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Abstract

The gauge theory dual to the decay of an unstable D-particle in AdS is analysed in terms of coherent states. We
detail how to count the number of particles in the decay product. We find, in agreement with the analysis in flat space
emission amplitude is suppressed as the mass of the radiated particles increases.To cite this article: M. Zamaklar, K. Peeters,
C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dynamique holographique de branes instables dans AdS. La théorie de jauge duale à la désintégration de D-partic
instables dans AdS est analysée en termes d’état cohérents. Nous discutons en détails le comptage du nombre de pa
le produit de désintégration. Nous trouvons, en accord avec l’analyse en espace plat, que le taux d’émission est suppr
la masse de la particule augmente.Pour citer cet article : M. Zamaklar, K. Peeters, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Tachyon condensation provides an interesting arena in which we can improve our understanding of string theory
namical set-up. While the condensation of closed string tachyons, and the associated decay of spacetimes, is still ham
by conceptual and technical problems, a lot of progress has recently been made in understanding the dynamics of o
tachyons. Most of the analysis was performed directly using boundary conformal field theory in flat space, initiated by Se
construction of the boundary states for decaying D-branes [1], or by using thec = 1 matrix model for the description of th
decay of D-branes in 1+ 1 dimensional string theory [2]. In the present work we study the problem of decaying branes in
set-up of the ‘standard’ AdS/CFT correspondence.

As was argued by Harvey et al. [3], unstable D-branes in string-theory are equivalents of ‘sphalerons’: they are
solutions located at a saddle point of the potential in string field theory configuration space, at the top of a non-con
loop [4]. In the context of the AdS/CFT conjecture, this correspondence between unstable D-branes and sphalerons
theory is in fact even more direct. By analysing thekinematical propertiesof these two systems, it has been argued by Druk

E-mail addresses:marija.zamaklar@aei.mpg.de (M. Zamaklar), kasper.peeters@aei.mpg.de (K. Peeters).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.09.015
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et al. [5] that the unstable D-particles of string theory are in precise correspondence with known sphaleron solutions o
gauge theory.

We will studydynamical propertiesof this correspondence. On the gravity side we start with the results of Lambert et
for the spectrum of decaying D-branes inflat space. To compare these results to those which we will obtain in gauge th
we ‘embed’ the flat-space results in the AdS space. A priori, there is no reason to expect that the flat space results of
should be valid for branes in an AdS background. However, since the D-particles in question are fully localised in
space, one expects that the flat space results should carry over, at least when the radius of the AdS is large.

There are two properties of the spectrum of the decaying brane that we want to compare with the dual gauge theo
lation. The first property of the spectrum is constrained by the symmetries of the system, and concerns emission amp
the states on the leading Regge trajectory. By slightly refining the calculation of [6] we find [7] that all emission amplitu
these states are zero. The same result is separately recovered on the gauge theory side by evaluating the number ope
corresponding dual composite operators.

More important is a second property of the spectrum, observed in [6], which reflects genuine dynamical feature
decay. There is strong evidence [1,6] that the open strings decayfully into closed string states, i.e. that there is no open st
remnant left after the decay. This conclusion is also supported by the matrix model calculations of [2]. As shown in
emission amplitudes are exponentially suppressed with the level ofthe emitted string, at least for high levels (however, due
the exponential growth of the available states, most of the energy of the brane gets transferred into a high-density clou
massive closed string states).

In the remainder of this article we focus on two issues in the dual gauge theory on the boundary. The first issu
construction of the time-dependent gauge theory solution which is the analogue of Sen’s time-dependent boundar
boundary conformal field theory. The second issue is how, given this time dependent solution, one can reproduce
properties of the spectrum of the decaying particle mentioned above.

