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ABSTRACT

We study four-point correlation functions of 1
2 -BPS operators in N = 4 SYM which are

dual to massive KK modes in AdS5 supergravity. On the field theory side, the procedure of
inserting the SYM action yields partial non-renormalisation of the four-point amplitude for
such operators. In particular, if the BPS operators have dimensions equal to three or four,
the corresponding four-point amplitude is determined by one or two independent functions
of the two conformal cross-ratios, respectively. This restriction on the amplitude does not
merely follow from the superconformal Ward identities, it also encodes dynamical informa-
tion related to the structure of the gauge theory Lagrangian.
The dimension 3 BPS operator is the AdS/CFT dual of the first non-trivial massive Kaluza-
Klein mode of the compactified type IIB supergravity, whose interactions go beyond the
level of the five-dimensional gauged N = 8 supergravity. We show that the correspond-
ing effective Lagrangian has a surprisingly simple sigma-model-type form with at most two
derivatives. We then compute the supergravity-induced four-point amplitude for the dimen-
sion 3 operators. Remarkably, this amplitude splits into a “free” and an “interacting” parts
in exact agreement with the structure predicted by the insertion procedure. The underlying
OPE fulfills the requirements of superconformal symmetry and unitarity.
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1 Introduction

In the past few years the holographic relation between supergravity (string) theories on
AdS backgrounds and certain conformal field theories living on the corresponding AdS
boundaries has been studied and tested by various means. The most typical example is the
N = 4 super-Yang-Mills (SYM) theory whose conjectured holographic dual is the type IIB
supergravity (string) theory on AdS5×S5. Our current understanding of this basic example
is primarily based on superconformal kinematics, as the isometry group of the supergravity
theory coincides with the superconformal symmetry group of its dual. In this respect it is
highly desirable to learn how to separate the actual dynamical statements from those due
to superconformal symmetry and to subsequently put the former to the test.

The string spectrum on the AdS5 × S5 background is presently unavailable. Thus, our
current studies are confined to AdS5 supergravity that is dual to the limit of the gauge
theory where the ’t Hooft coupling λ = g2

Y MN is infinite and the rank N of the gauge
group SU(N) is large. Compactifying type IIB supergravity on the five-dimensional sphere
results in an infinite tower of (generically massive) Kaluza-Klein (KK) modes. According
to the superconformal kinematics, their field-theory duals are the so-called 1

2 -BPS opera-
tors. They form short superconformal multiplets whose lowest-weight states are annihilated
by half of the Poincaré supercharges. The conformal dimensions and more generally, the
two- and three-point correlation functions of the 1

2 -BPS operators are protected from quan-
tum corrections, but the four-point functions are not. The OPE spectrum of two 1

2 -BPS
operators is rich, coupling-dependent and generically contains unprotected (long) super-
multiplets. Thus, the four-point correlators of 1

2 -BPS operators encode some genuinely
dynamical information and hence are interesting objects to study both in field theory and
in the supergravity approximation.

The superconformal kinematics puts constraints on the four-point amplitude in the form
of superconformal Ward identities. Their solution admits a functional freedom providing a
window for the non-trivial dynamics. Further restrictions on the correlation functions can
be obtained by a dynamical mechanism. It consists in generating the quantum corrections to
the amplitude by insertion of the SYM action (the insertion procedure) and has the effect
of reducing the functional freedom in the amplitude (partial non-renormalisation). This
procedure is purely field-theoretic and it relies on the existence of a Lagrangian description
of the theory. However, its prediction, i.e. the particular form of the amplitude compared to
the general solution of the superconformal Ward identities, can be confronted with concrete
supergravity-induced correlators computed in AdS5 supergravity. This is one of the most
probing tests of the AdS/CFT duality available today.

Our concrete knowledge of the supergravity-induced four-point amplitudes has up to
now been exhausted by a single example, the correlator of 1

2 -BPS operators of the lowest
allowed dimension 2. The corresponding supermultiplet is rather special, as it contains the
conserved R symmetry current and the stress tensor of the N = 4 theory. It is dual to
the graviton multiplet of the gauged N = 8 five-dimensional supergravity comprising the
massless KK modes of the type IIB supergravity compactification.

Clearly, to start bringing out the flavor of the more involved ten-dimensional physics one
has to go beyond the massless sector of the theory and obtain new examples of supergravity-
induced four-point correlators involving BPS operators of higher dimension. In this paper we
make a first step in this direction by studying the general form of the four-point amplitude
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for 1
2 -BPS operators of dimension 3 and then comparing it to an explicit supergravity

computation.
As mentioned earlier, this time we cannot restrict ourselves to the gauged N = 8 super-

gravity but should rather start from the full ten-dimensional theory. The 1
2 -BPS operators

of dimension k are AdS/CFT dual to the KK modes sk transforming in the irrep [0, k, 0] of
SO(6). To compute the corresponding supergravity-induced four-point amplitude one first
has to find the action for the fields sk up to quartic order. This is a hard problem primarily
due to the absence of a suitable Lagrangian formulation of the type IIB supergravity (the
well-known self-duality problem). One way to solve it is to expand the covariant equations
of motion of type IIB supergravity around the background solution and find the quadratic
and cubic corrections to the free AdS equations of motion. Using the freedom of perturba-
tive field redefinitions, one is able to recast these equations into a Lagrangian form. This
approach has lead to an effective action in AdS5 space which allows the computation of four-
point correlators for 1

2 -BPS operators of arbitrary dimension (see Section 4 for references
and a brief review). The effective action has the following remarkable properties:

• the quartic couplings contain terms with four and two derivatives only;

• it admits a consistent truncation to the massless graviton multiplet and the corre-
sponding action coincides with that of the gauged N = 8 five-dimensional supergravity
on AdS5;

• the quartic couplings corresponding to the so-called extremal or subextremal correla-
tors vanish;

• the four-point correlation functions in the boundary CFT derived from this action
obey the predictions of the field-theoretic insertion procedure.

The latter property is probably the most non-trivial one. It has so far been verified for
1
2 -BPS operators of dimension 2. One of the principal aims of the present paper is to carry
out a similar test in the case of dimension 3. Again we find a remarkable agreement. One of
the surprising features of the supergravity-induced amplitude in both cases is the splitting
into a “free” and an “interacting” parts, exactly following the field theory pattern where
the free amplitude is supposed to receive quantum corrections. This is indeed unexpected,
since in supergravity there is no analog of the coupling constant which makes the splitting
natural in field theory. All this is not only a non-trivial check of the effective supergravity
action but it also supports the field-theoretic arguments for the partially non-renormalised
form of the amplitude. Last but not least, it provides strong evidence for the AdS/CFT
duality.

It should also be pointed out that after specifying the explicit representation content
of the fields involved, the resulting quartic effective action turns out to be rather simple.
The quartic couplings with four-derivative vertices actually vanish, at least in the case we
consider here. In other words, the action is of the sigma-model type. Therefore it would be
highly desirable to develop a systematic superspace procedure for the construction of the
supergravity effective action. This could eventually unravel its hidden symmetry structure
and simplicity.

Another interesting problem is to understand the relationship between four-point am-
plitudes of 1

2 -BPS operators of different dimensions. Indeed, adding at least one KK mode
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to the massless graviton multiplet causes the whole infinite tower of massive KK modes to
emerge. In other words, all the higher KK modes are tightly bound together in a unique
interacting Lagrangian. It seems plausible that this would have implications for the corre-
lators derived from such a Lagrangian.

Finally, one can reverse the logic of passing from supergravity to gauge theory and ask
the question to what extent are the quartic (contact) terms in the effective action (or even
the whole action) fixed by requiring the corresponding four-point amplitude to satisfy the
restrictions imposed by the insertion procedure. We hope to come back to this question in
the future.

The paper is organised as follows. In Section 2 we discuss the general form of the four-
point amplitude of 1

2 -BPS operators based on the conformal, R and crossing symmetries.
In Section 3 we provide field-theoretic arguments leading to the partially non-renormalised
form of the amplitude. We show that for the “quantum part” of the four-point correlator
of dimension 3 operators the insertion formula predicts a single function of the conformal
cross-ratios instead of three such functions. In Section 4 we compute the corresponding
supergravity-induced four-point amplitude and in Section 5 we verify the CFT predictions
from Section 3. Finally, in Section 6 we perform a partial OPE analysis of the amplitude
and obtain the large N corrections to the scaling dimensions of the long multiplets. The
computational details are gathered in several appendices.

2 General four-point amplitudes

According to the AdS/CFT duality conjecture [1, 2, 3], the KK modes of the AdS5 × S5

compactification of type-IIB supergravity are mapped into 1
2 -BPS multiplets of the N = 4

SYM theory whose lowest components are scalar fields OI of conformal dimension k ≥ 2 in
the irrep [0, k, 0] of the R symmetry group SO(6) ∼ SU(4). For k = 2 this is the so-called
stress-tensor multiplet corresponding to the massless AdS supergravity multiplet. For k ≥ 3
we are dealing with non-trivial (massive) KK modes. In this section we discuss the general
structure of the correlator of four identical operators OI , predicted on the basis of conformal,
R and crossing symmetry. In particular, we determine the number of independent conformal
invariant functions which specify such correlators for k = 2, 3, 4 and we outline a method
to do this for general k.

The composite operators OI with a suitably normalised two-point function are of the
form

OI = CI
i1···ikTr(φi1 · · ·φik) . (2.1)

Here φi, i = 1, . . . , 6 are the N = 4 SYM scalars and CI
i1···ik

are traceless symmetric tensors

obeying the normalisation condition CI
i1···ik

CJ
i1···ik

= δIJ , which describe the irreducible
representations [0, k, 0].

The R symmetry content of the OPE of two identical operators OI1 and OI2 is deter-
mined by the corresponding tensor product decomposition

[0, k, 0] × [0, k, 0] =

k
∑

p=0

k−p
∑

q=0

[q, 2k − 2q − 2p, q] . (2.2)
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The total number of terms in the right-hand side of eq.(2.2) is 1
2 (k+1)(k+2). According to

the general arguments in [4]-[7], all the OPE channels with q = 0, 1 contain only protected
(BPS or semishort) operators.

The decomposition (2.2) provides the basis for an OPE expansion of the four-point
amplitude 〈O(1)O(2)O(3)O(4)〉. However, in field theory there exists a different basis which
naturally arises by connecting the four points with free propagators (Wick contractions).
The free propagator for the elementary N = 4 SYM scalars is

〈φi(x1)φ
j(x2)〉 =

δij

x2
12

. (2.3)

A convenient way of keeping track of the SO(6) indices is to project them with “harmonic
variables”, i.e. a complex vector ui satisfying the conditions

uiui = 0 , uiūi = 1 . (2.4)

This vector provides a harmonic description of the coset space SO(6)/SO(2)×SO(4).
Indeed, the vector ui subject to the constraints (2.4) and modulo U(1) ∼ SO(2) phase
transformations contains exactly the eight real coordinates of the manifold. With its help
we can project the operator OI onto the highest-weight state of the representation [0, k, 0]:

O(k) = ui1 · · · uikTr(φi1 · · · φik) . (2.5)

Here the Dynkin label k is identified with the U(1) charge of the projection (2.5) (assuming
that the vector ui carries U(1) charge +1). Further, using two copies of the harmonic
variables, one for each point, we can project the propagator (2.3):

〈φ(1)φ(2)〉 =
ui

1u
i
2

x2
12

≡ (12)

x2
12

=
(21)

x2
21

. (2.6)

Now we can start constructing four-point functions by connecting pairs of points by the
propagators (2.6). The simplest case corresponds to k = 1, i.e., to only one propagator
leaving or entering each point. In this way we find the three basic propagator structures
depicted in Figure 1:

C

4

BA

2

1 3

Figure 1: Basic contractions

The corresponding expressions involving four sets of space-time and harmonic variables
are:

A =
(12)(34)

x2
12 x2

34

, B =
(14)(23)

x2
14 x2

23

, C =
(13)(24)

x2
13 x2

24

. (2.7)

4



Symbolically, the propagator basis for a four-point amplitude with arbitrary k can be
obtained by the following “binomial expansion”

(A + B + C)k →
∑

AmBnC l . (2.8)

Here the sum goes over the integers (m,n, l) such that m ≥ n ≥ l ≥ 0 and m + n + l = k.
For a given set (m,n, l) 1 the permutations of A,B,C correspond to all possible graphs in
the equivalence class obtained by crossing symmetry. It is then clear that the number of
such permutations is equal to six if m 6= n 6= l, or to three if any two of the labels coincide
but are different from the third, and to one if m = n = l. For example, in the case k = 2 we
obtain six graphs combined into two crossing-equivalence classes (2, 0, 0) and (1, 1, 0) and
depicted in Figure 2.

4

(2,0,0)

(1,1,0)

1 3

2

Figure 2: The case k = 2

The expressions of, e.g., the first graphs in each line in Figure 2 read:

AA =
(12)2(34)2

x4
12 x4

34

= 1i11j12i22j23i33j34i44j4

δ
{i1
i2

δ
j1}
j2

δ
{i3
i4

δ
j3}
j4

x4
12 x4

34

,

AB =
(12)(23)(34)(41)

x2
12 x2

23 x2
34 x2

41

= 1i11j12i22j23i33j34i44j4

δ
{i1
{i2

δ
j1}
{i4

δ
{i3
j4}

δ
j3}
j4}

x2
12 x2

23 x2
34 x2

41

, (2.9)

where ni is a shorthand for the harmonic ui
n at point n. Note that the traceless symmetri-

sation denoted by {} is automatic, given the fact that the harmonic variables commute and
satisfy the defining conditions (2.4). Since the harmonics at each point are independent
variables, we can remove them and thus obtain the explicit tensor structure made out of
Kronecker deltas.

Each of the six propagator structures in Figure 2 can be multiplied by an arbitrary
function of the conformal invariant cross-ratios

s =
x2

12 x2
34

x2
13 x2

24

, t =
x2

14 x2
23

x2
13 x2

24

.

In this way we obtain the most general four-point amplitude for operators O(2) with the
required SO(6) and conformal transformation properties:

〈O(2)(x1)O(2)(x2)O(2)(x3)O(2)(x4)〉
1The labels (m, n, l) should not be confused with the Dynkin labels [m, n, l].
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= a1(s, t)
(12)2(34)2

x4
12 x4

34

+ a2(s, t)
(13)2(24)2

x4
13 x4

24

+ a3(s, t)
(14)2(23)2

x4
14 x4

23

+ b1(s, t)
(13)(14)(23)(24)

x2
13 x2

14 x2
23 x2

24

+ b2(s, t)
(12)(14)(23)(34)

x2
12 x2

14 x2
23 x2

34

+ b3(s, t)
(12)(13)(24)(34)

x2
12 x2

13 x2
24 x2

34

.(2.10)

We still need to impose the full crossing symmetry of this correlator. This is very easy to
do, since the crossing properties of the structures in Figure 2 are obvious. Thus, the three
coefficients ai in (2.10) correspond to the crossing class (2, 0, 0) and transform into each
other:

a1(s, t) = a3(t, s) = a1(s/t, 1/t)

a2(s, t) = a2(t, s) = a3(s/t, 1/t) ; (2.11)

the same applies to the coefficients bi from the class (1, 1, 0):

b1(s, t) = b3(t, s) = b1(s/t, 1/t)

b2(s, t) = b2(t, s) = b3(s/t, 1/t) . (2.12)

Thus, the crossing invariant correlator for O(2) is in general determined by two independent

functions, one of the ai’s and one of the bi’s.
Having explained the case k = 2 in detail, we can immediately generalize to the main

case of interest in this paper, k = 3 (or to any higher value of k). The decomposition of the
tensor product (2.2) reads

[0, 3, 0]50 × [0, 3, 0]50 = [0, 0, 0]1 + [0, 2, 0]20 + [0, 4, 0]105

+ [0, 6, 0]336 + [2, 0, 2]84 + [2, 2, 2]729 (2.13)

+ [1, 0, 1]15 + [1, 2, 1]175 + [3, 0, 3]300 + [1, 4, 1]735 .

The subscripts indicate the dimension of the corresponding irrep. The irreps in the first two
lines of eq.(2.13) are symmetric and those in the third line are antisymmetric in the indices
I1, I2. Thus, the corresponding OPE will have ten different SO(6) channels. Note that
among them only three may contain unprotected operators: [0, 0, 0], [0, 2, 0] and [1, 0, 1].

