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We give a well posed initial value formulation of the Baumgarte-Shapiro-Shibata-Nakamura form
of Einstein’s equations with gauge conditions given by a Bona-Massó like slicing condition for the
lapse and a frozen shift. This is achieved by introducing extra variables and recasting the evolution
equations into a first order symmetric hyperbolic system. We also consider the presence of artificial
boundaries and derive a set of boundary conditions that guarantee that the resulting initial-boundary
value problem is well posed, though not necessarily compatible with the constraints. In the case of
dynamical gauge conditions for the lapse and shift we obtain a class of evolution equations which
are strongly hyperbolic and so yield well posed initial value formulations.

I. MOTIVATION

Most numerical evolutions of Einstein’s field equations try to approximate solutions on a generically infinite
(non-compact) 3-space by computations on a truncated finite (compact) domain. For this, artificial boundaries and
corresponding boundary conditions have to be introduced. Mathematically, this immediately poses the question of
well-posedness of the initial-boundary-value problem (IBVP) for the evolution equations and compatibility with the
constraints. In addition, governed by causality, the solution on the finite domain is very likely to differ from the
solution on the infinite domain, after disturbances from the boundaries enter the computational domain. This makes
the choice of the boundary condition crucial for the physical interpretation of the results, especially if one thinks of
integrated quantities like masses, charges and momenta. Physically, it could be even argued that ultimately only
estimates of the deviation of the numerical solution from the actual solution are significant and that the mathematical
concepts of well-posedness of the IBVP including compatibility with the constraints and avoidance of reflections from
artificial boundaries are only steps towards achieving this goal.

Removing the influence of the boundaries could be achieved by enlarging the computational domain to a size
such that, according to causality, disturbances from boundaries cannot have reached the domain of physical interest.
Note that this requires knowledge of the causality structure of the spacetime, which presupposes estimates on the
solution to be found. In addition, increasing the size of the computational domain goes at the cost of resolution,
because of finite computational resources, which is particularly restricting in 3−dimensional problems although
this problem can be alleviated by using adaptive or fixed mesh refinement techniques [1]. So, both restrictions in
computational resources and the demand for higher resolution, lead us to attempt to minimize the influence of
artificial boundaries on the numerical solution. This is tried by so called ‘outgoing boundary conditions’ meant to
make those boundaries to appear as ‘transparent’ as possible. For instance, one such approach is given by Endquist
and Majda [2] using a hierarchy of conditions which gradually decrease reflections at the boundary. Alternative
approaches are the methods of characteristic [3] or perturbative matching [4]. See [5, 6] for an approach trying to
avoid the introduction of artificial boundaries altogether by a suitable compactification of spacetime.

II. INTRODUCTION

In this article we analyze the IBVP of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [7, 8] formulation of
Einstein’s vacuum equations, which is currently used by several groups in numerical relativity with applications to
the binary black hole and binary neutron star problem, see [9] for a review. Since the BSSN equations are first
order in time, but mixed first/second order in space, their type (elliptic, parabolic, hyperbolic or mixed) is a priori
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not clear. Here, we analyze the well posedness of their (nonlinear) Cauchy problem with and without boundaries.
Well posedness means that the Cauchy problem has a unique solution local in time and that the solution depends
continuously on the initial data. The last property is important in view of obtaining convergent discretizations
since in general numerical simulations introduce small errors in the initial data. If violated, this can lead to er-
rors at a later time which grow exponentially with increasing resolution (see [10, 11] for examples of this phenomenon).

We find that the BSSN system with a large family of gauge conditions for the lapse, including Bona-Massó
like slicing conditions, and an a priori specified shift yields a well posed initial value problem. This is achieved by
introducing extra fields that make it possible to recast the system into a first order quasi-linear symmetric hyperbolic
form for which standard well posedness results are known [12]. The introduction of extra fields brings additional
constraints, and the original BSSN system and the first order symmetric hyperbolic system derived in this article are
only equivalent if these constraints are satisfied. However, we show that the associated constraint variables obey a
closed evolution system that is independent of the other constraints. This means that the additional constraints are
satisfied everywhere at later times if satisfied initially, even if the other constraints are violated. This implies that
the (original) BSSN system is well posed; in particular, unique solutions local in time exist, and depend continuously
on the initial data.

Our first order symmetric hyperbolic reduction also facilitates the analysis of characteristic modes which is
particularly useful when constructing boundary conditions. Here we construct maximally dissipative boundary con-
ditions that guarantee the well posedness of the resulting IBVP [13]. Although in general these boundary conditions
are not compatible with the constraints, they are consistent with the evolution equations and constitute a first step
towards improving numerical evolutions of the BSSN system. In particular, the present analysis offers the possibil-
ity to construct constraint-preserving boundary conditions [14] in the linearized case, following the lines of [15, 16, 17].

The techniques used in this article are the same used in [18] where well posedness of the BSSN system with
an explicitly given shift and an algebraic gauge condition is found by considering an auxiliary first order system. A
different technique which makes use of pseudo-differential calculus has recently been applied in order to show well
posedness for a closely related formulation [19]. More recently, in [17, 20] a definition of symmetric hyperbolicity
based on energy estimates for second order systems was presented which was verified for the BSSN system and the
formulation in [19] for the case of an algebraic lapse and an explicitly given shift. Nevertheless the connection of
their definition and existence of solutions is open.

