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Abstract

The gauge theory dual to the decay of an unstable D-particle in AdS is analysed in terms of coherent states. We discuss in
detail how to count the number of particles in the decay product. We find, in agreement with the analysis in flat space, that the
emission amplitude is suppressed as the mass of the radiated particles indreageshis article: M. Zamaklar, K. Peeters,

C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Dynamique holographique de branes instables dans AdS. La théorie de jauge duale a la désintégration de D-particules
instables dans AdS est analysée en termes d’état cohérents. Nous discutons en détails le comptage du nombre de particule dans
le produit de désintégration. Nous trouvons, en accord avec I'analyse en espace plat, que le taux d’émission est supprimé quand

la masse de la particule augmerieur citer cet article: M. Zamaklar, K. Peeters, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Tachyon condensation provides an interesting arena in which we can improve our understanding of string theory in a dy-
namical set-up. While the condensation of closed stringyaes, and the associated decay of spacetimes, is still hampered
by conceptual and technical problems, a lot of progress has recently been made in understanding the dynamics of open string
tachyons. Most of the analysis was performed directlygisioundary conformal field theory in flat space, initiated by Sen’s
construction of the boundary states for decaying D-branes [1], or by using=tht matrix model for the description of the
decay of D-branes in 4 1 dimensional string theory [2]. In the presentink we study the problem of decaying branes in the
set-up of the ‘standard’ AdS/CFT correspondence.

As was argued by Harvey et al. [3], unstable D-branes in string-theory are equivalents of ‘sphalerons’: they are unstable
solutions located at a saddle point of the potential in string field theory configuration space, at the top of a non-contractible
loop [4]. In the context of the AAS/CFT conjecture, this correspondence between unstable D-branes and sphalerons in gauge
theory is in fact even more direct. By analysing Kieematical propertiesf these two systems, it has been argued by Drukker
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et al. [5] that the unstable D-particles of string theory are in precise correspondence with known sphaleron solutions of the dual
gauge theory.

We will studydynamical propertiesf this correspondence. On the gravity side we start with the results of Lambert et al. [6]
for the spectrum of decaying D-branesfliat space To compare these results to those which we will obtain in gauge theory,
we ‘embed’ the flat-space results in the AdS space. A priori, there is no reason to expect that the flat space results of the decay
should be valid for branes in an AdS background. However, since the D-particles in question are fully localised in the bulk
space, one expects that the flat space results should carry over, at least when the radius of the AdS is large.

There are two properties of the spectrum of the decaying brane that we want to compare with the dual gauge theory calcu-
lation. The first property of the spectrum is constrained by the symmetries of the system, and concerns emission amplitudes for
the states on the leading Regge trajectory. By slightly refining the calculation of [6] we find [7] that all emission amplitudes for
these states are zero. The same result is separately recovered on the gauge theory side by evaluating the number operator for the
corresponding dual composite operators.

More important is a second property of the spectrum, observed in [6], which reflects genuine dynamical features of the
decay. There is strong evidence [1,6] that the open strings daltaynto closed string states, i.e. that there is no open string
remnant left after the decay. This conclusion is also supported by the matrix model calculations of [2]. As shown in [6], the
emission amplitudes are exponentially suppressed with the leveéamitted string, at least for high levels (however, due to
the exponential growth of the available states, most of the energy of the brane gets transferred into a high-density cloud of very
massive closed string states).

In the remainder of this article we focus on two issues in the dual gauge theory on the boundary. The first issue is the
construction of the time-dependent gauge theory solution which is the analogue of Sen’s time-dependent boundary state in
boundary conformal field theory. The second issue is how, given this time dependent solution, one can reproduce the two
properties of the spectrum of the decaying particle mentioned above.