In the propagator basis the ten structures are organised in three crossing-equivalence
classes, (3, 0, 0), (2, 1, 0) and (1, 1, 1), depicted in Figure 3. The most general SO(6) and
conformally covariant four-point function for the operators O(3) is of the form

〈O(3)(x1)O(3)(x2)O(3)(x3)O(3)(x4)〉

= a1(s, t)
(12)3(34)3

x6
12 x6

34

+ a2(s, t)
(13)3(24)3

x6
13 x6

24

+ a3(s, t)
(14)3(23)3

x6
14 x6

23

+ b1(s, t)
(12)2(34)2(13)(24)

x4
12 x4

34 x2
13 x2

24

+ b2(s, t)
(12)2(34)2(14)(23)

x4
12 x4

34 x2
14 x2

23

+ b3(s, t)
(14)2(23)2(13)(24)

x4
14 x4

23 x2
13 x2

24

+ b4(s, t)
(14)2(23)2(12)(34)

x4
14 x4

23 x2
12 x2

34

+ b5(s, t)
(13)2(24)2(12)(34)

x4
13 x4

24 x2
12 x2

34

+ b6(s, t)
(13)2(24)2(14)(23)

x4
13 x4

24 x2
14 x2

23

+ c(s, t)
(12)(13)(14)(23)(24)(34)

x2
12 x2

13 x2
14 x2

23 x2
24x

2
34

. (2.14)
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(1,1,1)

(2,1,0)

(3,0,0)

1

2

3

4

Figure 3: The case k = 3

Crossing symmetry imposes relations among the functions ai(s, t), bi(s, t). For the coeffi-
cients ai they are the same as in (2.11), for the coefficients bi they are:

b2(s, t) = b1(s/t, 1/t), b3(s, t) = b1(t, s), b4(s, t) = b1(t/s, 1/s)

b5(s, t) = b1(1/s, t/s), b6(s, t) = b1(1/t, s/t) ; (2.15)

finally, the coefficient c(s, t) must obey the symmetry conditions

c(s, t) = c(t, s) = c(s/t, 1/t) . (2.16)

Thus, after taking crossing symmetry into account we have three independent coefficient

functions, for instance, a1(s, t), b1(s, t) and c(s, t), one for each equivalence class in Figure
3. They can be split into a free field theory contribution and a quantum correction part. In
free field theory the coefficient functions for the canonically normalised operators are given
by (bi and c have been calculated in the large N limit)

ai = 1 , bi =
9

N2
, c =

18

N2
. (2.17)

As will be shown in the next section, the dynamics of the N = 4 SYM theory encoded in
the insertion formula implies further non-trivial algebraic relations among the “quantum
parts” of these coefficient functions leaving a single function of the conformal cross-ratios,
e.g. a2(s, t), as the only undetermined functional freedom.
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The method developed in this section and explicitly applied to k = 2, 3 can easily be
generalised to any value of k.2 As explained earlier, the number of crossing-equivalence
classes and thus of independent functions in the amplitude corresponds to the possible
splittings (m,n, l) of k. We mention that for k = 4 there are four such splittings: (4, 0, 0),
(3, 1, 0), (2, 2, 0) and (2, 1, 1) with multiplicities 3, 6, 3 and 3, respectively.

Concluding this section we point out that the discussion of AdS supergravity in Section
4 requires a different set of harmonic variables, this time on the coset space SO(6)/SO(5) ∼
S5. In contrast to the four-dimensional complex manifold SO(6)/SO(2)×SO(4) considered
in this section, S5 is a real five-dimensional manifold. Thus, we are forced to describe
the same representations of SO(6) ∼ SU(4) in terms of the complex harmonics ui in the
context of CFT and in terms of the real ones on S5 in the context of AdS supergravity.
The transition from one description to the other is not direct, we need to exhibit the index
structure of the representations. To this end we can use the tensor CI defined in (2.1).
Take, for instance, the case k = 2 and consider the four-point block AA (2.9). Removing
the harmonics and then converting the pairs of vector indices ij into indices I of the irrep
20, we obtain

(AA)I1I2I3I4 = CI1
i1j1

CI2
i2j2

CI3
i3j3

CI4
i4j4

δ
{i1
i2

δ
j1}
j2

δ
{i3
i4

δ
j3}
j4

x4
12 x4

34

≡ δ12δ34

x4
12 x4

34

. (2.18)

In what follows we will systematically use a compact notation for the tensor structures
where the indices I1, I2, I3, I4 will be replaced by 1234. In (2.18) the tensor is just the
identity δ12δ34. For the block AB we find

(AB)I1I2I3I4 = CI1
i1j1

CI2
i2j2

CI3
i3j3

CI4
i4j4

δ
{i1
{i2

δ
j1}
{i4

δ
{i3
j4}

δ
j3}
j2}

x2
12 x2

23 x2
34 x2

41

≡ T 1234

x2
12 x2

23 x2
34 x2

41

. (2.19)

For k = 3 we need three types of tensors:

δ12δ34 = CI1
ijkC

I2
ijkC

I3
mlnCI4

mln ,

C1234 = CI1
ijkC

I2
ijsC

I3
mlkC

I4
mls ,

S1234 = CI1
ijkC

I2
imnCI3

jmsC
I4
kns , (2.20)

and their permutations. The tensor S1234 is totally symmetric, while C1234 obeys the
following symmetry relations

C1234 = C2143 = C3412 = C4321 .

In this notation eq.(2.14) becomes

〈O1(x1)O2(x2)O3(x3)O4(x4)〉

= a1(s, t)
δ12δ34

x6
12 x6

34

+ a2(s, t)
δ13δ24

x6
13 x6

24

+ a3(s, t)
δ14δ23

x6
14 x6

23

+ b1(s, t)
C1234

x4
12 x4

34 x2
13 x2

24

+ b2(s, t)
C1243

x4
12 x4

34 x2
14 x2

23

+ b3(s, t)
C3214

x4
23 x4

14 x2
13 x2

24
2A different counting method as well as a general formula for the number of independent functions has

been given in [8].
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+ b4(s, t)
C3241

x4
23 x4

14 x2
34 x2

12

+ b5(s, t)
C4231

x4
24 x4

13 x2
12 x2

34

+ b6(s, t)
C4213

x4
24 x4

13 x2
14 x2

23

+ c(s, t)
S1234

x2
12 x2

13 x2
14 x2

23 x2
24 x2

34

. (2.21)

3 The insertion formula and partial non-renormalisation

Further, dynamical information about the four-point correlators can be obtained by using
a well-known quantum field theory procedure, the insertion of the action as an extra fifth
point.3 Let us consider the correlator

〈O(k1)O(k2)O(k3)O(k4)〉 (3.1)

of four, a priori different, 1
2 -BPS operators O(ki) in the SO(6) irreps [0, ki, 0]. A particular

case is obtained by setting k = 2, and this is the so-called stress-tensor multiplet. Its
θ expansion contains the on-shell N = 4 SYM Lagrangian at the level (θ)4. Now, the
derivative of the correlator (3.1) with respect to the YM coupling g2 can be represented in
the form

∂

∂g2
〈O(k1)O(k2)O(k3)O(k4)〉 ∝

∫

d4x0d
4θ0 〈O(2)(0)O(k1)O(k2)O(k3)O(k4)〉 . (3.2)

The integration over the insertion point 0 with a specially chosen superspace measure cor-
responds to a “superaction” in the terminology of Ref. [10]. In principle, the smallest
invariant subspace of N = 4 superspace, suitable for describing 1

2 -BPS multiplets, involves
8 = 16/2 θ’s, while the integration in (3.2) goes over only four θ’s. The point however is
that the operator O(2) is not just 1

2 -BPS short but it is even “ultrashort” in the terminology
of [11]. This means that its θ expansion effectively terminates at four θ’s, all the higher-
order terms being total space-time derivatives of the lower terms. This explains why the
integration in (3.2) is supersymmetric. Note also that the measure d4θ0 in (3.2) involves
only chiral θ’s (left-handed, or right-handed in the conjugate form).

Using the N = 4 version [12] of harmonic superspace [13], one can show [14, 15, 16, 8]
that the five-point correlator 〈O(2)(0)O(k1)O(k2)O(k3)O(k4)〉 gives rise to a nilpotent super-
conformal covariant. Nilpotent covariants for 1

2 -BPS operators do not exist if the number
of points n ≤ 4. Indeed, the 1

2 -BPS condition tells us that at each point such a covariant
should depend on (a particularly chosen, or harmonic-projected) half of the θ’s. Since this
object must be covariant under two full supersymmetries (Poincaré and special conformal),
for n ≤ 4 there exist no invariant combinations of the θ’s and hence no way to form nilpo-
tent covariants. However, starting with n = 5 this becomes possible. On the other hand,
since the θ measure in (3.2) is chiral, the θ expansion of the five-point correlator must start
with four left-handed θ’s. So, it must be precisely of the nilpotent type.

Although it is in principle known how to construct such nilpotent covariants [14], the
explicit expression in N = 4 harmonic superspace is rather complicated and is currently
not available. Instead, it is much easier to carry out the insertion procedure in N = 2
harmonic superspace. The idea is to project the N = 4 composite operators O(ki) on
N = 2. In particular, one finds N = 2 projections which involve only hypermultiplets. All

3In the context of N = 4 SYM theory this procedure was first considered in [9].
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the coefficient functions of the initial N = 4 correlator can be read off from a few such
hypermultiplet projections. The advantage of this N = 2 approach is that the explicit
form of the corresponding five-point nilpotent covariants is much simpler. A further, and
even more important feature of the N = 2 formalism, is the possibility to formulate both
ingredients of the N = 4 theory (N = 2 SYM and hypermultiplets) off shell and to develop
a straightforward quantisation scheme [17]. Thus, formal manipulations like the insertion
of the action (3.2) become well justified.

The simplest case ki = 2, i.e., the four-point correlator of stress-tensor multiplets, has
been treated in detail in Refs. [15, 18, 19] in the N = 2 framework (see also Appendix A
for a short summary). The important result is that this correlator is determined by a single
function of the conformal cross-ratios, and not by two functions, as predicted by the general
analysis in Section 6. Conversely, this N = 2 result can be translated back in terms of the
N = 4 insertion procedure. In order to be consistent with the N = 2 analysis, the relevant
term in the corresponding five-point nilpotent covariant in (3.2) must have the following
general form (after setting θ1 = . . . = θ4 = 0):

〈O(2)(0)O(2)O(2)O(2)O(2)〉 = R2222 (θ0)
4 F (x0, . . . , x4) (3.3)

with

R2222 =
(12)2 (34)2

x4
12 x4

34

s +
(13)2(24)2

x4
13 x4

24

+
(14)2(23)2

x4
14 x4

23

t +
(13)(14)(23)(24)

x2
13 x2

14 x2
23 x2

24

(s − t − 1)

+
(12)(14)(23)(34)

x2
12 x2

14 x2
23 x2

34

(1 − s − t) +
(12)(13)(24)(34)

x2
12 x2

13 x2
24 x2

34

(t − s − 1)

=
1

x2
13 x2

24

[

(12)2(34)2

x2
12 x2

34

+
(13)(14)(23)(24)

x2
13 x2

14 x2
23 x2

24

(x2
12 x2

34 − x2
14 x2

23 − x2
13 x2

24) + cycle

]

.(3.4)

Note that the second form of the prefactor R2222 is manifestly cyclic (i.e., crossing) sym-
metric, apart from the factor 1/x2

13x
2
24. This results in the following properties of R2222

under point permutations:

1 ↔ 2 : R2222 → 1

t
R2222 ,

1 ↔ 3 : R2222 → R2222 . (3.5)

It is important to realize that the prefactor R2222 does not depend on the coordinates,
in particular, on the harmonics at the insertion point, so it is an SO(6) singlet at this point.
At the same time, R2222 has absorbed the entire harmonic dependence (i.e., the SO(6)
irreps) at points 1 to 4, while the harmonic dependence at point 0 is contained in the chiral
Grassmann factor (θ0)

4. Consequently, the only part of the amplitude (3.3) which is not
fixed by superconformal invariance, the function F (x0, . . . , x4), is not allowed to depend
on any of the harmonics (in an analytic, i.e., polynomial fashion). Thus, this coefficient
function is an SO(6) singlet.

Substituting (3.3) in (3.2) and integrating over θ0 (the Grassmann superaction measure
in (3.2) exactly matches the nilpotent factor (θ0)

4 in (3.3)) and over x0 at the insertion
point, we obtain the allowed form of the quantum part of the four-point correlator:

∂

∂g2
〈O(k1)O(k2)O(k3)O(k4)〉 = R2222 F(s, t) . (3.6)
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Here the four-point conformal invariant

F(s, t) =

∫

d4x0 F (x0, . . . , x4) (3.7)

satisfies the crossing symmetry conditions

F(s, t) = F(t, s) = 1/t F(s/t, 1/t) , (3.8)

as it easily follows from (3.5).
The prediction of conformal supersymmetry (kinematics) combined with the insertion

formula (dynamics) consists in fixing the relative coefficients of all six terms in (3.4), leaving
undetermined the single conformal invariant F(s, t). This should be compared to the two
arbitrary functions allowed by the general arguments in Section 6 for k = 2, see (2.10),
(2.11) and (2.12). The single function F(s, t) encodes the dynamical information about
the quantum part of the correlator. This phenomenon was revealed in Ref. [19] and was
called “partial non-renormalisation”. The predicted form has been confirmed by a number
of explicit calculations: perturbative at order g2 [20]-[21] and g4 [22],[23], instanton [24] and
AdS supergravity [25],[19].

The generalisation of the N = 4 → N = 2 projection procedure to arbitrary ki ≥ 2
becomes cumbersome, due to the increasing number of terms in the tensor product [0, ki, 0]×
[0, kj , 0] and to the large amount of linear algebra needed to reconstruct the N = 4 amplitude
from its N = 2 projections.4 Here we choose an indirect way which efficiently exploits the
knowledge from the simplest case ki = 2. We assume that the five-point nilpotent covariant
in (3.2) can always be factorised into a “kernel” with ki = 2 and an extra factor carrying
the rest of the SO(6) quantum numbers k′

i = ki − 2 at each point:

〈O(2)(0)O(k1)O(k2)O(k3)O(k4)〉 = R2222 (θ0)
4 F k′

1k′

2k′

3k′

4(x0, . . . , x4;u1, . . . , u4) . (3.9)

The main difference from (3.3) is that now the factor F k′

1k′

2k′

3k′

4 depends on the harmonic
variables u1, . . . , u4, i.e., it is not an SO(6) singlet at points 1 to 4. The Grassmann factor
(θ0)

4 still carries the full harmonic dependence at the insertion point. Thus, the functional
freedom in (3.9) and, after integration over the insertion point, in the quantum correction
(3.2) is determined by the SO(6) structure of the factor F k′

1k′

2k′

3k′

4.
Take for example arbitrary k1, k2 and k3, but keep k4 = 2. The factor F k′

1k′

2k′

3 0 still
contains a unique harmonic structure:

F k′

1k′

2k′

3 0 =

(

(12)

x2
12

)
1
2
(k1+k2−k3−2) (

(13)

x2
13

)
1
2
(k1+k3−k2−2) (

(23)

x2
23

)
1
2
(k2+k3−k1−2)

f(x0, . . . , x4) ,

(3.10)
where f is an arbitrary SO(6) singlet function. After integration over θ0, x0 we again find
that the amplitude is determined by one function, φ(s, t) =

∫

d4x0 f(x0, . . . , x4), just like
in (3.7).

Next we move to the main case of interest in this paper, ki = 3 → k′
i = 1. According

to Section 6, the factor F 1111 contains three terms:

F 1111 =
(12)(34)

x2
12 x2

34

α(x0, . . . , x4) +
(14)(23)

x2
14 x2

23

β(x0, . . . , x4) +
(13)(24)

x2
13 x2

24

γ(x0, . . . , x4) . (3.11)

4For sufficiently low values of k this is still doable, as we show in Appendix A for k = 3.
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After integration over the insertion point x0 the coefficients in (3.11) give rise to four-point
conformal invariants, α(s, t), β(s, t), γ(s, t). Inserting all this back into (3.9) and then into
(3.2) and using the explicit form (3.4) of R2222, we obtain the following factorised form of
the quantum part of the four-point correlator:

∂

∂g2
〈O(3)O(3)O(3)O(3)〉 = R2222F 1111

=

[

(12)2 (34)2

x4
12 x4

34

s +
(13)2 (24)2

x4
13 x4

24

+
(14)2 (23)2

x4
14 x4

23

t +
(13)(14)(23)(24)

x2
13 x2

14 x2
23 x2

24

(s − t − 1)

+
(12)(14)(23)(34)

x2
12 x2

14 x2
23 x2

34

(1 − s − t) +
(12)(13)(24)(34)

x2
12 x2

13 x2
24 x2

34

(t − s − 1)

]

×
[

(12)(34)

x2
12x

2
34

α +
(14)(23)

x2
14x

2
23

β +
(13)(24)

x2
13x

2
24

γ

]

. (3.12)

Doing the multiplication and bringing the result to the standard form (2.14), we may express
the ten coefficients a, b, c in terms of only three functions:

a1 = sα(s, t) , a2 = γ(s, t) , a3 = tβ(s, t) ; (3.13)

b1 = sγ + (t − s − 1)α ,

b2 = sβ + (1 − s − t)α ,

b3 = (s − t − 1)β + tγ ,

b4 = tα + (1 − s − t)β ,

b5 = α + (t − s − 1)γ ,

b6 = β + (s − t − 1)γ ; (3.14)

c = (s − t − 1)α + (t − s − 1)β + (1 − s − t)γ . (3.15)

We still have to impose the crossing symmetry condition on the correlator (3.9) with
respect to points 1, . . . , 4. Taking into account the property (3.5) of the prefactor R2222, it
is easy to derive that the coefficients α(s, t), β(s, t), γ(s, t) are not independent:

α(s, t) = 1/s γ(t/s, 1/s) , β(s, t) = 1/t γ(s/t, 1/t) , γ(s, t) = γ(t, s) . (3.16)

Thus, all the ten coefficients in the quantum part of the amplitude (2.14) are expressed in
terms of a single function, for instance, α(s, t) obeying the symmetry relation α(s/t, 1/t) =
tα(s, t). This is the content of the partial non-renormalisation theorem for the correlator of
four 1

2 -BPS operators of weight 3.
Clearly, the same analysis can be carried out for correlators with arbitrary weights ki.

