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We present an exhaustive analysis of the numerical evolution of the Einstein-Klein-Gordon equa-
tions for the case of a real scalar field endowed with a quadratic self-interaction potential. The
self-gravitating equilibrium configurations are called oscillatons and are close relatives of boson
stars, their complex counterparts. Unlike boson stars, for which the oscillations of the two compo-
nents of the complex scalar field are such that the spacetime geometry remains static, oscillatons
give rise to a geometry that is time-dependent and oscillatory in nature. However, they can still be
classified into stable (S-branch) and unstable (U-branch) cases. We have found that S-oscillatons
are indeed stable configurations under small perturbations and typically migrate to other S-profiles
when perturbed strongly. On the other hand, U-oscillatons are intrinsically unstable: they migrate
to the S-branch if their mass is decreased and collapse to black holes if their mass is increased even
by a small amount. The S-oscillatons can also be made to collapse to black holes if enough mass is
added to them, but such collapse can be efficiently prevented by the gravitational cooling mechanism
in the case of diluted oscillatons.

PACS numbers: 04.25.Dm, 95.30.Sf, 95.35.+d, 98.62.Ai, 98.80.-k

I. INTRODUCTION

In a seminal paper Seidel & Suen [1] found that there
exist non-singular, time-dependent equilibrium configu-
rations of self-gravitating real scalar fields. These os-
cillating soliton stars are called oscillatons, and are so-
lutions of the Einstein-Klein-Gordon (EKG) system of
equations for minimally coupled real scalar fields. The
time-dependence of these solutions appears as a funda-
mental ingredient that allows singularities to be avoided,
in contrast to static solutions of the EKG equations with
real scalar fields, where singularities frequently appear.
The case of real scalar fields is quite different to the case
of complex scalar fields, for which the EKG equations
provide the so-called boson stars, which are non-singular
solitonic solution with a static geometry (the components
of the complex field oscillate in precisely such a way that
the stress-energy tensor is time independent). However,
the stability of oscillatons has not been studied in as
much detail as in the case of boson stars [2, 3, 4]. Such
studies are necessary because of the possible role of oscil-
latons in astrophysics and cosmology, where real scalar
fields have been proposed as candidates for the dark mat-
ter in the Universe [5, 6, 7].

In this paper we want to complement previous stud-
ies [1, 3, 8, 9, 10] on oscillatons with a numerical analysis
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of the evolution of the EKG equations, much in the same
way as it has been done for boson stars [2, 3, 4]. The
main aim is to investigate whether oscillatons are sta-
ble. For simplicity, we only consider here the spherically
symmetric case of a real scalar field Φ endowed with a
quadratic scalar potential of the form V (Φ) = (m2/2)Φ2.
Other cases will be treated in future publications.

This paper is organized as follows. In section II, we
present the necessary mathematical background to find
equilibrium configurations and to further evolve the EKG
equations. As we shall see, the equilibrium configura-
tions may be classified in two different groups: the S
and U-branches. The numerical methods and tests are
presented in section III. In sections IV and V, we ana-
lyze the results obtained from the evolution of the EKG
equations for different oscillatons. We separately study
the behavior of S and U-oscillatons by adding to them
small and strong perturbations that change their total
mass. We conclude in section VI.

II. MATHEMATICAL BACKGROUND

To begin with, we consider the spherically symmetric
line element

ds2 = −α2dt2 + a2dr2 + r2
(

dθ2 + sin2(θ)dϕ2
)

(1)

with α(r, t) the lapse function and a(r, t) the radial met-
ric function. We choose the polar-areal slicing condition
(i.e. we force the line element to have the above form
at all times, so that the area of a sphere with r = R is
always equal to 4πR2); this choice of gauge will force the
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lapse function α(r, t) to satisfy an ordinary differential
equation in r. Through out the work, we will be using
units such that c = ~ = 1, and we express the gravita-
tional constant in terms of he Planck mass: G = 1/m2

Pl.
The energy momentum tensor of a scalar field Φ

endowed with a quadratic self-interaction potential
V (Φ) = (m2/2)Φ2 is

Tµν = Φ,µΦ,ν − gµν

2

[

Φ,αΦ,α + m2Φ2
]

. (2)

The non-vanishing components of Tµν are

− T 0
0 = ρΦ =

1

2

[

α−2Φ̇2 + a−2Φ′2 + m2Φ2
]

, (3)

T01 = PΦ = Φ̇Φ′ , (4)

T 1
1 = pr =

1

2

[

α−2Φ̇2 + a−2Φ′2 − m2Φ2
]

, (5)

T 2
2 = p⊥ =

1

2

[

α−2Φ̇2 − a−2Φ′2 − m2Φ2
]

, (6)

and also T 3
3 = T 2

2. These different components are
identified as the energy density ρΦ, the momentum den-
sity PΦ, the radial pressure pr, and the angular pressure
p⊥. The parameter m is interpreted as the mass of the
scalar particles. Over-dots denote ∂/∂t and primes de-
note ∂/∂r.

