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Abstract

We describe the utility of simulated-signal injection studies on earth-based
gravitational-wave (GW) interferometric data toward obtaining bounds on the
strength of a stochastic GW background. The existence of such a background
today is predicted by several cosmological models, but with varying strengths
and power spectra. Earth-based detectors, such as LIGO, will eventually
achieve enough sensitivity to start constraining some of these models through
these bounds. A significant part of the effort to use LIGO data to place such
bounds is to estimate the efficiency of the data analysis pipeline in detecting
the variety of predicted backgrounds. We took the data taking opportunity
offered by the first science run at LIGO to inject simulated signals of varying
strengths both in hardware as well as software. We describe here the results
obtained in searching for these injection backgrounds. We discuss especially
those results that either varied from the expected ones or are crucial to the
search for a stochastic GW background. The reasons behind the variations are
also explained.
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1. Introduction

The three Laser Interferometer Gravitational-wave Observatory (LIGO) detectors took data
simultaneously from 23 August 2001 to 9 September 2001, for the first time for scientific
data analysis. These data sets of the first science run, termed S1 for short, are being studied
for bounding a stochastic gravitational wave (GW) signal of cosmological origin. One of the
primary components in this quest is an estimate of the efficiency of a pair of interferometers in
detecting such a background. A complete end-to-end gauge of this efficiency is possible via
the injection of simulated signals in hardware that mimics the effect of a real signal by driving
the end mirrors of an interferometer, and then running search codes on the corresponding
detector outputs to check if the signals are recovered at the expected levels. As we discuss
below, however, it is difficult to inject signals in hardware for long durations. Moreover,
such injections corrupt the data and, therefore, render them unsuitable for scientific searches.
Consequently, one must supplement these with software injections that involve injecting
simulated signals in the output of a detector. The purpose of this paper is to describe how
the hardware and software injections were performed, the studies undertaken and the results
obtained in the context of stochastic signal searches in S1 data.

2. The stochastic background

A useful physical parameter, €2, that is often used in describing the strength of a stochastic
GW background is the ratio of its energy density, pgw( f), per logarithmic frequency interval
to the critical energy density, po, required to close the universe,

1 dpcw (f)
oo dinf

Whereas this is the quantity that LIGO searches aim to bound, it is not sufficient to characterize
the background that they seek. In this paper, we will assume that, on average, the stochastic
GW background is isotropic, unpolarized and stationary. These properties are easily described
in terms of the Fourier components of the strains produced by this background in a pair of
interferometers. Let /1 ( f) and T ( f) be the Fourier components of the gravitational-wave
strains /1 (¢) and h(t) at detectors 1 and 2, respectively. Then 7 »(f) are random variables
that have zero mean and that obey [1]:
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where H, is the Hubble constant, 7T is the time of observation and y is the overlap reduction
function [2]. We will take Hy = 100k90 km~' s=! Mpc~! where /¢ is a dimensionless
factor included to account for the different values of H, quoted in the literature [3].

The above correlations are satisfied if the GW strains at each interferometer are represented
by [4]
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where x;(f), yi(f), x2(f) and y,(f) are statistically independent real Gaussian random
variables, each of zero mean and unit variance.

Without any means of distinguishing a stochastic GW in a detector from the detector’s
intrinsic noise, the search for such a background involves cross-correlating the outputs of
a pair of detectors. As shown in [1], the detection signal in the case of an interferometric
pair is
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where 87 (f — f') is the finite time approximation of the Dirac delta function. Also, Q(t — ')
is the optimal filter function whose Fourier transform, Q( f), can be shown to be [1]:
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where A is a real normalization constant and P (] f|) are noise power-spectral densities
(PSDs) of detectors 1 and 2, respectively. In the event of an exact match between the GW and
filter parameters, the mean signal is
3H. f°° ap Y2USDL2ASD
20m* Jooo T fOPIASDPSD
When € is taken to be a constant in the filter, we choose A so that ¥ = QT.
The noise is given by the variance of the statistic, S:

or=Y2- 7% (8)
If we assume the cross-correlation of terrestrial noises in the two detectors to be much smaller
than that due to cosmological GW, then o2 &~ Y2, and one finds [1]
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3. Data analysis