2. D-particle « sphaleron correspondence: statics

Before addressing the dynamical properties of the correspondence, let us first briefly revise its basic static properties [5].
Gauge theory sphalerons [4] are static solutions of the equations of motion, associated to saddle points whose existence is
guaranteed by the existence of a non-contractible loop in (compact) configuration space. Whereas the sphaleron &ftution on
in Yang—Mills—Higgs theory, found by Klinkhamand Manton [8], is very complicated andt known analytically, the situation
is much simpler ors® x R in pure Yang—Mills theory. To construct tisphaleronic gauge configuration in tN&/(2) gauge
theory, one starts from the instanton solutionksh

"
A= @t U:%, r2=x2 42, 1)
where f = r2/(r2 + a?). This function interpolates between two pure gauge configurations (i.e. the two végu&)0) =0
and f(r = o00) = 1. Whenf(r) = 1/2, the system is at the top of the potential barrier, see Fig. 1. By tgkiad,/2 everywhere
one gets a singular solution to the equation of motiom8nwhich is the so-called ‘meron’. Thg = 1/2 solution is, however,
also a solution or$3 x R, since this manifold can be conformally mapped&band Yang—Mills theory in four dimensions is
conformally invariant. The solution obtained in this way is the Euclidean version of the ‘sphaleron’, and is non-singular. The

Sinst (7')

Wi~ B

.,_
f

Fig. 1. The picture on the left shows in a schematic way the existdr@@an-contractible loop in configuran space, as well as the presence
of the sphaleron (large dot) at the saddle poirite Picture on the right shows the action density) of the instanton in the Euclidean theory,
together with the special configurationrat a which is used to construct the sphaleronic particle in the Lorentzian theory.
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Lorentzian version is the same, since the time component of the potential of the sphaleron is zero. The solution is completely
time-independent and has infinite action, corresponding to despinéc particle which is sittig at the top of the potential.

As far as a generalisation of the previous constructiofiltigN) gauge theory is concerned, the general sphaleron config-
uration is not known. However, an interesting special configuration has been given in [5]. It is obtained by replacing the Pauli
matrices in (1) with Clifford algebra generators according to

ou 0 - 0
0 o4 - O

o= Yu= : — 0 . (2)
0 0 - o,

The mass of this sphaleronic particlekisimes the mass of thBU(2) particle (wherek is the number of sigma matrices in (2)
and Z < N). It was also shown that the number unstable modes is increased from oS&J(B)) to k2.

It has been argued by Drukker et al. [5] that the (non-supersymmetric) sphaleronic saddle points in the gauge theory are pre-
served as the 't Hooft coupling is increased, despite the facthibairecise form of the potential receives quantum corrections.

The main reason for this is that these sphaleronic saddle points are linked to the underlying non-contractible loops in configu-
ration space. Furthermore, they are linked to the (supersyronigtstanton configuration which is present both at strong and
weak coupling. Thus the sphalerorparticle in the ¥ing—Mills theory ons3 x R has, at weak coupling, been conjectured to

be dual to the unstable D-particle in the AdS.

A number of arguments has been given [5] in support of this correspondence. Firstly, both D-particles and sphaleronic
particles are static with respect to the global AdS time. Secondly, since the D-particle is located at the origin of the AdS
space (in global coordinates), it is ‘projected’ in a homogeneous fashion to the boundary, in agreement with the fact that the
sphaleronic particle is homogeneously spread oveSﬁjérhirdly, the D-particle in the bulk is a source for the gravitational
and dilaton field (while it does not source the RR forms), which is in agreement with the (non)vanishing expectation values of
the dual gauge operators. Finally, in the case of the morergesghaleron (2), the number of unstable modes on both sides
agrees.

3. D-particle < sphaleron correspondence: dynamics

To study the dynamics of the decaying D-particles from the gauge theory perspective let us, as a first step, construct the
time dependent gauge configuration desngtthe sphaleron decay. We restrict to the decay modes which preserve spherical
symmetry by making the following ansatz,

A=f0)Z'0;, ©)
whereX! are the three left-invariant one-forms. To deduce what is the unknown funétionve plug the ansatz into the action
and derive the action for this function. The value of the action for our ansatz is

1 24vol(S3) [ dt /R? .
W) /dt AR Fp M = ——— —(71‘2 -2f%(1- f>2), 4
8YM

4g\2(|v| R
where vol$3) = 272 denotes the volume of the unit sphere ahis the radius of3. The equation of motion for the function
is