The effect of the insertion procedure is to reduce the weight at each point by two units,
ki → k′

i = ki − 2. The resulting four-point object F k′

1k′

2k′

3k′

4 depends on as many functions
as predicted by its SO(6) structure (and eventually by crossing symmetry). For example,
if ki = 4 initially the correlator can depend on four functions (see the end of Section 6).
However, in this case k′

i = 2 and we know from Section 6 that the fully crossing symmetric
factor F 2222 only involves two functions. The conclusion is that the quantum part of the
weight four correlator can only involve two independent functions.
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Concluding this section, we mention that a somewhat different approach presented in
the recent paper [8] leads to the same number of independent functions in an amplitude of
weights k1 = . . . = k4 = k. Instead of applying directly the insertion procedure to the four-
point correlators, the authors rely on their earlier result [7] on the non-renormalisation of
three-point functions of all kinds of protected (BPS or semishort) operators. Combining this
with double-OPE arguments of the type developed in Ref. [26], they are able to predict
the same general form of the amplitude. It should however be stressed that the non-
renormalisation theorem of Ref. [7] is also based on the insertion procedure, but this time
at the level of three-point rather than four-point functions. Another important remark
is that this non-renormalisation theorem cannot be directly tested in supergravity simply
because the supergravity spectrum has only fields dual to 1

2 -BPS short operators.

4 Supergravity-induced four-point amplitude

In this section we provide a novel example of a conformal four-point amplitude induced by
type IIB supergravity on an AdS5 × S5 background. So far the knowledge of the strongly-
coupled four-point functions [27, 25] has been limited to those of the stress-tensor multiplet
dual to the field content of gauged N = 8 supergravity. We thus provide for the first
time a four-point amplitude for operators corresponding to higher KK states and verify its
compatibility with the field-theoretic predictions.

The computation of the supergravity-induced correlation functions proceeds in the stan-
dard way. One first evaluates the on-shell gravity action S with Dirichlet boundary con-
ditions on the fields; then, varying the generating functional Z = e−S with respect to the
boundary data one obtains correlation functions of the boundary CFT. In particular, the
derivation of the four-point amplitude requires the knowledge of the effective supergravity
action on AdS5 up to fourth order in the fields. The quadratic and cubic supergravity
terms needed to compute the four-point function of arbitrary 1

2-BPS operators were found
in [28]-[31]. Their contribution to the extrema of the supergravity action is interpreted as
the AdS exchange graphs. The most difficult part of this program is however to obtain
the quartic effective action corresponding to contact interactions. This formidable problem
was solved in [32], where it was found in particular that the quartic Lagrangian contains
derivative interactions (up to four derivatives).

The 1
2 -BPS operator OI in the irrep [0, 3, 0] (or 50) is dual to the gravity scalar sI with

AdS mass m2 = −3. The relevant part of the effective five-dimensional action from [32] is
given by

S =
N2

8π2

∫

d5z
√

ga (L2 + L3 + L4) , (4.1)

i.e. it is a sum of quadratic, cubic and quartic terms. Here ga is the determinant of the
Euclidean AdS metric ds2 = 1

z2
0
(dz2

0 + dxadxa), a = 1, 2, 3, 4.

To distinguish supergravity scalars and vectors belonging to different SO(6) representa-
tions we introduce the subscript k, i.e. sI

k (irrep [0, k, 0]), AI
µ,k (irrep [1, k − 1, 1], k odd).

It is related to the conformal dimension of the corresponding CFT operator as ∆ = k for
scalars and ∆ = k + 2 for vectors. Then the Lagrangian involves the scalar fields sI

2, sI
3 and

sI
4, as well as two vectors AI

µ,1, AI
µ,3, the graviton φµν and a massive symmetric tensor ϕI

µν
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transforming in the irrep [0, 2, 0] of SO(6). Its quadratic part is normalised as follows5

L2 =
1

4

(

∇µs1
2∇µs1

2 − 4s1
2s

1
2

)

+
1

4

(

∇µs1
3∇µs1

3 − 3s1
3s

1
3

)

+
3

2
∇µs1

4∇µs1
4

+
1

2
(F 1

µν,1)
2 +

1

2
(F 1

µν,3)
2 + 8(A1

µ,3)
2

+
1

4
∇ρφµν∇ρφµν − 1

2
∇µφµρ∇νφνρ +

1

2
∇µφρ

ρ∇νφ
µν − 1

4
∇ρφ

µ
µ∇ρφν

ν

− 1

2
φµνφ

µν +
1

2
(φν

ν)
2

+ 6
[1

4
∇ρϕ

1
µν∇ρϕµν 1 − 1

2
∇µϕ1

µρ∇νϕ1
νρ +

1

2
∇µϕρ 1

ρ ∇νϕ
µν 1 − 1

4
∇ρϕ

µ 1
µ ∇ρϕν 1

ν

+
5

2
ϕ1

µνϕµν 1 − 7

2
(ϕν 1

ν )2
]

, (4.2)

(summation over the repeated superscript indices is implied).
To write down the cubic Lagrangian we introduce the so-called C-tensors. They are

the Clebsh-Gordon coefficients for tensor products of different SO(6) irreps and describe
the cubic interactions of various supergravity fields. For all necessary definitions and the
properties of the C-tensors we refer the reader to Appendix B, where in particular the
summation formulae which we term as “C-algebra” are established. Explicitly, the cubic
Lagrangian is

L3 = −3〈C1C2C3
[0,2,0]〉s1

3s
2
3s

3
2 − 18〈C1C2C3

[0,4,0]〉s1
3s

2
3s

3
4

− 1

4

(

∇µs1
3∇νs1

3 φµν − 1

2

(

∇µs1
3∇µs1

3 − 3s1
3s

1
3

)

φν
ν

)

− 3

4
〈C1C2C3

[0,2,0]〉
(

∇µs1
3∇νs2

3 ϕ3
µν − 1

2

(

∇µs1
3∇µs2

3 − 9s1
3s

2
3

)

ϕν 3
ν

)

− 3

2
〈C1C2C3

[1,0,1]〉s1
3∇µs2

3A
3
µ,1 − 3〈C1C2C3

[1,2,1]〉s1
3∇µs2

3A
3
µ,3 . (4.3)

From this Lagrangian we deduce that the interactions of the scalar field s3 are mediated
by two neighboring multiplets: one of them is the massless graviton multiplet (sI

2, A
I
µ,1, φµν)

which includes the m2 = −4 scalar, the massless vector and the graviton and the massive
multiplet (sI

4, A
I
µ,3, ϕ

I
µν) whose lowest component is the massless scalar s4.

Since the leading (i.e. most singular) and the subleading terms in the OPE are deter-
mined by the three-point functions derived from the cubic Lagrangian, the cubic couplings
(4.3) are responsible for these contributions to the supergravity-induced OPE. Thus, in the
leading and the subleading terms in the OPE we expect the following irreps to appear: lead-
ing [0, 0, 0], [1, 0, 1] and [0,2,0] corresponding to the stress tensor, the conserved current and
a 1

2 -BPS operator with conformal dimension ∆ = 2; subleading [0, 4, 0], [1, 2, 1] and [0, 2, 0]
corresponding to a 1

2 -BPS operator with ∆ = 4, and higher vector and tensor currents,
respectively. In principle, one could also expect the appearance of a cubic interaction with
a 1

2 -BPS multiplet whose lowest component is a scalar of ∆ = 6. However, the correspond-
ing coupling is then extremal and therefore it must vanish [33, 34]. The representations
which do not appear among the cubic couplings correspond, in free-theory terms, to the
contribution of the double-trace operators.

5To simplify the action we have performed suitable rescalings of the fields.
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Figure 4: Exchange graphs contributing to the four-point function of operators OI .
The first graph represents the exchange of fields from the massless graviton multiplet:
the scalar s2 in the 20, the vector Aµ in the 15 and the graviton φµν . The other
graph involves a massive multiplet whose lowest scalar component s4 is in the 105.
These graphs are responsible for the leading and the subleading terms in the OPE.

One of the most involved parts of our computation is to extract the relevant contact
interactions from the general quartic action of Ref. [32]. This action contains the quartic
terms with two and four derivatives as well as terms without derivatives and for generic
fields sI looks pretty complicated (see Appendix A of Ref. [32]). However, by heavy usage
of the C-algebra, the symmetry properties of the derivative vertices and integration by parts
(see Appendix C for details) we reduced it to the remarkably simple expression

L4 =

(

3

2
S1234 +

39

32
C1234 − 3

16
δ12δ34

)

s1s2s3s4 − 3

32
C1234s1∇µs2∇µs3s4 . (4.4)

It is worthwhile noting that the quartic terms with four derivatives completely disappear, i.e.
the final action is of the sigma model type. This suggests the interesting possibility that the
quartic four-derivative Lagrangian of Ref. [32] is intrinsically zero, although this is not seen
for generic fields, i.e. without specifying the explicit representation content. If true, this
might imply that the extension of the the five-dimensional gauged N = 8 supergravity by
including the massive KK modes of the type IIB supergravity compactification is described
by some sigma model.

Having established the relevant supergravity Lagrangian we can now proceed to the
evaluation of the AdS exchange graphs. In comparison to other calculations existing in
the literature [27, 25, 35], a novelty is the appearance of a massive symmetric tensor. The
corresponding exchange graph can be computed by generalizing the method of Ref. [36]
(see Appendix E). Omitting the details of the tedious calculations, here we present the
final result for the supergravity-induced four-point function of the canonically normalised
1
2 -BPS operators of dimension 3:

〈O1(x1)...O4(x4)〉 =
δ12δ34

x6
12 x6

34

+
72

π2N2

[

S1234AS
1234 + δ12δ34Aδ

1234 + C1234AC
1234 + C1243AC

1243

]

+ t + u . (4.5)
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Here we explicitly exhibit only the expression in the s-channel as the t-channel is obtained
by replacing 1 ↔ 4, and the u-channel by 1 ↔ 3. The terms without 1/N2 in front represent
the contribution of the disconnected AdS graphs. The coefficients A1234 are expressed in
terms of the D-functions (see Appendix D) as follows

AS
1234 = 8

(

D3322

x2
34

− 2

3
D3333

)

,

Aδ
1234 =

3

4
(x2

13x
2
24 + x2

14x
2
23 − x2

12x
2
34)

(

D4433

x2
34

+
D4422

x4
34

)

− 1

2

D3311

x4
34

+
5

3
D3333 ,

AC
1234 =

3

4
(x2

13x
2
24 + x2

14x
2
23 − x2

12x
2
34)

D4433

x2
34

+
D3311

x4
34

− D3322

x2
34

+ 2
D3232

x2
24

− 3x2
14D4334

− 2

x2
24

(D3243x
2
34 − D3342x

2
23)−

1

2x2
34

(D3423x
2
24 − D3432x

2
23)

− 3

2x4
34

(D3412x
2
24 − D3421x

2
23) . (4.6)

5 Verifying the CFT predictions

As argued in Section 3, the insertion formula, being a dynamical constraint on the the-
ory, predicts that the general four-point amplitude (2.14) depends on one undetermined
coefficient function a2(s, t), while the nine others are expressed in terms of it. Here we
compare the supergravity-induced four-point amplitude obtained in the previous section to
this field-theoretic prediction and indeed find an almost miraculous agreement.

Initially we express all D-functions entering (4.6) in terms of corresponding functions D
of the invariants s, t (for a detailed definition see Appendix D) so that the functions c(s, t),
a1(s, t) (the 1/N2-part) and b1(s, t) can be represented as follows

c(s, t) =
24 · 9
N2

st
[

− 3

2
D3333 + D2332 + D3232 + D3322

]

,

a1(s, t) =
9

2N2
s3

[

(1 + t − s)
(

D4433 + D4422

)

+ 5D3333 − D3311

]

,

b1(s, t) =
9

2N2
s2

[

(1 − s + t)D4433 − 4D4334 + tD3432 − D3423

+ 4tD3342 − 4D3243 + 2tD3421 − 2D3412 + 8D3232 − 4D3322 + 2D3311

]

.(5.1)

Our strategy is then similar to that in Refs. [19, 35]. For integer ∆i and
∑

i ∆i even we may
express D∆1∆2∆3∆4(s, t) in terms of s- and t-derivatives of the standard four-dimensional
one-loop box integral Φ(s, t) = D1111(s, t). This representation is convenient since the
derivatives ∂sΦ(s, t) and ∂tΦ(s, t) are expressed in a simple manner in terms of the function
Φ(s, t) itself (see Appendix D). Using the notation D∆1∆2∆3∆4 to denote the appropriate
differential operator we have

D∆1∆2∆3∆4(s, t) = D∆1∆2∆3∆4Φ(s, t) . (5.2)

Substituting the explicit expressions for the D-operators from Appendix D and succes-
sively using the identities (D.8), we express all the coefficient functions via Φ(s, t). Upon
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substitution of our findings into eqs.(3.14) and (3.15), and use of the symmetry properties

Φ(s, t) = Φ(t, s) , Φ(s/t, 1/t) = tΦ(s, t) , Φ(t/s, 1/s) = sΦ(s, t) , (5.3)

we finally get

b1 − sγ − (t − s − 1)α =
9

N2
,

c − (s − t − 1)α − (t − s − 1)β − (1 − s − t)γ =
18

N2
. (5.4)

The r.h.s. of these formulae literally coincide with the free field theory values of the coef-
ficients b1 and c in eq.(2.17)! We thus observe the surprising property of the supergravity-
induced four-point amplitude to split into a “free” and a “quantum” parts, precisely repro-
ducing the form predicted by SCFT. Moreover, the numerical coefficients in the “free” part
of this amplitude are exactly those given by the free Wick contractions. What makes this
so unexpected is that contrary to the SYM theory, the supergravity action has no coupling
constant and therefore no natural separation of the free part from the interacting part. Yet,
we observe the same splitting in the four-point amplitudes derived from this action. Thus,
supergravity retains memory of the Lagrangian formulation of the gauge theory even with
an infinite value of the ’t Hooft coupling. In the absence of an obvious explanation why the
supergravity-induced amplitude has this particular form, we consider this fact as a strong
evidence in favor of the AdS/CFT duality conjecture. At the same time, our result is a
very non-trivial check of the effective action derived in [32].

Finally, we note that in fact the results for the coefficient functions given in (5.1) can
be drastically simplified by using various identities for the D-functions. In Appendix D
we present an independent proof of eqs.(5.4) based on the D-algebra. In the process a
surprisingly simple expression for a1(s, t) emerges:

a1(s, t) = − 9

N2
(s2D3335(s, t) + sD2235(s, t)) . (5.5)

According to our analysis in Section 3 this function can be taken as the unique function
describing the supergravity-induced four-point amplitude of dimension 3 BPS operators. In
the next Section we will use this representation to shed some light on the properties of the
corresponding OPE.

6 Operator Product Expansion

The operator product expansion of the stress-energy tensor multiplets in N = 4 theory and
the AdS5 supergravity is by now a well-developed subject [37]-[41],[26]. Here we will exhibit
some general properties of the OPE underlying the supergravity four-point amplitude for
our new example of dimension 3 operators.

6.1 OPE and anomalous dimensions of some long multiplets

For the purposes of analyzing the operator product expansion we may expand the four-point
function in the form

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
1

x6
12 x6

34

∑

J

AJ (s, t)P 1234
J , (6.1)
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and using the explicit formulae for the projectors P 1234
J from Appendix B we may write

A[0,0,0] = 50a1 + s3a2 +
s3

t3
a3 +

25

3

(

sb1 +
s

t
b2

)

+
5

2

(

s2b5 +
s2

t2
b4

)

+
1

6

(s3

t
b6 +

s3

t2
b3

)

+
5

6

s2

t
c ,

A[1,0,1] = s3a2 −
s3

t3
a3 +

35

9

(

sb1 −
s

t
b2

)

+
35

18

(

s2b5 −
s2

t2
b4

)

+
1

18

(s3

t
b6 −

s3

t2
b3

)

,

A[0,2,0] = s3a2 +
s3

t3
a3 +

35

12

(

sb1 +
s

t
b2

)

+
7

4

(

s2b5 +
s2

t2
b4

)

+
1

12

(s3

t
b6 +

s3

t2
b3

)

+
7

24

s2

t
c ,

A[2,0,2] = s3a2 +
s3

t3
a3 +

10

9

(

s2b5 +
s2

t2
b4

)

− 1

9

(s3

t
b6 +

s3

t2
b3

)

− 5

9

s2

t
c ,

A[0,4,0] = s3a2 +
s3

t3
a3 +

7

9

(

s2b5 +
s2

t2
b4

)

+
2

9

(s3

t
b6 +

s3

t2
b3

)

+
7

9

s2

t
c ,

A[1,2,1] = s3a2 −
s3

t3
a3 + s2b5 −

s2

t2
b4 ,

A[3,0,3] = s3a2 −
s3

t3
a3 −

1

3

(s3

t
b6 −

s3

t2
b3

)

,

A[0,6,0] = s3a2 +
s3

t3
a3 +

s3

t
b6 +

s3

t2
b3 ,

A[2,2,2] = s3a2 +
s3

t3
a3 −

1

9

(s3

t
b6 +

s3

t2
b3

)

,

A[1,4,1] = s3a2 −
s3

t3
a3 +

1

3

(s3

t
b6 −

s3

t2
b3

)

. (6.2)

Using the expressions for ai, bi and c in terms of α, β, γ this may be simplified. For the
purposes here it is convenient to define

A =
s

t
α , B =

s2

t2
(tγ − β) , C =

s2

t2
(tγ + β) , (6.3)

and also to separate the results into two parts

AJ = Afree
J + Aint.