The search for a stochastic GW background in LIGO data comprises first selecting 900 s long
simultaneous strain data sets in a pair of detectors. Each 900 s job is then subdivided into
90 s segments, which are then windowed, zero-padded and converted to the Fourier domain
using fast Fourier transform (FFT) algorithms [5]. Let I denote the 900 s long sets and J the
90 s long segments within each set. Then, the mean of the cross-correlation (CC) statistic
computed on set I can be expressed as

7= v, (1)
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and its standard deviation as
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The weighted average of the cross-correlation statistic over M 900 s data sets is

13)

where the optimal weights can be shown to be A; = o, 2 [1_]. For Q(f) = Q¢ = const, the
point estimate of €2( can then be expressed as a function of Y:

Qo=7Y/T, (14)

with a standard error equal to

M 1/2
6 = 11 (XiiAi07)
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In principle, the point estimate, Y, computed on the observed data (and, therefore, QO
given in equation (14)) should be expected to agree with that given by the theoretical mean
in equation (7). In practice, however, the two could be different owing to the likely presence
of non-Gaussianity in the detector noises, incompleteness in the knowledge of the transfer
functions that are used in translating the GW strain in a detector’s arms to the data output
of that detector and the effects of conditioning the data while executing a search. To check
how much these factors affect our results, we do simulated signal injections and look for
deviations between the results of searches conducted on the injection data and those expected
theoretically. This is the topic of discussion in the following section.

15)

4. Injection of simulated signals

Studies such as upper limits are partly based on the Monte Carlo simulations with signals
injected into the datastream in software. A more accurate estimate of detection efficiency
can be obtained by comparing these signals to the ones injected into the detectors. The latter
are called ‘hardware’ injections and serve to test the entire detection pipeline, right from the
movement of the mirrors to analysing the interferometric output.

There are several advantages of injecting simulated signals and studying how they affect
a search statistic. First, they serve as a check on the accuracy of the calibration methods being
applied to infer the strain in an interferometer. Second, they can gauge the timing accuracy of
the strain data. Third, they aid in the study of inter-detector cross-correlated noise. Finally,
given that stochastic signal injections are of long duration, these injections allow us to learn
about systematic errors that build up on long timescales.

Typically, a source model is used to simulate the signal at a detector. For instance, various
cosmological models could be used to predict the power spectrum of the signal due to a
stochastic background of cosmological gravitational waves. At the current level of detector
sensitivities, it is unlikely that we can find a stochastic signal even if it were with a strength
predicted by some of the most optimistic cosmological models [6, 7], and in spite of a year-long
integration time. Nevertheless, with ever improving sensitivities, we can start obtaining useful
observational upper bounds on the background and, therefore, begin constraining theoretical
models.

In order to test the ability of our stochastic data analysis pipeline, one can imagine
injecting a signal (hardware or software) over the full length of a data set and then applying
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search codes to look for the signal. The longer the run, the tougher the challenge of simulating
and injecting the signal, especially in hardware. Moreover, whereas it is possible, in principle,
to do such injections in software without corrupting the original copy of the data, hardware
injections necessarily alter the data and, therefore, render the data unsuitable to do science
with. Nevertheless, given the utility of hardware injections, we decided to perform them
immediately preceding and following S1 at LIGO, and for durations relatively shorter than the
run itself.

Hardware injections need to be of short duration owing to the fact that long injections can
build up non-linearities within the arm cavities that eventually drive the detector out of lock.
Shorter injections, on the other hand, require that the strength of the simulated signal be large
enough to allow detection with the shortened integration times. The problem with this is that
large signals can also drive a detector out of lock. For S1, it was found that signals with an
SNR of O(10) and duration of 1024 s could be injected without breaking lock. What kind of
Q2 did these signals correspond to? We address this question below.

4.1. Determining injection scales

To produce simulated signals, we first create two reference time-series, /;(¢) and h,(t), by
inverse-Fourier transforming the frequency components in equation (3), after setting 2 equal
to 1 there. As shown by equation (3), this does not require knowledge of the noise PSD of
either detector. Indeed, in different pairs of interferometers the same pair of signal strains will
produce varying SNRs. To inject simulated signals with a given SNR, one uses equation (10)
to estimate the correct 2 corresponding to the noise PSDs of the two detectors. This is
especially easy when €2 is taken to be a constant, such as here. Let the value of the required
Q be Q. Then, the corresponding strains are the reference strains (i.e., strains with Q2 = 1)
scaled up by /. The injection scripts allow for operating with the same reference waveforms
(created with = 1), but injected with different scales /9. While allowing us to perform
the injections, this facility saves on both the computing time and the disk space required for
creating individual time-series for a variety of €2.