The remainder of this work is organized as follows. In section III we review the BSSN equations, specify the
gauge conditions we are considering and discuss the evolution system for the constraint variables. In section IV
we introduce extra fields and derive a first order symmetric hyperbolic system that reflects the dynamics of the
original BSSN system. The characteristic fields with nontrivial speeds are constructed in section V and are used
to write down maximally dissipative boundary conditions. In section VI we find using pseudo-differential calculus
that the BSSN system with a “K-driver” and a “Gamma-freezing” condition as defined in [21] but with a different
time coordinate is strongly hyperbolic according to the definition in [19, 22] and so yields a well posed initial value
formulation. Conclusions are drawn in section VII.

III. THE BSSN EQUATIONS

Since our results depend crucially on the principal part of the equations, we write down the BSSN system explicitly
in this section. The system of equations is the one that has been used in Ref. [21] for numerical simulations, but it
might differ from the one used by other groups. Decomposing the three metric and the extrinsic curvature according
to

γij = e4φγ̃ij , (1)

Kij = e4φ

(

Ãij +
1

3
γ̃ijK

)

, (2)

where γ̃ij has unit determinant and K = γijKij is the mean curvature, the evolution equations are obtained from

∂̂0φ = −α

6
K +

1

6
∂kβk, (3)

∂̂0γ̃ij = −2αÃij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβk, (4)
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∂̂0K = −e−4φ
[

D̃iD̃iα − 2∂iφ · D̃iα
]

+ α

(

ÃijÃij +
1

3
K2

)

− αS, (5)

∂̂0Ãij = e−4φ
[

αR̃ij + αRφ
ij − D̃iD̃jα − 4∂(iφ · D̃j)α

]TF

+ αKÃij − 2αÃikÃk
j + 2Ãk(i∂j)β

k − 2

3
Ãij∂kβk − αe−4φŜij , (6)

∂̂0Γ̃
i = γ̃kl∂k∂lβ

i +
1

3
γ̃ij∂j∂kβk + ∂kγ̃kj · ∂jβ

i − 2

3
∂kγ̃ki · ∂jβ

j

−2Ãij∂jα + 2α

[

(m − 1)∂kÃki − 2m

3
D̃iK + m(Γ̃i

klÃ
kl + 6Ãij∂jφ)

]

− Si, (7)

where we have introduced the operator ∂̂0 = ∂t − βj∂j . Here, all quantities with a tilde refer to the conformal three

metric γ̃ij , and the latter is used in order to raise and lower their indices. In particular, D̃i and Γ̃k
ij refer to the

covariant derivative and the Christoffel symbols, respectively, with respect to γ̃ij . The expression [...]TF denotes the
trace-less part (with respect to the metric γ̃ij) of the expression inside the parentheses, and

R̃ij = −1

2
γ̃kl∂k∂lγ̃ij + γ̃k(i∂j)Γ̃

k − Γ̃(ij)k∂j γ̃
jk + γ̃ls

(

2Γ̃k
l(iΓ̃j)ks + Γ̃k

isΓ̃klj

)

,

Rφ
ij = −2D̃iD̃jφ − 2γ̃ijD̃

kD̃kφ + 4D̃iφ D̃jφ − 4γ̃ijD̃
kφ D̃kφ.

The parameter m, which was introduced in [23], controls how the momentum constraint is added to the evolution

equations for the variable Γ̃i. The system in Ref. [21] corresponds to the choice m = 1. However, in order to obtain
a first order symmetric hyperbolic reduction, we will see later that we need m to be a specific function of the lapse

and the mean curvature. The source terms S, Ŝij and Si are defined in terms of the four Ricci tensor, R
(4)
ij , and the

constraint variables

H ≡ 1

2

(

γijR
(3)
ij + K2 − KijKij

)

, (8)

Mi ≡ D̃jÃij −
2

3
D̃iK + 6ÃijD̃

jφ, (9)

Ci
Γ ≡ Γ̃i + ∂j γ̃

ij , (10)

as

S = γijR
(4)
ij − 2H, (11)

Ŝij =
[

R
(4)
ij + γ̃k(i∂j)C

k
Γ

]TF

, (12)

Si = 2α m γ̃ijMj − ∂̂0C
i
Γ . (13)

The vacuum equations consist of the evolution equations (3-7) with S = 0, Ŝij = 0, Si = 0 and the constraints H = 0,
Mi = 0 and Ci

Γ = 0.

Using the Bianchi identities, 2∇µR
(4)
µν − ∇νR(4) = 0 and imposing the evolution equations, it can be shown that

the constraint variables obey the following propagation system:

∂̂0H = − 1

α
Dj(α2Mj) − αe−4φÃij γ̃ki∂jC

k
Γ +

2α

3
KH, (14)

∂̂0Mj =
α3

3
Dj(α

−2H) + αKMj + Di
(

α
[

γ̃k(i∂j)C
k
Γ

]TF
)

, (15)

∂̂0C
k
Γ = 2αm γ̃klMl . (16)