J , (6.4)

where the first term corresponds to the result in free field theory

Afree
[0,6,0] = s3 +

s3

t3
+

9

N2

(s3

t
+

s3

t2

)

,

Afree
[1,4,1] = s3 − s3

t3
+

3

N2

(s3

t
− s3

t2

)

,

Afree
[2,2,2] = s3 +

s3

t3
− 1

N2

(s3

t
+

s3

t2

)

,

Afree
[3,0,3] = s3 − s3

t3
− 3

N2

(s3

t
− s3

t2

)

,

Afree
[0,4,0] = s3 +

s3

t3
+

2

N2

(s3

t
+

s3

t2

)

+
7

N2
s2

(

1 +
1

t

)2
,

Afree
[1,2,1] = s3 − s3

t3
+

9

N2

(s2

t
− s2

t2

)

,
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Afree
[2,0,2] = s3 +

s3

t3
− 1

N2

(s3

t
+

s3

t2

)

+
10

N2
s2

(

1 − 1

t
+

1

t2

)

,

Afree
[0,2,0] = s3 +

s3

t3
+

3

4N2

(s3

t
+

s3

t2

)

+
63

4N2
s2

(

1 +
1

3t
+

1

t2

)

+
105

4N2
s
(

1 +
1

t

)

,

Afree
[1,0,1] = s3 − s3

t3
+

1

2N2
s
(

1 − 1

t

)

(

70 + 35s
(

1 +
1

t

)

+
s2

t

)

,

Afree
[0,0,0] = 50 + s3 +

s3

t3
+

3

2N2

(s3

t
+

s3

t2

)

+
45

2N2
s2

(

1 +
2

3t
+

1

t2

)

+
75

N2
s
(

1 +
1

t

)

.(6.5)

The remaining parts contain the essential dynamics

Aint.
[0,6,0] = s2C ,

Aint.
[1,4,1] = −2

3(1 − t)s C + 1
3s2B ,

Aint.
[2,2,2] = 1

9(5(1 + t) − s)s C − 5
9(1 − t)sB ,

Aint.
[3,0,3] = −1

3(1 − t)s C + 1
3(3(1 + t) − s)sB ,

Aint.
[0,4,0] = 1

18(14(1 − t)2 − 7s(1 + t) + 4s2)C − 7
18 (1 − t)sB + 7

9s2A ,

Aint.
[1,2,1] = −1

2(1 − t2)C + 1
2(1 − t)2B − (1 − t)sA ,

Aint.
[2,0,2] = 1

18(5(1 − t)2 + 5s(1 + t) − 2s2)C − 5
18(3(1 + t) − s)(1 − t)B

+ 5
9(3(1 + t) − s)sA ,

Aint.
[0,2,0] = 1

48(35(1 + t)2 − 14(1 − t)2 − 27s(1 + t) + 4s2)C
− 1

48(35(1 + t) − 13s)(1 − t)B + 7
24(10(1 − t)2 − 5s(1 + t) + s2)A ,

Aint.
[1,0,1] = − 1

36(35(1 + t) − 16s)(1 − t)C + 1
36(35(1 + t)2 − 20s(1 + t) + 2s2)B

− 35
18(2(1 + t) − s)(1 − t)A ,

Aint.
[0,0,0] = 1

12(25(1 + t)2 − 5(1 − t)2 − 15s(1 + t) + 2s2)C − 5
12(2(1 + t) − s)(1 − t)B

+ 5
6(15(1 + t)2 − 5(1 − t)2 − 8s(1 + t) + s2)A . (6.6)

For the operator product expansion we expand A,B and C in the form

∑

∆,ℓ

a∆,ℓ s
1
2
(∆−ℓ)G

(ℓ)
∆+4(s, t) (6.7)

which represents them each as a sum of contributions of operators of scale dimension ∆ and

spin ℓ, belonging to a (1
2ℓ, 1

2ℓ) spin representation. Explicit results for G
(ℓ)
∆ (s, t) are known

but here we note the important recurrence relations from [26],

− 1
2(1 − t)G

(ℓ)
∆ (s, t) = G

(ℓ+1)
∆−1 (s, t) + 1

4sG
(ℓ−1)
∆−1 (s, t) + 1

4f(∆ + ℓ) sG
(ℓ+1)
∆+1 (s, t)

+ 1
16f(∆ − ℓ − 2) s2G

(ℓ−1)
∆+1 (s, t) ,

1
2(1 + t)G

(ℓ)
∆ (s, t) = G

(ℓ)
∆−2(s, t) + f(∆ + ℓ) sG

(ℓ+2)
∆ (s, t) + 1

4sG
(ℓ)
∆ (s, t)

+ 1
16f(∆ − ℓ − 2) s2G

(ℓ−2)
∆ (s, t)

+ 1
4f(∆ + ℓ)f(∆ − ℓ − 2) s2G

(ℓ)
∆+2(s, t) , (6.8)
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for f(λ) = 1
4λ2/(λ2−1). If we consider the contribution of a single term in the expansion of

A,B then using this in the above generates associated contributions in AJ for all operators
expected for a long multiplet whose lowest dimension operator have scale dimension ∆ and
spin ℓ and which belong to the [0, 0, 0], [1, 0, 1] representations respectively. In each case
the expected representations with the appropriate ∆ and spin ℓ arise, for the [0, 0, 0] and
[1, 0, 1] cases the scale dimension varies from ∆ to ∆ + 8 and for scale dimension ∆ + 4 the
spin varies from ℓ − 4 to ℓ + 4 as expected. For C we would find that the set of operators
contributing to the [0, 0, 0] representation is not in accord with that expected for an operator
based on the [0, 2, 0] representation. This problem is easily cured by setting

A = A′ − 1
6 C , (6.9)

which removes the (1 + t)2 term in the coefficient of C in A[0,0,0] in (6.6) which is the cause
of this problem. This change then leads to

Aint.
[0,6,0] = s2C ,

Aint.
[1,4,1] = −2

3(1 − t)s C + 1
3s2B ,

Aint.
[2,2,2] = 1

9(5(1 + t) − s)s C − 5
9 (1 − t)sB ,

Aint.
[3,0,3] = −1

3(1 − t)s C + 1
3(3(1 + t) − s)sB ,

Aint.
[0,4,0] = 1

54(42(1 − t)2 − 21s(1 + t) + 5s2)C − 7
18(1 − t)sB + 7

9s2A′ ,

Aint.
[1,2,1] = −1

6(3(1 + t) − s)(1 − t)C + 1
2(1 − t)2B − (1 − t)sA′ ,

Aint.
[2,0,2] = 1

54(15(1 − t)2 − s2)C − 5
18(3(1 + t) − s)(1 − t)B

+ 5
9(3(1 + t) − s)sA′ ,

Aint.
[0,2,0] = 1

144(105(1 + t)2 − 28(1 − t)2 − 46s(1 + t) + 5s2)C
− 1

48(35(1 + t) − 13s)(1 − t)B + 7
24(10(1 − t)2 − 5s(1 + t) + s2)A′ ,

Aint.
[1,0,1] = − 1

108(35(1 + t) − 13s)(1 − t)C + 1
36(35(1 + t)2 − 20s(1 + t) + 2s2)B

− 35
18(2(1 + t) − s)(1 − t)A′ ,

Aint.
[0,0,0] = 1

36(10(1 − t)2 − 5s(1 + t) + s2)C − 5
12(2(1 + t) − s)(1 − t)B

+ 5
6(15(1 + t)2 − 5(1 − t)2 − 8s(1 + t) + s2)A′ . (6.10)

The operators arising from C now correspond exactly to those present in a long multiplet
with the lowest dimension operator belonging to a [0, 2, 0] representation. It is convenient
to write (6.10) succinctly as a linear function of A′,B, C,

Aint.
J = FJ (A′,B, C) . (6.11)

The detailed form for A,B, C to leading order in 1/N2 is

A(s, t) = − 9

N2
s3(D3533(s, t) + D3522(s, t)) ,

B(s, t) =
9

N2
s3(D2532(s, t) − D2523(s, t)) ,

C(s, t) = − 9

N2

(

s3(2D3533(s, t) − D3351(s, t)) +
s2

t2

)

, (6.12)
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where we used the results in appendix D to express them in a form with the maximal overall
power of s.

To analyse the operator product expansion for long multiplets we focus on AJ for
J = [0, 6, 0], [1, 4, 1], [0, 4, 0]. For these J it is convenient to define A0,B0, C0 such that
Afree

J = FJ (A0,B0, C0) to leading order in 1/N2.
We first consider A[0,6,0]. The free part determines C0 which has the expansion

C0(s, t) = s +
s

t3
=

∑

τ=1,2,...
ℓ=0,2,...

cτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) , (6.13)

for

cτ,ℓ = 2ℓ−2 (ℓ + τ + 1)! (ℓ + τ + 2)! τ ! (τ + 1)!

(2ℓ + 2τ + 1)! (2τ)!
τ(ℓ + 1)(ℓ + 2τ + 2) . (6.14)

We may also obtain, by using the results of Appendix E,

C(s, t) ∼ − 1

N2
ln s

∑

τ=3,4,...
ℓ=0,2,...

ĉτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) ,

ĉτ,ℓ = 2ℓ−2 (ℓ + τ)! (ℓ + τ + 1)! τ ! (τ + 3)!

(2ℓ + 2τ + 1)! (2τ)!

× τ(τ − 1)(τ − 2)((2ℓ + 3τ + 4)(ℓ + τ + 1) − ℓτ) . (6.15)

For τ = 1, 2 there are no contributions involving ln s and the corresponding operators
in the [0, 6, 0] representation belong to protected semi-short multiplets. For τ = 3, 4, . . .,
ℓ = 0, 2, . . . the ln s contributions generate anomalous dimensions for long multiplets whose
lowest dimension operator belongs to a [0, 2, 0] with scale dimensions ∆τ,ℓ = 2τ + ℓ + ητ,ℓ.
Assuming there is just a single long multiplet for each τ, ℓ the leading large N contribution
to ητ,ℓ is given by −2ĉτ,ℓ/cτ,ℓN

2 giving

ητ,ℓ = − 2

N2

(τ + 3)(τ + 2)(τ − 1)(τ − 2)

(ℓ + τ + 1)(ℓ + τ + 2)(ℓ + 2τ + 2)(ℓ + 1)
((2ℓ+3τ +4)(ℓ+τ +1)−ℓτ) . (6.16)

The next step is to consider A[1,4,1] where the expansion of B gives results for anomalous
dimensions for long multiplets with the lowest dimension operator belonging to a [1, 0, 1]
representation. From (6.5) and (6.10) the corresponding free contribution to leading order
at large N , after removing the parts corresponding to the [0, 2, 0] long supermultiplets, is
given by defining B0 analogously to C0,

B0(s, t) = 3
(

s − s

t3

)

+ 2(1 − t)
(

1 +
1

t3

)

=
∑

τ=0,1,...
ℓ=1,3,...

bτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) , (6.17)

for

bτ,ℓ = 2ℓ−2 (ℓ + τ)! (ℓ + τ + 1)! (τ !)2

(2ℓ + 2τ + 1)! (2τ)!
(τ − 1)(τ + 2)(ℓ + 1)(ℓ + 2τ + 2)(ℓ + τ)(ℓ + τ + 3) .

(6.18)
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For the expansion of the ln s terms in B we use from (D.27)

B(s, t) ∼ 9

N2
ln s s3

∞
∑

m,n=0

(m + 2)! (m + n + 3)! (m + n + 5)!

m!n! (2m + n + 7)!
sm(1 − t)n+1

= − 1

N2
ln s

∑

τ=3,4,...
ℓ=1,3,...

b̂τ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) ,

b̂τ,ℓ = 2ℓ−1 (ℓ + τ)! (ℓ + τ + 1)! τ ! (τ + 3)!

(2ℓ + 2τ + 1)! (2τ)!
τ(τ − 1)(τ − 2)(ℓ + 1)(ℓ + 2τ + 2) . (6.19)

We may then read off the anomalous dimensions for τ = 3, 4 . . ., ℓ = 1, 3, . . .,

ητ,ℓ = − 4

N2

(τ + 3)(τ + 1)τ(τ − 2)

(ℓ + τ)(ℓ + τ + 3)
. (6.20)

From (6.18) b0,ℓ < 0. However this case should not be taken in isolation as for the corre-
sponding twist 4 operators it is necessary to analyse the contribution of semi-short multiplets
which we undertake later.

The final step is a similar analysis of A[0,4,0] where the expansion of A′ yields anomalous
dimensions for long multiplets with the lowest dimension operator belonging to the [0, 0, 0]
representation. After removing the free contributions of the [0, 2, 0] and [1, 0, 1] long mul-
tiplets then, from (6.5) and (6.10), the corresponding free contribution to leading order at
large N is given by

A0(s, t) =
1

2

(

1+ t + 7
3s

)(

1+
1

t3

)

+
3

2
(1− t)

(

1− 1

t3

)

=
∑

τ=0,1,...
ℓ=0,2,...

aτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) , (6.21)

where

aτ,ℓ = 2ℓ−3 (ℓ + τ)! (ℓ + τ + 1)! (τ !)2

3(2ℓ + 2τ + 1)! (2τ)!

× (τ − 2)(τ + 3)(ℓ + 1)(ℓ + 2τ + 2)(ℓ + τ − 1)(ℓ + τ + 4) . (6.22)

In a similar fashion as before we may find that for A′ we have

A′(s, t) ∼ − 1

N2
ln s

∑

τ=3,4,...
ℓ=0,2,...

âτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) , (6.23)

for

âτ,ℓ = 2ℓ−2 (ℓ + τ)! (ℓ + τ + 1)! τ ! (τ + 3)!

3(2ℓ + 2τ + 1)! (2τ)!

× τ(τ − 1)(τ − 2)((ℓ + τ − 1)(ℓ + τ + 4) + 5(τ − 2)(τ + 3)) . (6.24)

Taking these results into consideration then the anomalous dimensions for τ = 3, 4 . . .,
ℓ = 0, 2, . . ., if there was a single long multiplet for each τ, ℓ, would be given by,

ητ,ℓ = − 4

N2

(τ + 2)(τ + 1)τ(τ − 1)

(ℓ + 1)(ℓ + 2τ + 2)

(

1 +
5(τ − 2)(τ + 3)

(ℓ + τ − 1)(ℓ + τ + 4)

)

. (6.25)
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From a similar analysis of the operator product expansion in [26] for the four point function
of [0, 2, 0] 1

2 -BPS operators a result for ητ,ℓ was obtained without the final term in parenthe-
ses. For τ = 2 the result in [26] appears to be valid, and agrees with a similar calculation
in [40], but for τ ≥ 3 the difference has to be a reflection of more than one long multiplet
for each τ, ℓ being present so that it is then necessary to consider operator mixing effects.