As shown by equation (10), for weak signals (i.e., small €2), the SNR scales linearly with
Q. For strong signal injections, the approximate expression for the SNR given in equation (10)
does not hold: the simulated signal itself becomes a significant fraction of the total detector
strain and, therefore, the actual SNR asymptotes to a constant value for large €2. This behaviour
of the SNR as a function of €2 is shown in figure 1 for the Harrison—Zel’dovich spectrum, with
Q = Q. This figure also suggests a wide range of values of €2, that correspond to SNRs from
less than 1 to a little above 10. For S1 injection, the choices of €2 were based on such a range
of expected SNRs, and are listed in table 1.

Codes are available in the LIGO Algorithm Library (LAL) [8] for simulating stochastic
GW signals. A simulated signal is a timeseries with units of strain. Injecting it in hardware
or software requires convolving it with detector transfer functions to mimic the effect of the
interaction between an astrophysical GW and the detector. We now describe these procedures
below.

4.2. Hardware injections

Hardware injection of a simulated signal uses the excitation engine in a detector’s global
diagnostic system (GDS) to swing the end test mass(es) (or end mirror(s)) by applying a
time-varying voltage to the driving coil of the mirror(s). A simulated signal is used by the
injection script to generate the driving coil voltage [9]. Mimicking the effect of an impinging
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Figure 1. Plot of the expected SNR versus ¢ for simulated sensitivities of a Hanford—Livingston
detector pair.

Table 1. The values of Q2 and the corresponding scales of the signals that were injected in
hardware (and software) in the H2-L1 pair during S1.

Qo Injection scale
625 25
3906.25 62.5

24414.0625  156.25

GW as closely as possible requires moving the end test masses in both the X and Y arms in
tandem to simulate a differential mode motion. A limited scheme involves injection of the
simulated signal in only one of the two arms (say, the X arm). In either case, it is required that
the simulated signals, 711,2( f), be convolved with the pendulum transfer function of the end
test mass(es). A pendulum transfer function [10] depends on its resonance frequency, fy, and
its amplitude at f = 0, fo, the often termed DC amplitude, Ao.? In the frequency domain,
this transfer function is defined as

2
T(f) =54, (16)
0

Thus, the injected signals, 0; »(¢), are the inverse Fourier transforms of the following quantities:

012(f) := Tia(Hhia(f), (17)
for detectors 1 and 2, respectively.

° The pendulum frequency and DC amplitude [10] and, therefore, the pendulum transfer function may vary from one
science run to another. These data are, therefore, announced beforehand on the calibration homepage of the detectors.
Typically, the pendulum DC amplitude is supplied to the theorist in units of nanometre per count. But equation (16)
assumes that the length of the interferometer has been accounted for in order to derive its dimensionless relative, Ao,
in strain per count.
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4.3. Software injections

This type of injection is done into the detector output, which is whitened. These data are a
time series and have units of count. Thus, the simulated signals, 711,2( f), must be convolved
with a detector’s whitening function before they can be injected into the respective detector
outputs'®. The point of injection is decided by the objective of an analysis. For example, if
one wants to study the effect of regression of line-harmonics on a potential GW signal, then
one injects the whitened simulated GW signal into the whitened detector output before the
lines are regressed, say, in the dataConditioning API .

If the (frequency domain) whitening functions for detectors 1 and 2 are W, (f)
respectively, then the injected strains are also whitened using the same functions:

012(f) i== Wia(H)hia(f). (18)

The above whitened frequency series are inverse Fourier transformed to obtain the real time-
series 0] »(t), which are then injected in software into the whitened detector outputs.

5. Results

The application of our search codes on the detector output containing the hardware injections
allowed us to validate our data analysis pipeline by demonstrating the ability to detect a
coincident excitation of a pair of detectors by simulated waveforms that mimic the properties
of the real background, albeit with a larger SNR. We now discuss the specifics of the results
we obtained.

5.1. Point estimates

The plots of the point estimates of €2, for the hardware-injection data are shown in figure 2.
Table 2 summarizes the search results for each of the hardware injections. Note that in each
case, the actual 2 falls within 90% confidence limit (CL) error bars of the (negative of the)
point estimates. The odd aspect of these H2-L1 injections is that the point estimate is the
negative of a value close to the injected one. A priori there can be several reasons for this
observation. One possibility is that the simulation codes had a relative sign error between the
two theoretical strain expressions. Another possibility is that the overlap reduction function
being used by the search codes is erroneous up to a sign.