The evolution of the metric functions α and a can be
obtained from the Einstein equations Gµν = κ0Tµν , with
κ0 = 8πG. In order to write appropriate evolution equa-
tions, we now introduce the first order variables Ψ = Φ,r

and Π = aΦ,t/α. Also, we define the dimensionless quan-
tities r = x/m, t → t/m, Φ → Φ/

√
κ0, where we note

that the bosonic mass is the natural scale for time and
distance.

Using these new variables, the Hamiltonian constraint
becomes

a,x

a
=

1 − a2

2x
+

x

4

[

Ψ2 + Π2 + a2Φ2
]

, (7)

and the polar-areal slicing condition takes the form

α,x

α
=

a,x

a
+

a2 − 1

x
− xa2Φ2 . (8)

The evolution of the scalar field Φ is governed by the
Klein-Gordon (KG) equation, which appears as a conse-
quence of the conservation equations of the scalar field
energy-momentum tensor (2) in the form

T µν
;ν = Φ,µ

(

2 − m2
)

Φ = 0, (9)

where 2 = gαβ∇α∇β is the d’Alambertian operator. The
KG equation is equivalent to the following set of first
order differential equations

Φ,t =
α

a
Π , (10)

Π,t =
1

x2

(

x2αΨ

a

)

,x

− aα Φ , (11)

Ψ,t =

(

αΠ

a

)

,x

. (12)

Equations (7-12) form the complete set of differential
equations to be solved numerically. The evolution equa-
tion for Π above is further transformed into the equiva-
lent form:

Π,t = 3
d

dx3

(

x2αΨ

a

)

− aα Φ . (13)

Notice that the first term on the right hand side of this
equation includes now a first derivative with respect to
x3 (and not a third derivative). The reason for doing this
transformation has to do with the numerical regulariza-
tion near the origin of the 1/x2 factor in equation (11)
above (see Ref. [11]).

A. Eigenvalue problem for equilibrium

configurations

In order to find the equilibrium configurations of oscil-
latons, eqs. (7-12) are solved using Fourier expansions for
both the metric and the scalar field functions [1, 8, 9, 10].
We briefly describe here the procedure used in [9] to find
such equilibrium configurations.

In order to deal with the non-linearities present in the
EKG equations, it is convenient to introduce the new
variables A(t, r) = a2(t, r), C(t, r) = (a/α)2, for which
eqs. (7-12) take the form

A′ =
Ax

2

(

CΦ̇2 + Φ′2 + AΦ2
)

+
A

x
(1 − A) , (14)

C′ =
2C

x

[

1 + A

(

1

2
x2Φ2 − 1

)]

, (15)

CΦ̈ = −1

2
ĊΦ̇ + Φ′′ + Φ′

(

2

x
− C′

2C

)

− AΦ , (16)

Ȧ = xAΦ̇Φ′ . (17)

The lapse function is later obtained as α2(t, x) =
A(t, x)/C(t, x). Notice that Eq. (17) is a consequence of
the momentum constraint (the {t, r} part of the Einstein
equations.)

We shall consider the Fourier expansions

Φ(t, x) =

jmax
∑

j=1

φj(x) cos(jωt) ,

A(t, x) =

jmax
∑

j=0

Aj(x) cos(jωt) , (18)

C(t, x) =

jmax
∑

j=0

Cj(x) cos(jωt) ,

where ω is called the fundamental frequency and jmax

is the mode at which the Fourier series are truncated.
Solutions are obtained by introducing the Fourier expan-
sions (18) in eqs. (14-17), and setting each Fourier coeffi-
cient to zero; that is, the EKG equations are reduced to
a set of coupled ordinary differential equations.
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The boundary conditions are determined by requir-
ing non-singular and asymptotically flat solutions, for
which equations (14-17) become an eigenvalue problem.
Thus, it is only necessary to determine the initial val-
ues φi(0), Ci(0) (the fundamental frequency is an out-

put value) corresponding to a given central central value
φ1(0), to obtain different equilibrium configurations.
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FIG. 1: Non-zero Fourier coefficients of the scalar field
Φ and the radial metric coefficient grr − 1 (see eq. (18))
for a configuration with φ1(0) = 0.2828. The total mass
is M = 0.5726 m2

Pl/m and the fundamental frequency is
(ω/m) = 0.9128. The solution shown here was calculated
up to the 6th Fourier mode (jmax = 6 in eqs. (18)). The con-
vergence of the Fourier series is manifest (notice the re-scaling
of the higher Fourier modes).