2. D-particle ↔ sphaleron correspondence: statics

Before addressing the dynamical properties of the correspondence, let us first briefly revise its basic static prope
Gauge theory sphalerons [4] are static solutions of the equations of motion, associated to saddle points whose ex
guaranteed by the existence of a non-contractible loop in (compact) configuration space. Whereas the sphaleron soluR

4

in Yang–Mills–Higgs theory, found by Klinkhamer and Manton [8], is very complicated andnot known analytically, the situatio
is much simpler onS3 × R in pure Yang–Mills theory. To construct thesphaleronic gauge configuration in theSU(2) gauge
theory, one starts from the instanton solution onR

4,

Aµ = f (r)(∂µU)U†, U = xµσµ

r
, r2 = x2

0 + x2
i , (1)

wheref = r2/(r2 + a2). This function interpolates between two pure gauge configurations (i.e. the two vacua)f (r = 0) = 0
andf (r = ∞) = 1. Whenf (r) = 1/2, the system is at the top of the potential barrier, see Fig. 1. By takingf = 1/2 everywhere
one gets a singular solution to the equation of motion onR4, which is the so-called ‘meron’. Thef = 1/2 solution is, however
also a solution onS3 × R, since this manifold can be conformally mapped toR

4 and Yang–Mills theory in four dimensions
conformally invariant. The solution obtained in this way is the Euclidean version of the ‘sphaleron’, and is non-singu

Fig. 1. The picture on the left shows in a schematic way the existence of a non-contractible loop in configuration space, as well as the presen
of the sphaleron (large dot) at the saddle point. The picture on the right shows the action densityS(r) of the instanton in the Euclidean theor
together with the special configuration atr = a which is used to construct the sphaleronic particle in the Lorentzian theory.
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Lorentzian version is the same, since the time component of the potential of the sphaleron is zero. The solution is co
time-independent and has infinite action, corresponding to a sphaleronic particle which is sitting at the top of the potential.

As far as a generalisation of the previous construction toSU(N) gauge theory is concerned, the general sphaleron co
uration is not known. However, an interesting special configuration has been given in [5]. It is obtained by replacing t
matrices in (1) with Clifford algebra generators according to

σµ → γµ =




σµ 0 · · · 0
0 σµ · · · 0
.
..

.

..
. . . 0

0 0 · · · σµ


 . (2)

The mass of this sphaleronic particle isk times the mass of theSU(2) particle (wherek is the number of sigma matrices in (
and 2k < N ). It was also shown that the number unstable modes is increased from one (forSU(2)) to k2.

It has been argued by Drukker et al. [5] that the (non-supersymmetric) sphaleronic saddle points in the gauge theor
served as the ’t Hooft coupling is increased, despite the fact thatthe precise form of the potential receives quantum correcti
The main reason for this is that these sphaleronic saddle points are linked to the underlying non-contractible loops in
ration space. Furthermore, they are linked to the (supersymmetric) instanton configuration which is present both at strong
weak coupling. Thus the sphaleronic particle in the Yang–Mills theory onS3 × R has, at weak coupling, been conjectured
be dual to the unstable D-particle in the AdS.

A number of arguments has been given [5] in support of this correspondence. Firstly, both D-particles and sph
particles are static with respect to the global AdS time. Secondly, since the D-particle is located at the origin of t
space (in global coordinates), it is ‘projected’ in a homogeneous fashion to the boundary, in agreement with the fac
sphaleronic particle is homogeneously spread over theS3. Thirdly, the D-particle in the bulk is a source for the gravitatio
and dilaton field (while it does not source the RR forms), which is in agreement with the (non)vanishing expectation v
the dual gauge operators. Finally, in the case of the more general sphaleron (2), the number of unstable modes on both s
agrees.