By introducing the further constraint variable Z k
j = ∂jC

k
Γ which satisfies ∂[iZ

k
j] = 0 one can reduce Eqs. (14,15,16)

to a first order symmetric hyperbolic system provided that m > 1/4. In the absence of boundaries, this implies that
the constraints are preserved, i.e. trivial initial data for the constraints variables lead to zero constraint variables
at later times as well. If time-like boundaries are present, the constraints are only preserved if suitable boundary
conditions are specified. Such constraint-preserving boundary conditions are discussed in [14, 15, 16, 17]; but for the
(nonlinear) BSSN system it is not yet understood if they lead to a well posed IBVP.
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In order to evolve the system (3-7) we have to specify conditions on the lapse α and the shift βi. The simplest
possibility is to set α = 1 (or any other fixed function) and βi = 0. However, this leads to a formulation that is not
strongly hyperbolic (this will follow from the results in Sect. VI if we set the function f defined below in Eq. (21) to
zero). This can be avoided by “densitizing” the lapse. More generally, we can require [24] that the lapse

α = α(φ, xµ), (17)

is a smooth strictly positive function of the conformal factor (or the determinant of the three metric) and spacetime
coordinates with the restriction that σ = (12α)−1∂α/∂φ is strictly positive. Taking a time derivative of this, assuming
that ∂α/∂t = 0 and using Eq. (3) we obtain

d

dt
α = −2α2σ

(

K − 1

α
Dkβk

)

, (18)

which is the modification of the Bona-Massó condition [25] proposed in [26, 27]. The advantage of this gauge is that
it is compatible with a time-independent lapse in a time slicing that is adapted to stationarity if ∂t is a Killing field.
It follows from the calculations of Ref. [18] that in this case the BSSN system is strongly hyperbolic if one chooses
m > 1/4 and symmetric hyperbolic if the parameter m is adjusted such that 4m = 6σ + 1 with σ > 1/2[36]. We
mention here that the special case α = e6φQ(xµ), where Q(xµ) is an a priori specified function, has been observed to
lead to more stable numerical evolutions of single black hole with the BSSN system [28].

Here, we are interested in live gauge conditions which allow lapse and shift to react on changes of the fields. Such
conditions can be useful, for instance, to evade singularities. In this article, we consider two cases of gauge conditions:

(a) The following evolution equation for the lapse

∂̂0α = −αF (α, K, xµ), (19)

where F is a smooth function of α, K and xµ with the restriction that

σ ≡ 1

2α

∂F

∂K
> 0. (20)

This condition generalizes the Bona-Massó gauges. The shift is frozen, that is, assumed to be an a priori
specified function of spacetime. Symmetric hyperbolic formulations of the vacuum field equations with these
gauge conditions were obtained in [24].

(b) The gauge conditions of Ref. [21] which, for the lapse, require the “hyperbolic K-driver” condition

∂̂0α = −α2f(α, φ, xµ)(K − K0(x
µ)), (21)

where the function f(α, φ, xµ) is smooth and strictly positive, and K0(x
µ) is an arbitrary smooth function. For

the shift, the “hyperbolic Gamma driver” [21] type condition

∂̂0β
i = α2G(α, φ, xµ)Bi, (22)

∂̂0B
i = e−4φH(α, φ, xµ)∂̂0Γ̃

i − η(Bi, α, xµ) (23)

is imposed, where G(α, φ, xµ) and H(α, φ, xµ) are smooth, strictly positive function, and η(Bi, α, xµ) is a smooth
function. Notice that Eq. (21) is a special case of Eq. (19). Note also that the conditions (21,22,23) differ from

the ones considered in [21] by the replacement ∂t 7→ ∂̂0 which simplifies the analysis in the present article.

In the next section, we show that the gauge conditions (a) lead to a well posed initial value problem provided that
the parameter m is chosen such that 4m = 6σ + 1. In the presence of boundaries, we derive boundary conditions
in section (V) that make sure that in this case the resulting IBVP is well posed. In section (VI) we show that the
initial value problem with the gauge conditions (b) is well posed provided that some specified conditions on m and
the functions f , G and H are satisfied. Symmetric hyperbolic first order formulations of Einstein’s equations that
incorporate gauge conditions that are similar to (b) have been worked out in [29].
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IV. FIRST ORDER SYMMETRIC HYPERBOLIC FORM (FROZEN SHIFT)

In this section we recast the BSSN equations with the gauge conditions (a) into a first order symmetric hyperbolic
system. In order to do so we introduce the extra variables

dk = 12∂kφ, d̃kij = ∂kγ̃ij , Ak =
∂kα

α
, (24)

and rewrite Eqs. (5,6,7) as

∂̂0K = −αe−4φγ̃ij∂iAj + l.o., (25)

∂̂0Ãij = αe−4φ

[

−1

2
γ̃kl∂kd̃lij + ζγ̃klC d̃

k(ij)l + γ̃k(i∂j)Γ̃
k − 1

6
∂(idj) − ∂(iAj)

]TF

+ l.o., (26)

∂̂0Γ̃
i = 2α

[

(m − 1)∂kÃki − 2m

3
D̃iK

]

+ l.o., (27)

where l.o. refers to lower order terms that depend on φ, γ̃ij , K, Ãij , Γ̃i, α, dk, d̃kij , Ak but not their derivatives.

Here, we have added the constraint variables C d̃
lkij = ∂[ld̃k]ij with an arbitrary parameter ζ in the equation for Ãij .