A typical oscillaton solution is shown in Fig. 1. Even
though we are solving non-linear equations, the Fourier
series converges rapidly. A particular feature of the so-
lutions is that they are represented only by odd Fourier
coefficients of the scalar field Φ and the even coefficients
of the metric functions A and C.

In Fig. 2, we show the calculated total mass (MT ),
the fundamental frequency (Ω ≡ ω/m) and the radius at
which the radial metric coefficient reaches its maximum
value at t = 0 (Rmax(0)) for different configurations. In
the case of oscillatons, the position of the maximum of a2

is not a fixed value but instead oscillates in time. How-
ever, as we shall see below (see Fig. 8), the amplitude of
such oscillations is quite small and the initial value can be
taken as representative of each oscillaton. The maximum
mass Mc = 0.607 m2

Pl/mΦ is reached for a central value
φ1c(0) = 0.48, to which also corresponds a fundamental
frequency Ω = 0.864. The fundamental frequency is al-
ways such that Ω ≤ 1 for all oscillatons, with Ω = 1 for
the trivial solution. In general, more massive oscillatons
oscillate with a smaller fundamental frequency.
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FIG. 2: (Top) Total masses MT (in units of m2

Pl/mΦ) and
fundamental frequencies (Ω) of different oscillatons. The crit-
ical (maximum) mass is Mc = 0.607 m2

Pl/mΦ for a configu-
ration with a central value φ1c(0) = 0.48; its corresponding
frequency is (ω/m) = 0.864. (Bottom) Plot of the total mass
MT vs Rmax(0) (the latter in units of m−1), the radius at
which the metric coefficient grr reaches its maximum value at
t = 0.



4

III. NUMERICS

A. Numerical algorithm for the evolution of the

system

In order to integrate the Klein-Gordon equa-
tions (10,11,12) we used a method of lines with second
order centered differences in space. For the time inte-
gration we use a method inspired in the Iterative Crank
Nicholson (ICN) scheme with three iterations (see for ex-
ample [12, 13]). The standard ICN is used to integrate a
system of evolution equations of the form:

∂ui

∂t
= Si(uj , ∂xk

uj) . (19)

Given values of the variables ui at time step t = n∆t,
one updates the values of the variables to time step t =
(n + 1)∆t in the following way:

u
(1)
i = un

i + (∆t/2) Sn
i , (20)

u
(k)
i = un

i + (∆t/2) S
(k−1)
i k = 2, ..., N − 1 , (21)

un+1
i = un

i + ∆t S
(N−1)
i , (22)

where un
i = ui(t = n∆t), un+1

i = ui(t = (n + 1)∆t), and

u
(k)
i are intermediate values. Taking N = 3 is enough to

obtain a second order accurate, stable scheme [12, 13] (in
fact, taking N = 2 is enough for second order accuracy,
but it is unstable).

For our purposes we have modified the above algorithm
for the case N = 3 in the following way:

u
(1)
i = un

i + (∆t/3) Sn
i , (23)

u
(2)
i = un

i + (∆t/2) S
(1)
i , (24)

un+1
i = un

i + ∆t S
(2)
i , (25)

The reason for this modification is that the above scheme
is considerably less dissipative than standard three-step
ICN. In fact, for linear equations one can show that the
above scheme is third order in time. We have found our
modified scheme ICN to be very stable and robust in
practice.

Once we have advanced the variables Φ, Ψ and Π one
time step using the above algorithm, we substitute their
new values into equations (7) and (8). These are simple
ordinary differential equations on the radial coordinate
that we solve using a standard second order Runge-Kutta
scheme.

B. Boundary conditions

Our set of equations is singular at x = 0. To avoid the
singularity, we stagger the origin and take a spatial grid of
the form xi = (i − 1/2)∆x. The fictitious point at x0 =
−∆x/2 is used to impose appropriate parity conditions:

Π is even and Ψ is odd. Notice that we can integrate Φ
all the way to the boundary point x0 = −∆x/2, since
its evolution equation does not require the evaluation of
spatial derivatives.

At the outer boundary we also need to impose bound-
ary conditions. Notice again that we do not need to ap-
ply a boundary condition for Φ, as its evolution equation
can be integrated all the way to the boundary point. For
Π we assume that, for large enough x, it behaves as an
outgoing wave pulse of the form:

Π = u(x − t)/x , (26)

with u an arbitrary function. In differential form this
becomes

∂xΠ + ∂tΠ + Π/x = 0 , (27)

which, performing finite difference can be solved for the
unknown boundary value at the new time level. On the
other hand, it is not difficult to convince oneself that the
function Ψ does not behave as an outgoing wave at the
boundary. However, we are assuming that Π does and,
as a consequence, so does Φ. In particular, the outgoing
wave boundary condition applied to Φ can be seen to
imply that at the boundary:

Ψ = −Π − Φ/x . (28)

This equation can then be used to obtain boundary val-
ues for Ψ once those of Φ and Π are known.

