
ar
X

iv
:g

r-
qc

/0
40

10
18

 v
1 

  7
 J

an
 2

00
4

On black holes as inner boundaries for the

constraint equations

S. Dain

Max-Planck-Institut für Gravitationsphysik

Am Mühlenberg 1

14476 Golm

Germany

e-mail: dain@aei.mpg.de

July 9, 2004

Abstract

General aspects of the boundary value problem for the constraint equa-
tions and their application to black holes are discussed.

1 Introduction

There are many kinds of boundaries in physics. For example, in electrody-
namics, the boundary given by the interface between a charge distribution
and vacuum. However, this is not a fundamental boundary of Maxwell
equations, in the following sense. This boundary is introduced in the
sources by choosing a charge density with compact support. The sources
satisfy extra equations. Maxwell equations are expected to be fundamen-
tal equations; matter sources equations are phenomenological approxima-
tion suitable to describe some specific matter models. The same apply to
matter sources in Einstein equations. In this case the space time boundary
is introduced in the sources of Einstein equations by choosing an energy
density with compact support.

In the case of vacuum Maxwell equations, the field does not interact
with it self, hence it can not produce “its own boundary”. In the case of
Einstein vacuum equation there exists such fundamental kind of boundary
produced only by the self interaction of the vacuum field: black holes.

In the context of an initial value formulation, the first step in order to
understand the space time boundary produced by a black hole is the study
of the intersection of this boundary with a spacelike three-dimensional
Cauchy hypersurface. That is, to study the black hole boundary value
problem for the constraint equations. This problem has been recently
studied in [11] [9].

Since only fundamental properties of gravity are involved in a vacuum
black hole, it can be expected that black hole boundary conditions can be
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written in a geometrical form. It turns out that this is true. Moreover,
black holes boundaries for the constraint equations suggest a deep inter-
play between Riemannian geometry, elliptic equations and physics. In the
present article we discuss some general aspects about this interplay.

In section 2 we present the constraint equations and the correspond-
ing boundary conditions. In section 3 we discuss elliptic reductions to this
equation. General kind of boundary conditions are discussed in section 4.
In section 5 we discuss boundary conditions that are physically meaning-
ful. Finally, in section 6, we discuss black hole boundary conditions.

2 The constraint equations

Let Ck be a finite collection of compact sets in R
3. We define the exte-

rior region Ω̃ = R
3 \ ∪kCk. For simplicity, we will mainly consider the

constraint equations in the time-symmetric case, that is, when extrinsic
curvature vanishes. However, all the following consideration apply also
to the general case (see [9]). Let h̃ab be a Riemannian metric on Ω̃ and
let R̃ be the corresponding Ricci scalar. The time-symmetric, vacuum,
constraint equation is given by

R̃ = 0, (1)

on Ω̃.
There exists two kinds of boundary conditions for equation (1) in Ω̃:

outer boundary conditions and inner boundary conditions. The outer
boundary condition is asymptotic flatness, and it is essentially a fall of
condition on h̃ab. Physically, it means that we have an isolated system.
The data will be called asymptotically flat if there exists some compact
set C, with ∪kCk ⊂ C, such that Ω̃ \ C can be mapped by a coordinate
system x̃j diffeomorphically onto the complement of a closed ball in R

3

and we have in these coordinates

h̃ij = (1 +
2m

r̃
)δij +O(r̃−2), (2)

as r̃ = (
∑

3

j=1
(x̃j)2)1/2 → ∞, where the constant m is the total mass of

the initial data.
The inner boundary condition will be the black hole boundary con-

dition. The boundaries ∂Ck are assumed to be smooth, two dimensional
surfaces in (Ω̃, h̃). Let ν̃a be the unit normal of ∂Ck, with respect to h̃ab,
pointing in the outward direction of Ω̃. Let ta be the unit timelike vec-
tor field orthogonal to the hypersurface Ω̃ with respect to the spacetime
metric gab (tatbgab = −1 with our signature convention) The outgoing
and ingoing null geodesics orthogonal to ∂Ck are given by la = ta − ν̃a

and ka = ta + ν̃a respectively, the corresponding expansions are given by
Θ+ = ∇al

a and Θ− = ∇ak
a, where ∇a is the connexion with respect to

gab. We can calculate these expansions in terms of quantities intrinsic to
the initial data. In the particular case of time-symmetric data we have

Θ− = −Θ+ = H̃, (3)
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where H̃ = D̃aν̃
a, and D̃a is the covariant derivative with respect h̃ab.