As we will see shortly, the addition of these constraints will allow us to obtain a larger family of symmetric hyperbolic

formulations. Evolution equations for the extra variables are obtained by applying the operator ∂̂0 on the equations

(24), using the commutation relation [∂̂0, ∂k] = ∂kβl · ∂l and using the evolution equations (3,4,19) for φ, γ̃ij and α.
The result is

∂̂0dk = −2α(∂k + Ak)K + dl∂kβl + 2∂k∂lβ
l, (28)

∂̂0d̃kij = −2α(∂k + Ak)Ãij + d̃lij∂kβl + 2d̃kl(i∂j)β
l − 2

3
d̃kij∂lβ

l + 2γ̃l(i∂j)∂kβl − 2

3
γ̃ij∂k∂lβ

l, (29)

∂̂0Ak = −2σα∂kK − α
∂F

∂α
Ak − ∂F

∂xk
+ Al∂kβl . (30)

We have rewritten the BSSN equations (with a fixed prescribed shift but a live condition for the lapse) as a first

order quasi-linear evolution system for the variables u = (φ, γ̃ij , α, K, Ãij , Γ̃
k, dk, d̃kij , Ak)T which is given by the

equations (3,4,19,25,26,27, 28,29,30). It has the form

∂̂0u = αA
i(u)∂iu + F (u), (31)

where the matrix-valued functions A
i(u), i = 1, 2, 3, and the vector-valued function F (u) depend on u but not their

derivatives. An important point to notice here is that we have not added any of the constraints variables (8-10) to the
right-hand side (RHS) of the evolution equations for the extra variables. As a consequence, the additional constraints,
defined by,

Cd
k ≡ dk − 12∂kφ = 0, (32)

C d̃
kij ≡ d̃kij − ∂kγ̃ij = 0, (33)

CA
k ≡ Ak − ∂kα

α
= 0 (34)

that arise when writing the system as a first order one propagate independently on whether or not the remaining
constraints are satisfied:

∂̂0C
d
k = −2αKCA

k + Cd
l ∂kβl, (35)

∂̂0C
d̃
kij = −2αÃijC

A
k + C d̃

lij∂kβl + 2C d̃
kl(i∂j)β

l − 2

3
C d̃

kij∂lβ
l, (36)

∂̂0C
A
k = −α

∂F

∂α
CA

k + CA
l ∂kβl. (37)

This means that if initial data is given such that Cd
k = 0, C d̃

kij = 0, CA
k = 0 (and suitable boundary conditions are

chosen), these constraints will also be satisfied at later times and we obtain a solution of the BSSN equations (3-7).
This is true even if the initial data violates the constraints H = 0, Mi = 0, Ci

Γ = 0 of the BSSN system.
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Having obtained a first order quasi-linear system that yields the same solutions than the BSSN system (provided

that the constraints Cd
k = 0, C d̃

kij = 0, CA
k = 0 are satisfied initially) we now analyze for what range of the parameters

m, σ and ζ the first order system is symmetric hyperbolic. Introducing the principal symbol A(n) = A
ini where

n = nkdxk is any normalized one-form, this means that we have to find a positive definite matrix H = H(u, xµ)
which depends smoothly on u and the spacetime coordinates xµ such that HA(n) is symmetric for all u, xµ and
all normalized one-forms n[37]. A necessary condition for this is that each A(n) is diagonalizable and has only real
eigenvalues. So we first analyze the eigenvalue problem

µ u = A(n)u. (38)

Explicitly, we have

µ φ = 0, (39)

µ γ̃ij = 0, (40)

µ α = 0, (41)

µ K = −An , (42)

µ Ãij = −1

2
d̃nij +

ζ

2

[

d̃(ij)n

]TF

+ e−4φ

[

n(iΓ̃j) −
1

6
n(idj) − n(iAj) −

ζ

2
n(id̃

k
j)k

]TF

, (43)

µ Γ̃i = 2(m − 1)e4φÃni −
4m

3
niK, (44)

µ dk = −2nkK, (45)

µ d̃kij = −2nkÃij , (46)

µ Ak = −2σnkK, (47)

where An ≡ Ain
i, d̃nij = d̃kijn

k etc. and Γ̃i = γ̃ijΓ̃
j . Here, and in the following, we normalize ni with respect to

the three metric γij . A convenient way for obtaining the nonzero eigenvalues is by deriving a closed equation for the

extrinsic curvature. Introducing Kij = e4φÃij + γijK/3 we obtain

µ2Kij = Kij + 2(m − 1)n(iKj)n + (1 − 2m + 2σ)ninjK +
2

3
(m − 1)γij(K − Knn). (48)

In [24] it was shown that the system is strongly hyperbolic if the operator on the RHS is diagonalizable and has only
strictly positive eigenvalues. This is the case if and only if the squares of the eigenspeeds,

µ2
1 = 2σ, µ2

2 =
4m − 1

3
, µ2

3 = m, µ2
4 = 1, (49)

are strictly positive, that is, if and only if m > 1/4 and σ > 0. Notice that these conditions are independent of ζ and
that for σ = 1/2 (that is, if F = αK + F0(α, xµ)) and m = 1 all speeds are one or zero.