Finally, we need to mention the boundary conditions
used for the ordinary differential equations that have to
be solved to find the metric functions α and a. For a, we
use the fact that local flatness implies that a(x = 0) = 1
and ∂xa(x = 0) = 0. These two conditions imply that
a(x0) = a(x1) = 1+O(∆x)3. We use these two boundary
values at the first two grid points and integrate the second
order hamiltonian constraint outwards.

For the lapse function α we use the fact that, on a
vacuum, our slicing condition implies that we are in
Schwarzschild coordinates, so we must have α = 1/a.
We then assume that our boundaries are sufficiently far
away as to be always in a vacuum, and impose α = 1/a
as an outer boundary condition. The slicing condition is
then integrated inwards. One could presumably improve
on this by setting α(x = 0) = constant, ∂xα(x = 0) = 0
as boundary conditions on the origin, integrating the slic-
ing condition outwards, and then re-scaling it so that the
lapse goes as 1 + k/x far away (k is a constant; notice
that the slicing condition is scale invariant).

C. Code tests

In order to illustrate how all these ingredients work
together properly, we study now the accuracy of our nu-
merical methods in some particular cases. In Figure 3
we show the convergence of a system initially consisting
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of a Gaussian pulse of scalar field. The equation we use
to calibrate our techniques is the (r, t) component of the
Einstein’s equations (the momentum constraint):

β := a,t −
1

2
xαΦΠ = 0 , (29)

which should be satisfied for an exact solution[14]. What
we show in the plot is the L2 norm of the value of β across
the grid as a function of time for three different resolu-
tions. The initial Gaussian corresponds to an oscillaton
with M = 0.575, so that it is in the stable branch and
has a long time life; the boundary is located at x = 50 so
that the evolutions were carried out up to 100 crossing
times. The fact that the value of β goes down by a factor
of 4 every time the resolution is doubled shows that the
code remains second order convergent.
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FIG. 3: The momentum constraint (29) for three different res-
olutions: Fine (dr = 0.01), Medium (dr = 0.02) and Coarse
(dr = 0.04). The initial conditions corresponds to a Gaussian

pulse of the form Φ(0, x) = 0.296 e−x2/5.35, and total mass
M = 0.575.

IV. EVOLUTION OF OSCILLATONS: THE

S-BRANCH AND THE QUASI-NORMAL MODES

We shall call S-branch oscillatons those equilibrium
configurations to the left hand side of the critical config-
uration in the plot M vsφ1(0) in Fig. 2 (or equivalently,
those configurations to the right hand side in the plot of
M vs Rmax). As a first step in the study of the stability of
oscillatons, we will numerically evolve these equilibrium
configurations.

We should keep in mind that, compared to realistic
oscillatons, the solutions presented in Fig. 2 are already
perturbed. These perturbations arise because of the in-
herent discretization error of the numerical solutions and
(mainly) of the truncated Fourier expansions. Therefore,
the eigen-solutions of section II A will be treated as al-
ready slightly perturbed profiles[1].

The main results presented in this section can be sum-
marized as follows. i) S-oscillatons are stable against
small perturbations. ii) Besides the fundamental oscil-
lations of the system, there is an overall vibration of the
oscillaton when slightly perturbed. The frequencies (f)
of these vibrations should be identified with the so-called
quasi-normal modes of the system, and the resulting plot
f vs M is a particular feature of the Φ2-oscillatons. As
we shall see below, such quasi-normal modes are very
important in the study of evolved profiles.

We take the scalar field profiles obtained by solving
eqs. (17-16) to be the initial data for the evolution equa-
tions. In this form, the initial conditions for the scalar
field are (see eqs. (18))

Φ(t = 0, x) =

jmax
∑

j=1

φj(x) , (30)

Φ′(t = 0, x) =

jmax
∑

j=1

φ′

j(x) (31)

Φ̇(t = 0, x) = 0 . (32)

and then the metric functions α, a are calculated through
the Einstein equations. In this manner, we will also check
the consistency between the eigenvalue problem and the
numerical evolution since no additional information (like
the metric functions, the fundamental frequency ω, etc.)
is taken initially.

As a typical example of a S-branch oscillaton, we show
in Fig. 4 the evolution of the initial profile shown in Fig. 1,
characterized by the central value φ1(0) = 0.2828. From
the figure we see that such an oscillaton is stable, main-
taining the same oscillatory pattern from t ' 300 (see
Fig. 5) up to times t ' 20, 000 (in the plot we are show-
ing only a fraction of the run). That the evolution is
stable can also be seen from Fig. 5, in which we show
the accuracy of the numerical evolution by plotting the
momentum constraint. In Fig 6 we show the evolution of
the total integrated mass. We can see a small apprecia-
ble adjustment of the original mass at around t = 300,
indicating a small ejection of scalar field from the sys-
tem. The overall linear decay of the mass can be shown
to be consistent (using convergence tests) with a small
amount of numerical dissipation still present in our nu-
merical method, and is therefore not an intrinsic decay
of the oscillaton.

