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Abstract

We investigate whether the (planar, two complex scalar) dilatation operator of N = 4
gauge theory can be, perturbatively and, perhaps, non-perturbatively, described by an
integrable long range spin chain with elliptic exchange interaction. Such a chain was
introduced some time ago by Inozemtsev. In the limit of sufficiently “long” operators a
Bethe ansatz exists, which we apply at the perturbative two- and three-loop level. Spec-
tacular agreement is found with spinning string predictions of Frolov and Tseytlin for
the two-loop energies of certain large charge operators. However, we then go on to show
that the agreement between perturbative gauge theory and semi-classical string theory
begins to break down, in a subtle fashion, at the three-loop level. This corroborates
a recently found disagreement between three-loop gauge theory and near plane-wave
string theory results, and quantitatively explains a previously obtained puzzling devia-
tion between the string proposal and a numerical extrapolation of finite size three-loop
anomalous dimensions. At four loops and beyond, we find that the Inozemtsev chain
exhibits a generic breakdown of perturbative BMN scaling. However, our proposal is not
necessarily limited to perturbation theory, and one would hope that the string theory
results can be recovered from the Inozemtsev chain at strong ’t Hooft coupling.

http://arXiv.org/abs/hep-th/0401057


1 Introduction and conclusions

Nearly two years ago a fresh approach [1] to uncover the dynamics of the AdS/CFT
correspondence [2] was proposed. Progress in this direction is clearly required if we
are to understand the gauge theory implications of the correspondence for quantum
gravity and string theory, as well as the string theory implications of AdS/CFT for
gauge theory. Berenstein, Maldacena and Nastase (BMN) [1] argued that the string
spectrum on AdS5 × S5 in a linearized (plane wave) limit, which is known [3], when
expressed in planar N = 4 gauge theory language, leads to a prediction for the all-
loop exact anomalous dimensions of certain operators containing one large R-symmetry
charge J . These predictions take the form of explicit functions in the BMN coupling
constant

λ′ =
λ

J2
, (1)

which are analytic around λ′ = 0, with a finite radius of convergence. One can therefore
expand them in integer power series in λ′, and thus, so it seems, λ. This led BMN
to suggest that the predictions could be checked, order by order, in perturbative planar
N = 4 gauge theory. The claim is that thereby one avoids a notorious AdS/CFT
difficulty: the regime where AdS string theory is calculable corresponds to λ large, while
gauge theoretic perturbation theory obviously assumes λ to be small. We will have more
to say about this below.

The BMN proposal triggered a large number of interesting research papers, most of
which cannot be discussed here (see the thorough reviews [4]). In particular, powerful
techniques for the efficient computation of one-loop anomalous dimensions of N = 4
composite operators containing a large number of scalar fields were developed [5]. These
activities led to the highly important insight of Minahan and Zarembo [6] that the
planar one-loop anomalous dimensions of these operators can be found by diagonalizing
the Hamiltonian of an equivalent integrable spin chain by the Bethe ansatz method. In
the case of just two complex scalars the spin chain is extremely simple, the Heisenberg
XXX model. This is the “harmonic oscillator” of condensed matter theory. Similar spin
chain techniques had been previously developed in the QCD context for a different class
of operators, rather related to the space-time symmetries instead of the R-symmetry of
the scalar operators [7]. A unified one-loop treatment of all conformal operators in the
N = 4 theory was developed in [8], and shown to yield an integrable PSU(2, 2|4) super
spin chain [9], as well as its corresponding Bethe ansatz.

The discovery of integrability in perturbative N = 4 theory is, potentially, of great
importance. In a parallel development integrable structures were also pointed out on
the string side of the correspondence [10]. Since the structures in gauge and string
theory appear in very different regimes, the exciting prospect arises that the planar
AdS/CFT system might be completely and non-perturbatively integrable. If true, this
might allow to “exactly solve” planar N = 4 gauge theory, and thus free IIB string
theory on AdS5 × S5.

One way of looking at the BMN approach is to consider it a semi-classical limit [11]
with an “artificial” large parameter, the charge J . In fact, a beautiful generalization of
the BMN limit was proposed by Frolov and Tseytlin [12] (see also [13], and the closely
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related earlier work [14]). They consider rotating string solutions of the classical string
equations of motion with several large charges J1, J2 . . .. They then show that, firstly,
quantum sigma-model corrections are suppressed by powers of the inverse total charge
J = J1 + J2 + . . ., and that, secondly, the obtained expressions for the string energies
again expand in integer powers of the BMN coupling constant eq.(1). The latter fact led
Frolov and Tseytlin to propose that, just as in the BMN case, the conjectured dual gauge
theory operators should possess anomalous dimensions whose perturbative expansions
match the just mentioned string energy expansions. An added benefit of this suggestion
is that the symmetry charges Ji allow for a simple identification of those conformal
N = 4 scaling operators which are natural candidates for the gauge theory analogs of
the string theory states. The proposal was further elaborated on a large number of
explicit examples [15],[16]. In all cases the classical problem can be exactly solved, the
underlying reason being, once again, integrability [17] (classical, however, in this case).

The final (all-orders in λ′) expressions for the classical string energies are rather
non-trivial functions of the charge ratios Ji/J , as they are obtained by solving a non-
linear system of equations. This is even true for the leading O(λ′) term, which should
correspond to a one-loop anomalous dimension in gauge theory. By applying the above
mentioned Bethe ansatz to the relevant operators, it was indeed shown in a number of
non-trivial examples that the leading string predictions can be reproduced by one-loop
N = 4 gauge theory [18],[19],[20]. The relevant quantum spin chain is integrable since
it possesses an infinite number of mutually commuting charges. As was recently shown
in [21], these may be reproduced from the Bethe ansatz solutions as well, and precisely
match the corresponding infinite tower of string sigma-model charges to leading order in
λ′. For a recent, up-to-date review of “spinning strings”, see [22].

The last result [21] would seem to be a near-proof, assuming the correctness of
AdS/CFT, that (1) N = 4 is integrable to all orders in λ′, and that (2) the BMN
and Frolov-Tseytlin (FT) proposals should indeed be valid to all orders in perturbation
theory. The charges certainly are commuting for all values of λ′ on the string side,
and it would appear to be very difficult to imagine that there exist two inequivalent
deformations of the matching leading order O(λ′) commuting charges. Some caution is
nevertheless warranted. Curious, unexpected and unaccounted structural agreements be-
tween small λ gauge theory and large λ string theory results have previously appeared in
the context of AdS/CFT, see in particular [23]. One should definitely push perturbative
N = 4 to higher orders and see whether the agreement with BMN/FT persists.

The BMN prediction, originally checked in [1] at the one-loop level, was successfully
tested in [24],[25] at two loops. It is usually stated in the recent literature that in [26]
an all-orders proof was given. It appears to be difficult to rigorously justify some of the
details of the proof, and we remain agnostic with regards to its validity. At any rate,
while inspiring, the methodology of [26] is not of a constructive nature and we are unsure
whether it does not, just like string theory, implicitly assume large λ.

In [27] a program was begun to derive the N = 4 dilatation operator beyond the one-
loop level. The two-loop correction for two complex scalars was found, and interpreted
as a next-nearest neighbor deformation of the nearest neighbor Heisenberg spin chain.
Excitingly, the result showed that the two-loop terms do not lift certain spectral planar
one-loop degeneracies, which could be traced to the integrability property of [6]. This
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led to the conjecture [27] that the exact dilatation operator might correspond to an
integrable long-range spin chain. Assuming integrability, and BMN scaling, the three-
loop correction was derived. Using its explicit form, a numerical two- and three-loop
gauge theory estimate for the FT prediction for the “folded string” [16] (see chapter 3
below) was obtained in [19]. It showed excellent agreement at two loops, but a strange
17% deviation at three loops. As a second sign of potential three-loop trouble, a string
calculation of the leading 1/J correction to the BMN anomalous dimension formula was
performed in [28] and, while beautifully agreeing at two loops, it disagreed at three loops
with [27].