3. D-particle ↔ sphaleron correspondence: dynamics

To study the dynamics of the decaying D-particles from the gauge theory perspective let us, as a first step, con
time dependent gauge configuration describing the sphaleron decay. We restrict to the decay modes which preserve sp
symmetry by making the following ansatz,

A = f (t)Σiσi , (3)

whereΣi are the three left-invariant one-forms. To deduce what is the unknown functionf (t) we plug the ansatz into the actio
and derive the action for this function. The value of the action for our ansatz is

S = − 1

4g2
YM

∫
dt dΩFµνFµν = 24vol(S3)

4g2
YM

∫
dt

R

(
R2

2
ḟ 2 − 2f 2(1− f )2

)
, (4)

where vol(S3) ≡ 2π2 denotes the volume of the unit sphere andR is the radius ofS3. The equation of motion for the functionf
is

R2f̈ + 4f (1− f )(1− 2f ) = 0. (5)

When integrated once, this equation yields a conserved quantity, namely the energy (i.e. the componentT00 = 48vol(S3)E)

E = R2ḟ 2 + 4f 2(1− f )2 (6)

which is simplest to integrate analytically forE = 1/4. There are two solutions, corresponding to the fact that the sphalero
roll down on either side of the potential, to the vacua with Chern–Simons number one and zero respectively. The fin
reads (see Fig. 2)

f±(t) = 1

2

( ±√
2

cosh
(√

2
R (t − t0)

) + 1
)

. (7)

This solution describes a configuration that starts from the potential maximum att = −∞ (with zero velocity and acceleration
rolls down the hill and up the other side, where it arrives att = t0.1

1 After we had derived this solution, welearned that it has been obtained before [9], albeit in a different context.
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Fig. 2. The functionsf±(t) of the decaying sphaleron onS3 as given in (7), together with the kinetic and potential energy (with normalisa
as given in (6) andR = 1).

Fig. 3. The evolution of the sphaleron. As it rolls down, it reaches a point where all potential energy has been converted to kineti
This is what we will call the ‘decayed D-particle’, despite the fact thatthe decay products will eventually come back as fine-tuned radiation
‘re-build’ the D-particle.

The periodicity of the whole process is natural from the AdS perspective. Since AdS effectively acts as a box, the
outgoing radiation is refocused to the origin of the space, where it arrives as fine-tuned radiation and ‘re-builds’ the D-
In this sense the D-particle never decays, since there is no real dissipation of the energy in the system. However, in
of large AdS radius, our flat-space intuition should (at least approximately) hold.A natural point in time, which should b
associated to the decayed brane, is the point where the sphaleron has rolled down to the bottom of the potential, i.e
potential energy has been converted to kinetic energy (see Fig. 3).

Near the bottom the solution is

Aµ = f̃ (t)U†(∂µU), f̃ = f − 1 (8)

with f̃ ≈ 0, which means that the derivative part of the field strength, rather than the non-linear (commutator) part, is do
The solution becomes a solution of thefree Yang–Mills equations of motion onS3 × R (written in the radiation gauge:A0 =
∇iA

i = 0),
(

−∂2
t + 1

R2

(∇2
S3 − 2

))
Alin.

i = 0. (9)

Indeed, one can easily see that ast → tbottomthe solution (8) withf given by (7) is very well approximated by the followin
solution of the linearised equation of motion (9):

Alin.
i = −1

4
sin

(
2(t − tbottom)

R

)
U†(∂iU). (10)

Hence near the bottom of the valley, one can think about the Yang–Mills configuration as dual to a coherent state of no
interacting closed string states which are the product of the D-particle decay. Our goal will then be to determine the
of various (gravity) ‘particles’ in this final coherent state. What we precisely mean by this will be explained in the next s
Let us first construct this coherent state.
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The fact that our solution abelianises near the bottom of the potential allows us to apply the standard machinery
down the coherent state. By expanding the classical, free Yang–Mills gauge potential in terms of sphericalvector harmonics
one can read off the amplitudes for different modes, and write a coherent state as

|c〉 = C exp

(
g−2

YM

∑
J,M,y

Tr
(
AJMyâ

†
JMy

))|0〉, (11)

whereAJMy are the coefficients appearing in the Fourier decomposition of the classical sphaleron configuration and
malisation factorC is chosen such that|c〉 is of unit norm.