S=—

R2f+A4f(1— f)A—2f)=0. (5)
When integrated once, this equatigields a conserved quantity, naim the energy (i.e. the componefgg = 48 Vol(S3)E)
E=R?f24+4f2(1- f)? (6)

which is simplest to integrate analytically fr= 1/4. There are two solutions, corresponding to the fact that the sphaleron can
roll down on either side of the potential, to the vacua with Chern—Simons number one and zero respectively. The final result
reads (see Fig. 2)
: 1 +4/2
S0 = E(fz— + 1>.
cosh{(¥E(r — 19))

This solution describes a configuration that starts from the potential maximusa abo (with zero velocity and acceleration),
rolls down the hill and up the other side, where it arrives=atrg.t

@)

1 After we had derived this solution, wearned that it has been obtained beff#], albeit in a different context.
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=

Fig. 2. The functionsf (r) of the decaying sphaleron &% as given in (7), together with the kinetic and potential energy (with normalisation
as given in (6) and® =1).

“decayed D0”

tp

Fig. 3. The evolution of the sphaleron. As it rolls down, it reaches a point where all potential energy has been converted to kinetic energy.
This is what we will call the ‘decayed D-particle’, despite the fact thatdecay products will eventually e back as fine-tuned radiation to
‘re-build’ the D-particle.

The periodicity of the whole process is natural from the AdS perspective. Since AdS effectively acts as a box, the cloud of
outgoing radiation is refocused to the origin of the space, where it arrives as fine-tuned radiation and ‘re-builds’ the D-particle.
In this sense the D-particle never decays, since there is no real dissipation of the energy in the system. However, in the limit
of large AdS radius, our flat-space intuition should (at leggiraximately) hold A natural point in time, which should be
associated to the decayed brane, is the point where the sphaleron has rolled down to the bottom of the potential, i.e. when all
potential energy has been converted to kinetic energy (see Fig. 3).

Near the bottom the solution is

Ap=fouT@U), f=r-1 (8)

with f = 0, which means that the derivative part of the field strength, rather than the non-linear (commutator) part, is dominant.
The solution becomes a solution of thiee Yang—Mills equations of motion a$? x R (written in the radiation gaugetg =
V; Al =0),

(—af + %(vgg - 2)>Ai.‘”~ =0. 9)

Indeed, one can easily see thatas tyottomthe solution (8) withf given by (7) is very well approximated by the following
solution of the linearised equation of motion (9):

Alln. — _%sin("“‘f%w)m@im. (10)

Hence near the bottom of the valley, one can think about #ieg¥Mills configuratio as dual to a coherent state of non-
interacting closed string states which are the product of the D-particle decay. Our goal will then be to determine the numbers
of various (gravity) ‘particles’ in this final coherent state. What we precisely mean by this will be explained in the next section.
Let us first construct this coherent state.
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The fact that our solution abelianises near the bottom of the potential allows us to apply the standard machinery to write
down the coherent state. By expanding thassical, free Yang—Mills gauge potentialterms of sphericalector harmonics,
one can read off the amplitudes for different modes, and write a coherent state as

lc) :Cexp<g;h2,, > Tr(Asmyal My)>|o>, (11)
J.M,y

whereA ; s, are the coefficients appearing in the Fourier decomposition of the classical sphaleron configuration and the nor-
malisation factolC is chosen such that) is of unit norm.

For this to be a legitimate state in the Hilbert space, one has to make sure that it satisfies all constraints. It is easy to see that
creation operators in (11) lead to physical excitations in the free theory. Howevergepces turned on, Gauss’ law implies
that only singlets can be excited. This means that all non-singlet states in (11) have to be projected out. In practice, however,
we will neither write this projector nor construct the projected state explicitly. This is because our calculations always involve
projections of the coherent state onto states which themselves are color singlets. Therefore the singlet projection is imposed
implicitly throughout.

4. Particlesin the AAS/CFT correspondence

In the AdS/CFT correspondence we have a relation between string states in the bulk and operators in the boundary. These
operators are, via the operator—state mapping, interpreted to create ‘particles’ in the bulk theory at a particular point on the
boundary. That is, one needs to solve for the wave equation of the dual field in the bulk in the presence of a delta source inserted
at the boundary. This means that the states created in the bulk are not eigen-momentum states, an attribute which one usually
associates to the notion of arfiele in field theories. Howear, since the AAS/CFT correspondence is formulated in position
space rather than momentum space, these definitions are natural in this context. On the other hand, our string calculation in [7] is
a flat space calculation, and for us it will be more natural to use the standard notion of particles in the bulk as angular momentum
eigenstates. Therefore, we will first have to construct boundary operators that are dual to bulk angular momentum eigenstates.