Important further information comes from recent work by Beisert [29]. The method
goes beyond [27] and uses, apart from field theoretic structural properties, symmetry
arguments in order to constrain the three-loop dilatation operator (actually, for a larger
class of fields than just two complex scalars). For our present purposes (we stick to the
latter case in the present paper), the upshot of his study is as follows: (1) Perturbative
integrability (in the sense of [27]) extends to at least three loops. (2) The two-loop
dilatation operator is fixed up to one constant. This constant may be fitted to the
known two-loop anomalous dimension of the Konishi field. This way one independently
verifies the two-loop BMN prediction, in agreement with [24],[25]. (3) The three-loop
dilatation operator is determined up to two unknown constants. These could be found
if we knew two (independent) N = 4 anomalous dimensions (such as Konishi, plus
one further field). However, no three-loop N = 4 anomalous dimensions are rigorously
known to date1. Therefore, the three-loop dilatation operator is not yet rigorously known.
However, if we impose qualitative BMN scaling (i.e. if we assume in accordance with
eq.(1) that the O(λ3) anomalous dimensions of finite J BMN operators [30] scale like
∼ J−6), both constants are fixed and the infinite J BMN result is also quantitatively
reproduced2.

In an interesting parallel development, it was established that a system closely related
to full-fledged N = 4 gauge theory, plane-wave matrix theory, also exhibits integrability
to at least three loops [31]. This is a quantum mechanical system, and this result was
rigorously derived without further assumptions.

Summarizing the last paragraphs, integrability seems to be a very stable concept in
N = 4 gauge theory even beyond one-loop; with further, indirect evidence coming from
the string side of the AdS/CFT correspondence [10],[17],[21]. It is therefore important to
gain deeper understanding of the integrable long range spin chain potentially describing
planar N = 4 gauge theory non-perturbatively. Such a spin chain, in contrast to the
Heisenberg model, should contain an extra parameter, related to the Yang-Mills coupling
constant. There exists one well-known integrable long-range spin chain, namely the
Haldane-Shastry chain [32]. However, there the parameter corresponds to the length of
the chain3. In particular, it is not possible to recover the one-loop Heisenberg model from
Haldane-Shastry. There also exists a much less known integrable spin chain that precisely

1It would clearly be of great importance to perform a reliable field theoretic computation of the
planar three-loop anomalous dimensions of two independent fields in N = 4 gauge theory.

2However, as we just mentioned, the 1/J corrections are not properly reproduced [28].
3This is reminiscent of the BMN coupling constant eq.(1), which also depends on the length of the

spin chain. From our point of view, this is not an accident.
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furnishes such an extra deformation parameter, the Inozemtsev long range spin chain [33].
Interestingly, it encompasses both the Haldane-Shastry chain and the Heisenberg chain.
It is the purpose of this paper to investigate whether it might serve as a candidate for
describing the sought all-loop dilatation operator (for two complex scalars). We shall
find that this is indeed consistent with all currently known solid information. However,
proving or disproving it will require more work.

The paper is organized as follows. In chapter two we describe the Inozemtsev spin
chain, and show that it is indeed capable of emulating the N = 4 dilatation operator up
to at least three loops. It does not fix the yet to be determined two constants of the three-
loop terms, as discussed above. This is not surprising, as they do not affect integrability
[29]. We also describe a Bethe ansatz for this quantum chain, which is due to Inozemtsev
as well (see [34], and references therein). This ansatz (unlike the full Inozemtsev spin
chain) is limited to operators which are “long”, which means that the interaction range
is kept smaller than the length of the chain. We employ it to re-derive all known results
[27] for finite J BMN operators. The Inozemtsev-Bethe ansatz is particularly interesting
since it may, in principle, be used to derive non-perturbative results. In chapter three we
apply the ansatz to the case of spinning strings. We are able to derive some of the highly
involved two-loop expressions of [12, 16, 17] for folded and circular strings, in agreement
with our previous numerical study for a particular case [19]. However, at three loops
we find that gauge theory yields a similar, but different result as compared to the FT
proposal. On the positive side, we very accurately reproduce the previous numerical
estimate for a special case [19].

Is this really bad news? Not necessarily. Of course, the perspicacious reader might
suspect that the three-loop dilatation operator as conjectured in [27] and derived in [29]
is simply wrong. In the absence of an independent, rigorous field theory computation,
this remains a theoretical possibility; however, we currently do not see which mistake
could have been made. On the other hand, it might be the case that the BMN and FT
results are only valid at large λ (the one- and two-loop agreement might be due to some
yet-to-be understood planar weak-strong coupling duality symmetry); the expansion is,
after all, in λ′, not λ. In this context it is interesting that the Inozemtsev chain exhibits
a generic breakdown of perturbative BMN scaling at four loops4. However, it is possible
to recover BMN scaling non-perturbatively, i.e. at strong coupling (see chapter 2). A
further, more troubling explanation for the deviation we are finding would be a large N
phase transition when we go from weak to strong coupling [35].

Of course we are far from proving that our proposal is valid beyond three loops, let
alone non-perturbatively. However, having identified an integrable long-range spin chain

4We note in passing that we suspect the Inozemtsev model to be equally capable of describing the
plane-wave matrix model mentioned above, which has also been shown to be “perturbatively” integrable
to at least three loops [31]. There BMN scaling may be recovered, up to three loops, by a redefinition of
the mass parameter of the model. If our Inozemtsev ansatz is correct we suspect that such a redefinition
is no longer possible at the four-loop level (or else, integrability of the model should break down). This
might be a more feasible check of our Inozemtsev ansatz as opposed to considering four-loop perturbation
theory in full-fledged N = 4 field theory. In turn, if the plane wave mechanics stays integrable at four
loops while still being consistent, after redefinition, with BMN scaling, it would strongly suggest that
there exist further integrable long range spin chains differing from Inozemtsev.
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which properly describes the dilatation operator up to three loops, we should take it very
seriously. Integrability is a subtle and tight structure, and not found abundantly.

We have not been able to explicitly mention in this introduction many interesting,
closely related recent contributions to this subject of study, see in particular [36].

2 The Inozemtsev spin chain and N = 4 gauge theory

2.1 Long-range spin chains with elliptic and hyperbolic inter-

actions

More than one decade ago, Inozemtsev [33] proposed a spin chain with long range inter-
action which interpolates between the Heisenberg and Haldane-Shastry [32] spin chains.
His Hamiltonian takes the form

I =
L

∑

j=1

L−1
∑

n=1

PL,π/κ(n)(1 − Pj,j+n) , (2)

where the operator Pjk permutes the spins at sites i and j, and the interaction strength
is defined in terms of the elliptic Weierstrass function PL,π/κ(n) with periods L and iπ/κ.
We recall that the Weierstrass function can be defined by the following series

PL,π/κ(z) =
1

z2
+

′
∑

m,n

(

1

(z − mL − inπ/κ)2
− 1

(mL + inπ/κ)2

)

,

where the prime means that the term with m = n = 0 is omitted. When one of the two
periods becomes infinite, the Weierstrass function becomes a trigonometric or hyperbolic
function. If κ → 0, this function goes smoothly to the Haldane-Shastry interaction,

lim
κ→0

PL,π/κ(z) =
(π

L

)2
(

1

sin2 πz/L
− 1

3

)

,

while for L → ∞ the interaction takes the form of a hyperbolic function, and decays
exponentially with the distance,

lim
L→∞

PL,π/κ(z) = κ2

(

1

sinh2 κz
+

1

3

)

.

The Heisenberg limit can be recovered in the limit κ → ∞, where the imaginary
period vanishes. To be able to properly take this limit we define the “coupling constant”

t ≡ e−2κ , (3)

and we use a redefined interaction strength, by removing an additive and a multiplicative
constant

ht,L(n) ≡ PL,π/κ(n)

4κ2
− 1

12
=

∞
∑

m=−∞

tn+Lm

(tn − tLm)2
.
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The Heisenberg interaction can be obtained to leading order in t of the Inozemtsev
interaction

lim
t→0

ht,L(n)/t = δn,1 + δn,L−1 .

Going beyond the first order in t, we notice that ht,L(n) starts as tn (plus higher orders
in t), as long as n < L/2, therefore the Inozemtsev interaction involves spins separated
by a distance of at most n at order n in t. This property agrees with the structure of
the perturbative dilatation operator in the planar limit [24].

Inozemtsev performed a detailed study of the Hamiltonian (2) (see [34] for a re-
view) and gave convincing arguments in the favor of its integrability, by finding the
corresponding Lax pair 5. In addition, he explicitly constructed the first of the higher
charges commuting with the Hamiltonian. The existence of this first higher charge usu-
ally indicates complete integrability for spin chains. However, the general form of the
commuting charges or the monodromy matrix are still out of reach. The connection
with the Calogero-Moser Hamiltonian with elliptic potential presented in [34] may help
finding the exact solution of this chain. Among the aforementioned limiting cases, the
Heisenberg case κ → ∞ and the Haldane-Shastry case, κ → 0 are completely solved, the
first using the Bethe ansatz and the second by exploiting the Yangian symmetry [38].