For this to be a legitimate state in the Hilbert space, one has to make sure that it satisfies all constraints. It is easy
creation operators in (11) lead to physical excitations in the free theory. However, oncegYM is turned on, Gauss’ law implie
that only singlets can be excited. This means that all non-singlet states in (11) have to be projected out. In practice,
we will neither write this projector nor construct the projected state explicitly. This is because our calculations always
projections of the coherent state onto states which themselves are color singlets. Therefore the singlet projection is
implicitly throughout.

4. Particles in the AdS/CFT correspondence

In the AdS/CFT correspondence we have a relation between string states in the bulk and operators in the bounda
operators are, via the operator–state mapping, interpreted to create ‘particles’ in the bulk theory at a particular poi
boundary. That is, one needs to solve for the wave equation of the dual field in the bulk in the presence of a delta sourc
at the boundary. This means that the states created in the bulk are not eigen-momentum states, an attribute which o
associates to the notion of a particle in field theories. However, since the AdS/CFT correspondence is formulated in pos
space rather than momentum space, these definitions are natural in this context. On the other hand, our string calculati
a flat space calculation, and for us it will be more natural to use the standard notion of particles in the bulk as angular m
eigenstates. Therefore, we will first have to construct boundary operators that are dual to bulk angular momentum eig

The operator–state correspondence is usually discussed in the context of radial quantisation of conformal field
(see, e.g., [10] for a discussion in a four-dimensional context). One first Wick rotatesR × R

3 to the Euclidean regime an
then performs a conformal transformation such that the origin ofR

4 corresponds tot = −∞ in the original frame. Operator
inserted at the origin are then in one-to-one correspondence with states in the Hilbert space. The entire procedure can
be formulated without doing the conformal rescaling, which is more natural in our setup since, as we have discussed b
gauge field configuration onR × S3 is non-singular while the one onR4 is singular.

The state corresponding to an operator with conformal weightw is obtained by multiplying with the appropriate exponentia
of Euclidean time and taking the limitτ → −∞ (keeping only the regular part):∣∣Ô(m)

weight-w
〉 = lim

τ→−∞
{
e−wτ Ô

(m)
weight-w(τ)

}|0〉 ≡ Ô
†(m)
weight-w|0〉. (12)

The last expression shows the shorthand notation that we will use in order not to clutter expressions unnecessarily. The
conjugate of an operator is given by

(
Ô(τ)

)† = Ô†(−τ). (13)

This procedure mimics the operator–state mapping onR
4 but avoids technical problems related to solutions which bec

singular after the conformal transformation.
The operators which we use in (12) are independent of the angular coordinates on the sphere, i.e. they are obtaine

position dependent operators as follows

Ô
(m)
w (τ) = K

(m)
w

∫

S3

dΩ Ô
µ1···µs
w (τ,φi )Y

(m)
µ1···µs

(φi). (14)

HereY (m) denote the lowest lying tensor spherical harmonics for a given spins. The indexm labels the degeneracy of suc

harmonics. The normalisation constantsK
(m)
w are chosen such that the states constructed using (12) are of unit norm

that the multiplication with the time dependent exponent in (12) selects out composite operators of the required conform
dimension, but when one expresses these operators in terms of elementary creation and annihilation operators, one
sees that different operatorŝO are not orthogonal. It is only after the integration (14) that one obtains a set of orthogonal

There are many subtleties related to the fact that operatorsÔ are composite operators rather than elementary gauge ope
Firstly, the multi-particle states cannot simply be obtained by acting repeatedly with thêO† operators on the vacuum. Stat
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Starting from the naive states(Ô†)n|0〉 one has to subtract terms in order to achieve orthogonality. For the same reason
is no simple number operator which can be used to count the number of composite excitations in a given state. It is tru[

Ô, Ô†] = 1+O
(
N−2)