The simulations show that the evolved profile oscillates
periodically at two different time scales. In particular,
there is a short-period oscillation, which we may identify
with the fundamental oscillation, and an overall vibration
with a longer period [1]. Following the literature of boson
stars [2], we shall refer to the later as the “quasi-normal
modes”.

To determine the oscillatory scales of the solution,
we calculated the power spectrum of the evolution of
(grr)max in Fig. 4, and plotted it in Fig. 7. Notice that
the dominant frequencies are the quasi-normal one and
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and the evolution is shown to t = 5, 000 m−1, some 50 crossing
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and no change was observed. Thus, we can conclude that
the initial configuration is stable against small perturbations.
(Bottom) The density profile ρΦ(t, x) times x2 is plotted for
late times.
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The overall linear decrease is due to the numerical dissipation
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(twice) the fundamental angular frequency, which are,
respectively, (f/m) = 4.52 × 10−2 and (ω/m) = 0.9119.
Higher modes corresponding to even-multiples of the fun-
damental frequency are also present, but their power is
smaller. Observe that the fundamental frequency is a lit-
tle bit readjusted too, but its value is consistent with the
eigen-solution in Fig. 1.

We systematically evolve all other S-branch equilib-
rium configurations shown in Figs. 2, calculating their
corresponding power spectrum and then their quasi-
normal and fundamental frequencies. In all cases, the
evolved profiles behaved accordingly with the description
given above for the (representative) case φ1(0) = 0.2828.

For instance, the values of the fundamental frequen-
cies were just a little bit readjusted in all cases, but
its values were always consistent with those shown in
Figs. 2. In general, the power spectrum of more dilute
oscillatons is dominated by the fundamental frequency,
while the quasi-normal frequency dominates for oscilla-
tons near the critical point. Also, the linear numerical
dissipation of mass was as in Fig. 5, suggesting also that
it should be attributed to the numerical method and not
to the intrinsic properties of oscillatons.

The resulting plot f vs M in Fig. 7 has been very useful
to analyze the evolution of boson stars[2, 4], and we will
see it is useful for oscillatons as well. The plot shows
a maximum and a sharp decline near the critical mass.
This is a typical behavior indicating the transition from
stable to unstable configurations.

‘To further demonstrate that the S-oscillatons are sta-
ble and that the frequencies shown in Fig. 7 are their
intrinsic quasi-normal modes, we show in Fig. 8 the evo-
lution of the total mass MT and Rmax compared to the
equilibrium configurations as shown in Fig. 2. It is clear
that the slightly perturbed S-oscillatons oscillate with
very small amplitudes around the original equilibrium
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FIG. 7: (Top) The power spectrum of the evolution of the
metric coefficient grr for the case in Fig. 4. The configuration
vibrates with the quasi-normal frequency (f/m) = 4.52×10−2

while oscillates with even-multiples of the fundamental an-
gular frequency (ω/m) = 0.9119. The latter coincides with
the result of the eigenvalue problem, see Fig. 1. (Bottom)
The frequencies of the quasi-normal modes obtained from the
evolution of slightly perturbed S-branch oscillatons. We also
show the migration of perturbed S-branch and U-branch os-
cillatons, labelled A-F; the details of their evolution can be
found in sections IV 1,V. In the plot, ∆t represents the time
intervals at which the evolved mass was measured for each
case.

configurations. In other words, they are not migrating to
other oscillatons nor decaying. This can be compared to
the migrating oscillatons shown in Figs. 10,12,13 below.

The results presented above give evidence for the
points (i-ii) outlined at the beginning of this section. We
would like to stress here that the important result is that
there do exist stable oscillatons (at least in the S-branch).
As a side-effect, we have also proven the consistency be-
tween the eigenvalue problem and the numerical evolu-
tion code.
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Slightly perturbed S-oscillatons
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φ1(0)=0.25

φ1(0)=0.15

FIG. 8: The evolution of the total mass MT and Rmax is
shown for different S-oscillatons. The runs were followed up
to t = 5, 000 m−1. It can be clearly seen that the evolu-
tions proceed just by small oscillations around the initial pro-
files. Actually, since the profile in Fig. 2 uses the initial value
Rmax(0), the oscillations are shifted to the left of the solid
line. Hence, it is manifest that these oscillatons are not mi-
grating nor decaying. For a comparison with truly migrating
oscillatons, see Figs. 10,12,13.

