English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Frequency domain interferometer simulation with higher-order spatial modes

MPS-Authors

Freise,  Andreas
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40460

Heinzel,  Gerhard
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40475

Lück,  Harald
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40488

Schilling,  Roland
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40511

Willke,  Benno
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

119879.pdf
(Preprint), 255KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Freise, A., Heinzel, G., Lück, H., Schilling, R., Willke, B., & Danzmann, K. (2004). Frequency domain interferometer simulation with higher-order spatial modes. Classical and Quantum Gravity, 21(5), S1067-S1074. doi:10.1088/0264-9381/21/5/102.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-5133-5
Abstract
FINESSE is a software simulation allowing one to compute the optical properties of laser interferometers used by interferometric gravitational-wave detectors today. This fast and versatile tool has already proven to be useful in the design and commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite–Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands for easily generating and plotting the most common signals including power enhancement, error and control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE provides an advanced and versatile optical simulation based on a general analysis of user-defined optical setups and is quick to install and easy to use.