, (15)

and one might expect that this leads to a well-defined number operatorÔ†Ô . However, the coefficients that multiply the 1/N2

corrections in (15) are operators, not c-numbers. As a consequence, the strength of the 1/N2 corrections depends on the sta
in which the number operator is evaluated,

〈n|Ô†Ô|n〉 = n +
∑
i

ci(n)

N2i
. (16)

The numbersci (n) can become arbitrarily large whenn → ∞. Since the coherent state contains such highly excited state
operatorÔ†Ô cannot be used as a number operator, not even in theN → ∞ limit.2 We will encounter an explicit manifestatio
of these problems in the next section, when we start counting particles in the coherent state, and then on a concrete e
will illustrate how one can deal with them.

Let us end this section with a comment on alternatives to the coherent state (11). From the point of view of the du
theory, it might seem more natural to construct a coherent state using the composite operatorsÔ

†
J in the exponent, rather tha

the elementary oneŝa†. After all, theÔJ correspond to elementary string excitations. However, a state of the form

|c̃〉 = C̃ exp

(∑
i

Oclass.
i Ô

†
i

)
|0〉 (17)

is not a coherent state in the standard sense since the expectation value of an operator in this coherent state does n
classical value of that operator,

〈c̃|Ôi |c̃〉 	= Oclass.
i , (18)

not even up to 1/N corrections. The reason for this is essentially given in Eq. (16), with|n〉 now being given by|n〉 = (Ô
†
i
)n|0〉.

This is our prime motivation to use (11) as the sphaleron coherent state.

5. Particle counting

Starting from the coherent state (11) we now want to extract information from it about particle numbers in the decay
By particle counting, we mean counting of the states constructed in the previous section.

Due to the problems explained around (15), one cannot use the ‘standard’ number operatorÔ†Ô. Instead we will simply
decompose the coherent state on the basis of multi-particle states. Subsequently we will, using these probabilities, ca
average energies and particle numbers. The probability of finding a multi-particle state consisting ofp1 particles of typeOJ1,
p2 particles of typeOJ2 etc., is given by

P(p1;p2; . . . ;pM) := |〈(ÔJ1)
p1 · · · (ÔJM

)pM |c〉|2
〈(ÔJ1)

p1 · · · (ÔJM
)pM |(ÔJ1)

p1 · · · (ÔJM
)pM 〉〈c|c〉 . (19)

For this to work it is of course crucial that the basis of multi-particle states is constructed to be orthogonal. By definition, the
average number of particles of the typeÔJi

present in the coherent state is now given by

N(Ji) :=
∞∑

p1=0

· · ·
∞∑

pM=0

piP(p1;p2; . . . ;pM). (20)

The energy stored in these particles, as measured with respect to the global time in the bulk, is given by the conformal d
of the corresponding operators. Therefore, the total energy is given by the expression

E(Ji) :=
∞∑

p1=0

· · ·
∞∑

pM=0

∆Ji
piP(p1;p2; . . . ;pM), (21)

2 An proper number operator for composite particles, which produces the exact occupation number rather than an expression which is on
correct up toN−2 corrections, has been constructed by [11]. However, their operator is very complicated and difficult to handle in prac
prefer to follow a different route here.
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where∆Ji
is the conformal dimension of the operatorÔJi

. For a generic operator, the calculation of the numerators in
reduces to evaluating the classical expression of the (abelianised) operator using the positive frequency part of the
solution. Hence, by considering only the numerators in (19) we can deduce which particles areabsentfrom the decay spectrum
In particular one can easily deduce that expectation values of the operators dual to the graviton, NS-NS two form and
two operators are zero.3 By slightly refining the calculation of [6] we have found that all emission amplitudes for these sta
are zero in string theory as well [7]. The absence of the gravitational radiation is not surprising, since the decay is sphe
symmetric. We also believe that absence of the other states is dictated by some underlying symmetry arguments.