1. Perturbed S-oscillatons

Our interest now is to determine whether S-branch os-
cillatons are stable against strong perturbations. That
is, we want to know the conditions under which such os-
cillatons will either collapse into a black hole, disperse
away or form another oscillaton. The latter is a rather
interesting possibility since, as we shall show below, it
implies the migration of oscillatons.

We have included Gaussian-like perturbations in the
original equilibrium configurations, like that shown in
Fig. 9, which can be seen just as perturbations to the
original mass of the oscillatons. (We shall call original the
profiles shown in Figs. 2 and their corresponding param-
eters). The main results are summarized as follows. iii)
If an oscillaton is perturbed in such a way that its mass
is less than the critical mass Mc ' 0.606 (m2

Pl/m),[15]
it migrates to another solution in the S-branch. iv) On
the other hand, if the initial mass is larger than Mc, the
oscillaton can either migrate to an S-oscillaton or col-
lapse to a black hole. The collapse to a black hole can
be prevented by the oscillaton ejecting the mass excess,
the so-called gravitational cooling mechanism [3]. This
mechanism is highly effective for dilute oscillatons. In
both cases (iii,iv) above, the evolution of the perturbed
profiles can be tracked according to their vibration fre-
quencies, i.e., the quasi-normal modes. We have plotted
some typical evolutions of perturbed S-branch oscillatons
in Fig. 10 which show the different behaviors described
above.

We start by discussing point (iii). In the first case, we
decreased the initial mass of a φ1(0) = 0.45-oscillaton to
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FIG. 9: Examples of the scalar field and grr profiles of a
strongly perturbed S-oscillaton by means of a Gaussian per-
turbation. Shown is the case of a φ1(0) = 0.1-oscillaton whose
original mass was increased 40%. The evolution of this oscil-
laton is given in Figs. 7 (label B),11,10. See also text below
for details.

an initial value Mi = 0.484 (20% less than its original
mass M = 0.605). We can observe that initially the os-
cillaton expands and then bounces back while it looses
mass, to finally settle down on the S-branch. The mi-
gration is manifest in the trajectory shown in Fig. 10,
that oscillates around the stable equilibrium configura-
tions discussed in the previous section. During the evolu-
tion, the oscillaton maintains a fixed vibration frequency.
Its path of migration is labelled A in Fig. 7, and shows
that the oscillaton will stop at a diluted one.

A second case corresponds to a φ1(0) = 0.1-oscillaton
which was strongly perturbed as to have an initial mass
of Mi = 0.579 (40% over its original mass M = 0.414).
Despite the strong perturbation, the oscillaton collapses
and looses enough mass to settle down onto another S-
oscillaton. By measuring the vibration frequency, we find
that the migrating oscillaton follows the path labelled B

in Fig. 7, which suggests that the oscillaton is migrating
to a φ1(0) = 0.15-like profile. This can also be seen in
Fig. 11, in which the profile of the metric coefficient grr

rapidly approaches and oscillates around the final config-
uration.

To illustrate point (iv), a φ1(0) = 0.1-oscillaton was
perturbed to have an initial mass of Mi = 0.687, a value
larger than the critical one. However, we can observe that
the oscillaton rapidly loses mass and migrates back to the
S-branch. Its migration path is labeled C in Fig. 7. This
is a typical example of the efficiency of the gravitational
cooling mechanism in enough dilute oscillatons.

The opposite case is shown by a perturbed φ1(0) =
0.2-oscillaton, whose initial mass is Mi = 0.657. The
gravitational cooling mechanism is not efficient enough
in this case to prevent the formation of a black hole.
We see this by noticing that its trajectory stops at the
value of Rmax corresponding to the Schwarzschild radius
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FIG. 10: Evolutions of different strongly perturbed S-
oscillatons, see text for details and cases labelled A-C in Fig. 7.
The percentage figures are the perturbations made in their
original masses. In general, a perturbed S-oscillaton migrates
back to the S-branch if its initial mass is less than the criti-
cal value Mc = 0.606. The migration proceeds by the loss of
mass, through the so-called gravitational cooling mechanism.
This mechanism is so efficient in the case of dilute oscillatons,
that it can prevent the formation of a black hole even if the
initial mass is larger than the critical value. However, this
cooling mechanism is sometimes not enough for dense oscilla-
tons. The asterisks denote the starting points. The runs were
followed up to t = 5, 000m−1.

of the hole. However, we have observed that the same
oscillaton does migrate to the S-branch if the initial mass
is somewhat less perturbed, while still being larger than
the critical one. This is also a generic phenomenon we
have observed by perturbing other S-oscillatons. This
tells us that the gravitational cooling mechanism is highly
efficient if the scalar field is diluted enough, like in the
cases shown in the original paper of Seidel & Suen [3].