The operator—state correspondence is usually discussed in the context of radial quantisation of conformal field theories
(see, e.g., [10] for a discussion in a four-dimensional context). One first Wick rdkate®3 to the Euclidean regime and
then performs a conformal transformation such that the origi®oéorresponds to = —co in the original frame. Operators
inserted at the origin are then in one-to-one correspondence with states in the Hilbert space. The entire procedure can, however,
be formulated without doing the conformal rescaling, which is more natural in our setup since, as we have discussed before, the
gauge field configuration oR x s3is non-singular while the one di&? is singular.

The state corresponding to an operator with conformal weigistobtained by multifying with the appropriate exponential
of Euclidean time and taking the limit— —oo (keeping only the regular part):

|Otvelgnew) = NIM_{e™"" Ofiek e, (10 = Ogdicie, 10) (12)
The last expression shows the shorthand notation that we will use in order not to clutter expressions unnecessarily. The hermitian
conjugate of an operator is given by

(O0@)" =061 (-). (13)

This procedure mimics the operator—state mappin@%rbut avoids technical problems related to solutions which become
singular after the conformal transformation.

The operators which we use in (12) are independent of the angular coordinates on the sphere, i.e. they are obtained from the
position dependent operators as follows

Ou (xy = kI / d2 0L (1, g Y (). (14)
53

HereY ) denote the lowest lying tensor spherical harmonics for a givensspihe indexm labels the degeneracy of such
harmonics. The normalisation constamtéf") are chosen such that the states constructed using (12) are of unit norm. Note
that the multiplcation with the time dependent exponent in (12) selextt composite operators of the required conformal
dimension, but when one expresses these operators in terms of elementary creation and annihilation operators, one explicitly
sees that different operatoésare not orthogonal. It is only after the integration (14) that one obtains a set of orthogonal states.

There are many subtleties related to the fact that operét@® composite operators rather than elementary gauge operator.
Firstly, the multi-particle states cannot silpfpe obtained by acting repeatedly with the operators on the vacuum. States
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generated in this way areot orthogonal not even in thev — oo limit when the number of operators becomes large as well.
Starting from the naive statQQT)"\O) one has to subtract terms in order to achieve orthogonality. For the same reason, there
is no simple number operator which can be used to count the number of composite excitations in a given state. It is true that

[0.0T=1+0(N"2), (15)

and one might expect that this leads to a well-defined number opeﬁéﬁr However, the coefficients that multiply th¢]§[2
corrections in (15) are operators, not c-numbers. As a consequence, the strength/v)ﬁhmfrections depends on the state
in which the number operator is evaluated,

ci(n)
N2

n10TOm)=n+>" (16)
1

The numbers; (n) can become arbitrarily large when— oo. Since the coherent state contains such highly excited states, the
operatoréTé cannot be used as a number operator, not even iNthe co limit.2 We will encounter an explicit manifestation
of these problems in the next section, when we start counting particles in the coherent state, and then on a concrete example we
will illustrate how one can deal with them.

Let us end this section with a comment on alternatives to the coherent state (11). From the point of view of the dual string
theory, it might seem more natural to construct a coherent state using the composite opﬁe dtotke exponent, rather than
the elementary ones'. After all, the 0, correspond to elementary string excitations. However, a state of the form

&) =C exp(Z of'asséj) 0) 17)

is not a coherent state in the standard sense since the expectation value of an operator in this coherent state does not equal the
classical value of that operator,

(€104 1é) # Of1ass, (18)

not even up to AN corrections. The reason for this is essentially given in Eq. (16), wjthow being given byn) = (OiT)" |0).
This is our prime motivation to use (11) as the sphaleron coherent state.

5. Particle counting

Starting from the coherent state (11) we now want to extract information from it about particle numbers in the decay product.
By particle counting, we mean counting of the states constructed in the previous section.