In order to find the most general symmetrizer it is convenient to define K̂ij = e4φÃij , to decompose

d̃kij = −2e−4φekij +
3

5
γ̃k(ibj) −

1

5
γ̃ijbk , bj = γ̃kid̃kij ,

where ekij is completely trace-free, and to replace Γ̃i, di, bi by the combinations

vi = Γ̃i −
1

6
di − Ai −

9ζ + 6

20
bi ,

wi = Γ̃i −
1

6
di − Ai + (m − 1)bi ,

zi = σdi − Ai .

Here, we assume that σ > 0 and that 20m + 9ζ − 14 > 0 which implies that the transformation is regular. The first
condition is necessary for strong hyperbolicity, and the second one can always be achieved by choosing the parameter
ζ (which does not appear in the original BSSN system) to be sufficiently large.

In terms of these variables the non-trivial block of the principal part reads

µ K = −An , (50)



7

µ Ai = −2σniK, (51)

µ K̂ij = enij − ζe(ij)n +
[

n(ivj)

]TF
, (52)

µ ekij = nkK̂ij −
3

5
γk(iK̂j)n +

1

5
γijK̂kn , (53)

µ vi =

(

2m +
9ζ − 14

10

)

K̂ni +

(

2σ +
1 − 4m

3

)

niK, (54)

(and µ φ = 0, µ γ̃ij = 0, µ α = 0, µ wi = 0, µ zi = 0). From this representation of the principal part it is not difficult
to see that the system is symmetric hyperbolic if and only if

4m = 6σ + 1, σ > 0, (55)

and that in this case a symmetrizer H = H(γij , σ, m, ζ) is given by

(u(1))T
Hu(2) = φ(1)φ(2) + γikγjlγ̃

(1)
ij γ̃

(2)
kl + α(1)α(2) + γijw

(1)
i w

(2)
j + γijz

(1)
i z

(2)
j + 2σK(1)K(2) + γijA

(1)
i A

(2)
j

+ γikγjlK̂
(1)
ij K̂

(2)
kl + γklγirγjs

(

e
(1)
kije

(2)
lrs − ζ e

(1)
kije

(2)
rsl

)

+

(

2m +
9ζ − 14

10

)−1

γijv
(1)
i v

(2)
j .

In order for H to be positive definite we need −2 < ζ < 1. (This can be seen by using the orthogonal decomposition
ekij = es

kij + ea
kij , where es

kij = e(kij) is totally symmetric, and by noticing that ea
(ij)k = −ea

kij/2.) Therefore, we have

to choose

max
{

− 2, 1 − 10σ

3

}

< ζ < 1. (56)

Since σ > 0 this choice is always possible. Summarizing, we have shown that our first order system is symmetric
hyperbolic if 4m = 6σ + 1 > 1, ζ satisfies the inequality (56) and if σ and ζ depend smoothly on u and the spacetime
coordinates xµ. This implies that in those cases the corresponding initial value problem is well posed. Since the
additional constraints propagate, the same result holds for the BSSN system with the gauge conditions (a) when
4m = 6σ + 1 > 1 and σ depends smoothly on u and xµ. Since in this case the evolution system for the constraint
variables can be reduced to a symmetric hyperbolic system, it follows that the constraints are satisfied if satisfied
initially. Notice that if 0 < σ ≤ 1/2, there are no superluminal speeds. In the next section, we assume the presence
of artificial boundaries and discuss boundary conditions.

V. BOUNDARY CONDITIONS

Consider the BSSN system (3-7) on a bounded domain Ω ⊂ R
3 with smooth boundary ∂Ω. Consider the slicing

condition (19) with σ > 0 and choose m such that 4m = 6σ + 1. We also assume that the shift is a priori specified,
and that at the boundary, the shift is tangential to ∂Ω.

From the previous section we know that the BSSN system can be reduced to a first order symmetric hyperbolic
system. For such a system, the specification of maximally dissipative[38] boundary conditions yields a well posed
initial-boundary value formulation [13]. Maximally dissipative boundary conditions consist in a coupling of the
ingoing to the outgoing characteristic fields with respect to the normal n to the boundary and some free boundary
data. The characteristic fields with respect to the normal to the boundary are defined as the projections of u onto
the corresponding eigenspaces of A(n).

In order to find the characteristic fields for our first order system, we define

Eij = enij − ζ e(ij)n +
[

n(ivj)

]TF

= −1

2
e4φd̃nij +

ζ

2
e4φ
[

d̃(ij)n

]TF

+

[

n(iΓ̃j) −
1

6
n(idj) − n(iAj) −

ζ

2
n(id̃

k
j)k

]TF

,

which is trace-free. Equations (52, 53, 54) imply that

µ K̂ij = Eij , (57)

µ Eij = K̂ij + 2(m − 1)

(

n(iK̂j)n − 1

3
γijK̂nn

)

. (58)
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In terms of a triad e1, e2, e3 which is such that ei
1 = ni, it follows from this and Eqs. (50, 51) that the characteristic

fields with respect to the normal ni that have nonzero speeds are given by

V (±) = K ∓ µ−1
1 An , (59)

V (±)
nn = K̂nn ± µ−1

2 Enn , (60)

V
(±)
nA = K̂nA ± µ−1

3 EnA , (61)

V
(±)
AB =

[

K̂AB ± EAB

]tf

, (62)

where A, B refer to the triad indices 2 and 3, where [...]tf denotes the trace-free part with respect to the two-
dimensional metric δAB and where µ1, µ2, µ3 are given by the positive square roots of the expressions in (49). A
short calculation shows that

uT
HA(n)u =

√
2σ σ

(

(V (+))2 − (V (−))2
)

