is an observable property of a QNM, is
independent of source redshift, while the observed fn�m and τn�m depend on redshift.

The ringdown energy spectrum of the n�m mode is taken from equation (3.18) of [40]

dEe

dfe

= εn�m

Fn�m

Qn�m(
4Q2

n�m + 1
) M2f 2

π3τ 2

[
1

[(f − fn�m)2 + (2πτ)−2]2
+

1

[(f + fn�m)2 + (2πτ)−2]2

]
,

(22)
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where the mode amplitude An�m has been replaced with the fraction εn�m of the mass radiated
in that mode, defined by

εn�m := 1

M

∫ ∞

0

dE

df
df. (23)

Using this spectrum in the formula above, and approximating the LISA noise power spectral
density Sn(f ) as constant over the signal band, we integrate over frequencies and invert the
result to obtain an approximate distance to which we can observe a mode n�m with signal-to-
noise greater than ρ2

n�m:

D(z)2 <
8

5π2

Q2
n�m

4Q2
n�m + 1

(1 + z)3M3

F 2
n�m

εn�m

Snρ
2
n�m

G3

c7
. (24)

The relationship between luminosity distance and redshift we take to be given by
equations (23), (25) of [44]. This relationship depends on cosmological parameters that
characterize the universe and its expansion and for these we use the values determined by the
first season’s WMAP observations [45]. Thus, given a threshold ρ2

n�m, black holes radiating
a fraction εn�m of their rest energy in mode n�m are observable within a redshift z satisfying
equation (24).

Numerical simulations suggest that the energy emitted in QNMs during ringdown may be
of order 1% of the rest-mass energy of the hole [41, 42]. For equal-mass black-hole mergers,
the simulations suggest that the � = 2 modes will be by far the strongest with total emitted
energies greater than the � = 4 modes by as much as three orders of magnitude (see [43]).
Thus we may assume that the weaker mode of a QNM pair produced immediately following
an equal mass black-hole merger carries away a fraction 10−5 of the final black-hole mass.
To be more conservative, we consider instead a considerably smaller emitted mass fraction
εn�m = 10−7.

LISA will be most sensitive in the frequency band 10−3 � f � 10−2 Hz where the noise
power spectral density is expected to be 5 × 10−45 Hz−1. Black holes at redshift z whose
(low-order) QNM frequencies peak in this band have a mass of order M/(1 + z), where M
ranges from 106 to 107M�. Focusing just on these black holes we find, from equation (24),
that LISA can expect to see pairs of QNMs associated with black-hole mergers, with the
weaker mode having a signal-to-noise ρ > 10, within a redshift of ∼52 (for extremal-spin
Kerr) or ∼36 (for Schwarzschild); that is, LISA will be able to observe mergers associated
with the assembly of essentially all galaxies throughout the universe. Considering a broader
frequency band of 10−1–10−4 Hz will increase the mass range (and thus rate of observed
mergers) further with the addition of more and less massive (redshifted) black-hole mergers,
though to a somewhat smaller redshift.

To summarize, we expect that pairs of QNMs associated with the mergers of supermassive
black holes in the redshifted mass range of 106–107M� will be observable by LISA with
significant signal-to-noise throughout the observable universe as long as the weaker mode
carries away at least a fraction 10−7 of the final black-hole mass. The rate of such black-hole
mergers depends on redshift owing to evolution and the scaling of the intrinsic black-hole mass
corresponding to observed QNM frequency with redshift. There is considerable uncertainty
at present about the event rate for such observations; however, estimates out to z = 20
—far smaller than the range within which LISA is sensitive—range from 0.3 to 100 per year
[46–48]. Correspondingly, we expect that this test will find application in forthcoming LISA
observations.
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6. Conclusion

We have described a qualitatively new test for the existence of general relativistic black
holes, based on the gravitational radiation they emit when they are formed or when they are
impulsively excited, for example, through a merger event. Radiation from an impulsively
excited black hole, such as might arise in the course of a non-spherical black-hole formation
event or the coalescence of a black hole with another black hole or compact object, has a
component that consists of a sum of damped sinusoids. This signature is characteristic of the
radiation from any impulsively excited, damped source. For any given mode, the scale of the
frequency and damping time measures the black-hole mass and angular momentum. Similarly,
the relationship of the different modes to each other—i.e., the spectrum—is unique to black
holes. We have described here how this relationship can be used to test the proposition that
observed gravitational waves, characteristic of an impulsively excited, damped source, in fact
originate from a general relativistic black hole. Such a test can be characterized in at least two
different ways: as a definitive ‘proof’ that a black hole has been observed or as a test of the
so-called ‘no-hair’ theorem of general relativity.

To demonstrate the effectiveness of this test we have evaluated numerically the probability
that the test will mistakenly fail to identify an actual black hole. By introducing a hypothetical
gravitational-wave source whose characteristic frequencies and damping times are similar to
those of neutron star w-modes [8], we have also evaluated numerically the probability that
the test will incorrectly identify w-mode oscillations of a neutron star, or any object whose
spectrum is similar to that of a black hole. Together these results demonstrate that for sources
with the signal-to-noise expected of, for example, massive black-hole coalescences detected
by LISA, the test proposed here can clearly discriminate black-hole sources. Finally, we
have shown that LISA can be expected to observe black-hole ringdown signals of this kind
and strength almost throughout the observable universe. However, the event rates for such
detections are rather uncertain and further work is needed to ascertain whether this test will
be applicable in practice.

This method can also be used to measure mass and angular momentum of a black hole.
Using gravitational waves to measure mass and angular momentum is an idea that has been
around for some time [4, 5]. In these previous works it was assumed that the mode observed
was of a known order (e.g., the mode with the longest damping time or the lowest order, etc.).
With the observation of two or more modes the requirement that a single mass and angular
momentum explain the complete set likely permits the mass and angular momentum to be
determined uniquely.

The field of gravitational-wave detection is new. The current generation of ground- and
space-based gravitational-wave detectors is opening a new frontier of physics: gravitational-
wave phenomenology, or the use of gravitational-wave observations to learn about the physics
of gravitational-wave sources and gravity itself. We are only just beginning to learn how to
exploit the opportunities it is creating for us. As gravitational-wave observations mature, we
can expect more and greater recognition of their utility as probes of the character of relativistic
gravity. The opening of this new frontier promises to be an exciting and revealing one for the
physics of gravity.
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