Due to the problems explained around (15), one cannot use the ‘standard’ number oéérétdnstead we will simply
decompose the coherent state on the basis of multi-particle states. Subsequently we will, using these probabilities, calculate the
average energies and particle numbers. The probability of finding a multi-particle state consigtingaoficles of typeO,,,
p2 particles of typeO, etc., is given by

{((O1)PL---(0,)PM|c) |2
(0P~ (01, )PM|(O1)PL--- (01, )PM) {clc)

For this to work it is of course cruciaIAthshe basis of multi-particle states isrtstructed to be orthogohdy definition, the
average number of particles of the typg, present in the coherent state is now given by

(19)

P(p1; p2;---ipym) ==

o oo
N =Y o > piP(p1i p2i -5 pm)- (20)
p1=0  py=0
The energy stored in these particles, as measured with respect to the global time in the bulk, is given by the conformal dimension
of the corresponding operators. Therefore, the total energy is given by the expression
o o0
E(Jp) =Y -+ Y AppiP(p1ip2i-.-: Pm): (21)
p1=0  py=0

2 An proper number operator for composite paetic which produces the exact occupation benrather than an expression which is only
correct up taV —2 corrections, has been constructed by [11]. However, their operator is very complicated and difficult to handle in practice. We
prefer to follow a different route here.
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where A, is the conformal dimension of the operatﬁrjl.. For a generic operator, the calculation of the numerators in (19)
reduces to evaluating the classical expression of the (abelianised) operator using the positive frequency part of the decayed
solution. Hence, by considering only the numerators in (19) we can deduce which particbsemérom the decay spectrum.

In particular one can easily deduce that expectation values of the operators dual to the graviton, NS-NS two form and all twist
two operators are zerdBy slightly refining the calculation of [6] we havetind that all emission amplitudes for these states

are zero in string theory as well [7]. Thes#nce of the gravitational radiation is not surprising, since the decay is spherically
symmetric. We also believe that absence of the other states is dictated by some underlying symmetry arguments.

Thus, to explore the genuine symmetry aspects of the decay we need to concentrate on the states for which (19) does
not vanish. The main technical problem arises when evaluating the denominators of (19). To illustrate this, let us consider a
‘simplified’ model, based on a non-abelian scalar field. This model exhibits all of the technical subtleties associated to the
determination of the decay products. The crucial ingredients of the vector coherent state, namely that it is constructed from
the lowest-lying spherical harmonics and that it depends non-perturbatively on the coupling constant, are preserved by this toy
model. It, however, avoids the inessential technical complications associated to the evaluation of tensor spherical harmonics in
the numerators of (19).

The coherent state for a given classical configuration in this non-abelian scalar theory is given by

lc)y=C exp<2i Tr(a&T)> 0y, C= exp<—2i Tr(aT )) (22)
8ym 8ym

This mimics the construction (11). The unit normalised (at leading ordeffihelxpansion), single-trace operators which create
particles in the out vacuum are

0] = ————T(@"’).

NI

These operators are coordinate independent operators, obtained using a procedure similar to (14).
With the above normalisation of the ap#or, the numerators and hencelpabilities in (19) dependn the Yang-Mills

coupling in a non-perturbative fashion,
2p 02 /p2\P
_Y (1
:Jp< ) (24)

Py

(23)

Tr((a™)”)

VI &N’

(where the last equality defingg ; note that it is of the ordeN for the configuration (2) and generically scales as the number
of D-particles). This reflects the fact that our original sphaleron configuration is a non-perturbative solution of the equations of
motion. Note also that the only way in which the couplingppears in (20) and (21) is through the combinatj§mj.

The complicated part of the calculation of the average particle numbers and energies is the computation of the norms for the
states with an arbitrary number of particles. The norm of the statepilentical particles can be written as

|<ow(éj)”\c>|2:62’

N

(630371 = 0@ + (5) 60} onmecebp ~21(0) (O]

2
P\" 153513 5 HT(p—3
+ (3) <0§ 01 >connecte&p - 3)!(01 01)(17 )

2 2
PN (P =2\ 5 12(51)22 P=D A Ati(ps
+<2> ( 2 ) <(0J) (OJ) >connectedT<0J01>(p NI (25)

The first term is at a leading order independent 4¥ 1the second is suppressed asli, the last two terms both scale a&\?,

and so on. A similar but more complicated expansion can be written for states involving more than one type of particle.
Naively, one might expect that in the lar@gélimit, all but the leading ternp! in this expansion can be omitted. However, this

would produce an exponential dependence on the expectation values for the op(éyammfsrmula (20). Since the arguments

of the exponent (24increasewith conformal dimensiory, one would conclude that the number of particles produced during

the decayincreaseswith the mass of the particle. It is easy to see that this kind of truncation of (25) does not make sense in

the case of thaon-perturbativecoherent state (22), as it wabidctually produce mbabilities (19) which are larger than one.