6.2 Semi-short multiplets

Besides the contributions of long multiplets which may have arbitrary scale dimensions
greater than the unitarity bound there are also contributions from semi-short multiplets
whose dimensions are protected. According to [5] the relevant semi-short multiplets which
may contribute to the operator product expansion of two [0, 3, 0] 1

2 -BPS multiplets cor-
respond to the case where the lowest dimension operator belongs to the representations
[0, 0, 0], [0, 2, 0], [2, 0, 2] and [0, 4, 0], for even ℓ, and [1, 0, 1], [1, 2, 1] for odd ℓ. Denoting
the multiplets by CJ ℓ these contain operators with twist ∆ − ℓ according to the following
table (obtained from [42]),

C[0,0,0]ℓ [0,0,0] [0,2,0] [1,0,1]

2 ℓ, ℓ + 2, ℓ + 4 ℓ + 2 ℓ + 1, ℓ + 3

C[1,0,1]ℓ [0,0,0] [0,2,0] [0,4,0] [2,0,2] [1,0,1] [1,2,1]

4 ℓ+1, ℓ+3 ℓ+1, ℓ+3 ℓ + 1, ℓ+3 ℓ, ℓ+2, ℓ+4 ℓ+2

6 ℓ−1, ℓ+1, ℓ+3 ℓ−1, ℓ+1, ℓ+3 ℓ+1 ℓ+1 ℓ, ℓ+2 ℓ, ℓ+2

8 ℓ−1, ℓ+1 ℓ−1, ℓ+1 ℓ−1, ℓ+1 ℓ−2, ℓ, ℓ+2 ℓ

10 ℓ−3, ℓ−1, ℓ+1 ℓ−1 ℓ−2, ℓ

C[0,2,0]ℓ [0,0,0] [0,2,0] [0,4,0] [2,0,2] [1,0,1] [1,2,1]

4 ℓ+2 ℓ, ℓ+2, ℓ+4 ℓ+2 ℓ+2 ℓ+1, ℓ+3 ℓ+1, ℓ+3

6 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ−1, ℓ+1, ℓ+3 ℓ+1

8 ℓ−2, ℓ, ℓ+2 ℓ ℓ−1, ℓ+1

C[2,0,2]ℓ [0,0,0] [0,2,0] [0,4,0] [2,0,2] [2,2,2] [1,0,1] [1,2,1] [3,0,3] [1,4,1]

6 ℓ+2 ℓ,ℓ+2
ℓ+4 ℓ+2 ℓ+1, ℓ+3 ℓ+1, ℓ+3 ℓ+1, ℓ+3

8 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ−1,ℓ+1
ℓ+3

ℓ−1,ℓ+1
ℓ+3 ℓ+1 ℓ+1

10 ℓ ℓ−2,ℓ
ℓ+2 ℓ ℓ−2,ℓ

ℓ+2 ℓ ℓ−1, ℓ+1 ℓ−1, ℓ+1 ℓ−1, ℓ+1

12 ℓ−2, ℓ ℓ−2, ℓ ℓ−2, ℓ ℓ−3,ℓ−1
ℓ+1 ℓ−1

C[0,4,0]ℓ [0,0,0] [0,2,0] [0,4,0] [0,6,0] [2,0,2] [2,2,2] [1,0,1] [1,2,1] [3,0,3] [1,4,1]

6 ℓ+2 ℓ,ℓ+2
ℓ+4 ℓ+2 ℓ+2 ℓ+1, ℓ+3 ℓ+1, ℓ+3

8 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ+1 ℓ−1,ℓ+1
ℓ+3 ℓ+1 ℓ+1

10 ℓ ℓ−2,ℓ
ℓ+2 ℓ ℓ ℓ−1, ℓ+1 ℓ−1, ℓ+1

C[1,2,1]ℓ [0,0,0] [0,2,0] [0,4,0] [0,6,0] [2,0,2] [2,2,2] [1,0,1] [1,2,1] [3,0,3] [1,4,1]

6 ℓ+1, ℓ+3 ℓ+1, ℓ+3 ℓ+1, ℓ+3 ℓ+1, ℓ+3 ℓ+2 ℓ,ℓ+2
ℓ+4 ℓ+2 ℓ+2

8 ℓ+1 ℓ−1,ℓ+1
ℓ+3

ℓ−1,ℓ+1
ℓ+3 ℓ+1 ℓ−1,ℓ+1

ℓ+3 ℓ+1 ℓ, ℓ+2 ℓ, ℓ+2 ℓ, ℓ+2 ℓ+2

10 ℓ−1, ℓ+1 ℓ−1, ℓ+1 ℓ−1, ℓ+1 ℓ−1, ℓ+1 ℓ+1 ℓ−2,ℓ
ℓ+2

ℓ−2,ℓ
ℓ+2 ℓ ℓ

12 ℓ−1 ℓ−1, ℓ+1 ℓ−1 ℓ−1 ℓ−2, ℓ ℓ−2, ℓ
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Table 1: Spins of operators for given twist belonging to semi-short multiplets
contributing to the operator product expansion of two [0, 3, 0] 1

2 -BPS multiplets.

It is important to note that

C[0,0,0]ℓ + C[1,0,1]ℓ−1 , C[1,0,1]ℓ + C[2,0,2]ℓ−1 , C[0,2,0]ℓ + C[1,2,1]ℓ−1 , (6.26)

combine to form complete long multiplets with the lowest scale dimension compatible with
unitarity. These combinations may then be absorbed into contributions represented by
A′, B, C respectively, which may gain anomalous scale dimensions. Nevertheless the free
field contributions given in (6.5) cannot all be described by a choice for A′, B, C and so
correspond to long multiplets. We show here, for simplicity to zeroth order in 1/N , how the
additional terms necessary to accommodate (6.5) have restricted twists and are compatible
with the expected contributions in Table 1 so that for suitable τ, ℓ,

Ashort
J (s, t) =

∑

τ,ℓ

dJτ,ℓ sτ+2G
(ℓ)
2τ+ℓ+4(s, t) . (6.27)

To procede we first isolate those contributions to C0,B0 and A0 in (6.13), (6.17) and
(6.21) which are protected in that there are no corresponding terms involving ln s which
generate anomalous dimensions,

Cshort
0 (s, t) =

∑

τ=1,2

∑

ℓ=0,2,...

cτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) ,

Bshort
0 (s, t) =

∑

τ=0,2

∑

ℓ=1,3,...

bτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) ,

Ashort
0 (s, t) =

∑

τ=0,1

∑

ℓ=0,2,...

aτ,ℓ sτG
(ℓ)
2τ+ℓ+4(s, t) , (6.28)

where we note that b1,ℓ = c2,ℓ = 0. We then define, using (6.11),

Ashort
J = FJ (Ashort

0 ,Bshort
0 , Cshort

0 ) , J = [0, 6, 0], [1, 4, 1], [0, 4, 0] . (6.29)

Thus A[0,6,0](s, t) = s2Cshort
0 (s, t) and it is easy to see that

d
[0,6,0]
τ,ℓ = cτ,ℓ , τ = 1, 2 , ℓ = 0, 2, . . . . (6.30)

which corresponds to an operator product expansion involving protected twist 6 and 8
operators. The relevant operators may clearly be identified with the C[0,4,0]ℓ and C[1,2,1]ℓ semi-
short supermultiplets. For A[0,6,0] and A[0,4,0] using (6.8) we may show that this requires a
non zero

d
[1,4,1]
τ,ℓ τ = 1, 2, 3 , ℓ = 1, 3, . . . , d

[0,4,0]
τ,ℓ τ = 1, 2, 3, 4 , ℓ = 0, 2, . . . . (6.31)

where the cancellation of possible τ = −1, 0 terms depends on b0,ℓ = −4c1,ℓ−1 and a0,ℓ+2 =

−4c2,ℓ. Here the G
(ℓ)
∆ appearing in the final result for the OPE correspond to just those

expected for operators belonging to C[0,4,0]ℓ, C[1,2,1]ℓ semi-short supermultiplets. Detailed

results for dJτ,ℓ are given in Appendix F. It is critical that they are positive.
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A crucial test is whether all the remaining free field contributions can be represented as
in (6.27). If we subtract off all contributions corresponding to long multiplets which gain
anomalous dimensions we have in general

Ashort
J = HJ + FJ (Ashort

0 ,Bshort
0 , Cshort

0 ) , HJ = Afree
J − FJ (A0,B0, C0) , (6.32)

dropping any 1/N2 terms in Afree
J . Results for HJ (s, t) are given in Appendix F which are

simple when expressed in terms of new variables z, x. Using this form it is straightforward
to see that HJ corresponds to contributions which have only twist 2 or twist 0.

In detail we first consider Ashort
[2,2,2] and Ashort

[3,0,3]. In this case only twist 2 contributions
appear in the expansion of H[2,2,2] and H[3,0,3]. Adding on the contributions resulting from

Bshort
0 , Cshort

0 for this case as in (6.32) there are again non trivial cancellations and we find
non zero expansion coefficients just for

d
[2,2,2]
τ,ℓ τ = 1, 2, 3 , ℓ = 0, 2, . . . , d

[3,0,3]
τ,ℓ τ = 1, 2, 3 , ℓ = 1, 3, . . . . (6.33)

For J = [2, 0, 2], [0, 2, 0], [1, 2, 1], [1, 0, 1] HJ contains both twist 0 and twist 2 but together
with twist 4 such contributions cancel in Ashort

J leaving

d
[2,0,2]
τ,ℓ , d

[0,2,0]
τ,ℓ τ = 1, 2, 3, 4 , ℓ = 0, 2, . . . , d

[1,2,1]
τ,ℓ , d

[1,0,1]
τ,ℓ τ = 1, 2, 3, 4 , ℓ = 1, 3, . . . ,

(6.34)
to be non zero. The singlet case, J = [0, 0, 0] is further restricted in that there is cancellation
of twist 6 terms as well leaving non zero

d
[0,0,0]
τ,ℓ τ = 2, 3, 4 , ℓ = 0, 2, . . . . (6.35)

It is then clear, for all representations J , by matching (6.30), (6.31), (6.33), (6.34) and (6.35)
with Table 1 that, to zeroth order in 1/N , that only operators belonging at least to the
C[0,4,0]ℓ, C[1,2,1]ℓ semi-short supermultiplets are necessary in the operator product expansion,
although contributions in addition from C[2,0,2]ℓ are possible.

When ℓ = 0, 1 then the results for dJτ,ℓ may be modified. First we note that we must
have

d
[0,0,0]
−2,0 = 50 , (6.36)

reflecting the contribution of the identity operator. For ℓ = 0, 1 all dJτ,ℓ listed above are still
present to zeroth order in 1/N except for the twist 6 contribution

d
[0,2,0]
1,0 = 0 . (6.37)

From Table 1 we may note that for twist 6 the operators in the C[0,4,0]0, C[1,2,1]1 semi-short
multiplets in the [0, 2, 0], [0, 6, 0], [2, 0, 2], [2, 2, 2] representations have lowest spin 2 while
for [1, 0, 1], [3, 0, 3] the lowest spin is 3. Also for C[1,2,1]1 we only have a twist 8 [0, 6, 0]
operator with spin 2. From C[2,0,2]0 we may have operators for [2, 0, 2] with spin 0 and
[1, 0, 1], [3, 0, 3] with spin 1. The remaining gaps correspond to operators which are part of
short BPS multiplets. If we denote such multiplets by BJ , where if J = [q, p, q] with q > 0
it is a 1

4 -BPS multiplet and if q = 0 it is 1
2 -BPS, the relevant multiplets which may occur

in the operator product expansion here with twist 6 or more are listed in Table 2.
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B[0,6,0] [0,2,0] [0,4,0] [2,2,2] [0,6,0] [1,2,1] [1,4,1]

6 2 0 1

8 0 1

10 0

B[2,2,2] [0,2,0] [0,4,0] [2,0,2] [2,2,2] [0,6,0] [1,0,1] [1,2,1] [1,4,1]

6 2 2 0,2 1,3 1

8 0,2 0,2 0,2 0 0 1 1 1

10 0 0 0 0 1 1

12 0

Table 2: Spins of operators for given twist belonging to short BPS multiplets
contributing to the operator product expansion of two [0, 3, 0] 1

2 -BPS multiplets
with twist at least 6.

Both BPS multiplets to account for operators which have been identified has necessar-
ily present in the operator product expansion. It is evident that (6.37) is necessary for
compatibility with the representation content of short and semi-short multiplets.

Thus we have shown that the OPE underlying the supergravity-induced four-point am-
plitude of 1

2 -BPS operators of dimension 3 fulfills the requirements of the superconformal
symmetry and unitarity. Only those long multiplets belonging to the representations [0, 2, 0],
[1, 0, 1] and [0, 0, 0] may acquire possible anomalous scaling dimensions.
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Appendices

A The N = 2 reduction formula

Here we present a simplified version of the procedure of Ref. [18] for projecting an N = 4
four-point function of 1

2 -BPS operators onto the N = 2 hypermultiplet (HM) and SYM
constituents. The new procedure can easily be applied to 1

2 -BPS operators of any dimension
k. Further, we briefly recall the use of the N = 2 insertion formula from Ref. [19] and apply
it to the correlator of weight k = 3. In this way we can reproduce the results of Section 3
without reference to the N = 4 insertion formula.

The lowest component of the N = 4 field-strength multiplet W i, i = 1, . . . , 6 is a real
vector of SO(6). Reducing SO(6) to SU(3), we can decompose it into 3 + 3̄:

Wi → W A, W̄A , A = 1, 2, 3 . (A.1)
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The further decomposition SU(3) → SU(2)×U(1) results in

W A → W a ≡ φa, a = 1, 2; W 3 ≡ w . (A.2)

After projection with SU(2) harmonics φa becomes the lowest component of the Grassmann
analytic N = 2 HM q+ = u+

a φa; w is the lowest component of the chiral N = 2 field strength;
their conjugates are q̃+ = u+aφ̄a and the antichiral w̄.

The SO(6)-covariant field-strength propagator is 〈W i(1)W j(2)〉 = 〈W j(1)W i(2)〉 ∼ δij .
Introducing SO(6) harmonics 1i, 2i and their symmetric contraction (12) = (21) = 1iδ

ij2j ,
we can write the harmonic-projected SO(6) propagator 〈W (1)W (2)〉 ∼ (12). Next, reducing
SO(6) to SU(3) we decompose the SO(6) contraction into SU(3) pieces:

(12) = 1iδ
ij2j = 1A2̄A + 1̄A2A ≡ [12̄] + [1̄2] . (A.3)

In this notation we have “oriented” propagators for the SU(3)-covariant field strengths:
〈WW̄ 〉 = [12̄] and 〈W̄W 〉 = [1̄2]. The further reduction of SU(3) to SU(2)×U(1) gives, e.g.,
[12̄] = 1A2̄A = 1a2̄a + 132̄3. This can be split into two independent propagators, one for the
N = 2 HM:

〈qq̃〉 ∼ 1a2̄a = 1aǫab2
b = −1̄a2

a ≡ [12] = −[21] (A.4)

and one for the N = 2 field strength, 〈ww̄〉 ∼ 132̄3 ≡ 1 (in the latter there is no need to use
harmonics, 132̄3 is just a “bookkeeping device”).

The 1
2 -BPS operator of weight k is Tr(W{i1 · · ·Wik}), where {} denotes traceless sym-

metrisation. Projected with SO(6) harmonic, it becomes Wk = Tr(Wi1 · · ·Wik)1i1 · · · 1ik ,
and the absence of traces is guaranteed by the defining properties of the SO(6) harmon-
ics. The four-point function for such operators has a harmonic structure consisting of all
possible pairings of the four sets of harmonics. For instance, for k = 2 we have

〈W2|W2|W2|W2〉
= A1 (12)2(34)2 + A2 (13)2(24)2 + A3 (14)2(23)2

+ B1 (13)(14)(23)(24) + B2 (12)(14)(23)(34) + B3 (12)(13)(24)(34) , (A.5)

(compared to eq.(2.10), we have absorbed the space-time propagator factors into the coef-
ficient functions A,B,C).

The reduction to either N = 2 HMs or field strengths is straightforward. We replace
each SO(6) contraction by SU(3) contractions: (pq) = [pq̄] + [p̄q] and expand each SO(6)
harmonic structure in (A.5) into products of SU(3) contractions. For example,

(12)2(34)2 → [1̄2]2[3̄4]2 + 2 [1̄2]2[3̄4][34̄] + 4 [12̄][1̄2][34̄][3̄4] + . . .

(13)(14)(23)(24) → [1̄3][1̄4][23̄][24̄] + [1̄3][1̄4][23̄][24̄]

+ [13̄][1̄4][2̄3][24̄] + [1̄3][14̄][23̄][2̄4] + . . . , (A.6)

where we have displayed just the terms relevant for the two HM projections considered
below. If we want to keep only the HM constituents of the composite operators, we need
to replace the SU(3) contractions by SU(2) ones, taking care of the signs, e.g., [12̄] → [12],
[1̄2] → −[12]. In this way we obtain, for example,

〈q̃2|q2|q̃2|q2〉 = A1 [12]2[34]2 + 0 [13]2[24]2 + A3 [14]2[23]2

+ 0 [13][14][23][24] − B2 [12][14][23][34] + 0 [12][13][24][34] ; (A.7)

〈q̃2|q2|qq̃|qq̃〉 = −2A1 [12]2[34]2 + 0 [13]2[24]2 + 0 [14]2[23]2

+ B1 [13][14][23][24] + B2 [12][14][23][34] − B3 [12][13][24][34] . (A.8)
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Finally, with the help of the SU(2) harmonic cyclic identity [12][34] + [13][42] + [14][23] = 0
we can eliminate, e.g., all factors of the type [13][24]. Thus, the projection (A.8) becomes

〈q̃2|q2|qq̃|qq̃〉 = (−2A1−B3)[12]
2[34]2 +B1[14]

2[23]2 +(B1 +B2−B3)[12][34][14][23] . (A.9)

Similarly, to obtain the U(1) or chiral-antichiral N = 2 field-strength projection we
replace every (pq) in eq.(A.5) by 1 if it corresponds to a Wick contraction of the type 〈ww̄〉,
or by 0 if it corresponds to 〈ww〉 or to 〈w̄w̄〉. In this way we find

〈w2|w̄2|w2|w̄2〉 = A1 + A3 + B2 . (A.10)

Clearly, this procedure can easily be generalised to any dimension. In the case k = 3 we
have the decomposition (2.14) of the N = 4 amplitude into ten SU(4) harmonic structures.
It has a large number of possible N = 2 HM projections, but it turns out that in order to
derive the consequence of the N = 2 insertion formula it is sufficient to consider only one
of them, 〈q3|q̃3|q2q̃|qq̃2〉. Repeating the steps described above, we easily obtain

〈q3|q̃3|q2q̃|qq̃2〉 = (−3A1 − B1) [12]3[34]3 − B3 [14]3[23]3

+ (−B1 + 2B2 + C) [12]2[34]2[14][23]

+ (−B3 − B4 + C) [14]2[23]2[12][34] . (A.11)

In order to find the restrictions following from the insertion formula, we need not appeal
to its N = 4 version, but can rely on the safer and well-understood N = 2 one based on
the off-shell harmonic superspace formulation of the theory. The N = 2 insertion formula
[15, 19] predicts that any N = 2 amplitude is a product of the dimension 2 polynomial

R2222
N=2 =

[12]2[34]2

x4
12 x4

34

s +
[14]2[23]2

x4
14 x4

23

t +
[12][34][14][23]

x2
12 x2

34 x2
14 x2

23

(s + t − 1) , (A.12)

with another factor of dimension k − 2 which contains arbitrary functions of s, t. In our
case of dimension 3, for the projection in eq.(A.11) this gives

〈q3|q̃3|q2q̃|qq̃2〉 = R2222
N=2

[

F (s, t)
[12][34]

x2
12 x2

34

+ G(s, t)
[14][23]

x2
14 x2

23

]

. (A.13)

Comparing the coefficients of each of the four independent harmonic structures in eqs.(A.11)
and (A.13) we obtain four equations relating the coefficients A,B,C to the newly introduced
arbitrary functions F,G. Further, from the crossing symmetry relations (2.11), (2.15) and
(2.16) it follows that only three of the coefficients A,B,C are independent. Thus, the four
equations impose a relation between the functions F and G, so that in the end everything
is expressed in terms of G. The independent function γ (3.16) is related to G as follows:

γ =
1

3(t − s)

[

Ĝ − 2
˜̂
G − 1

s
(G̃ + ˆ̃G)

]

, (A.14)

or inversely,

G =
t − s + 1

t
γ̂ − tγ . (A.15)

Here G̃(s, t) = G(t, s) and Ĝ(s, t) = G(s/t, 1/t). In addition, the crossing symmetry condi-
tion γ = γ̃ is equivalent to the corresponding condition on G in eq.(A.14):

[

Ĝ +
1

s
(G̃ + ˆ̃G)

]

+
[

˜· · ·
]

= 0 . (A.16)
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B C-algebra

B.1 C-tensors

The supergravity fields of the five-dimensional effective action couple through SO(6) in-
variant tensors represented by overlapping integrals of spherical harmonics on the five-
dimensional sphere:

a123 =

∫

Y I1Y I2Y I3 , t123 =

∫

∇αY I1Y I2Y I3
α , p123 =

∫

∇αY I1∇βY I2Y I3
(αβ) .