That is, H̃ is the mean curvature of the two-dimensional surface ∂Ω̃ with
respect to the metric h̃ab and the normal ν̃a. The boundary will be called
marginally trapped if

H̃ = 0. (4)

A marginally trapped surface indicates the presence of a black hole (see
[14] and also the discussion in [9]). Equation (4) geometrically means that
the two dimensional boundary is an extremal surface with respect to the
metric h̃ab. Equation (4) will be our inner boundary condition.

3 The constraint equations as an elliptic

system

We want to find solutions h̃ab to equation (1) which satisfy boundary
conditions (2) and (4). If we write equation (1) in terms of the metric
components of h̃ab we get a complicated non linear equation. We have six
unknown functions in the metric h̃ab and only one equation. That is, we
have an underdetermined system. The strategy to solve this equation is to
split the six unknowns into two sets. One set will be called the free data,
we want to prescribe them freely or at least with some restrictions easy to
achieve, which, in particular, do not involve solving differential equations.
Roughly speaking, the free data set should contain five free functions. The
other set will contain only one function. For a given choice of free data
we have to solve equation (1) to calculate this function.

There exists a priori many ways of doing this splitting. For example
we can chose some coordinate system and chose the free data set to be
five components of the metric in these coordinates and try to solve the
equation for the remainder. But the resulting equation will be in general
a complicated non linear equation which is of no known type and hence
will be difficult, if not impossible, to prove that in fact for every choice of
free data we do get a solution for the remainder.

In order to control the behavior of the solution h̃ab at the boundary we
need also to prescribe boundary conditions for the unknown function. Our
splitting and boundary conditions will be successful if for arbitrary free
data and boundary conditions we always get a solution for the reminder.
This suggests that the problem has an elliptic nature. To some extend
this is true, the constraint equation can be reduced to an elliptic system.
However, this is not the only way of solving them, for example they can
be reduced to a parabolic system [3] and this lead to the discovery of
new kinds of solutions. Nevertheless, so far only the elliptic approach has
been successful in the general case (the parabolic system has been mainly
studied in the time symmetric case).

There is not a unique way of getting an elliptic system out of equation
(1). Different elliptic systems will lead to different choices of free data
and boundary conditions, and hence they can be more appropriate to
describe different kinds of physical situations. Here we will use the so
called conformal method, which is probably the simplest one, since it lead
to semilinear equations, which reduce to a linear equation in the time-
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symmetric case. Other elliptic reductions give quasi linear equations [7]
[8] [6] [5][4]. So far, black hole boundary conditions have been only studied
using the conformal method [11] [9]. It will very be interesting to study
them with other elliptic reductions.

The conformal method is as follows. Let hab be a Riemannian metric,
let ψ be a positive solution of the following equation

Lhψ = 0, (5)

where Lh ≡ DaDa − R/8, Da is the covariant derivative with respect to
hab and R is the Ricci scalar of the metric hab. Then, the rescaled metric
h̃ab = ψ4hab will satisfy equation (1). Note that the differential operator
Lh is elliptic, hence the linear equation (1) is an elliptic reduction to the
time symmetric constraint equation (1).

Two metrics ĥab and hab belong to the same conformal class if there
exists a positive conformal factor ψ̂ such that ĥab = ψ̂4hab. For any
metric in the same conformal class we get the same solution h̃ab. That is,
the free data set is given by the conformal class of metrics, which can be
represented by five free functions.