+
3µ2

4

(

(V (+)
nn )2 − (V (−)

nn )2
)

+ µ3 δAB
(

V
(+)
nA V

(+)
nB − V

(−)
nA V

(−)
nB

)

+
1

2
δACδBD

(

V
(+)
AB V

(+)
CD − V

(−)
AB V

(−)
CD

)

(63)

The maximally dissipative boundary conditions are given as follows: Let p ∈ ∂Ω, and let ni be the unit outward
normal to ∂Ω. Then, the boundary conditions at p are

V (+) = aV (−) + G, (64)

V (+)
nn = bV (−)

nn + Gnn , (65)

V
(+)
nA = cB

AV
(−)
nB + GnA , (66)

V
(+)
AB = dCD

AB V
(−)
CD + GAB , (67)

where a, b are smaller than one in magnitude and the matrices cB
A and dCD

AB have norm smaller than one, and where
G, Gnn, GnA and GAB are freely specified source functions (subject to the condition δABGAB = 0). In order to
illustrate why these boundary conditions lead to a well posed IBVP, let us linearize the equations around an arbitrary
background. The resulting equations have the form

∂̂0v = αA
i∂iv + Bv,

where v denotes the perturbation. Defining the energy norm

E =

∫

Ω

vT
Hv d3x,

taking a time derivative, using the symmetries of the matrices H and HA
i and using Gauss’ theorem, we find

d

dt
E = 2

∫

Ω

vT
H
[

(αA
i + βi)∂iv + Bv

]

d3x

=

∫

Ω

[

∂i

(

vT αHA
iv + vT

Hβiv
)

+ vT
(

HB + B
T
H− ∂i(αHA

i + Hβi)
)

v
]

d3x

≤
∫

∂Ω

α vT
HA(n)v d2x + CE, (68)

where we have used the fact that the shift is tangential to the boundary at the boundary and where C is a constant
that only depends on bounds for B and H

−1∂i(αHA
i + Hβi). If the boundary conditions are homogeneous, i.e. if

G = 0, Gnn = 0, GnA = 0, GAB = 0, Eqs. (63,64,65,66,67) immediately imply that the boundary integral is negative
or zero, and we obtain the energy estimate E(t) ≤ exp(Ct)E(0). If the boundary conditions are inhomogeneous one
can bound E(t) by E(0) and the L2-norm of the boundary data [10, 30]. These energy estimates play a key role
in proofs for well posedness. These proofs can be generalized to quasi-linear symmetric hyperbolic systems, see for
instance [13].

Therefore, the boundary conditions (64,65,66,67) lead to a well posed initial-boundary value formulation. Since
the shift is tangential to the boundary at ∂Ω, the additional constraints propagate as before, and thus the same
boundary conditions applied to the equations (3-7), where we perform the replacements (24), yields a well posed
initial-boundary formulation for the BSSN system. In particular, choosing a = b = 0, cB

A = 0, dCD
AB = 0, and setting
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the source functions G, Gnn, GnA, GAB to zero, corresponds to Sommerfeld-type boundary conditions, in the sense
that these conditions are algebraic conditions for the first order systems which are perfectly absorbing for plane waves
of normal incidence to the boundary in the frozen coefficient approximation. Explicitly, we obtain the six boundary
conditions

K − 1√
2σ α

ni∂iα = 0, (69)

ninj

[

e4φÃij +

√
3√

4m − 1
Eij

]

= 0, (70)

niej
A

[

e4φÃij +
1√
m

Eij

]

= 0, A = 2, 3, (71)

[

ei
Aej

B − 1

2
δABδCDei

Cej
D

]

[

e4φÃij + Eij

]

= 0, A, B = 2, 3, (72)

where

Eij = −1

2
e4φnk∂kγ̃ij +

[

n(iΓ̃j) − 2n(i∂j)φ − 1

α
n(i∂j)α +

ζ

2

(

e4φnk∂(iγ̃j)k − n(iγ̃
rs∂|r|γ̃j)s

)

]TF

,

where ni is the unit outward normal to the boundary and the vectors e2 and e3 must be chosen such that ni, ei
2, ei

3

form a triad with respect to the three metric γij , and ni = γijn
j . The vectors e2 and e3 are unique up to a rotation;

such a rotation does not alter the boundary conditions. The parameter ζ has to be chosen such that the inequality
(56) is satisfied. The boundary conditions (69,70,71,72) can be generalized to inhomogeneous conditions by replacing
the zeroes on their right-hand sides by freely specifiable source functions G, Gnn, GnA, GAB. If the solution is known
in a neighborhood of the boundary, one can compute these source functions by evaluating the left-hand sides of Eqs.
(69,70,71,72). Notice that the occurrence of the parameter ζ, which does not appear in the BSSN system, in the
boundary conditions has its origin in the ζ-dependence of the unphysical energy E defined by the symmetrizer.