In the following, we are going to concentrate on the hyperbolic case, where the length
of the chain becomes infinite (i.e. L → ∞), and the interaction takes the simpler form

ht(n) =
1

4 sinh2 κn
=

tn

(tn − 1)2
,

that is, the periodicity effects of the interaction are negligible. This case is easier to
treat analytically, but still quite interesting from the point of view of comparison with
the known results for the N = 4 SYM theory. In particular, it allows to study BMN
operators at finite (but large) J ≃ L. The full elliptic potential takes into account the
effects related to the periodicity of the chain, therefore one could hope that it contains
the information concerning “short” operators such as Konishi.

In the hyperbolic regime we can use an analytic continuation for the monodromy
matrix and for the conserved charges of the Haldane-Shastry spin chain [38, 39, 40].
The Haldane-Shastry conserved charges still commute (and commute with the Yangian
generators) if one replaces the coordinates zk = e2πik/L by zk = t−k [39] 6. We recall that

5According to Inozemtsev [34], who invokes a result by Krichever [37], this is the most general
Lax pair corresponding to a spin chain with long range interaction and pairwise exchange given by
permutation operator. However, his arguments do not directly apply to the case when the interaction
involves more than two spins, and we should keep an open mind as far as concerns the existence of
integrable long range spin chains of a more general type than Inozemtsev. For these putative chains,
the subtraction of higher charges from the lowest charge (i.e. the Hamiltonian) would not allow one to
eliminate interactions involving more than two spins.

6The generating function for the conserved charges of the Haldane-Shastry Hamiltonian was identified
in [40] by taking the limit λ → ∞ of the monodromy matrix for the Calogero-Sutherland model with
spin. The same argument can be easily applied to the hyperbolic case, since in this case the leading
term of the quantum determinant is trivial, ∆0(u) = 0, as well as its derivatives. It follows that the
next-to-leading term ∆1(u) in λ−1 in the expansion of the quantum determinant can be used to generate
the commuting charges in exactly the same fashion as for Haldane-Shastry spin chain.
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the Yangian generators are given by [38]

Qa
0 =

∑

j

σa
j ,

Qa
1 = iεabc

∑

j<k

zj + zk

zj − zk
σb

j σc
k . (4)

Let us emphasize that the Yangian is a true symmetry (i.e. it commutes with the con-
served charges) only for the hyperbolic chain, when the length of the chain is infinite.
Otherwise, like in the case of Heisenberg spin chain [41], in the full elliptic case the
Yangian symmetry is broken by “boundary terms”. The higher conserved charges of the
hyperbolic spin model are also obtained by simply replacing zk = t−k in the expression
ofor the Haldane-Shastry conserved charges [38, 40]

I2 =
′

∑

ij

zizj

zijzji
(Pij − 1) ,

I3 =

′
∑

ijk

zizjzk

zijzjkzki
(Pijk − 1) ,

I4 =
′

∑

ijkl

zizjzkzl

zijzjkzklzli
(Pijkl − 1) − 2

′
∑

ij

(

zizj

zijzji

)2

(Pij − 1) , (5)

where the prime indicates that the sum is over distinct summation indices, zij = zi − zj ,
and Pijk, etc. represent cyclic permutations. A systematic procedure to find all the
conserved charges was given in [40], although the explicit construction of these charges
becomes more and more involved at higher orders.

The diagonalization of the conserved charges is achieved, in the case of nearest-
neighbor interaction, by the algebraic Bethe ansatz. In the case of the long-range inter-
action, the algebraic Bethe ansatz does not work any more, just like in the case of the
Haldane-Shastry spin chain. There, the diagonalization can be performed by using the
Yangian symmetry and the relation to the Calogero-Sutherland model [38, 42]. In the
hyperbolic case it is still possible to use the so-called asymptotic Bethe ansatz, valid in
the regime where L is very large but still finite. The phase acquired by a quasi-particle
(magnon) traveling around the circumference of the chain is given by the phase gained
by its scattering with all the other magnons in the system

exp (ipjL) = exp






i

M
∑

k=1

k 6=j

χ(pj, pk)






, (6)

where χ(pj, pk) is the phase shift for the scattering of two magnons of momenta pj and
pk and M is the number of magnons. Inozemtsev computed the phase shift for the
scattering of two magnons,

cot
χ(pj, pk)

2
= ϕ(pj) − ϕ(pk) ,
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ϕ(p) =
p

2πiκ
ζ1

(

iπ

2κ

)

− 1

2iκ
ζ1

(

ip

2κ

)

, (7)

as well as the magnon energy,

ε(p) =
1

iπκ
ζ1

(

iπ

2κ

)

− 1

4κ2
P1

(

ip

2κ

)

− ϕ2(p) , (8)

where P1(z) = dζ1(z)/dz denotes the Weierstrass elliptic functions of periods 1 and iπ/κ,
and the quasi-periodic zeta function is odd, ζ1(−z) = −ζ1(z). The function ϕ(p) is also
quasi-periodic, ϕ(p + 2π) = ϕ(p) and ϕ(p + 2iκ) = ϕ(p) − i. While the phase shift and
magnon energy (7,8) are exact, the Bethe ansatz formula (6) is asymptotic, i.e. it is valid
for chains of finite but large length L. It is easy to check that in the limit κ → ∞, the
magnon energy and the phase shift reduce to the corresponding Heisenberg values, in
particular ϕ(p) → (1/2) cot(p/2).

2.2 Comparing the conserved charges of the Inozemtsev spin

chain to the dilatation operator

If we assume that the dilatation operator in the su(2) sub-sector of N = 4 theory is
integrable to all orders in perturbation theory, as first conjectured in [27], it should
correspond to some integrable long-range spin chain. We believe that the Inozemtsev
spin chain is a natural, and maybe the only, viable candidate.

If the dilatation operator contains, beyond two loops, interaction terms which involve
more than two spins, the Inozemtsev Hamiltonian is not, by itself, sufficient to reproduce
the former7. In this case, one should consider a linear combination of the even parity
conserved charges of the Inozemtsev spin chain8. The most general expression for the
dilatation operator will then be

D(λ) = L + f1(λ)I2(t) + f2(λ)I4(t) + f3(λ)I6(t) + ... (9)

where t = t(λ) is such that limλ→0 t/λ = 1/16π2, fk(λ) are functions regular at λ = 0
and I2k(t) are the even parity conserved charges of Inozemtsev spin chain.

To determine the precise relation between the ’t Hooft coupling constant λ and the
parameter t, as well as the functions fk(λ), we have to use arguments going beyond
perturbation theory. The first example of such an argument concerns the behavior of
the rapidity ϕ(p) in the BMN limit, where the coupling constant λ and the chain length
L are both large, λ = λ′ L2. Since it enters the Bethe ansatz equations, and therefore all

7The three-loop dilatation operator proposed in [27] does contain four-spin terms, as these are nec-
essary for perturbative BMN scaling. If we drop this requirement, the yet undetermined two constants
[29] discussed in the introduction may be chosen so as to eliminate the four spin terms. The future will
tell.

8In [27] it was argued that only connected planar diagrams contribute to the dilatation operator
(see also [24]). A completely rigorous all-orders proof is not easy due to the known problems with
regularization by dimensional reduction at large loop order in N = 4 gauge theory. Non-connected
diagrams would require non-linear combinations of the conserved charges.
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the observables, the combination ϕ(p)/L should have a well-behaved BMN limit. The
rapidity (7) can be written as an infinite sum

ϕ(p) =
1

2
cot

p

2
+

1

2

∑

n>0

[

cot(
p

2
− iκn) + cot(

p

2
+ iκn)

]

(10)

=
1

2
cot

p

2
+ 2

∑

n>0

tn sin p

(1 − tn)2 + 4tn sin2(p/2)
.

where in the second line we have used the perturbative parameter t instead of the pa-
rameter κ. Expanding this result to first order in p, we obtain

ϕ(p) =
1

2
cot

p

2
+ 2p

∑

n>0

tn

(tn − 1)2
+ . . . .