Thus, to explore the genuine symmetry aspects of the decay we need to concentrate on the states for which
not vanish. The main technical problem arises when evaluating the denominators of (19). To illustrate this, let us co
‘simplified’ model, based on a non-abelian scalar field. This model exhibits all of the technical subtleties associate
determination of the decay products. The crucial ingredients of the vector coherent state, namely that it is construc
the lowest-lying spherical harmonics and that it depends non-perturbatively on the coupling constant, are preserved b
model. It, however, avoids the inessential technical complications associated to the evaluation of tensor spherical har
the numerators of (19).

The coherent state for a given classical configuration in this non-abelian scalar theory is given by

|c〉 = C exp

(
1

g2
YM

Tr
(
aâ†))|0〉, C = exp

(
− 1

g2
YM

Tr
(
a†a

))
. (22)

This mimics the construction (11). The unit normalised (at leading order in 1/N expansion), single-trace operators which cre
particles in the out vacuum are

Ô
†
J = 1√

J (g2
YM N)J

Tr
((

â†)J )
. (23)

These operators are coordinate independent operators, obtained using a procedure similar to (14).
With the above normalisation of the operator, the numerators and hence probabilities in (19) dependon the Yang–Mills

coupling in a non-perturbative fashion,

∣∣〈0|(ÔJ

)p|c〉∣∣2 = C2
∣∣∣∣ Tr((a+)J )√

J (g2
YMN)J

∣∣∣∣
2p

≡ C2

Jp

(
η2
J

λJ

)p

(24)

(where the last equality definesηJ ; note that it is of the orderN for the configuration (2) and generically scales as the num
of D-particles). This reflects the fact that our original sphaleron configuration is a non-perturbative solution of the equa
motion. Note also that the only way in which the couplingλ appears in (20) and (21) is through the combinationη2

J
/λJ .

The complicated part of the calculation of the average particle numbers and energies is the computation of the norm
states with an arbitrary number of particles. The norm of the state withp identical particles can be written as

〈(
ÔJ

)p(
Ô

†
J

)p 〉 = p!〈(ÔJ

)(
Ô

†
J

)〉p +
(

p

2

)2〈(
ÔJ

)2(
Ô

†
J

)2〉
connected(p − 2)!〈(ÔJ

)(
Ô

†
J

)〉(p−2)

+
(

p

3

)2〈
Ô3

J Ô
†3
J

〉
connected(p − 3)!〈ÔJ Ô

†
J

〉(p−3)

+
(

p

2

)2(p − 2

2

)2〈(
ÔJ

)2(
Ô

†
J

)2〉2
connected

(p − 4)!
2!

〈
ÔJ Ô

†
J

〉(p−4) + · · · . (25)

The first term is at a leading order independent of 1/N , the second is suppressed as 1/N2, the last two terms both scale as 1/N4,
and so on. A similar but more complicated expansion can be written for states involving more than one type of particle

Naively, one might expect that in the large-N limit, all but the leading termp! in this expansion can be omitted. However, t
would produce an exponential dependence on the expectation values for the operatorsÔJ in formula (20). Since the argumen
of the exponent (24)increasewith conformal dimensionJ , one would conclude that the number of particles produced du
the decayincreaseswith the mass of the particle. It is easy to see that this kind of truncation of (25) does not make s
the case of thenon-perturbativecoherent state (22), as it would actually produce probabilities (19) which are larger than on

3 Note that the expression which vanishes is the energy momentum tensor evaluated on the positive frequency part of the s
tion: |〈0|T̂µν |c〉|2 = |Tµν(A+

coherent)|2 = 0. On the other hand, the classical expression for the energy momentum tensor of the full config
is non-zero:Tµν(A+ + A−) 	= 0.
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The point is that since the numerator (24) is very large, the maximal probabilities are attained for large valuespmax of p.
Moreover,pmax grows withN , hence in the large-N limit the sub-leading terms in (25) become more and more relevant
are actuallycomparableto the leading term.