VI. STRONG HYPERBOLICITY WITH A DYNAMICAL SHIFT

Here we consider the BSSN equations (3-7) with the live gauge conditions (b), see section III. In this case one
could proceed as in the frozen shift case and introduce the shift and its first derivatives (with respect to time and
space) as extra variables. One obtains a first order system that is equivalent to the original system provided that the
additional constraints are satisfied. Unfortunately, we did not succeed in finding a symmetrizer for the resulting first
order system. Our goal in this section, therefore, is more modest: We show that the BSSN system with the live gauge
conditions is strongly hyperbolic and so prove that the resulting Cauchy problem (in the absence of boundaries) is
well posed. A related analysis for a different form of the system has been performed in [31].

For differential equations that are not first order, a definition of strong hyperbolicity has recently be given in [19, 22]
that does not require the introduction of extra variables (nor extra constraints). It is based on pseudo-differential
calculus. The intuitive idea behind this definition is to freeze the coefficients in the differential equations at some
fixed point and to analyze the resulting linear constant coefficient problem by means of a Fourier transformation in
space. In our case, the frozen coefficient problem is given by

∂̂0φ̂ = −α

6
K̂ +

i

6
ωkβ̂k,

∂̂0γ̂rs = −2αÂrs + 2iγ̃k(rωs)β̂
k − 2i

3
γ̃rsωkβ̂k,

∂̂0K̂ = e−4φγ̃klωkωlα̂ + l.o.,

∂̂0Ârs = αe−4φ

[

1

2
γ̃klωkωlγ̂rs + iγ̃k(rωs)Γ̂

k + 2ωrωsφ̂ + ωrωs

α̂

α

]TF

+ l.o.,

∂̂0Γ̂
s = −γ̃klωkωlβ̂

s − 1

3
γ̃rsωrωkβ̂k + 2α

[

i(m − 1)ωkÂks − 2im

3
γ̃rsωrK

]

+ l.o.,

∂̂0α̂ = −α2f(α, φ, xµ)K̂ + l.o.,

∂̂0β̂
s = α2G(α, φ, xµ)B̂s,

∂̂0B̂
s = e−4φH(α, φ, xµ)

{

−γ̃klωkωlβ̂
s − 1

3
γ̃rsωrωkβ̂k + 2α

[

i(m′ − 1)ωkÂks − 2im′

3
γ̃rsωrK

]}

+ l.o.,
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where a hat denotes the Fourier transformation in space, φ̂(ω) =
∫

φ(x) exp(−iω · x) d3x, and l.o. denotes terms that
depend on lower order spatial derivatives. Here, we have also allowed for a parameter m′ that is different than m
in the evolution equation for Bi. We can rewrite this as a first order system in t and ωi by writing ωi = |ω|ni,

|ω| =
√

γklωkωl, and introducing the variables

ϕ̂ = i|ω|φ̂,

ĥrs =
i|ω|
2

e4φγ̂rs ,

â = iα−1|ω|α̂,

b̂s = iα−1|ω|γrsβ̂
r,

k̂rs = e4φÂrs ,

Γ̂s = γ̃rsΓ̂
r,

B̂s = γrsB̂
r.

In terms of the variables we obtain a first order pseudo-differential system of the form

∂tû = i|ω|
(

αP(n) + βini

)

û + l.o.,

where û = (ϕ̂, ĥij , K̂, k̂ij , â, b̂i, Γ̂i, B̂i)
T . The system is strongly hyperbolic if there exists a positive definite Hermitian

matrix H(xµ, u,n) which is smooth in all its entries such that HP is symmetric. A necessary condition for this is that
P is diagonalizable and has only real eigenvalues. Therefore, we first consider the eigenvalue problem µ û = P(n)û;
explicitly

µ ϕ̂ = −1

6
K̂ +

1

6
b̂n ,

µ ĥrs = −k̂rs +
[

n(rb̂s)

]TF

,

µ K̂ = −â,

µ k̂rs = −ĥrs +
[

n(rΓ̂s) − 2nrnsϕ̂ − nrnsâ
]TF

,

µ â = −fK̂,

µ b̂s = GB̂s,

µ Γ̂s = b̂s +
1

3
nsb̂n + 2(m − 1)k̂ns −

4m

3
nsK̂,

µ B̂s = H

[

b̂s +
1

3
nsb̂n + 2(m′ − 1)k̂ns −

4m′

3
nsK̂

]

,

where b̂n = γrsnr b̂s and k̂nj = γrsnrk̂sj . A careful analysis reveals that the matrix on the RHS has the eigenvalues
0, ±µ1, ±µ2, ±µ3, ±µ4, ±µ5 where

µ1 =
√

f, µ2 =

√

4m − 1

3
, µ3 =

√
m, µ4 = 1, µ5 =

√
GH , µ6 =

√

4GH

3
.