In the BMN limit, the leading behavior of the magnon momentum is p ∼ 1/L. We
conclude that in this regime λ ∼ ∑

n>0
tn

(tn−1)2
. On the other hand, the same relation

holds in the perturbative regime, where λ is small, at least for the first few orders. We
are therefore led to conjecture that the following relation holds everywhere

λ

16π2
=

∑

n>0

tn

(tn − 1)2
=

∑

n>0

1

4 sinh2(κn)
. (11)

It is interesting to see that, under this hypothesis, BMN scaling holds not only for the first
order in p, but for whole expression of ϕ(p)/L, provided we stay in the BMN regime. In
this regime (κ → 0) we have λ = 2π4/3κ2. Here, it is useful to use a dual representation
for the rapidity ϕ(p)

ϕ(p) =
π

2κ
coth

πp

2κ
+

π

2κ

∑

m>0

[

coth
π(p − 2πm)

2κ
+ coth

π(p + 2πm)

2κ

]

− p

2κ
, (12)

where the last term insures the desired quasi-periodicity properties, ϕ(p + 2π) = ϕ(p)
and ϕ(p + 2iκ) = ϕ(p) − i. The terms with m > 0 form a power series in the dual
parameter e−2π2/κ and they vanish exponentially in the BMN limit, since in this case
1/κ ∼ L → ∞. The remaining part obviously obeys BMN scaling.

In principle, the explicit knowledge of all the conserved charges of the Inozemtsev
chain and of their eigenvalues would allow to obtain information about the functions
fk(λ) in equation (9). Since, at least for the moment, we lack this knowledge we have
to restrict ourselves to comparing the relation (9) to the perturbative results which
are already known [27],[29]. Let us then compare the expression (9) to the dilatation
operator,

D(λ) = L +
∑

k>0

(

λ

16π2

)k

D2k

as stated in [27]. Rewritten using commuting permutations, the contributions to the

9



dilatation operator up to three loops are

D0 = L , (13)

D2 = 2L − 2
∑

i

Pi,i+1 ,

D4 = −6L + 8
∑

i

Pi,i+1 − 2
∑

i

Pi,i+2 ,

D6 = 40L − 56
∑

i

Pi,i+1 + 16
∑

i

Pi,i+2 − 4
∑

i

(Pi,i+3Pi+1,i+2 − Pi,i+2Pi+1,i+3) .

We recall that D2 was obtained by diagrammatic computation in N = 4 SYM theory
and the expression of D4 was checked in several ways [24],[25]. The expressions for
D6 were obtained initially [27, 43] supposing perturbative integrability and imposing
perturbative BMN scaling. The expression for D6 was subject to controversies, since it
disagrees with the results from the near plane-wave string theory [28]. Later on, Beisert
[29] checked that the integrability of D6 is insured by supersymmetry, and that the two
free coefficients are fixed if one imposes perturbative BMN scaling.

The conserved charges of the Inozemtsev spin chain can be expanded in series of t,
and therefore of the coupling constant λ. By inverting the series (11) we obtain

t =
λ

16π2
− 3

(

λ

16π2

)2

+ 14

(

λ

16π2

)3

+ . . . , (14)

Inserting this expression into (5) and expanding in powers of λ we get

I2k =
∑

n>0

(

λ

16π2

)n

I
(n)
2k .

The explicit expression for the first few orders in the Hamiltonian is

I
(1)
2 = 2L − 2

∑

i

Pi,i+1 ,

I
(2)
2 = 2

∑

i

Pi,i+1 − 2
∑

i

Pi,i+2 ,

I
(3)
2 = −10

∑

i

Pi,i+1 + 12
∑

i

Pi,i+2 − 2
∑

i

Pi,i+3 .

In the following, we use a redefinition of the fourth conserved charge, Ĩ4(λ) = I4(λ) −
2λI2(λ). This is done for the purpose of having the fourth conserved charge of the
Heisenberg chain as the first non-trivial order in the λ expansion

Ĩ
(1)
4 = Ĩ

(2)
4 = 0 ,

Ĩ
(3)
4 = −8L + 8

∑

i

Pi,i+1 − 4
∑

i

Pi,i+2 + 4
∑

i

Pi,i+3

− 8
∑

i

(Pi,i+3Pi+1,i+2 − Pi,i+2Pi+1,i+3) ,

10



It is not obvious that a similar redefinition can be done for all the conserved charges,
but at least we know that we can arrange to have Ĩ

(3)
6 = 0.

We can now reconstitute the perturbative dilatation operator (13) using the Inozemt-
sev conserved charges

D2 = I
(1)
2 ,

D4 = I
(2)
2 − 3I

(1)
2 ,

D6 = I
(3)
2 +

1

2
Ĩ

(3)
4 − 3I

(2)
2 + 22I

(1)
2 . (15)

If we reinstate the constants which were fixed by imposing perturbative BMN scaling
[27], the most general form for the third loop dilatation operator allowed by perturbative
integrability is

D6 = I
(3)
2 + a1Ĩ

(3)
4 − 3I

(2)
2 + a2I

(1)
2 . (16)

Comparing to the expression (9), we conclude that f1(λ) = 1 + (2a1 − 3)λ + . . . and
f2(λ) = a1 + . . ., the constant a2 appearing at next order in λ. In conclusion, we can
reproduce the dilatation operator up to three loops using the conserved charges of the
Inozemtsev spin chain.

2.3 Perturbative results from the asymptotic Bethe ansatz. Di-

mensions of the BMN operators

In the following, we are going to compute perturbatively the dimensions of the BMN
operators up to third order, supposing that the dilatation operator is integrable and its
integrability is governed by the Inozemtsev spin chain. The strategy is to compute the
magnon momenta by using the asymptotic Bethe ansatz equation (6) and to substitute
them into the expression of the dilatation operator known from perturbative calculations.

The asymptotic Bethe ansatz equations have the form (6), which we can rewrite as

eipjL =

M
∏

k=1

k 6=j

ϕj − ϕk + i

ϕj − ϕk − i
, (17)

where M is the magnon number and the rapidity ϕj = ϕ(pj) is given by the expression
(10). To see the connection with the usual Bethe ansatz for the Heisenberg chain, we
can replace the momentum by a rapidity variable uj = 1

2
cot

pj

2
such that the left hand

side of eq.(17) becomes

eipjL =

(

uj + i/2

uj − i/2

)L

,

while it is clear from eq.(10) that ϕj = uj + O(t). More precisely, up to third order in t
we have

ϕ(p) = u(p) + 2t sin p + 2t2 sin p (1 + 2 cos p) + 8t3 sin p cos2 p + . . . .

11



We can perturbatively solve the Bethe ansatz equation for the two-magnon case, with
the two magnon momenta satisfying p1 = −p2 = p. Since we will compare our results to
the anomalous dimensions of the BMN operators

Tr ZJΦ2 + . . . ,

we are going to use J + 2 to denote the length of the chain,

L = J + 2 .

The Heisenberg solution for the magnon momentum is

p = pn ≡ 2πn

J + 1
,

and the corrections to this value are given by the equation

p = pn − 8t sin p sin2 p
2

J + 1
− 8t2 sin p sin2 p

2

J + 1

(

8 cos4 p

2
− 4 cos2 p

2
+ 1

)

− 32t3 sin p sin2 p
2

3(J + 1)

(

64 cos8 p

2
− 96 cos6 p

2
+ 48 cos4

p

2
− 16 cos2 p

2
+ 3

)

+ . . . .

The perturbative solution of the Bethe ansatz equation up to third order in t is

p = pn − 8t sin pn sin2 pn

2

J + 1

+
64t2 sin pn sin4 pn

2

(

4 cos2 pn

2
− 1

)

(J + 1)2 − 8t2 sin pn sin2 pn

2

(

8 cos4 pn

2
− 4 cos2 pn

2
− 1

)

J + 1

− 512t3 sin pn sin6
(

pn

2

) (

24 cos4 pn

2
− 13 cos2 pn

2
+ 1

)

(J + 1)3

+
128 t3 sin pn sin4

(

pn

2

) (

48 cos6 pn

2
− 44 cos4 pn

2
+ 4 cos2 pn

2
+ 1

)

(J + 1)2

− 32t3 sin pn sin2 pn

2

(

64 cos8 pn

2
− 96 cos6 pn

2
+ 48 cos4 pn

2
− 16 cos2 pn

2
+ 3

)

3(J + 1)
+ . . . .

Using the perturbative expansion (14) for t in powers of λ, we can transform this expres-
sion into a series in λ. Then, we insert the solution for the momentum in the eigenvalue
formula for the dilatation operator, which is a consequence of (13),

E(λ) = J + 2

(

1 +
λ

2π2
sin2 p

2
− λ2

8π4
sin4 p

2
+

λ3

16π6
sin6 p

2
+ . . .