4 Elliptic boundary conditions

What kind of boundary conditions are compatible with the constraint
equations? If we have reduced them to an elliptic system, this question
can be answer in full generality. Given an elliptic system, the boundary
conditions will lead to a well posed problem if and only if they satisfy
the so called complementing condition or Lopatinski-Schapiro conditions
(see [1] [2] for a precise statement and also the introductory book [13]).
These are conditions at the linear level. For non linear system, these
conditions are imposed to the associated linearized problem. Of course
in the non linear case, these conditions are in general only necessary but
not sufficient to prove the existence of solution. For non linear systems we
have to study each particular case to decide whether there exists solutions
or not.

Simple examples of boundary conditions that satisfy the Lopatinski-
Schapiro requirements for equation (1) are Dirichlet and Neumann bound-
ary conditions for the conformal factor ψ. More general boundary condi-
tions are possible, it is even possible that the order of the derivatives in
the boundary operator is higher than the order of the derivatives in the
differential operator.

However, here we are interested in positive solutions. This is an extra
requirement of our particular elliptic reduction. If ψ is zero at some point
then h̃ab = ψ4hab will not be a Riemannian metric at this point. The
positivity of the solution can be proved by a particular feature of second
order elliptic equations: the maximum principle (see, for example, [10]).

In order to use the maximum principle we need an extra requirement
on the lower order coefficients of the operator Lh

R ≥ 0. (6)
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The most general kind of boundary condition that satisfy the Lopatinski-
Shapiro conditions and also allow us to use the maximum principle to
prove positivity is given by the Dirichlet boundary condition

ψ = ϕ on ∂Ω̃ (7)

or the oblique derivative boundary condition

βaDaψ + αψ = ϕ on ∂Ω̃, (8)

where ϕ, α and βa are arbitrary functions which satisfy ϕ ≥ 0, α ≥ 0 and
βaνa > 0 on ∂Ω̃, where νa is the outward unit normal with respect to the
conformal metric hab. We note that βaνa > 0 guarantee that (8) satisfies
the Lopatinski-Schapiro conditions.

In the exterior region Ω̃ we need in addition the asymptotic flatness
condition which in this case is given by

lim
r→∞

ψ = 1. (9)

Conditions (6), (7) or (8), (9) will guarantee the existence of a unique
positive solution ψ of equation (5), and hence an asymptotically flat metric
h̃ab which satisfies the constraint equation (1) with (7) or (8) as inner
boundary condition. Of course, for arbitrary ϕ, α and βa, the boundary
condition (8) will not have any interesting geometrical meaning.

5 On physical boundary conditions

Probably any smooth solution of the constraint equation in some bounded
region can have some physical interpretation in the sense that this bounded
region can be a piece of a space time that can describe some physical phe-
nomena. The situation is different in the case of an exterior region Ω̃: in
order to be physically meaningful as a description of an isolated system
the solution must have positive mass. Since we artificially cut out a region
in R

3, the positivity mass theorem does not automatically apply. Many of
the solutions found in the previous section will have negative total mass.
This can be explicitly seen in the following example.

Let us consider the Schwarzschild, time symmetric, initial data. In
this case hab = δab, where δab is the flat metric, Lh = ∆, where ∆ is the
flat Laplacian and the conformal factor is given by

ψ = 1 +
m

2r
. (10)

We chose the exterior region Ω̃ to be the exterior of a ball of radius r = a.
Note that with our conventions νa = −(∂/∂r)a. The Dirichlet boundary
condition is given by

ψ = ϕ0 on ∂Ω̃, (11)

where ϕ0 is a positive constant. Using (10) one easily check that ϕ0 < 1
implies m < 0 and ϕ0 > 1 implies m > 0. Take a > m/2, then we will
have ψ > 0 in the exterior region and m < 0 if we chose ϕ0 < 1. This
means that ϕ0 < 1 is not a physical boundary condition although it math-
ematically consistent in the sense that it gives us existence and uniqueness
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of a positive solution. In the general case, if we impose Dirichlet boundary
conditions to the conformal factor appears to be difficult to recognize for
which value of the boundary function we will get data with positive mass.
We conclude that Dirichlet boundary conditions for ψ are not physically
meaningful in general.