Therefore, we need m > 1/4, f > 0 and GH > 0. (If G = H = 0 the equation for the shift decouples, and we are
back in the case considered in the previous section). Furthermore, it turns out that the matrix is diagonalizable only
if 4GH 6= 3f and provided that m′ = 1 if m = GH or 4GH = 4m − 1. In the remaining cases the system is only
weakly hyperbolic which, in the nonlinear case, can lead to exponential growth with arbitrarily small growth time.
Introducing the factors

Ω1 =
4GH

3f − 4GH
,

Ω2 =
6(m′ − 1)

4m − 1 − 4GH
, if 4m − 1 6= 4GH and Ω2 arbitrary otherwise,

Ω3 =
2(m′ − 1)GH

m − GH
, if m 6= GH and Ω3 arbitrary otherwise,
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the eigenfields can be expressed as

Z0 = 8mϕ̂ − 2(m − 1)ĥnn − Γ̂n ,

Zi = H
[

2(m − m′)ĥni + m′Γ̂i

]

− mB̂i ,

V (±) = K̂ ∓ µ−1
1 â ,

V (±)
nn = k̂nn − 2K̂

3
∓ µ−1

2

(

ĥnn − 2

3
Γ̂n +

4

3
ϕ̂

)

,

V
(±)
nA = k̂nA ∓ µ−1

3

(

ĥnA − 1

2
Γ̂A

)

,

V
(±)
AB =

[

k̂AB ∓ µ−1
4 ĥAB

]tf

,

V
(±)
A = b̂A − Ω3k̂nA ± µ−1

5

[

GB̂A + Ω3

(

ĥnA − 1

2
Γ̂A

)]

,

V (±)
n = b̂n + Ω1K̂ − Ω2

(

k̂nn − 2K̂

3

)

± µ−1
6

[

GB̂n − Ω1â + Ω2

(

ĥnn − 2

3
Γ̂n +

4

3
ϕ̂

)]

,

where the components n, A = 2, 3, refer to triad indices as before. The matrix H which symmetrizes P can now be
built by summing over the square of the eigenfields. It is smooth in the one-form ni. In order to see this one uses, for

example, ĥnAĥnA = nink(γjl − njnl)ĥij ĥkl. It is also smooth in the other variables provided that Ω1, Ω2 and Ω3 can
be chosen smoothly and are bounded. A simple possibility of achieving this is by choosing m = m′ = 1 and f = κGH
with κ a constant that is unequal 4/3. The pseudo-differential calculus shows that in these cases the full nonlinear
Cauchy problem is well posed. Since the evolution system for the constraint variables can be reduced to a symmetric
hyperbolic system if m > 1/4 it follows that the constraints are satisfied if satisfied initially.

VII. CONCLUSION

We discussed some mathematical aspects of the BSSN system which is currently used by several groups in numerical
relativity. In particular, we derived a well posed initial-boundary value formulation of the BSSN system with a
Bona-Massó like slicing condition for the lapse and a frozen shift. This is achieved by introducing extra variables and
recasting the evolution equations into a first order symmetric hyperbolic system, for which maximally dissipative
boundary conditions are specified. The introduction of extra fields brings additional constraints, and the original
BSSN system and the first order symmetric hyperbolic system derived in this article are only equivalent if these
constraints are satisfied. However, we showed that the associated constraint variables obey a closed evolution system
that is independent of the other constraints. Moreover, by choosing the shift to be tangential to the boundary, these
additional constraints propagate tangentially to the boundary. This implies that they are satisfied everywhere at
later times if satisfied initially, even if the other constraints are violated. This allows us to return to the second order
system and to conclude that the BSSN system with the specified boundary conditions is well posed; in particular,
unique solutions local in time exist, and depend continuously on the initial and boundary data. To our knowledge,
the specified (six) boundary conditions (69,70,71,72) have not yet appeared in the literature.

In general, the boundary conditions derived in this article are not compatible with the constraints of the
BSSN system. They can feed in some constraint violating modes. Nevertheless, they are consistent with the evolution
equations and constitute a first step towards improving numerical evolutions of the BSSN system. In particular, the
present analysis offers the possibility to construct constraint-preserving boundary conditions [14] in the linearized
case, following the lines of [15, 16, 17]. Furthermore, the derivation of the symmetrizer and the energy estimate
presented in section V should be useful as a guidance principle to construct discretizations schemes that guarantee
numerical stability at least at the linearized level [10, 32, 33, 34].

We have also considered dynamical gauge conditions for lapse and shift and obtained a class of second order
evolution equations which can be shown to be strongly hyperbolic using pseudo-differential calculus. For these
systems, one can show well posedness of the initial value problem. Here, the presence of boundaries has not been
considered. To derive boundary conditions in the case of a finite domain one could proceed as follows: First, derive
a first order system by introducing extra variables as described at the beginning of section VI. Next, consider the
matrix A(n) multiplying the derivatives normal to the boundaries. In case this matrix is diagonalizable, to every
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strictly positive eigenvalue of A(n) there corresponds a Sommerfeld-type outgoing boundary condition given by the
condition of a vanishing projection of the field vector onto the corresponding eigenspace. This corresponds to setting
zero the incoming characteristic fields with respect to the direction which is normal to the boundary. Finally, well
posedness of the initial-boundary value problem in a suitable Hilbert space has to be proved[39]. Necessary conditions
for well posedness can be obtained by using the method of Laplace transformation, see, for example, [10, 30]. The
derivation of boundary conditions in the dynamical shift case is beyond the scope of the present work.

The gauge conditions considered here differ from the ones used in [21] for numerical simulations only by the
replacement ∂t 7→ ∂t − βj∂j , which leads to a simpler principal part and makes it more amendable to analyze the
algebraic conditions that guarantee symmetric or strong hyperbolicity. Preliminary investigations of the problem
without this replacement have been done in [35] where one of the Sommerfeld-type conditions has already been
computed. The structure of this condition is more complicated than the conditions derived in this article.
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