3 Note that the expression which vanishes is the energy mammeménsor evaluated on the positive frequency part of the solu-
tion: [(0[ Ty \c)|2 = |Tﬂ”(Aéoheren}|2 = 0. On the other hand, the classical expression for the energy momentum tensor of the full configuration

is non-zero:Ty, (AT + A7) #0.
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The point is that since the numerator (24) is very large, the maximal probabilities are attained for largepf&ie$ p.
Moreover, p™& grows with N, hence in the large¥ limit the sub-leading terms in (25) become more and more relevant, and
are actuallycomparableo the leading term.

In trying to estimate how fast the norms (25) have to grow witlone can see that even an exponential growth of the norms,
say asp!y? (y = const), does not lead to reasonable results. Namely, if we consider the exp@s);ﬁenl, p), which has to
be smaller than one, and assume exponential growth of norms, we would find that this sum behaves as

00 o] 2 2

2 1 ny p ny N

Y PU.p=C) ?(W) :exp<m> exp(—TTr(aTa)) (26)
p=0 p=0

Hence we see that even whah— oo (while keepingh arbitrary but smaller than one) the result will always be larger than 1

for some value off . Since the calculation of the average number of particles requires a summation dvevalitonclude that

we cannot assume this behavior of the nofims.

The situation which we face here is similar in spirit to the double-scaling BMN limit. As observed in [12] and [13], in
the limit N ~ J2 — oo correlators in general receive contributions from non-planar graphs of all genera. In this case, a hew
expansion parametdrz/N appears. In our cas&] — oo as well, but now the additional parameter which becomes large is the
value of thep; for which the sum (21) has its maximum term. It would be interesting to understand whether our system also
exhibits a double-scaling limit in which some ratio of powergpand N is kept fixed.

6. Calculation of normsand numerical results

In order to determine the correct values of the norms of the states, it is useful to write the norms of multi-particle states in
terms of correlators of a complex matrix model,

OIf(0sy)"* -+ (0,,)™ [(0],)"" -+ (6])"*]10)
- / dAdA[(0)P---(0,,)P][(01 )" - (0}1)1’1] exp(—Tr(aTA)). (28)

The measure used here is simply a separate integral over the real and imaginary parts of the complex natrizlised to
give unit result when alp; in the expression above are zero,

N
/dAdA:n*N [] dReaup) dimAyp). (29)
a,b=1

This approach has been used by [14,12] in order to compute several special cases of (28) analytically. It is still an open problem
to extend those exact results to the entire class of correlators, in particular to general situations fgp;whizhBecause
we will need these very general correlators, we have decided to use an alternative approach, in which the integral is evaluated
using Monte-Carlo methods. This provides us with a technically straightforward way to extract the norms for arbitrary operator
insertions, even for very large;. Our results will, for this reason, of course be restricted to a fixed valug' fand computer
resources put a practical limit on the maximum value that can be handled (we wilvtakd). Nevertheless, we will see that
interesting results can be obtained this way.

In the U (4) theory there are only two operators which create physical states (using only the creation operator for the lowest-
lying spherical harmonics). These are{(ErT)z) and Tr((aT)4).5 The proper linear combinations of these operators are

2
ég = Tr(aTaT), OZ = Tr(aTaTaTaT) — % Tr(aTaT) Tr(aTaT). (30)

4 Note that if we would have had a perturbative coherent state insteadaf-perturbativeone, the classical expectation valued (22)
would be of the formu = gy 7, with n a number independent of the coupling constatence formula (26) would be replaced with

- 2en 1 15\ i t
P, p)=C —|—— ) =expl —— |Jexp(—Tr(a'a)). 27
S Pun =2y — (3] = 71 ) enl-Tr(aa) @)
p=0 p=0

We now see that a truncation to the first term in (25) (i.e. settirg1l) produces reasonable results for the probabilities (19).