)

.

Using Maple to perform the resulting series expansion, we checked that the two-magnon
energy at order k in λ, E(k), has the behavior predicted in [27], up to order k = 3

E(1) =
1

π2
sin2 pn

2
, (18)

E(2) = − 1

π4
sin4 pn

2

(

1

4
+

1

J + 1
cos2 pn

2

)

,

E(3) =
1

π6
sin6 pn

2

(

1

8
+

1
2
cos4 pn

2
+ 3

4
cos2 pn

2

J + 1
+

5
2
cos4 pn

2
− 3

4
cos2 pn

2

(J + 1)2

)

.
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The agreement with the perturbative results in gauge theory is perfect, up to three loops,
as far as the anomalous dimensions of the large J BMN operators are concerned. For
completeness, let us look at one more order and, in particular, to compare with the
conjectured results of [43].

2.4 Fourth order dilatation operator and the breakdown of per-

turbative BMN scaling

The four loop dilatation of N = 4 gauge theory is not yet rigorously known. In [43]
a proposal for its structure was put forward, based (1) on extending the planar pair
symmetry, due to integrability [27], and (2) on insisting on perturbative BMN scaling.
As we shall see below, this proposal will turn out to be inconsistent with the Inozemtsev
integrable structure. We suspect that the constraints coming from all-order integrability
become tighter at higher orders and that it will become impossible to satisfy at once
integrability and perturbative BMN scaling. However, this does not mean automatically
that [43] is wrong. Indeed, it is not excluded that several integrable long-range spin
chains exist (see the comments in footnotes 4 and 5).

The proposal in [43] can be rewritten as

D8 = 222L− 648
∑

i

Pi,i+1 +
1340

3

∑

i

Pi,i+2 −
1796

3

∑

i

Pi,i+3 + 6
∑

i

Pi,i+4 (19)

+
842

3

∑

i

Pi,i+1Pi+2,i+3 +
1972

3

∑

i

Pi,i+3Pi+1,i+2 − 366
∑

i

Pi,i+2Pi+1,i+3

+
16

3

∑

i

(Pi,i+3Pi+2,i+4 + Pi,i+2Pi+1,i+4 − Pi,i+4Pi+2,i+3 − Pi,i+4Pi+1,i+2

− Pi,i+4Pi+1,i+3 + Pi,i+3Pi+1,i+4) ,

where we have chosen the value β = −428/3 in the expression of [43], since this value
allows to reconstitute the term in parenthesis, which is a very natural combination of
permutation. We recall that β corresponds in [43] to a unitary transformation of D8 and
that it does not affect the eigenvalue of D8.

We also expand the first two even Inozemtsev conserved charges to fourth order in λ,

I
(4)
2 = 62

∑

i

Pi,i+1 − 78
∑

i

Pi,i+2 + 18
∑

i

Pi,i+3 − 2
∑

i

Pi,i+4 ,

Ĩ
(4)
4 = 48L − 36

∑

i

Pi,i+1 + 16
∑

i

Pi,i+2 − 40
∑

i

Pi,i+3 + 12
∑

i

Pi,i+4

− 8
∑

i

Pi,i+1Pi+2,i+3 + 56
∑

i

Pi,i+3Pi+1,i+2 − 48
∑

i

Pi,i+2Pi+1,i+3

+ 8
∑

i

(Pi,i+3Pi+2,i+4 + Pi,i+2Pi+1,i+4 − Pi,i+4Pi+2,i+3 − Pi,i+4Pi+1,i+2

− Pi,i+4Pi+1,i+3 + Pi,i+3Pi+1,i+4) .
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We see that ansatz (19) can be written as

D8 = I
(4)
2 +

2

3
Ĩ

(4)
4 + lower order terms , (20)

where “lower order terms” stands for a term of the form
∑

i(Pi,i+1Pi+2,i+3+Pi,i+3Pi+1,i+2)

which we expect to come from Ĩ
(4)
6 , plus a linear combination of Ĩ

(3)
4 , I

(3)
2 , I

(2)
2 , I

(1)
2 .

What we learn from this exercise is that, imposing the integrability perturbatively,
as it was done in [27, 43], we obtain the building blocks of the Inozemtsev spin chain
(modulo the contribution of the sixth conserved charge, for which we do not have a

quantitative estimate). However, the coefficients multiplying I
(n)
2k in (15) disagree with

the all-order expression (9). The expression (9) implies that the coefficient of I
(n)
2k in D2n

should not depend on n. This is not the case for I
(3)
4 and I

(4)
4 appearing in D6 and D8 in

equations (15), (20). In order to be compatible with the proposal (9), the fourth order
dilatation operator has to be

D̃8 = I
(4)
2 − 3I

(3)
2 + a2I

(2)
2 + b1I

(1)
2 + a1Ĩ

(4)
4 + b2Ĩ

(3)
4 + b3Ĩ

(4)
6 . (21)

A possible explanation of the mismatch is related to the fact that the coefficients in D6

and D8 which were left free by perturbative integrability were fixed imposing perturbative
BMN scaling [27, 43]. However, in (21) there are three free constants left, once we have
fixed, at third order, a1 and a2, while Beisert obtains [43] six constants to be fixed by
perturbative BMN. This point certainly deserves a better understanding.

Independently of the previous analysis, we know that the Inozemtsev spin chain
cannot reproduce, starting from the fourth order, an anomalous dimension which obeys
BMN scaling. The reason is that the rapidity ϕ(p) does not have a perturbative expansion
in λ consistent with BMN scaling. The first violation of BMN scaling appears at third
order in λ and therefore will contribute to the correction to the two magnon energy at
the fourth order.

Although the rapidity (10) does not obey perturbative BMN scaling (when λ is small),
it obeys BMN scaling in the BMN regime, when λ is large. Technically, we see that the
perturbative BMN scaling is spoiled by terms of the type e−

√
λ, which vanish in the BMN

regime but have a well-defined, non-trivial expansion around λ = 0.

3 Stringing spins and spinning strings at two and

three loops

3.1 Generalities

In the last chapter we showed that the Bethe ansatz for the Inozemtsev chain is indeed
capable of reproducing the correct two- and three-loop anomalous dimensions of finite
length two-impurity operators. Let us now turn to the “thermodynamic” situation of
“long” operators with many impurities; i.e. we will study the operators

Tr ZJ1ΦJ2 + . . . , (22)
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in the limit where both J1 and J2 are large. At the one-loop level anomalous dimensions
for these operators were obtained in [18] and it was established in [18, 19] that the result
agreed with string theory predictions of Arutyunov, Frolov, Russo and Tseytlin [12, 16,
17], in two cases: The folded string (corresponding to the ground state) and the circular
string (corresponding to an excited state). As we explained above, the Inozemtsev chain
turns out to be intrinsically inconsistent with perturbative BMN scaling, starting at
four loops. Just like BMN, the all-loop proposal of Frolov and Tseytlin also predicts an
expansion in the BMN coupling λ′ = λ/J2. We immediately infer that the perturbative
Inozemtsev ansatz therefore has no chance of reproducing these predictions beyond the
three-loop level. On the other hand, up to three loops BMN scaling is possible, and, at the
two-loop level, proven. As was shown in the previous chapters, the three-loop dilatation
operator of [27] can be emulated by the Inozemtsev chain. It is therefore clearly very
interesting to work out the Inozemtsev predictions at two and three loops and compare
to string theory. This will be done in the next sections, for both the folded and the
circular string. At the two-loop level we can be sure that we are indeed computing the
perturbative gauge theory result. This is in contradistinction to the three-loop case,
where we need to assume the absence of the terms that break perturbative BMN scaling.
Let us recall the string result for the two relevant cases of spinning folded and circular
strings. It may be written in the following concise way. For the folded string we have
the parametric expression

( J2

K(t) − E(t)

)2

−
( J1

E(t)

)2

=
4

π2
, (23)

( E
K(t)

)2

−
( J1

E(t)

)2

=
4

π2
t , (24)

while the circular string energy E is given by

( J1

K(t) − E(t)

)2

−
( J2

(1 − t)K(t) − E(t)

)2

=
4

π2t
, (25)

( E
K(t)

)2

−
(

tJ1

K(t) − E(t)