These are essentially the Clebsh-Gordon coefficients for the tensor product of SO(6) irreps,
and it is in terms of these tensors that the cubic and quartic couplings of the effective action
were expressed in Ref. [32].

The irreducible representations of SO(6) which are of interest to us here have Dynkin
labels [0, k, 0] and [1, k−1, 1] (k odd), [2, k−2, 2] (k even) and can be described in terms of the
canonically normalised C-tensors with the corresponding Young symmetry. In particular,
the irrep [1, k, 1] is given by a tensor CI

m;i1...ik
which is traceless symmetric w.r.t. i1, . . . , ik

and has a vanishing symmetric part, while [2, k, 2] is described by CI
mn;i1...ik

, traceless and
symmetric w.r.t. i1, . . . , ik and m,n separately, and obeying the constraint

CI
mn;i1...ik

+ CI
mi1;n...ik

+ . . . + CI
mik;i1...n = 0 .

We assume the following normalisations

CI
m;i1...ik

CJ
n;i1...ik

= δmnδIJ , CI
m1n1;i1...ik

CJ
m2n2;i1...ik

= δIJδm1n1;m2n2 .

The relation of the integrals of spherical harmonics to the C-tensors is as follows

a123 =

∏3
i=1

ki!z(ki)
αi!

π
3
2 (σ + 2)! 2σ−1

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[0,k3,0]〉 , (B.1)

t123 =

∏3
i=1

ki!z(ki)

(αi−
1
2
)!

π
3
2 (k3 + 1)(σ + 3

2)! 2σ− 3
2

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[1,k3−1,1]〉 , (B.2)

p123 =
α3

∏3
i=1

ki!z(ki)
αi!

π
3
2 (σ + 1)! 2σ

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[2,k3−2,2]〉 , (B.3)

where z(k) = (2k−1(k+1)(k+2))1/2 , σ = 1
2(k1 +k2 +k3) and αi = 1

2(kj +kl −ki), j 6= l 6= i.
We use the notation 〈C1C2C3〉 to denote the unique SO(6) tensor obtained by contracting
particular subsets of indices of the three C-tensors CI

[a,b,c] (the subscript denotes the Dynkin

labels of the corresponding irrep). Explicitly,

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[0,k3,0]〉 = CI1

i1...iα2j1...jα3
CI2

j1...jα3 l1...lα1
CI3

l1...lα1 i1...iα2
, (B.4)

and

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[1,k3−1,1]〉 = CI1

mi1...ip2j1...jp3
CI2

j1...jp3 l1...lp3
CI3

m;l1...lp1 i1...ip2

− CI1
i1...ip2+1j1...jp3

CI2
j1...jp3 l1...lp1−1mCI3

m;l1...lp1−1i1...ip2+1
,(B.5)
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where p1 = α1 + 1
2 , p2 = α2 − 1

2 and p3 = α3 − 1
2 and,

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[2,k3−2,2]〉 = CI1

mi1...ip2j1...jp3
CI2

nj1...jp3 l1...lp1
CI3

mn;l1...lp1 i1...ip2
. (B.6)

Now we specialise these formulae to the case of interest when the legs 1 and 2 correspond
to k = 3 1

2 -BPS operators, i.e. to the irrep [0, 3, 0] (to simplify the notation, we will not
display the Dynkin labels for these two legs). It is easy to see that 〈C1C2C3

[0,k3,0]〉 6= 0 only

if k3 = 0, 2, 4, 6, 〈C1C2C3
[1,k3−1,1]〉 6= 0 only if k3 = 1, 3, 5 and 〈C1C2C3

[2,k3−2,2]〉 6= 0 only if
k3 = 2, 4.

B.2 Summation formulae

The four-point function (2.21) is given in terms of ten independent tensor structures δ12δ34,
C1234 (and permutations) and S1234. However, the AdS exchange graphs and the quartic
couplings are expressed in terms of sums of the type

〈C1C2C5〉〈C3C4C5〉 , (B.7)

where summation over the representation index at the fifth point is assumed. Therefore we
need to reexpress these sums in the basis of our ten independent tensor structures. This
can be achieved by using the completeness condition for the C-tensors. Below we obtain
the corresponding formulae.

In view of possible applications to the computation of correlation functions of higher
1
2 -BPS operators it is useful to derive a general formula for the sum CI

i1...inCI
j1...jn

expressing
the completeness condition. We have

CI
i1...inCI

j1...jn
=

[ n
2
]

∑

k=0

θk

∑

(l1...lk)

δil1 il2
. . . δilk−1

ilk
δ(n−k)

i1...̂il1 ...̂ilk ...iln ,(jk+1...jn
δj1j2

. . . δjk−1jk) . (B.8)

Here (. . .) stands for total symmetrisation of indices, and δ(p)
i1...ip,j1...jp = δ(p)

(i1...ip),(j1...jp)

denotes the symmetrised product of p Kronecker deltas δirjs . For every fixed k the in-
ternal sum runs over all subsets (l1 . . . lk) ∈ (1 . . . n) which lead to different products
δil1 il2

. . . δilk−1
ilk

, i.e. to expressions that cannot be obtained from one another by per-
muting Kronecker deltas in the product. The coefficients θk can be found by requiring the
r.h.s. of (B.8) to be traceless w.r.t. any pair of indices from i1, . . . , in and they are

θ0 = 1 , θk =
(−1)k

2k (n + 1) . . . (n + 2 − k)
. (B.9)

As an application of this formula we have, for instance,

CI
i1i2i3C

I
j1j2j3 =

1

6

[

δi1j1δi2j2δi3j3 + δi1j3δi2j1δi3j2 + δi1j2δi2j3δi3j1

+ δi1j2δi2j1δi3j3 + δi1j1δi2j3δi3j2 + δi1j3δi2j2δi3j1

]

− 1

8

[

δi1i2δi3(j1δj2j3) + δi1i3δi2(j1δj2j3) + δi2i3δi1(j1δj2j3)

]

. (B.10)
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Now substituting the completeness condition in the sum (B.7) with C5
[0,k5,0] and using

the definitions (2.20), we obtain the following formulae (the case k5 = 0 trivially gives
δ12δ34)

〈C1C2C5
[0,2,0]〉〈C3C4C5

[0,2,0]〉 =
1

2
C1234 +

1

2
C1243 − 1

6
δ12δ34 ,

〈C1C2C5
[0,4,0]〉〈C3C4C5

[0,4,0]〉 =
2

3
S1234 +

1

6
C1324 +

1

6
C1423 − 2

15
C1234 − 2

15
C1243

+
1

60
δ12δ34 ,

〈C1C2C5
[0,6,0]〉〈C3C4C5

[0,6,0]〉 =
1

20

(

δ13δ24 + δ14δ23 + 9C1342 + 9C1432
)

− 9

140

(

4S1234 + C1324 + C1423
)

+
3

140

(

C1234 + C1243
)

− 1

700
δ12δ34 . (B.11)

The sum (B.7) with C5
[1,k5−1,1] involves the tensors CI

m;i, CI
m;ijk, CI

m;ijklp. The ma-

trix Cm;i is antisymmetric and the corresponding completeness condition reads CI
i;jC

I
k;l =

1
2(δikδjl − δilδjk). Therefore, for k5 = 1 it gives

〈C1C2C5
[1,0,1]〉〈C3C4C5

[1,0,1]〉 = 2(C1234 − C1243) . (B.12)

For the other two tensors the completeness conditions are more involved because of the
mixed symmetry of the indices. Fortunately, there is another, indirect way to work out the
corresponding sums. In [32] the following reduction relations were proved:

t125t345 = −(f1 − f2)(f3 − f4)

4f5
a125a345 +

1

4
f5(a145a235 − a245a135) ,

(1 − f5)t125t345 =
1

4
(f2

5 − f5(f1 + f2 + f3 + f4 − 4))(a145a235 − a135a245)

− 4 − f5

4f5
(f1 − f2)(f3 − f4)a125a345 , (B.13)

where fi = ki(ki+4). Since we already know the sums (B.11) and their relation (B.1) to the
integrals of the spherical harmonics, we can substitute them in the r.h.s. of (B.13). Further,
using (B.12) and (B.2), we obtain two equations for the two remaining sums, whose solution
is

〈C1C2C5
[1,2,1]〉〈C3C4C5

[1,2,1]〉 =
1

3
(−C1234 + C1243 + 2C1324 − 2C1423) ,

〈C1C2C5
[1,4,1]〉〈C3C4C5

[1,4,1]〉 =
1

25

(

C1234 − C1243 − 5C1324 + 5C1423

+ 15C1342 − 15C1432 + 5δ13δ24 − 5δ14δ23
)

. (B.14)

Analogously, using formulae (B.10) and (B.11) from [32] we obtain

〈C1C2C5
[2,0,2]〉〈C3C4C5

[2,0,2]〉 = − 2

15

(

20S1234 + 5C1234 + 5C1243
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− 10C1324 − 10C1423 − δ12δ34
)

,

〈C1C2C5
[2,2,2]〉〈C3C4C5

[2,2,2]〉 =
8

15

(2

7
C1234 +

2

7
C1243 − C1324 − C1342 − C1423 − C1432

+ δ13δ24 + δ14δ23 − 1

35
δ12δ34

)

. (B.15)

In conclusion, formulae (B.11), (B.14) and (B.15) are the necessary tools to express the
contribution of the exchange graphs and the contact term in terms of the ten independent
tensor structures.

B.3 Pairings and normalised projectors

Given the four-point function (2.14) one can analyze the underlying OPE. To this end one
needs the (normalised) projectors on irreps appearing in the decomposition (2.13). This
problem has already been partially solved since eqs.(B.11),(B.14) and (B.15) represent the
(non-normalised) projectors on the corresponding irreps in (2.13). Only the projector on
the irrep [3, 0, 3] is missing. To normalize the projectors as well as to find the missing one,
the pairings among the ten tensor structures of (2.14) have to be worked out. This is done
by using the completeness relation (B.10) and the results are summarised in Table 3.

Tensor C1234 C1243 C1324 C1342 C1423 C1432 S1234

C1234 50375
108

1375
108

25525
108

1025
108

1025
108

325
108

575
24

S1234 575
24

575
24

575
24

575
24

575
24

575
24

13225
144

δ12δ34 1250
3

1250
3 125 25

3 125 25
3

125
3

δ13δ24 125 25
3

1250
3

1250
3

25
3 125 125

3

δ14δ23 25
3 125 25

3 125 1250
3

1250
3

125
3

Table 3: C-algebra. The number appearing at the intersection of a row and a
column is the value of the pairing of the corresponding C-tensors, e.g. the value
of C1234S1234 is 575/24.

Using Table 3 we can easily find the expressions for the normalised projectors. Their nor-
malisation is fixed to be P 1234

J P 1234
J = νJ , where νJ is the dimension of the corresponding

irrep. We find

P 1234
[0,0,0] =

1

50
δ12δ34 ,

P 1234
[0,2,0] =

6

35

(

C1234 + C1243 − 1

3
δ12δ34

)

,
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P 1234
[0,4,0] =

3

7

(

2S1234 +
1

2
C1324 +

1

2
C1423 − 2

5
C1234 − 2

5
C1243 +

1

20
δ12δ34

)

,

P 1234
[0,6,0] =

1

20

(

δ13δ24 + δ14δ23 + 9C1342 + 9C1432

− 9

7

(

4S1234 + C1324 + C1423
)

+
3

7

(

C1234 + C1243
)

− 1

35
δ12δ34

)

,

P 1234
[1,0,1] =

9

70
(C1234 − C1243) ,

P 1234
[1,2,1] =

1

4
(−C1234 + C1243 + 2C1324 − 2C1423) ,

P 1234
[1,4,1] =

1

20

(

C1234 − C1243 − 5C1324 + 5C1423

+ 15C1342 − 15C1432 + 5δ13δ24 − 5δ14δ23
)

,

P 1234
[3,0,3] =

1

28

(

2C1234 − 2C1243 − 7C1324 + 7C1423 − 21C1342 + 21C1432

+ 7δ13δ24 − 7δ14δ23
)

,

P 1234
[2,0,2] =

3

100

(

− 20S1234 − 5C1234 − 5C1243 + 10C1324 + 10C1423 + δ12δ34
)

,

P 1234
[2,2,2] =

9

700

(

− 35C1324 − 35C1342 − 35C1423 − 35C1432

+ 10C1234 + 10C1243 − δ12δ34 + 35δ13δ24 + 35δ14δ23
)

. (B.16)

C Contact terms

Here we extract the relevant contact interactions from the general quartic effective La-
grangian of [32]. This Lagrangian can be written in the form

L4 = L(4)
4 s1∇µs2∇ · ∇(s3∇µs4) + L(2)

4 s1∇µs2s3∇µs4 + L(0)
4 s1s2s3s4 , (C.1)

where L(4)
4 , L(2)

4 and L(0)
4 are the corresponding couplings considered as functions of the

representation labels k1 = x, k2 = y, k3 = t, k4 = w of the four scalar fields sI involved
(c.f. Appendix A of [32])6. For the case of interest we put x = y = z = t = 3. Finally, in

comparison with [32] we rescale the fields as s → π3/4

4801/2 s to fit with our normalisations of
the quadratic and the cubic terms in the actions of Section 4, and we change the overall
sign to work with the Euclidean version of the AdS space.

C.1 Four-derivative couplings

First we sum up the quartic couplings of the four-derivative vertex

L(4)
4 = − π3

4802

[ 1

1024
f3
5 − 7

32
f2
5 +

369

32
f5

]

(a145a235 − a135a245) +
π3

218 ·75(f5 − 1)2t125t345 .

6One of the couplings in [32] was not printed out properly and we therefore reproduce it here

(Sp2)
(0)
I1I2I3I4

= 2
δ
f2
5 p125p345(k

2
1 + k2

2 + k2
3 + k2

4 − 2(k1 + k2 + k3 + k4) + 2(k1k2 + k3k4) − 4).
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Next we express all the a- and t-tensors in terms of C-tensors using formulae (B.1) and
(B.2) and apply the summation formulae of Appendix B. As a result we get

L(4)
4 =

3

10240

(

C1234 − C1243 + C1342 − C1432 + C1423 − C1324
)

. (C.2)

On the other hand, for the AdS5 background the four-derivative interaction can be written
as

s1∇µs2∇ · ∇(s3∇µs4) = −10s1∇µs2s3∇µs4 + 2s1∇µs2∇νs
3∇µ∇νs4 .

The first term here is symmetric under 2 ↔ 4 while the second term is symmetric under
2 ↔ 3. These terms are further multiplied by the tensor (C.2), which is antisymmetric under
2 ↔ 4 and independently under 2 ↔ 3 and therefore the corresponding result vanishes.
Hence there is no four-derivative contribution to the on-shell value of the gravity action.

C.2 The remaining couplings

Proceeding as before, i.e. expressing the total two-derivative coupling in terms of the C-
tensors, we obtain

L(2)
4 = − 1

1761607680

[

3125461668S1234 + 323264681C1234 + 123826345C1243

+ 826347689C1324 − 134041431C1342 + 733630633C1423 + 369041577C1432

− 206335071 δ12δ34 − 53550175 δ13δ24 + 99234721 δ14δ23
]

. (C.3)

This expression looks rather ugly but this is in fact spurious because we have not yet taken
into account that it is multiplied by s1∇µs2s3∇µs4, an expression which is symmetric w.r.t.
2 ↔ 4. Indeed, with this in mind we see that eq.(C.3) is equivalent to

L(2)
4 s1∇µs2s3∇µs4 = − 1

251658240

[

446494524S + 98900894(C1234 + C1342 + C1423)

− 7650025(δ12δ34 + δ14δ23 + δ13δ24)
]

s1∇µs2s3∇µs4

− 3

32
C1243s1∇µs2s3∇µs4 . (C.4)

It is clear that the tensor in the square brackets is totally symmetric under permutations
of the indices (2, 3, 4).