The results presented so far point out that, apart from
being stable configurations, S-branch oscillatons are in-
deed the final states in the evolution of other perturbed
S-oscillatons. These two properties (stability and final
state-quality) are the imprint of S-oscillatons. To end
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this section, we would like to stress here the important
role of the quasi-normal modes to follow the migration
process of oscillatons. The examples presented so far
show that the vibration frequency of the system remains
the same during its evolution, even while the system
looses mass.

V. EVOLUTION OF OSCILLATONS: THE

U-BRANCH

We shall call U-branch oscillatons those equilibrium
configurations on the right (left) hand side of the crit-
ical configuration in the plot M vsφ1(0) (M vsRmax)
in Fig. 2. We also evolved these equilibrium configu-
rations, under the same idea that the eigen-solutions of
section II A are already slightly perturbed configurations.
The main result of this section is that U-oscillatons are
intrinsically unstable since, as we shall see below, they
decay and migrate to the S-branch under small pertur-
bations.

Shown in Fig. 12 are some instances of slightly per-
turbed U-oscillatons, and the plot M vs Rmax speaks by
itself when compared to Fig. 8. The U-branch oscilla-
tons are intrinsically unstable; they migrate to and settle
down onto the S-branch, even under small perturbations.
The larger the central value (φ1(0) > 0.48), the more
unstable they are. Their migration to the S-branch also
confirms the stability of the S-oscillatons and their impor-
tant role as the final states in the evolution of migrating
oscillatons.

As we have done before, the migration of oscillatons
can be tracked by determining their quasi-normal fre-
quencies. For example, the slightly perturbed φ1(0) =
0.7, 0.8-oscillatons shown in Fig. 12 are labeled D,E, re-
spectively, in Fig. 7.
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FIG. 12: (Top) Evolution of the maximum value of the radial
metric coefficient grr for two slightly perturbed oscillatons in
the U-branch, whose corresponding central initial values are
φ1(0) = 0.55, 0.8. Larger values of the latter mean more in-
stability. (Bottom) The migration of different U-oscillatons
is manifest in a graph of M vsRmax(t). By looking at the
plot f vs M in Fig. 7, we can see at which point the different
oscillatons will stop at. For instance, the labels D,E corre-
spond to the φ1(0) = 0.7, 0.8-oscillatons shown in this graph,
respectively. The time is in units of m−1 and the asterisks
denote the starting points.

A. Perturbed U-oscillatons

We have also perturbed the U-branch equilibrium con-
figurations and studied whether they migrate or collapse
into black holes. The main results of this section are as
follows. i) If the initial mass somewhat larger than the
original mass of the eigen-configuration, the oscillaton
collapses into a black hole. This result is independent of
the kind of perturbation made and then it can be charac-
terized by the excess in mass only. ii) If the mass of the
original configuration is decreased by the perturbation,
the oscillaton migrates to the S-branch.

The φ1(0) = 0.8-oscillaton is a typical example of U-
oscillaton and its evolution under strong perturbations
is plotted in Fig. 13. If the initial mass of this oscilla-



10

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0 2 4 6 8 10 12 14 16 18

M
T

Rmax

Strongly perturbed U-oscillatons: φ1(0)=0.8

+2%

-2%
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Fig. 14. The same oscillaton was also perturbed by decreasing
its original mass, in which case it migrates and settles down
into the S-branch, see text and Fig. 15 for details. The aster-
isks denote the starting points. The runs were followed up to
t = 5, 000m−1.

ton is perturbed so that is 2% more massive that the
original mass, the final stage of the collapse is a black
hole, even though the initial mass is less than the critical
value. This can also be seen in Fig. 14, where we see
plots of the metric coefficients gtt and grr. The coeffi-
cient gtt shows the well-know “collapse of the lapse” (the
lapse drops to zero) characteristic of black holes, while
the coefficient grr shows the “grid stretching” effect (te
radial metric grows exponentially), also typical of black
hole evolutions. On the other hand, if the initial mass of
the same oscillaton is 2% less than the original mass, the
oscillaton rapidly migrates to the S-branch and settles
down into a stable oscillaton. Its evolution path in Fig. 7
(label F), overlaps with that of the migrating S-oscillaton
shown in Fig. 9,11 (label B in Fig. 7). Thus, the final state
of the evolution seems to be a φ1(0) = 0.15-oscillaton, as
can also be seen in Fig. 15. This last fact reveals again
the usefulness of the plot f vsM to determine the final
configuration of a migrating oscillaton.