)2

=
4

π2
(1 − t), (26)

where E ,J1,J2 are the string energies E and the angular momenta J1,J2 in units of
the effective string tension λ (alias square root of the ’t Hooft coupling), E =

√
λ E ,

J1,2 =
√

λ J1,2. K(t) and E(t) are elliptic integrals of, respectively, the first and second
kind. In both cases the upper equations (23),(25) determine the parameter t 9 as a
function of J1,J2, while E is then obtained by substitution of t into, respectively, the
lower equations (24),(26). These expressions may be expanded for large J = J1 + J2;
this results in an expansion of the energy as a Taylor series in the BMN coupling λ′

through the identification (cf. eq.(1))

λ′ =
1

J 2
. (27)

9The parameter t is not to be confused with the Inozemtsev coupling constant t = e−2κ of the
previous chapter.
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In order to obtain a finite result for the energy E = J +. . . we should introduce a rescaled
string energy (=lowest charge) Q2:

Q2 =
E
J . (28)

One then has

Q2 = 1 +

∞
∑

k=1

Q(k)
2 (λ′)k, (29)

where the expansion coefficients Q(k)
2 only depend on the dimensionless ratio (termed

“filling fraction” below)

α ≡ J2

J =
J2

J
, (30)

with J = J1 + J2. Since the expansion eq.(29) is in integer powers of λ′, the basic pro-

posal of Frolov and Tseytlin has been that the k-th expansion coefficient Q(k)
2 should

be reproducible by a k-loop perturbative gauge theory calculation of the anomalous di-
mension of the operators eq.(22). This proposal generalizes the one of BMN, as the case
of “J2-impurity=J2-magnon” BMN operators may be recovered from the folded string
solution eqs.(23),(24) in the limit where J2 stays finite (i.e. J2 → 0), but the length of
the operator still goes to infinity: J ∼ J1 → ∞. In this case eq.(29) becomes

Q2 = 1 +
J2

J

(√
1 + λ′ − 1

)

(31)

i.e. the Q(k)
2 become proportional to the Catalan numbers:

Q(k)
2 =

J2

J
8 (−1

4
)k+1 (2k − 2)!

k!(k − 1)!
. (32)

As discussed in the introduction, both the BMN and the Frolov-Tseytlin proposal make
the highly non-trivial assumption that in the AdS/CFT system two different scaling
procedures are nevertheless equivalent: Recall that in perturbative gauge theory the
‘t Hooft coupling λ is small, while the string calculation requires λ to be large. We are
now ready to test the Frolov-Tseytlin proposal beyond the one-loop level, with the help
of our long range Bethe ansatz eq.(17),(10).

3.2 Thermodynamic limit of the Inozemtsev-Bethe equations

The thermodynamic limit of the Inozemtsev-Bethe equations is obtained in close analogy
to the procedure employed for the Heisenberg model, cf. [18]. One takes the logarithm
of eq.(17) and assumes the length L = J = J1 + J2 to be large. This gives

J pj = 2πnj + 2

J2
∑

k=1

k 6=j

1

ϕj − ϕk

. (33)
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In the case of the one-loop Bethe ansatz one works with the Bethe roots uj, or, equiva-
lently, the momenta pj . In the present case one has, in addition to the {pj}, a second set
of discrete variables, namely the rapidities {ϕj}. The two sets are related through the
coupling constant dependent relation eq.(10). In order to obtain equations which stay
close in form to the original Bethe ansatz it is most convenient to use eqs.(33) to deter-
mine the distribution of the rapidities {ϕj}, instead of working with the momenta {pj}.
We can think of the rapidities as “deformed” Bethe roots, since we have ϕj = uj +O(λ).

In the limit where the magnon number M = J2 gets large, the rapidities are expected,
after a rescaling, to accumulate along smooth contours in the complex ϕ plane, just as
its undeformed leading order values uj

ϕj

J
→ ϕ with ρ(ϕ) =

1

J

J2
∑

j=1

δ
(

ϕ − ϕj

J

)

, (34)

where ρ(ϕ) is a distribution density which is normalized to the filling fraction α = J2/J ,

∫

C
dϕ ρ(ϕ) = α, (35)

and C is the support of the density, i.e. the union of contours along which the rapidities
are distributed. The Bethe equations (33) then turn into singular integral equations:

−
∫

C

dϕ′ ρ(ϕ′) ϕ

ϕ′ − ϕ
=

1

2
ϕ p(ϕ) + π nC(ϕ) ϕ. (36)

nC(ϕ) is the mode number at point ϕ. It should be constant along each contour. Here and
in the following the slash through the integral sign implies a principal part prescription.
This equation generalizes the continuum Bethe equations of [18]. On the right side the
non-trivial potential ϕ p(ϕ)/2 appears, which is given by the scaling limit of the inverse
of the rapidity ϕ(p) p/2 in eq.(10). Eq.(36) should be complemented by the momentum
conservation condition −

∫

C dϕ ρ(ϕ) p(ϕ) = 0 and the constraint −
∫

C dϕ ρ(ϕ) nC(ϕ) = 0.
We would like to stress that the Inozemtsev-Bethe equation eq.(36) is expected to

determine the spectrum of the long-range spin chain (and therefore, potentially, of the
operators in eq.(22)) quite generally in the regime J1, J2 large (neglecting, however, the
“wrapping” modes, as explained before). It is not necessarily restricted to perturbation
theory. The information on the observables (namely, the commuting charges) of the long-
range spin chain should then be contained in the moments Q̄k of the rapidity distribution,
in generalization of the result of [21],[20]:

Q̄k =
1

2

∫

C
dϕ

ρ(ϕ)

ϕk
. (37)

However, as far as determining the energy (=lowest charge) of the spin chain is
concerned, finding the distribution of rapidities is not yet everything. We also need
to uncover the relation between the “natural” observables Q̄k and the observables we
would like to measure, i.e. in particular, the eigenvalue of the dilatation operator. In the
perturbative regime, up to three loops, this problem was solved in the last chapter. To
this order, we are now ready to obtain the anomalous dimension of the operators eq.(22)
in the two cases of interest (folded and circular).
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3.3 Folded case

The folded case corresponds to the ground state of the operators eq.(22). The qualitative
rapidity distribution is expected to be as in the one-loop case [18]. We have precisely
two cuts symmetrically placed to both sides of the imaginary axis, with, respectively,
mode numbers ±n. Using the perturbative result of the last chapter, we find (putting
the mode number n to one), up to three loops,

−
∫ b

a

dϕ′ ρ(ϕ′) ϕ2

ϕ′2 − ϕ2
=

1

4
− π

2
ϕ + c1

λ′

ϕ2
+ c2

λ′2

ϕ4
. (38)

The constants c1, c2 are found from the results of the previous chapter to be

c1 =
1

32π2
and c2 =

3

512π4
. (39)

Let us define the moments Q̄2k of the ϕ distribution by

Q̄2k =

∫ b

a

dϕ
ρ(ϕ)

ϕ2k
. (40)

The energy Q2 (i.e. the anomalous dimensions divided by J) is then determined10 by

Q2 = 1 − λ′

4π2
Q̄2 − e1 λ′2 Q̄4 − e2 λ′3 Q̄6, (41)

where the constants e1, e2 were found in the last chapter

e1 =
3

64π4
and e2 =

5

512π6
. (42)

It is easily verified that these equations are a generalization of the one-loop ones presented
in [18]; their solution proceeds as before and we will thus be rather brief; for further
details, see [21]. The normalization of the density is

∫ b

a

dϕ ρ(ϕ) = −α

2
. (43)

with the by now standard trick [18, 19, 21] of analytic continuation to (formally) negative
J , resulting in a negative filling fraction α = J2/J < 0 (this flips the complex cuts onto
the real axis). It is again useful to introduce a generating function for the moments Q̄2k:

H(ϕ) = −α

2
+

∞
∑

k=1

Q̄2k ϕ2k, i .e. H(ϕ) =

∫ b

a

dϕ′ ρ(ϕ′)
ϕ′2

ϕ′2 − ϕ2
. (44)

10Formally the moments Q̄2k, and in consequence also the energy Q2, have an infinite regular expansion
in the BMN coupling λ′. The leading order O(λ′0) contribution to Q̄2k is nothing but the 2k’th one-loop
commuting charge, cf. [21]. Obviously we should discard all terms higher then O(λ′3) in Q2 since the
thermodynamic Inozemtsev-Bethe equation eq.(38) is accurately describing perturbative gauge theory
only to at most O(λ′3). As we discussed, in light of the results of [29], we can actually only be completely
sure about this validity to O(λ′2) and need to assume the vanishing of two so far undetermined constants
to ensure BMN scaling and, in consequence, validity of eq.(38) to O(λ′3).
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We find the following generalization of the result eq.(2.24) in [21]:

H(ϕ) = −α

2
+

1

4
+ c1

λ′

ϕ2
+ c2

λ′2

ϕ4
− a2

b

√

b2 − ϕ2

a2 − ϕ2
Π

(

−q
ϕ2

a2 − ϕ2
, q

)

(45)

− 1

ab

√

(b2 − ϕ2)(a2 − ϕ2)

[

c1 λ′ 1

ϕ2
+ c2 λ′2

(

1

ϕ4
+

a2 + b2

2a2b2

1

ϕ2

)]

,

where the modulus q is, as before, q = 1 − a2/b2. The Π function is the elliptic integral
of the third kind; for our conventions we refer to [21]. One then finds that the left edge
a of the cut is determined through the equation

1

4
− K(q) a + c1 λ′ (1 − q

2
)

1

a2
+ c2 λ′2 (1 − q +

3

8
q2)

1

a4
= 0, (46)

while the right edge b is, of course, b = a/
√

1 − q. Finally, one has an equation relating
the filling fraction to the modulus q:

α =
1

2
− 2aE(q)√

1 − q
+ c1 λ′ 2

√
1 − q

a2
+ c2 λ′2 (2 − q)

√
1 − q

a4
. (47)

K(q) and E(q) in eqs.(46),(47) are elliptic integrals of the, respectively, first and sec-
ond kind. We are now able to obtain the gauge theory result up to three loops, using
eq.(41).This is done by expanding both the modulus q = q0 + q1λ

′ + q2λ
′2 and the in-

terval boundary a = a0 + a1λ
′ + a2λ

′2 in powers of λ′, and eliminating with the help
of eqs.(46),(47) all constants except for the leading order modulus q0, which, as before,
conveniently parametrizes the filling fraction α through

−α = −J2

J
=

1

2
√

1 − q0

E(q0)

K(q0)
− 1

2
. (48)

This gives the final, three-loop result

Q2 = 1 +
1

2π2
K(q0)(2E(q0) − (2 − q0)K(q0)) λ′ (49)

+
1

8π4
K(q0)

3
(

4(2 − q0)E(q0) − (8 − 8q0 + q2
0)K(q0)

)

λ′2

+
1

4π6

K(q0)
5

(E(q0) − K(q0))(E(q0) − (1 − q0)K(q0))
×

×
(

(8 − 8q0 + 3q2
0)E(q0)

3

−(2 − q0)(12 − 12q0 + q2
0)E(q0)

2K(q0)

+3(1 − q0)(8 − 8q0 + q2
0)E(q0)K(q0)

2

−4(1 − q0)
2(2 − q0)K(q0)

3
)

λ′3

We notice that the two-loop (O(λ′2) contribution in eq.(49) very closely resembles the
eigenvalue of the fourth higher charge Q4, cf. eq.(2.25) in [21]. This finds a natural
explanation in terms of the structure of the energy expression eq.(41): Indeed the two-
loop energy is “mostly” given by the contribution from the fourth conserved charge of
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the Heisenberg XXX chain, with a “small” correction, namely the λ′ correction to the
second Heisenberg charge.

Let us now compare this to the string prediction eqs.(23),(24). The latter is conve-
niently rewritten in Lagrange-inversion form, using eqs.(27),(30):

λ′ =
π2

4K(t0)2

[

(

K(t0) − E(t0)

K(t) − E(t)

)2

−
(

E(t0)

E(t)

)2
]

, (50)

Q2 =
K(t)

K(t0)

√

(1 − t)

(

E(t0)

E(t)

)2

+ t

(

K(t0) − E(t0)

K(t) − E(t)

)2

.

where the “string modulus” t0 is found to parametrize the filling fraction through

α = 1 − E(t0)

K(t0)
. (51)

One now expands both equations in t around the point t0. The upper equation gives λ′

as a power series in the variable (t− t0). Power series inversion yields t as a power series
in λ′. Finally, substitution of this series into the expanded lower equation gives Q2 as a
series in λ′, i.e. the sought coefficients in eq.(29). We then find, up to third order in λ′,

Q2 = 1 +
2

π2
K(t0) [E(t0) − (1 − t0)K(t0)] λ′ (52)

+
2

π4
K(t0)

3
[

(1 − 2t0)E(t0) − (1 − t0)
2K(t0)

]

λ′2

+
4

π6

K(t0)
5

E(t0)2 − 2(1 − t0)E(t0)K(t0) + (1 − t0)K(t0)2
×

×
(

(1 − 7t0 + 7t20)E(t0)
3 − (1 − t0)(3 − 14t0 + 7t20)E(t0)

2K(t0)

+(1 − t0)(3 − 2t0)(1 − 3t0 + t20)E(t0)K(t0)
2 − (1 − t0)

4K(t0)
3
)

λ′3

+O(λ′4),

In order to compare to gauge theory, we need to parametrize both results in the same
way, cf. eqs.(48),(51). In fact, we can apply the Gauss-Landen transformation of [19],
which relates the string and gauge theory modulus through

t0 = −(1 −√
1 − q0)

2

4
√

1 − q0

. (53)
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to rewrite the three-loop string energy Q2 in terms of the gauge modulus q0:

Q2 = 1 +
1

2π2
K(q0)(2E(q0) − (2 − q0)K(q0)) λ′ (54)

+
1

8π4
K(q0)

3
(

4(2 − q0)E(q0) − (8 − 8q0 + q2
0)K(q0)

)

λ′2

+
1

16π6

K(q0)
5

(E(q0) − K(q0))(E(q0) − (1 − q0)K(q0))
×

×
(

2(16 − 16q0 + 7q2
0)E(q0)

3

−(2 − q0)(48 − 48q0 + 7q2
0)E(q0)

2K(q0)

+(96 − 192q0 + 114q2
0 − 18q3

0 + q4
0)E(q0)K(q0)

2

−(1 − q0)(2 − q0)(16 − 16q0 + q2
0)K(q0)

3
)

λ′3

+O(λ′4).

Comparing the string theory result eq.(54) to the gauge theory result eq.(49), we see
that the O(λ′2) two-loop terms precisely agree! Our joy about this amazing result would
be even greater if this was also the case for the O(λ′3) three-loop contribution. However,
here we notice, despite a close structural resemblance (in particular, the denominators
of the rather involved formulas agree), that the detailed form of the gauge and string
theory results are different. Furthermore, these analytic findings explain the numerical
results of [19] for the ground state gauge energies of the folded case at half filling α = 1

2
.

There the thermodynamic ground state energies of the gauge operators were estimated
by extrapolation of the numerically exact diagonalization of the dilatation operator for
states up to J = 16. The method showed excellent gauge-string theory agreement (to
about 1%) at one and two-loops, but a curious 17% deviation at three loops. Having
at our hands the exact Inozemtsev-Bethe results eq.(49) we can find11 the numerically
exact values of the three-loop ground state energies at half-filling12:

Q2 = 1 + 0.356016λ′ − 0.212347λ′2 + 0.212147λ′3, (55)

while the string result eqs.(52),(54) gives

Q2 = 1 + 0.356016λ′ − 0.212347λ′2 + 0.181673λ′3, (56)

We see that this explains the numerical results in Table 1 of [19]. It shows that the 17%
deviation noticed there is not due to numerical inaccuracy of the extrapolation method
– weak coupling gauge and strong coupling string theory results really begin to differ at
three loops.

The attentive reader might wonder whether the three-loop disagreement might dis-
appear when the above constants eqs.(39),(42) are chosen in a different way: Leaving
aside the Inozemtsev chain, the general form eqs.(38),(41) of “perturbing” the Bethe
equations of the one-loop Heisenberg model is of course very natural. However, this is

11This nice test of the validity of our method was first suggested to us by N. Beisert.
12It is technically convenient to use the inverse Gauss-Landen transform on the gauge result eq.(49);

α = 1

2
corresponds to the modulus t0 = 0.8261148, where 2E(t0) = K(t0).
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not the case. One checks (1) that requiring agreement between gauge and string theory
at two-loops fixes c1, e1 to precisely the values derived from the Inozemtsev-Bethe ansatz,
that furthermore (2) no choice of c2, e2 enables one to match the solution of the deformed
Bethe equations and the string prediction, and that finally (3) the three-loop gauge result
eq.(55) is very sensitive to the precise values of c2, e2 and the beautiful agreement with
table 1 of [19], cf. eqs(55),(56) is only recovered if we chose the “Inozemtsev values”,
i.e. eqs.(39),(42).