In this example, the Neumann condition

νaDaψ = −
∂ψ

∂r

∣

∣

∣

∣

r=a

= ϕ0 (12)

with ϕ0 > 0 always produce data with positive mass, since m = 2ϕ0a
2.

This can be generalized. Consider the case of non trivial extrinsic curva-
ture, and assume that the trace of it is zero. Assume that the conformal
metric hab satisfies R = 0 and the following fall off hij = δij + O(r−2).
The equation for the conformal factor is given by

Lhψ = DaDaψ = −
KabK

ab

8ψ7
, (13)

where Kab is the rescaled extrinsic curvature. Let us impose Neumann
boundary condition to this equation

νaDaψ = ϕ on ∂Ω̃, (14)

with ϕ ≥ 0. Integrating equation (13) on Ω̃ and using the Gauss theorem
we get

m ≥

∫

∂Ω̃

νaDaψ dS ≥ 0, (15)

where we have used (14) and the following expression for the mass

m = −
1

4π
lim

r→∞

∫

Sr

∂ψ

∂r
dSr. (16)

We conclude that every data which satisfy the boundary condition (14)
in the appropriate conformal class will have positive mass. Note that the
boundary condition (14) is linear even in the general, non time-symmetric,
case. It is not clear to me the meaning of this condition, and I am not
aware of any application of it. Although in [11] only black hole boundary
conditions has been studied, remarkably, all the solutions founded there
satisfy in addition condition (14).

6 Black hole boundary conditions

The most important inner boundary condition for the vacuum constraint
equation is the black hole condition (4). This boundary condition has
both a geometric and physical meaning. There exist versions of the pos-
itivity mass theorem which include black holes as inner boundaries (see
for example [12]).

Condition (4) can be written in terms of the conformal quantities as

4νaDaψ +Hψ = 0, (17)
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where H = Daν
a.

If H ≥ 0 on ∂Ω̃, then condition (17) has the form (8). If, in addition,
the conformal metric hab satisfies R ≥ 0 on Ω̃ we can apply the standard
linear elliptic theory and the maximum principle to prove that there will
exist a unique positive solution φ of our problem.

The conformal metric is not really a free data, it should satisfy the
condition R ≥ 0, and also the boundary ∂Ω̃ should satisfy H ≥ 0. Note
that if we chose the conformal metric to be the flat metric and ∂Ω̃ any
sphere, then this boundary will have H < 0, and hence it does not sat-
isfy our hypothesis. However, it is simple to construct families of metric
which satisfy R ≥ 0 and H ≥ 0 on ∂Ω̃. Consider, for example, the time-
symmetric initial data for Reissner-Nordstrom. The metric is given by

hab = ψ̂4δab, (18)

where

ψ̂ =
1

2r

√

(q + 2r +m)(−q + 2r +m). (19)

The constants q and m are the charge and the mass of the data respec-
tively. We assume q2 < m2. The Ricci scalar is given by

R =
2q2

ψ̂8r4
, (20)

which is positive. For r < r0 = (
√

m2 − q2)/2 the mean curvature of the
two surfaces of constant radius is positive. Then this metric satisfies our
hypothesis. Moreover, take q > 0 (this implies R > 0), let ∂Ω̃ such that
H > 0, let ǫ small enough and λab and arbitrary tensor field; then the
metric hab + ǫλab satisfies also R > 0 and ∂Ω̃ will satisfy H > 0 with
respect to this metric.

In the general case, black hole boundary conditions are non linear.
This introduces extra difficulties in both the existence proof and the elec-
tion of free data. This problem has been recently studied in [11] [9]. In
those references, large classes of black hole exterior regions have been
constructed. However, it is still an open problem how to construct and
characterize all possible initial data for black holes exterior regions.
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