We would like to summarize here the results presented
so far. We have found that the imprint of U-branch os-
cillatons is that they are intrinsically unstable. That is,
even small perturbations provoke their migration to other
configurations, instead of the small oscillations around
the original ones. This latter fact again confirms the
stability and final state-status of S-oscillatons. Another
particular characteristic of U-oscillatons is that the for-
mation of a black hole is very likely if the original profile
is perturbed by adding mass to it. This phenomenon oc-
curs even if the perturbed initial mass is less than the
critical one, so that the gravitational cooling mechanism
is not efficient at all in the U-branch.
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FIG. 14: Plots of the metric coefficients gtt, grr for a per-
turbed configuration with an excess mass of 2%. Even though
the value of the initial mass is well below Mc ' 0.606, the os-
cillaton collapses into a black hole.
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FIG. 15: Evolved profile of the metric coefficient grr for a
φ1(0) = 0.8-oscillaton migrating to a φ1(0) = 0.15-oscillaton.
This is consistent with the graphs in Fig. 7 (label E) and in
Fig. 13. The times and distances are given in units of m−1.

B. The S-U transition point

Now we take a closer look at the equilibrium configu-
rations near the critical profile, the one being the most
massive in Figs. 2, which we shall call the S-U transition
point.

To begin with, let us recall the basic characteristics of
the S,U-branches. The basic imprint of S-branch oscil-
latons is that they are stable and then oscillate around
the initial profiles when slightly perturbed, see Fig. 8.
On the other hand, U-branch oscillatons are intrinsically
unstable and they migrate to the S-branch even when
slightly perturbed, like those cases shown in Fig. 12.

The evolution of the profiles near the S-U transition
point when slightly perturbed are shown in Fig. 16. We
observe that the results summarized above are again con-
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tions of oscillatons to the right of the critical configuration
are shifted to the left of the solid line, as was the general case
for the S-branch, see Fig. 8. On the other hand, the oscilla-
tons to the left of the critical configuration rapidly migrate
to the S-branch and oscillate like stable S-oscillatons, las in
Fig. 12. Therefore, the critical configuration truly marks the
transition between the S and U- branches.

firmed, and then the critical configuration characterizes
the transition between the S and U branches under small

perturbations. We have also found the same results in the
case of strong perturbations. If the mass of these oscil-
latons is decreased, they migrate to S-oscillatons. If the
mass is increased even by a small amount, they collapse
rapidly forming black holes.

That U-oscillatons form black holes is not surprising.
The fact that S-oscillatons can also collapse to black
holes near the critical point is a consequence of the ineffi-
ciency of the gravitational cooling mechanism in the case
of dense S-oscillatons, as it was found in section IV 1.
Actually, if the mass of an S-oscillaton near the transi-
tion point is perturbed to be larger than M > 0.606,
it will collapse into black holes; otherwise, it will mi-
grate to more diluted configurations. That is, the value
Mc ' 0.606 can be seen as the true critical value in the
S-U transition region.

Thus, we can conclude that the critical oscillaton
(φ1(0) ' 0.48, Mc ' 0.606m2

Pl/m) marks the transition
from the S-branch to the U-branch.

VI. CONCLUSIONS

In this paper, we have studied the properties of oscilla-
tons by numerically evolving the Einstein-Klein-Gordon
equations. According to the results, oscillatons can be
classified into two well definite groups, the S and U-
branches.

S-branch oscillatons are stable equilibrium configura-
tions, which oscillate according to their fundamental and
intrinsic frequency (ω). When slightly perturbed, these
oscillatons vibrate with definite frequencies which we
have identified as the frequencies (f) of their particular
quasi-normal modes. This is supported by the fact that
these vibrations are small-amplitude oscillations around
the equilibrium configurations. If these oscillatons are
strongly perturbed such that their original mass is de-
creased, they migrate to and settle down onto other S-
branch oscillatons. This fact points out that S-oscillatons
should be seen as final states to which other scalar con-
figurations migrate to.

On the other hand, we have found that S-oscillatons
do not, in general, collapse into black holes if their mass
is increased by the perturbation. Even though we have
found that oscillatons with high-central densities form
black holes if their mass is larger than the critical value
Mc ' 0.606, diluted oscillatons can avoid such fate by
means of the gravitational cooling mechanism. The later
can be so efficient that strongly perturbed oscillatons can
migrate to stable configurations, even if their initial mass
was much larger than the critical value.

The evolutions of the U-branch oscillatons consistently
show that they are intrinsically unstable configurations.
Even under small perturbations, they migrate to the
S-branch. This migration also appears when they are
strongly perturbed in such a way that their original mass
is decreased. However, another manifestation of their un-
stable nature is that they rapidly collapse into black holes
if their mass is increased, even by small amounts and even
if the initial mass is well below the critical value.

In all cases of migrating oscillatons, we found that their
evolution can be followed by measuring their vibration
frequency, and this can be used to predict to which con-
figuration the perturbed oscillatons will migrate to.

Through this paper, we have studied oscillatons with
a quadratic scalar potential for simplicity. However, we
have already initiated similar studies to include a self-
interaction in the potential and they are work in progress
to appear elsewhere.
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