Now, consider the expression

I = χ1234s1∇µs2s3∇µs4 , (C.5)

where χ1234 is a totally symmetric tensor. Let us show that such an interaction term can
be reduced to a term without derivatives. Indeed, under integration by parts we obtain

χ1234s1∇µs2s3∇µs4 = χ1234s1∇µs3s2∇µs4 = −χ1234∇µs1s2s3∇µs4 − χ1234s1s3∇µs2∇µs4

− m2
4χ

1234s1s2s3s4 .

Hence we find

χ1234s1∇µs2s3∇µs4 = −m2
4

3
χ1234s1s2s3s4 = χ1234s1s2s3s4 , (C.6)
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where we have used the fact that m2
4 = −3. Therefore we can use this trick to reduce the

totally symmetric part of the term L(2)
4 s1∇µs2s3∇µs4 to a term without derivatives.

Next, the coupling without derivatives reads

L(0)
4 =

68665157

20971520
S1234 +

100568527

41943040
C1234 − 4675733

16777216
δ12δ34 , (C.7)

where we have taken into account that this coupling is multiplied by s1s2s3s4 which is
symmetric under permutations of 2, 3, 4.

Finally, summing up L(0)
4 with the non-derivative term obtained from the symmetric

part of L(2)
4 , we obtain the spectacularly simple final expression in eq.(4.4).

D D-functions

D.1 D-operators

Here we collect the necessary facts about the D-functions. The D-functions related to
AdSd+1 are defined by the formula

D∆1∆2∆3∆4(x1, x2, x3, x4) =

∫

ddw dw0

wd+1
0

4
∏

i=1

K∆i(w, xi) , (D.1)

for

K∆(w, x) =

(

w0

w2
0 + (~w − x)2

)∆

, (D.2)

and where the integral is taken over the space parametrised by wµ = (w0, ~w), ~w being a
d-dimensional vector, w0 ≥ 0. From this definition one can deduce the following Feynman
parameter representation

D∆1∆2∆3∆4(x1, x2, x3, x4) =
π

1
2
dΓ

(

Σ − d
2

)

Γ (Σ)

2
∏

i Γ(∆i)

∫

∏

j

dαjα
∆j−1
j

δ(
∑

j αj − 1)

(
∑

k<l αkαl x
2
kl)

Σ
, (D.3)

where Σ = 1
2

∑4
i=1 ∆i. From the D functions we may define corresponding functions of the

conformal invariants s, t by

∏4
i=1 Γ(∆i)

Γ(Σ − 1
2d)

2

π
1
2
d
D∆1∆2∆3∆4(x1, x2, x3, x4) =

(x2
14)

Σ−∆1−∆4(x2
34)

Σ−∆3−∆4

(x2
13)

Σ−∆4 (x2
24)

∆2
D∆1∆2∆3∆4(s, t) .

(D.4)
For ∆i = 1 we have

D1111(s, t) = Φ(s, t) , (D.5)

where Φ(s, t) given in terms of the standard four-dimensional one-loop (box) integral con-
sidered as a function of the conformal cross-ratios s and t. It has an explicit representation
in terms of dilogarithms [43].

The D-functions satisfy the following derivative relation

∂

∂x2
12

D∆1∆2∆3∆4 =
∆1∆2
1
2d − Σ

D∆1+1∆2+1∆3 ∆4
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and similarly for any other pair of indices which leads to

D∆1+1∆2+1∆3∆4 = −∂sD∆1∆2∆3∆4 ,

D∆1∆2∆3+1∆4+1 = (∆3 + ∆4 − Σ − s∂s)D∆1∆2∆3∆4 ,

D∆1∆2+1∆3+1∆4 = −∂tD∆1∆2∆3∆4 ,

D∆1+1∆2∆3∆4+1 = (∆1 + ∆4 − Σ − t∂t)D∆1∆2∆3∆4 ,

D∆1∆2+1∆3∆4+1 = (∆2 + s∂s + t∂t)D∆1∆2∆3∆4 ,

D∆1+1∆2∆3+1∆4 = (Σ − ∆4 + s∂s + t∂t)D∆1∆2∆3∆4 . (D.6)

This allows differential operators D∆1 ∆2 ∆3 ∆4 to be obtained so that (5.2) is valid whenever
∆i,Σ are integers. The differential operators are not unique, clearly D2222 can be obtained
by using three separate pairs of equations in (D.6) giving the relations

∂ss∂sΦ = ∂tt∂tΦ = (s∂s + t∂t + 1)2Φ . (D.7)

The action of the derivatives on Φ is given by [19]

∂sΦ(s, t) =
1

λ2

(

Φ(s, t)(1 − s + t) + 2 ln s − s + t − 1

s
ln t

)

,

∂tΦ(s, t) =
1

λ2

(

Φ(s, t)(1 − t + s) + 2 ln t − s + t − 1

t
ln s

)

, (D.8)

where λ =
√

(1 − s − t)2 − 4st.
Using (D.6) we can obtain expressions for all the D-functions we are interested in as

differential operators acting on Φ(s, t), up to the arbitrariness following from (D.7). In
particular, the following D-operators

D3311 = ∂s
2

D3232 = (1 + s∂s)(2 + s∂s + t∂t)∂s

D3322 = −(2 + s∂s)∂s
2

D3333 = −(1 + s∂s)(2 + s∂s + t∂t)
2

D2332 = −(1 + s∂s)∂t∂s D3412 = (3 + s∂s + t∂t)∂s
2

D3421 = −∂t∂s
2

D3243 = −(1 + s∂s)(2 + s∂s + t∂t)s∂s
2

D3423 = −(2 + s∂s)(3 + s∂s + t∂t)∂s
2

D3342 = −∂t(1 + s∂s)(2 + s∂s + t∂t)∂s

D3432 = ∂t(2 + s∂s)(3 + s∂s + t∂t)∂s
2

D4334 = −t∂t(1 + s∂s)(2 + s∂s + t∂t)∂s

D4433 = −∂s(1 + s∂s)(2 + s∂s + t∂t)∂s

may be used to determine the coefficient functions of Section 5.

D.2 Relations for D-functions and simplification of the supergravity am-
plitude

Here we show how the original coefficient functions (5.1) can be further simplified and
present an independent proof of the splitting property of the supergravity-induced four-
point amplitude into “free” and “quantum” parts.

By virtue of the obvious permutation symmetries in (D.1) we have

D∆1 ∆2 ∆3 ∆4(s, t) = t−∆2D∆1 ∆2 ∆4 ∆3(s/t, 1/t)
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= t∆4−Σ D∆2 ∆1 ∆3 ∆4(s/t, 1/t)

= D∆3 ∆2 ∆1 ∆4(t, s)

= t∆1+∆4−Σ D∆2 ∆1 ∆4 ∆3(s, t)

= s∆3+∆4−Σ D∆4 ∆3 ∆2 ∆1(s, t) . (D.9)

We also have the reflection property

D∆1 ∆2 ∆3 ∆4(s, t) = DΣ−∆3 Σ−∆4 Σ−∆1 Σ−∆2(s, t) . (D.10)

In addition there are relations involving D functions with differing Σ. First there are what
may be referred to as the two up, two down relations

(∆2 + ∆4 − Σ)D∆1 ∆2 ∆3 ∆4(s, t) = D∆1 ∆2+1∆3 ∆4+1(s, t) − D∆1+1∆2 ∆3+1∆4(s, t) ,

(∆1 + ∆4 − Σ)D∆1 ∆2 ∆3 ∆4(s, t) = D∆1+1∆2 ∆3 ∆4+1(s, t) − tD∆1 ∆2+1∆3+1∆4(s, t) ,

(∆3 + ∆4 − Σ)D∆1 ∆2 ∆3 ∆4(s, t) = D∆1 ∆2 ∆3+1∆4+1(s, t) − sD∆1+1∆2+1∆3 ∆4(s, t) .(D.11)

and then the following formula involving the sum of three D functions with the same Σ

∆4D∆1 ∆2 ∆3 ∆4(s, t) = D∆1 ∆2 ∆3+1∆4+1(s, t) + D∆1 ∆2+1∆3 ∆4+1(s, t)

+ D∆1+1∆2 ∆3 ∆4+1(s, t) . (D.12)

These results give relations between D∆1 ∆2 ∆3 ∆4 for any fixed Σ and are necessary for
consistency of (D.6). If ∆i = ni for integers ni then for any

∑

i ni = 2Σ even all D-functions
may be related7.

For one ∆i = 0 the integral (D.1) reduces to a three point function. Using the above
this leads to

(D∆1+1∆2 ∆3+1∆4 + sD∆1+1∆2+1∆3 ∆4 + tD∆1 ∆2+1∆3+1∆4)|∆4=∆1+∆2+∆3

= Γ(∆1)Γ(∆2)Γ(∆3) . (D.13)

This leads, for ∆1 = ∆2 = ∆3 = 1, to the following inhomogeneous differential equation for
Φ

[

(1 − s − t)∂s∂t − ∂s
2 s − ∂t

2 t
]

Φ(s, t) =
1

st
. (D.14)

Both (D.7) and (D.14) follow from (D.8).
These results may now be used to simplify the results of the supergravity calculations.

For simplicity let

(ai, bi, c, α, β, γ) =
9

2N2
(âi, b̂i, ĉ, α̂, β̂, γ̂) , (D.15)

7Let (n1, n2, n3, n4) be the set of integers corresponding to a D function. Let (n1, n2, n3, n4) ∼

(n′

1, n
′

2, n
′

3, n
′

4) if the D function is related up to contributions with lower Σ. From (D.11) (n1, n2, n3, n4) ∼
(n1 + 1, n2 − 1, n3 + 1, n4 − 1) ∼ (n1 + 2, n2 − 2, n3, n4) and thus we may reduce (n1, n2) to one of the
form (m + 2, m), (m + 1, m), (m,m) and similarly (n3, n4) to (n + 2, n), (n + 1, n), (n, n). The relation
(D.11) then allows m → m ± 1 while n = n ∓ 1 so that we can take m = n + 1 or m = n. There are
then 10 possibilities but these can be reduced to (n + 3, n + 1, n + 2, n) ∼ (n + 2, n + 2, n + 1, n + 1),
(n + 2, n, n + 2, n) ∼ (n + 1, n + 1, n + 1, n + 1), (n + 1, n + 1, n + 2, n) and (n, n, n + 2, n). Using (D.12)
(n, n, n + 2, n) ∼ −(n + 1, n, n + 1, n) − (n, n + 1, n + 1, n). Similarly (n + 1, n + 1, n + 2, n) can be reduced
to (n + 1, n + 1, n + 1, n + 1).
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and then we may write from (5.1)

â1 = s3((1 + t − s)(D4433 + D4422) + 5D3333 − D3311) . (D.16)

To simplify this we use (D.11) and (D.12) three times in each case to obtain

(1 + t − s)D4433 = −2D4424 + 2(D4323 + D3423) − 3D3333 ,

(1 + t − s)D4422 = 2D4413 + D4312 + D3412 − 3D3322 . (D.17)

Inserting this in (D.16) and using (D.12) again gives

â1 = −2s3(D4424 + D4413) . (D.18)

With further use of (D.9) and (D.10) we obtain

α̂ = −2(sD3335 + D2235) = −2s2(D5333 + D5322) ,

β̂ = −2(tD3335 + D3225) = −2(D4226 − D3225) ,

γ̂ = −2(D3335 + D2325) = −2s(D5333 + D5232) . (D.19)

For further simplification we first consider b1 where we have from (5.1),

b̂1 = s2((1 + t − s)D4433 − 4D4334 − 4D3243 + 4t D3342 − D3423 + t D3432

+ 8D3232 − 4D3322 − 2D3412 + 2t D3421 + 2D3311)

= s2(− 2D4424 − 4D4334 + 2(D4323 + D3423) − 3D3333 − 4D3243 + 4D4233

− D3423 + D4323 + 8D3232 − 4D3322 − 2D3412 + 2D4312 + 2D3311) .(D.20)

According to the general results obtained in Section 3 this is related to (t − s − 1)α̂ + sγ̂.
From (D.19) we need

(t − s − 1)D5333 = 2D4334 + D5223 − 3(D4233 + D4323)

(t − s − 1)D5322 = 2D4323 − 3D4222 − 2D4312 +
1

s2
, (D.21)

where the last result depends on using (D.13). Hence we obtain

(t − s − 1)α̂ + sγ̂ = s2(− 4D4334 − 2D5333 − 2D5223 + 6(D4233 + D4323)

− 2D5232 − 4D4323 + 6D4222 + 4D4312)− 2 . (D.22)

Combining (D.20) and (D.22) we readily find

b̂1 = (t − s − 1)α̂ + sγ̂ + 2 . (D.23)

The results for c can be similarly simplified. The starting point is

ĉ = 32st(− 3
2 D3333 + D2332 + D3232 + D3322) . (D.24)
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For comparison we have

(s − t − 1)α̂ + (t − s − 1)β̂ + (1 − s − t)γ̂

= − 4s D3326 − 4t D2336 − 4D3236

− 8(s − t − 1)D2235 − 8(t − s − 1)D3225 − 8(1 − s − t)D2325

= − 4 + 8st(− D2253 − D5223 + D3252 + D5232 − D2523)

+ 8t(D2235 + D2253) + 8s(D3225 + D5223) , (D.25)

where we have used (D.13). Using (D.9) and (D.11) to generate an overall factor of st we
may now use (D.12) to demonstrate

ĉ = (s − t − 1)α̂ + (t − s − 1)β̂ + (1 − s − t)γ̂ + 4 . (D.26)

(D.23) and (D.26) are equivalent to (5.4).
For determining anomalous dimensions we need to identify the terms in D∆1∆2∆3∆4(s, t)

involving ln s in an expansion in terms of s, 1 − t. For N = ∆1 + ∆2 − Σ + 1 = 1, 2, . . . we
have from [41]

D∆1∆2∆3∆4(s, t) ∼ ln s
(−1)N

(N − 1)!

Γ(∆1)Γ(∆2)Γ(Σ − ∆3)Γ(Σ − ∆4)

Γ(∆1 + ∆2)

×
∞
∑

m,n=0

(∆1)m(Σ − ∆3)m(∆2)m+n(Σ − ∆4)m+n

m!n! (N)m(∆1 + ∆2)2m+n
sm(1 − t)n , (D.27)

where (x)m = Γ(x + m)/Γ(x). For N = 2, 3, . . . there are additional terms which dominate
for s ∼ 0 and which do not contain ln s,

s1−N (N − 2)!
Γ(∆1 − N + 1)Γ(∆2 − N + 1)Γ(Σ − ∆3 − N + 1)Γ(Σ − ∆4 − N + 1)

Γ(∆1 + ∆2 − 2N + 2)

×
N−2
∑

m=0

∞
∑

n=0

(∆1−N+1)m(Σ−∆3−N+1)m(∆2−N+1)m+n(Σ−∆4−N+1)m+n

m!n! (1 − N)m(∆1 + ∆2 − 2N + 2)2m+n
sm(1 − t)n .

(D.28)

E Exchange graphs of a massive symmetric tensor

Here we show how the method of Ref. [36] can be generalised to compute the AdS graphs
involving the exchange of a massive symmetric tensor.

Recall that an exchange graph is a double integral in the z and w variables over the five-
dimensional AdS space. One first computes the z-integral and then recasts the remaining
w-integral as a sum of different D-functions.

We start with the equations of motion for the massive symmetric tensor ϕµν . The
Lagrangian is given by [32]

L = −1

4
∇ρϕµν∇ρϕµν +

1

2
∇µϕµρ∇νϕνρ −

1

2
∇µϕρ

ρ∇νϕ
µν +

1

4
∇ρϕ

µ
µ∇ρϕν

ν

+
1

4
(2 − f)ϕµνϕµν +

1

4
(2 + f)(φµ

µ)2 + αTµνϕµν . (E.1)
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Here α is some coupling and the tensor Tµν is assumed to be of the form

Tµν =
1

2
∇µs∇νs +

1

2
∇νs∇µs − 1

2
gµν

(

∇ρs∇ρs +
1

2
(2m2 − f)ss

)

. (E.2)

The scalar field s has mass squared m2 = ∆(∆−4) and f = k(k +4) is the mass squared of
the symmetric tensor ϕµν transforming in the irrep [0, k, 0] of SO(6). The massless graviton
arises as the particular case k = 0. For the sake of clarity we suppress the inessential
representation index for both the sI and ϕI

µν fields.
First of all, the Lagrangian (E.1) implies the following equation

∇ρ∇ρφλ
λ = ∇ρ∇λφρλ − 2 − f + d(2 + f)

2 − d
φλ

λ − 2α

2 − d
T µ

µ , (E.3)

where d is the dimension of the AdS space, i.e. d = 5 for AdS5. Using this equation we
then find

W ρλ
µν φρλ ≡ −∇ρ∇ρφµν + ∇µ∇ρφρν + ∇ν∇ρφρµ −∇µ∇νφ

ρ
ρ −

(

(2 − f)φµν +
6 + f

2 − d
gµνφλ

λ

)

= α
(

gµρgνλ + gµλgνρ +
2

2 − d
gµνgρλ

)

T ρλ , (E.4)

which defines the modified Ricci operator W ρλ
µν acting on φρλ. Applying the derivative ∇µ

to both sides of this equation we find

f
(

∇µφµν −∇νφ
λ
λ

)

= 2α∇µT µ
ν .