A thorough test of the codes and other aspects of the simulations were conducted to
address this issue. Indeed, the same codes were used (but with whitening functions instead
of the pendulum transfer functions) to simulate signals for software injections. These signals
were then injected on the S1 ‘playground’ data set aside for testing purposes. The point
estimates on the software-injection data did turn out positive. These are plotted in figure 3.
The software-injection results helped in ruling out some of the possible explanations for
the negative point estimates found in hardware injections, such as those mentioned above.
This and several other tests showed that the sign error, in fact, originated from the different
calibration function signs being used at the detector sites in Livingston and Hanford. The cure
for this error is simple. It involves tracking the phase of the calibration function accurately at
the two sites. This tracking has been implemented since.

10 The whitening functions are also made available on the calibration homepage of the detectors.

"I The dataConditioningAPI is a toolbox in the LIGO data analysis system; it comprises several modules for
conditioning the data. It includes, among others, modules for computing the running mean and variance, as well as
for resampling the data.



S684

S Bose et al

1 2 3 4 5 6 7 8 9 10
Segment number
2000
al- i
—-2000 - -

Segment number

Figure 2. Plot of the 10 CC statistic values (shown by asterisks and connected by a zig-zag curve),
the point estimate of ¢ (dark solid line), 90% CL error bars (dashed lines), and the negative of
the actual value of € (faint solid line) of simulated signals injected in hardware simultaneously
in L1 and H2 during S1. Whereas ¢ is 24414.0625 in the top plot, it is 3906.25 in the bottom
plot.

Table 2. The values of hardware injected €2, and the point estimates of 2 obtained by applying
the search codes to the injected data in a detector pair during S1.

Detector pair  Injected €29 Point estimate

H2-L1 3906.25 —4.562638 x 10°
H2-L1 24414.0625 —2.117348 x 104
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Figure 3. Plot of the 10 CC statistic values (shown by asterisks and connected by a zig-zag curve),
the point estimate of € (dark solid line), 90% CL error bars (dashed lines) and the actual value of
Qo (faint solid line) of simulated signals injected in software simultaneously in L1 and H2 during
S1. Whereas Q2 is 24 414.0625 in the top plot, it is 3906.25 in the bottom plot.

5.2. Time-shift analysis

Apart from obtaining point estimates for zero time-shift between the data sets from a pair of
detectors, our codes also have the functionality to compute estimates as a function of a non-
vanishing time-shift. The expression for the cross-correlation statistic given in equation (5)
can be generalized to the case where the data from one of the detectors are time-shifted by an
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Figure 4. Plots of the time-shift analysis of a simulated signal injected in software in L1 and H2
playground data from S1. The top plot is for data with injected Q¢ = 24 414.0625, whereas the
bottom plot is for data with injected 29 = 3906.25. The blue circles are the point estimates of
Y (7)/T measured at discrete values of the time-shift, r. Its value at T = O gives the estimated
value of €2p. The continuous curve shows the expected behaviour.

amount t with respect to the data from the other. The resulting statistic is

T/2 T/2
Y(r):/ dt/ dt'hi(t +T)hy(tHO(t — 1)

T/2 T/2

= / df / df'sr(f — fORT(Hh(fHOf) e, (19)
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The expected value of the above quantity is computed by using equation (2) to be
3HZT

Y =
® 2052

f dfIFI73 v AfDQULDO(f) e, (20)

The plots of Y () for two different values of Q2 = € are shown by the continuous curves in
figure 4. These plots show a remarkably good agreement with the estimated values computed
on injected data (shown by the circles). Note that the expected values (shown by the continuous
curve) fall within the error bars of almost all the measured points. Moreover, the resolution of
the plots rules out the presence of timing errors of more than several microseconds.

6. Discussion

While the studies we have conducted so far with simulated signals are not as exhaustive as
those associated with the Monte Carlo simulations, they have nevertheless served a useful
purpose in unravelling errors in some parts of our data analysis pipeline or validating the
functioning of others. These studies were also limited in that they explored only the ‘flat’
Harrison—Zel’dovich spectrum, with €2 = const. Future studies will aim to overcome these
shortcomings.
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