In trying to estimate how fast the norms (25) have to grow withp, one can see that even an exponential growth of the no
say asp!γ p (γ = const), does not lead to reasonable results. Namely, if we consider the expression

∑
p P(J,p), which has to

be smaller than one, and assume exponential growth of norms, we would find that this sum behaves as

∞∑
p=0

P(J,p) = C2
∞∑

p=0

1

p!
(

η2
J

λJ γ

)p

= exp

(
η2
J

λJ γ

)
exp

(
−N

λ
Tr

(
a†a

))
. (26)

Hence we see that even whenN → ∞ (while keepingλ arbitrary but smaller than one) the result will always be larger tha
for some value ofJ . Since the calculation of the average number of particles requires a summation over allJ , we conclude tha
we cannot assume this behavior of the norms.4

The situation which we face here is similar in spirit to the double-scaling BMN limit. As observed in [12] and [1
the limit N ∼ J2 → ∞ correlators in general receive contributions from non-planar graphs of all genera. In this case
expansion parameterJ2/N appears. In our case,N → ∞ as well, but now the additional parameter which becomes large i
value of thepi for which the sum (21) has its maximum term. It would be interesting to understand whether our syste
exhibits a double-scaling limit in which some ratio of powers ofp andN is kept fixed.

6. Calculation of norms and numerical results

In order to determine the correct values of the norms of the states, it is useful to write the norms of multi-particle s
terms of correlators of a complex matrix model,

〈0|[(ÔJ1

)p1 · · · (ÔJn

)pn
][(

Ô
†
Jn

)pn · · · (Ô†
J1

)p1
]|0〉

=
∫

dAdĀ
[
(OJ1)

p1 · · · (OJn
)pn

][(
O

†
Jn

)pn · · · (O†
J1

)p1
]
exp

(−Tr
(
A†A

))
. (28)

The measure used here is simply a separate integral over the real and imaginary parts of the complex matrixA, normalised to
give unit result when allpi in the expression above are zero,

∫
dAdĀ = π−N

N∏
a,b=1

d(ReAab)d(ImAab). (29)

This approach has been used by [14,12] in order to compute several special cases of (28) analytically. It is still an open
to extend those exact results to the entire class of correlators, in particular to general situations for whichpi > 2. Because
we will need these very general correlators, we have decided to use an alternative approach, in which the integral is
using Monte-Carlo methods. This provides us with a technically straightforward way to extract the norms for arbitrary o
insertions, even for very largepi . Our results will, for this reason, of course be restricted to a fixed value forN and computer
resources put a practical limit on the maximum value that can be handled (we will takeN = 4). Nevertheless, we will see th
interesting results can be obtained this way.

In theU(4) theory there are only two operators which create physical states (using only the creation operator for the
lying spherical harmonics). These are Tr((a†)2) and Tr((a†)4).5 The proper linear combinations of these operators are

Ô
†
2 = Tr

(
a†a†)

, Ô
†
4 = Tr

(
a†a†a†a†) − 2N2 + 1

N(N2 + 2)
Tr

(
a†a†)

Tr
(
a†a†)

. (30)

4 Note that if we would have had a perturbative coherent state instead of anon-perturbativeone, the classical expectation valuesa in (22)
would be of the forma = gYMη, with η a number independent of the coupling constant. Hence formula (26) would be replaced with

∞∑
p=0

P(J,p) = C2
∞∑

p=0

1

p!
(

η2
J

NJ γ

)p

= exp

(
η2
J

NJ γ

)
exp

(−Tr
(
a†a

))
. (27)

We now see that a truncation to the first term in (25) (i.e. settingγ = 1) produces reasonable results for the probabilities (19).
5 The restriction to the zero-mode of the scalar field is motivated by thefull sphaleron solution of the earlier sections, which only turns

the lowest spherical vector harmonics. Naturally, in the fullU(4) there are also operators of the form Tr(DµφDνφ). However, in the oscillator
picture these are turned on by the oscillators thatcreate the higher spherical tensorial harmonics.
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Fig. 4. Successive approximations to the logarithm of the total energy radiated in theJ = 2 particles (light, blue surface) andJ = 4 particles
(dark, red surface). Thex andy axes label the maximum value ofp2 andp4 in the sum (32). The values asymptote to the full result in
upper left corner of the graph. While the present plot shows energies,qualitatively similar plots are obtained for the particle numbers.