Differentiating this formula, using (E.3), and assuming that f is non-zero we can solve for
the trace of ϕµν :

ϕλ
λ = − α

2f(f + 3)

(

3∇µ∇νT
µν + fT µ

µ

)

. (E.5)

By definition, the z-integral describing the exchange of a massive symmetric tensor is
given by

Aµν(w, x3, x4) =

∫

ddz dz0

zd+1
0

Gµν,λρ(w, z)T λρ(z, x3, x4) . (E.6)

Here the bitensor Gµν,ρλ(w, z) is the bulk-to-bulk propagator for the massive symmetric
tensor ϕµν . It depends on the AdS invariant distance and obeys the equation

W ρλ
µν Gρλ,µ′ν′(w, z) =

(

gµµ′gνν′ + gµν′gνµ′ +
2

2 − d
gµνgµ′ν′

)

δ(z,w) . (E.7)

The tensor T λρ(z, x3, x4), suppressing the argument z, is given by

Tµν(x3, x4) =
1

2
∇µK∆(x3)∇νK∆(x4) +

1

2
∇νK∆(x3)∇µK∆(x4)

− 1

2
gµν

(

∇ρK∆(x3)∇ρK∆(x4) +
1

2
(2m2 − f)K∆(x3)K∆(x4)

)

, (E.8)
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where the functions K∆(z, x) were defined in (D.2).
Following [36], we use Aµν(w, x3, x4) = Aµν(w−x3, 0, x43) and then perform a conformal

inversion on the integral (E.6) to obtain

Aµν(w, 0, x) =
1

x2∆ w4
Jµλ(w)Jνρ(w)Iλρ(w

′ − x′) , w′ =
wµ

w2
, x′ =

xµ

x2
, (E.9)

where Jµν(w) = δµν − 2
wµwν

w2 . We then write down the following ansatz for the tensor Iµν

Iµν(w) = gµνh(t) + PµPνφ(t) + ∇µ∇νX(t) + ∇(µ(Pν)Y (t)) . (E.10)

Here t = w2
0/w

2, gµν = δµν/w2
0 , Pµ = δ0µ/w0, and h(t), φ(t), X(t), Y (t) are four unknown

functions. To find them one has to work out the action of the modified Ricci operator on
eq.(E.10). For the individual terms in (E.10) we obtain the following formulae

W ρλ
µν [gρλh(t)] =

(

4t2(t − 1)h′′ + 4t(t + 1)h′ +
8

3
(f + 3)h

)

gµν − 3∇µ∇νh ,

W ρλ
µν [PρPλφ(t)] = gµν

(

4t(t − 1)φ′ +
1

3
(f + 24)φ

)

−∇µ∇νφ

+ PµPν

(

4t2(1 − t)φ′′ − 8t2φ′ + fφ
)

+
δ0(µwν)w0

(w2)2

(

4t(t − 1)φ′′ + 8tφ′
)

.

and

W ρλ
µν [∇ρ∇λX(t)] = gµν

(

− 4

3
t2(t − 1)X ′′ − 4

3
t(t + 1)X ′

)

f + f∇µ∇νX ,

W ρλ
µν [∇ρ(PλY ) + ∇λ(PρY )] = gµν

(

− 14

3
Y − 4

3
t(t − 1)Y ′

)

f

+ PµPν(2Y + 4tY ′)f +
δ0(µwν)w0

(w2)2
(−2Y ′f) .

The basic equation allowing us to determine the unknown functions in (E.10) is derived
by using the fundamental equation (E.7):

W ρλ
µν [Iρλ(w)] =

1

3
gµν(2m2 − f)t∆ + PµPν(2∆2t∆) − 2∆2t∆−1 δ0{µwν}w0

(w2)2
. (E.11)

To solve this equation we first equate the terms involving ∇µ∇ν on both sides:

∇µ∇ν(−3h − φ + fX) = 0

and pick up the trivial solution

h(t) = −1

3
φ +

f

3
X . (E.12)

Now we equate the coefficients of the expression
δ0(µwν)w0

(w2)2
and find

4t(t − 1)φ′′ + 8tφ′ − 2fY ′ = −2∆2t∆−1 .

This equation is trivially integrated to give

Y (t) = a +
1

2f

(

4t(t − 1)φ′ + 4φ + 2∆t∆
)

, (E.13)
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where a is an integration constant. Equating the coefficients of PµPν we get

4t2(1 − t)φ′′ − 8t2φ′ + fφ + 2Y f + 4tfY ′ = 2∆2t∆ . (E.14)

Substituting here (E.13) we find a closed equation for φ:

4t2(t − 1)φ′′ + 4t(3t − 1)φ′ + (f + 4)φ + 2af + 2∆(∆ + 1)t∆ = 0 . (E.15)

Finally we equate the coefficients of gµν and substitute their (E.12) and (E.13). The resulting
equation is used to find X:

X(t) =
1

8f(f + 3)

[

12t2(2t − 1)(t − 1)φ′′ + 12t(4t2 + t − 3)φ′ + (36 + 5f)φ

+ 42af − 3t∆ (f + 2∆(∆ − 2∆t − 3))
]

. (E.16)

Thus, solving eqs.(E.12),(E.13),(E.15) and (E.16) we can establish the z-integral corre-
sponding to a massive spin 2 tensor exchange.

Now we solve equation (E.15) for ∆ = 3, f = 12. The solution regular at both t = 1
and t = 0 has the form

φ(t) = −3

2
a − 3

4
t2 , h(t) =

3

2
a +

3

20
t2 , X(t) =

1

4
a − 1

40
t2 , Y (t) =

3

4
a +

1

8
t2 .

It is easy to see that upon substituting the coefficient functions found into the ansatz
(E.10), all the terms proportional to the arbitrary integration constant a cancel out. Com-
bining all the pieces together we obtain

Iµν(w) =
3

20
t2gµν − 3

4
t2 PµPν − 1

40
∇µ∇νt

2 +
1

8
∇(µ

(

Pν)t
2
)

. (E.17)

Working out the action of the derivatives this formula can be written in the form

Iµν(w) = −3

5
t2

wµwν

(w2)2
. (E.18)

This is an amazingly simple expression, even simpler than the corresponding result for the
graviton exchange.

To restore the z-integral from Iµν one has to let

t =
w′2

0

(w′ − x′)2
→ q = x2

34

w0

w2
0 + (~w − x3)2

w0

w2
0 + (~w − x4)2

, (E.19)

and also
1

w2(w′ − x′)2
Jµν(w)(w′ − x′)ν → Qµ =

(x3 − w)µ
(x3 − w)2

− (x4 − w)µ
(x4 − w)2

. (E.20)

In this way we find the following result for the z-integral describing the exchange of the
spin 2 tensor of m2 = 12:

Aµν(w, x3, x4) = − 3

5x2
34

QµQνK2(w, x3)K2(w, x4) . (E.21)
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The result (E.21) is symmetric under the exchange x3 ↔ x4, as it should be. Owing to the
conformal property of Qµ one can also see that Aµν indeed transforms as a tensor under
inversions.

Finally, taking the trace of (E.21) and using QµQµ =
x2
34w2

0
(w−x3)2(w−x4)2

(the contraction

involves the AdS metric), we get

φλ
λ = Aλ

λ(w, x3, x4) = −3

5
K3(w, x3)K3(w, x4) . (E.22)

On the other hand, this formula should coincide with (E.5) for α = 1. Using the formula
(E.2) one can show that eq.(E.5) indeed coincides with eq.(E.5). This provides a consistency
check on our calculation.

The computation of the remaining w-integral does not present any difficulty and is based
on the general formula

∇µ
wK∆(w, x1)Qµ = ∆K∆+1(w, x1)

[

x2
14

w0

(w − x4)2
− x2

13

w0

(w − x3)2

]

. (E.23)

F Results for Short Multiplet Expansions

Using the variables z, x defined by

s = zx , t = (1 − z)(1 − x) , (F.1)

the functions HJ , defined in (6.32), can be expressed as

HJ (s, t) =
1

z − x

(

z gJ (z) − 1
2s gJ (z) + s fJ (z) − (z ↔ x)

)

, (F.2)

where, from the results in [26], gJ represents contributions corresponding to just twist 0
and fJ to twist 2. We find

g[2,2,2](z) = 0 , f[2,2,2](z) =
10

9

(

z3 +
z3

(1 − z)3

)

,

g[3,0,3](z) = 0 , f[3,0,3](z) = −2
(2

z
− 1

)(

z3 +
z3

(1 − z)3

)

,

g[1,2,1](z) = −
(

z3 +
z3

(1 − z)3

)

, f[1,2,1](z) =
3

2

(

z3 − z3

(1 − z)3

)

,

g[2,0,2](z) =
5

3

(2

z
− 1

)(

z3 +
z3

(1 − z)3

)

, f[2,0,2](z) = −5

2

(2

z
− 1

)(

z3 − z3

(1 − z)3

)

,

g[0,2,0](z) = −35

8

(

z3 − z3

(1 − z)3

)

, f[0,2,0](z) =
45

16

(

z3 +
z3

(1 − z)3

)

,

g[1,0,1](z) =
35

6

(2

z
− 1

)(

z3 − z3

(1 − z)3

)

, f[1,0,1](z) = −15

4

(2

z
− 1

)(

z3 +
z3

(1 − z)3

)

,

g[0,0,0](z) = −50 +
25

2

(

z3 − z3

(1 − z)3

)

+
45

2

(2

z
− 1

)(

z3 +
z3

(1 − z)3

)

,

f[0,0,0](z) = −15

4

(

z3 +
z3

(1 − z)3

)

− 35

4

(2

z
− 1

)(

z3 − z3

(1 − z)3

)

. (F.3)
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The expansion coefficients for the individual contributions of short representations are given
by

d
[1,4,1]
1,ℓ = 2ℓ−2 (ℓ + 2)!(ℓ + 4)!

(2ℓ + 3)!
(ℓ + 1) , d

[1,4,1]
2,ℓ = 2ℓ−2 3(ℓ + 3)!(ℓ + 5)!

5(2ℓ + 5)!
(ℓ + 2) ,

d
[1,4,1]
3,ℓ = 2ℓ−3 3(ℓ + 4)!(ℓ + 5)!

35(2ℓ + 7)!
(ℓ + 2)(ℓ + 7) ,

d
[0,4,0]
1,ℓ = 2ℓ−1 (ℓ + 2)!(ℓ + 3)!

15(2ℓ + 3)!
(4ℓ2 + 20ℓ + 51) , d

[0,4,0]
2,ℓ = 2ℓ−4 7(ℓ + 3)!(ℓ + 4)!

5(2ℓ + 5)!
(ℓ2 + 7ℓ + 18) ,

d
[0,4,0]
3,ℓ = 2ℓ−5 9(ℓ + 4)!(ℓ + 6)!

25(2ℓ + 7)!
(ℓ + 3) , d

[0,4,0]
4,ℓ = 2ℓ−2 (ℓ + 5)!(ℓ + 6)!

315(2ℓ + 9)!
(ℓ + 3)(ℓ + 8) ,

d
[2,2,2]
1,ℓ = 2ℓ−2 (ℓ + 2)!(ℓ + 4)!

(2ℓ + 3)!
(ℓ + 1) , d

[2,2,2]
2,ℓ = 2ℓ−3 7(ℓ + 3)!(ℓ + 5)!

9(2ℓ + 5)!
(ℓ + 2) ,

d
[2,2,2]
3,ℓ = 2ℓ−4 5(ℓ + 4)!(ℓ + 6)!

21(2ℓ + 7)!
(ℓ + 3) ,

d
[3,0,3]
1,ℓ = 2ℓ−2 (ℓ + 2)!(ℓ + 4)!

(2ℓ + 3)!
(ℓ + 1) , d

[3,0,3]
2,ℓ = 2ℓ−3 3(ℓ + 3)!(ℓ + 5)!

5(2ℓ + 5)!
(ℓ + 2) ,

d
[3,0,3]
3,ℓ = 2ℓ−4 9(ℓ + 4)!(ℓ + 6)!

35(2ℓ + 7)!
(ℓ + 3) ,

d
[1,2,1]
1,ℓ = 2ℓ−4 9(ℓ + 2)!(ℓ + 3)!

5(2ℓ + 3)!
(ℓ2 + 5ℓ + 12) , d

[1,2,1]
2,ℓ = 2ℓ−2 (ℓ + 3)!(ℓ + 4)!

35(2ℓ + 5)!
(8ℓ2 + 56ℓ + 129) ,

d
[1,2,1]
3,ℓ = 2ℓ−5 9(ℓ + 4)!(ℓ + 5)!

175(2ℓ + 7)!
(7ℓ2 + 63ℓ + 162) , d

[1,2,1]
4,ℓ = 2ℓ−3 (ℓ + 5)!(ℓ + 7)!

147(2ℓ + 9)!
(ℓ + 4) ,

d
[2,0,2]
1,ℓ = 2ℓ−4 5(ℓ + 2)!(ℓ + 3)!

3(2ℓ + 3)!
(ℓ2 + 5ℓ + 12) , d

[2,0,2]
2,ℓ = 2ℓ−4 (ℓ + 3)!(ℓ + 4)!

7(2ℓ + 5)!
(5ℓ2 + 35ℓ + 78) ,

d
[2,0,2]
3,ℓ = 2ℓ−3 3(ℓ + 4)!(ℓ + 5)!

35(2ℓ + 7)!
(ℓ2 + 9ℓ + 23) , d

[2,0,2]
4,ℓ = 2ℓ−3 (ℓ + 5)!(ℓ + 7)!

147(2ℓ + 9)!
(ℓ + 4) ,

d
[0,2,0]
1,ℓ = 2ℓ−7 27(ℓ + 2)!(ℓ + 4)!

5(2ℓ + 3)!
(ℓ + 1) , d

[0,2,0]
2,ℓ = 2ℓ−7 3(ℓ + 3)!(ℓ + 4)!

5(2ℓ + 5)!
(7ℓ2 + 49ℓ + 106) ,

d
[0,2,0]
3,ℓ = 2ℓ−7 3(ℓ + 4)!(ℓ + 5)!

175(2ℓ + 7)!
(59ℓ2 + 531ℓ + 1552) , d

[0,2,0]
4,ℓ = 2ℓ−6 (ℓ + 5)!(ℓ + 6)!

105(2ℓ + 9)!
(7ℓ2 + 77ℓ + 268) ,

d
[1,0,1]
1,ℓ = 2ℓ−5 (ℓ + 2)!(ℓ + 4)!

(2ℓ + 3)!
(ℓ + 1) , d

[1,0,1]
2,ℓ = 2ℓ−3 (ℓ + 3)!(ℓ + 4)!

5(2ℓ + 5)!
(ℓ2 + 7ℓ + 15) ,

d
[1,0,1]
3,ℓ = 2ℓ−6 3(ℓ + 4)!(ℓ + 5)!

35(2ℓ + 7)!
(5ℓ2 + 45ℓ + 118) , d

[1,0,1]
4,ℓ = 2ℓ−4 (ℓ + 5)!(ℓ + 6)!

63(2ℓ + 9)!
(ℓ2 + 11ℓ + 36) ,

d
[0,0,0]
2,ℓ = 2ℓ−5 3(ℓ + 3)!(ℓ + 5)!

7(2ℓ + 5)!
(ℓ + 2) , d

[0,0,0]
3,ℓ = 2ℓ−3 9(ℓ + 4)!(ℓ + 6)!

35(2ℓ + 7)!
(ℓ + 3) ,

d
[0,0,0]
4,ℓ = 2ℓ−3 (ℓ + 5)!(ℓ + 7)!

147(2ℓ + 9)!
(ℓ + 4) . (F.4)

For ℓ = 0, 1 the general formulae are no longer correct in all cases, for those cases which
are different from what would be given from (F.4) we have

d
[0,4,0]
1,0 = 2 , d

[0,4,0]
2,0 = 9

5 , d
[0,4,0]
3,0 = 11

100 , d
[0,4,0]
4,0 = 2

441 ,
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d
[1,2,1]
1,1 = 162

35 , d
[1,2,1]
2,1 = 1912

1225 , d
[1,0,1]
1,1 = 3

5 , d
[1,0,1]
2,1 = 64

105 ,

d
[2,0,2]
1,0 = 2 , d

[2,0,2]
2,0 = 9

14 , d
[2,0,2]
3,0 = 32

245 , d
[2,2,2]
2,0 = 109

105 ,

d
[0,2,0]
1,0 = 0 , d

[0,2,0]
1,2 = 33

20 , d
[0,2,0]
2,0 = 45

112 , d
[0,2,0]
3,0 = 1829

19600 ,

d
[0,0,0]
2,0 = 9

70 , d
[0,0,0]
3,0 = 61

1960 . (F.5)
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