For further confirmation of these findings, let us now turn to the case of the circular
string.

3.4 Circular case

Here we will be rather brief, as the details are easily filled in by combining the results and
notations of [18, 19, 21] and the methodology of the last section. The Inozemtsev-Bethe
equation reads in this case

−
∫ d

c

dϕ′ σ̃(ϕ′)
ϕ2

ϕ2 − ϕ′2 =
1

4
− ϕ log

ϕ + c

ϕ − c
− c1

λ′

ϕ2
+ c2

λ′2

ϕ4
, (57)

where we have rotated the variable ϕ → iϕ, while the three-loop gauge energy Q2 is
found from13

Q2 = 1 +
λ′

4π2
Q̄2 − e1 λ′2 Q̄4 + e2 λ′3 Q̄6, (58)

with the constants c1, c2, e1, e2 again given by eqs.(39),(42). The Q̄2k are the moments
of the distribution density σ̃(ϕ) and obtained by

Q̄2k =
2

2k − 1

1

c2k−1
−

∫ d

c

dϕ
σ̃(ϕ)

ϕ2k
. (59)

They are generated by the resolvent

H(x) =
α

2
−

∞
∑

k=1

Q̄2k ϕ2k i .e. H(ϕ) = 2c + ϕ log
c − ϕ

c + ϕ
+

∫ d

c

dϕ′σ̃(ϕ′)
ϕ′2

ϕ′2 − ϕ2
. (60)

The normalization is

2c +

∫ d

c

dϕ σ̃(x) =
α

2
, (61)

where the filling fraction is α = J2/J > 0. The solution involves again the elliptic
integral of the third kind, Π, with modulus r = c2/d2 and reads

H(ϕ) =
α

2
− 1

4
+ c1

λ′

ϕ2
− c2

λ′2

ϕ4
+

2

d

√

(d2 − ϕ2)(c2 − ϕ2) Π

(

ϕ2

d2
, r

)

(62)

− 1

cd

√

(d2 − ϕ2)(c2 − ϕ2)

[

c1 λ′ 1

ϕ2
− c2 λ′2

(

1

ϕ4
+

c2 + d2

2c2d2

1

ϕ2

)]

,

13The sign changes in eqs.(57),(58) w.r.t. their folded analogs eqs.(38),(41) are due to the rotation
ϕ → iϕ, and a slightly different definition of the moments in both cases. See also [21].
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while the conditions fixing the interval boundaries c, d = c/
√

r and the modulus r are

−1

4
+ 2K(r) c + c1 λ′ 1 + r

2

1

c2
− c2 λ′2 3 + 2r + 3r2

8

1

c4
= 0, (63)

and

α = 4c

[(

1 − 1√
r

)

K(r) +
1√
r

E(r)

]

+c1 λ′ (1 −√
r)2

c2
−c2 λ′2 (1 −√

r)2(3 + 2
√

r + 3r)

4c4
.

(64)
Expanding the modulus r = r0+r1λ

′+r2λ
′2 and the interval boundary c, and eliminating

all constants except r0, we find the relation

α =
1

2
− 1

2
√

r0
+

1

2
√

r0

E(r0)

K(r0)
. (65)

The three-loop gauge energy is then

Q2 = 1 +
2

π2
K(r0) (2E(r0) − (1 − r0)K(r0)) λ′ (66)

− 2

π4
K(r0)

3 (4(1 + r0)E(r0) − (1 − r0)(3 + r0)K(r0)) λ′2

+
16

π6

K(r0)
5

E(r0) (E(r0) − (1 − r0)K(r0))
×

×
(

(3 + 2r0 + 3r2
0)E(r0)

3 − (1 − r0)(8 + 3r0 + r2
0)E(r0)

2K(r0)

+(1 − r0)
2(7 + r0)E(r0)K(r0)

2 − 2(1 − r0)
3K(r0)

3
)

λ′3

Now we will again compare this to the string prediction, eqs.(25),(26). Written in
Lagrange-inversion form, we have

λ′ =
π2t

4t20K(t0)2

[

(

K(t0) − E(t0)

K(t) − E(t)

)2

−
(

E(t0) − (1 − t0)K(t0)

E(t) − (1 − t)K(t)

)2
]

, (67)

Q2 =
tK(t)

t0K(t0)

√

1

t

(

K(t0) − E(t0)

K(t) − E(t)

)2

− 1 − t

t

(

E(t0) − (1 − t0)K(t0)

E(t) − (1 − t)K(t)

)2

,

where now the string modulus t0 is parametrizing the filling fraction through

α = 1 − 1

t0
+

1

t0

E(t0)

K(t0)
. (68)
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As before, power series inversion and substitution gives, from eqs.(67),

Q2 = 1 +
2

π2
E(t0)K(t0) λ′ (69)

− 2

π4
K(t0)

3 ((2 − t0)E(t0) − (1 − t0)K(t0)) λ′2

+
4

π6

K(t0)
5

E(t0)2 − (1 − t0)K(t0)2
×

×
(

(7 − 7t0 + t20)E(t0)
3 − 7(2 − t0)(1 − t0)E(t0)

2K(t0)

+(1 − t0)(9 − 9t0 + t20)E(t0)K(t0)
2 − (2 − t0)(1 − t0)

2K(t0)
3
)

λ′3

+O(λ′4)

After the Gauss-Landen transformation

t0 = − 4
√

r0

(1 −√
r0)2

(70)

the string energy up to three-loop order becomes

Q2 = 1 +
2

π2
K(r0) (2E(r0) − (1 − r0)K(r0)) λ′ (71)

− 2

π4
K(r0)

3 (4(1 + r0)E(r0) − (1 − r0)(3 + r0)K(r0)) λ′2

+
4

π6

K(r0)
5

E(r0) (E(r0) − (1 − r0)K(r0))
×

×
(

2(7 + 2r0 + 7r2
0)E(r0)

3 − (1 − r0)(35 + 6r0 + 7r2
0)E(r0)

2K(r0)

+(1 − r0)
2(29 + 2r0 + r2

0)E(r0)K(r0)
2 − 8(1 − r0)

3K(r0)
3
)

λ′3

+O(λ′4)

The result of the comparison between the string theory prediction eq.(71) and the gauge
theory computation eq.(66) leads to the same conclusion as the previously treated case
of the folded string. There is a beautiful and non-trivial agreement at the two-loop order;
on the other hand, the three-loop terms, despite great structural similarity, are definitely
different. Again, varying the constants c2, e2 in eqs.(57),(58) does not help.

It is instructive to consider the special case of half-filling α = 1/2. Here the solution
becomes algebraic, and the string result reads, to all orders

Q2 =
√

1 + λ′ = 1 +
λ′

2
− λ′2

8
+

λ′3

16
+ . . . (72)

The three-loop gauge theory result, on the other hand, under the assumption of the
validity of three-loop perturbative BMN scaling, yields

Q2 = 1 +
λ′

2
− λ′2

8
+ 0 λ′3 (73)

The three-loop contribution to the “circular” state vanishes!
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3.5 A curious observation

It is clearly of some interest to pin down the difference between three-loop perturbation
theory, and the string prediction. For the folded case we have

Q2 −Q2 = − q2
0

16π6
K(q0)

5 (2E(q0) − (2 − q0)K(q0)) λ′3, (74)

and in the circular case

Q2 −Q2 = −4(1 − r0)
2

π6
K(r0)

5 (2E(r0) − (1 − r0)K(q0)) λ′3. (75)

Curiously, this looks like a non-linear (and therefore, from the point of view of the
perturbative spin chain, non-local) contribution to the energy. In both cases the differ-

ence is proportional to the product of the one-loop second moment Q̄
(1)
2 and its leading

correction Q̄
(2)
2 :

Q2 −Q2 = − λ′3

32π4
Q̄

(1)
2 Q̄

(2)
2 where Q̄2 = Q̄

(1)
2 + λ′Q̄

(2)
2 + O(λ′2) (76)

But the significance or wider validity of this observation remains unclear to us at the
moment. It would be interesting to see whether the same “recipe” also allows to account
for the three-loop near-plane wave discrepancy of Callan et al. [28].
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