These lead to〈Ô4|Ô2Ô2〉 = 0. Multi-particle states will generically not beorthogonal, but in our case this turns out to be fa
less important than the 1/N2 corrections to the norms. We will for simplicity also use a classical configuration for which

η4

N
=

(
η2

N

)2
= η

N
, (31)

where theηJ are defined in (24). Closer inspection of the coherent state of the sphaleron given in (11) shows that the ex
values of, e.g., the Tr(FmnFmn) and Tr(FmnFmnFrsF

rs) states are similarly related.
The energy radiated intoOJ=2 andOJ=4 particles can be computed using formula (21), summed over a suitably

range of values forp2 andp4. In our particular case, this formula reduces to

E
(
J,pcutoff

2 ,pcutoff
4

) =
pcutoff

2∑
p2=0

pcutoff
4∑

p4=0

∣∣∣∣η
2
2

λ2

∣∣∣∣
p2

∣∣∣∣η
2
4

λ4

∣∣∣∣
p4 JpJ

2p24p4

C2

〈0|(Ô2)p2(Ô4)p4(Ô
†
4)p4(Ô

†
2)p2|0〉〈c|c〉

(32)

and the maximum values ofp2 andp4 which are included in the sum should be taken sufficiently large as to include at lea
maximum term in the sum. This requirement is indeed met in our numerical approach. We have computed the ratio of
in theJ = 2 andJ = 4 particles using successive approximations of (32), for larger and largerpcutoff

2 andpcutoff
4 , for a range of

couplings.6 A typical example is plotted in Fig. 4. One clearly sees that the asymptotic value of the ratioE(4)/E(2), given by
the exponent of the asymptotic height difference between the two surfaces, is smaller than one. We therefore conclud
calculation predicts that higher-energy states in the decay product are suppressed with respect to the lower-energy on
in qualitative agreement with alternative calculations of this decay process [6].

It would be very interesting to extend our analysis to higher-rank gauge groups, perhaps by obtaining an analytic ex
for the norms of the states. ForN > 4, there are more than two gauge singlet states, and it becomes possible to determ
suppression factor as a function of the energy in more detail. We leave this for future investigations.

6 From the gravity point of view, in case of largeN , the pcutoff should always be such that the total energy (i.e. conformal dimens
carried by this multi particle state is smaller thanN2 in order to neglect back reaction. In the case of smallN , such as discussed here, consta
of order one become relevant, and this rough estimate is no longer sufficient. For example, it turns out [7] that the maximal probability for t
number of particles of typeO2 is larger thanN2, but the total energy carried by these particles is still smaller than the energy of the brane
constants of order one have been taken into account).
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7. Summary and outlook

We have presented the formalism to analyse the decay of unstable D-branes in the AdS5 × S5 background by considerin
the dual gauge theory. Our results show qualitative agreement with previous work on D-particle decay, and our work
a basis for further study of non-perturbative dynamical features of the correspondence.

A very relevant way of improving on our results would be to determine analytical expressions for the norms req
Section 6. This would allow one to extend the results obtained there to large values ofN . Also, as we have explained, due to t
non-perturbative nature of the initial sphaleron configuration,the computation of the decay product requires information from
a regime in which bothN → ∞ as well as the number of particlesp → ∞. Knowing the norms of states analytically shou
allow us to understand this double limit. This perhaps may circumvent the need to calculate the norms of states exa
calculating the energy distribution in the final state. Finally, it would be interesting to understand how quantum correct
be incorporated into our formalism, in order to see how much they influence the qualitative characteristics of the decay prod
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