5 The restriction to the zero-mode of the scalar field is motivated byuthephaleron solution of the earlier sections, which only turns on
the lowest spherical vector harmonics. Naturally, in the fll#h) there are also operators of the form(y,¢ D,,¢p). However, in the oscillator
picture these are turned on by the oscillators thaate the higher spherical tensorial harmonics.
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piutoi‘f

0

Fig. 4. Successive approximations to the ldpn of the total energy radiated in the= 2 particles (light, blue surface) anti= 4 particles
(dark, red surface). The andy axes label the maximum value pb and p,4 in the sum (32). The values asymptote to the full result in the
upper left corner of the graph. While the present plot shows enemgiafitatively similar plots are obtained for the particle numbers.

These lead t404] 0, 0,) = 0. Multi-particle states will generically not l®thogonal, but in our casis turns out to be far
less important than the/N2 corrections to the norms. We will for simplicity also use a classical configuration for which

2
" _ (@) " (31)
N N N

where they ; are defined in (24). Closer inspection of the coherent state of the sphaleron given in (11) shows that the expectation
values of, e.g., the TFy,, F™*) and TH( F;,,, F™" F,s F™) states are similarly related.

The energy radiated int®;_» and O j_4 particles can be computed using formula (21), summed over a suitably large
range of values fop, and p4. In our particular case, this formula reduces to

cutoff _cutoff
u pu

Pa 4 2
E(J, pgutoff’ pgutoﬁ) _ Z Z Z_%
p2=0 ps=0

P2 P4 p; c2

2P24p4 <o|((32)172((34)174(01)”4(0;)”2|0>(C|C)

ng

24

(32

and the maximum values @b and p4 which are included in the sum should be taken sufficiently large as to include at least the
maximum term in the sum. This requirement is indeed met in our numerical approach. We have computed the ratio of energies

inthe J = 2 andJ = 4 particles using successive approximations of (32), for larger and ngg@rﬁ andpﬁ“mff, for arange of

couplings® A typical example is plotted in Fig. 4. One clearly sees that the asymptotic value of th&&lioE (2), given by
the exponent of the asymptotic height difference between the two surfaces, is smaller than one. We therefore conclude that our
calculation predicts that higher-energy states in the decay product are suppressed with respect to the lower-energy ones. This is
in qualitative agreement with alternative calculations of this decay process [6].

It would be very interesting to extend our analysis to higher-rank gauge groups, perhaps by obtaining an analytic expression
for the norms of the states. Fof > 4, there are more than two gauge singlet states, and it becomes possible to determine the
suppression factor as a function of the energy in more detail. We leave this for future investigations.

6 From the gravity point of view, in case of largé, the pcumff should always be such that the total energy (i.e. conformal dimension)
carried by this multi particle state is smaller th&lR in order to neglect back reaction. In the case of sivalsuch as discussed here, constants
of order one become relevant, and this rough estimate is no longer suffie@ example, it turns out [7] that the maximal probability for the
number of particles of typ&, is larger thanV2, but the total energy carried by these particles is still smaller than the energy of the brane (once
constants of order one have been taken into account).
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7. Summary and outlook

We have presented the formalism to analyse the decay of unstable D-branes in the Ag8i®ackground by considering
the dual gauge theory. Our results show qualitative agreement with previous work on D-particle decay, and our work provides
a basis for further study of non-perturbative dynamical features of the correspondence.

A very relevant way of improving on our results would be to determine analytical expressions for the norms required in
Section 6. This would allow one to extend the results obtained there to large valNe#\sfo, as we have explained, due to the
non-perturbative nature of the initial sphaleron configuratiba,computation of the decay produequires information from
a regime in which bothv — oo as well as the number of particlgs— oco. Knowing the norms of states analytically should
allow us to understand this double limit. This perhaps may circumvent the need to calculate the norms of states exactly when
calculating the energy distribution in the final state. Finally, it would be interesting to understand how quantum corrections can
be incorporated into our formalism, in order to see how mbely influence the qualitative characteristics of the decay product.
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