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Abstract. We give a detailed description of the recently developed multi-domain spectral method for constructing highly
accurate general-relativistic models of rapidly rotating stars. For both “ordinary” and “critical” configurations, we show using
representative examples, how the accuracy improves as the order of the approximation increases. As well as homogeneous fluid
bodies, we also discuss models of polytropic and strange stars.
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1. Introduction

The structure and the gravitational field of relativistic, axisym-
metric and stationary, uniformly rotating perfect fluid bod-
ies is investigated in order to model extraordinarily compact
astrophysical objects like neutron stars. The numerical cal-
culation of these objects was the subject of papers by sev-
eral authors (see Bonazzola & Schneider 1974; Wilson 1972;
Butterworth & Ipser 1975, 1976; Friedman et al. 1986, 1989;
Lattimer et al. 1990; Neugebauer & Herold 1992; Herold &
Neugebauer 1992; Komatsu et al. 1989a, 1989b; Eriguchi et al.
1994; Stergioulas & Friedman 1995; Bonazzola et al. 1993; for
reviews see Friedman 1998 and Stergioulas 1998).

The idea to use a “multi-domain spectral method” was in-
troduced by Bonazzola et al. (1993, 1998). In their “BGSM-
code”, the space of physical coordinates is divided into several
subregions, each one of them to be mapped onto a cross prod-
uct of intervals. The physical field quantities are expressed in
a spectral expansion with respect to all coordinates defined on
the specific intervals. If the interior region of the star is cho-
sen to be exactly one of the domains, then it is possible to
obtain representations of the field quantities that are smooth
functions within the cross product of intervals. The spectral
expansions then provide a very precise approximation of the
field quantities. In particular, this choice for the domains cir-
cumvents the occurrence of the Gibbs phenomenon at the star’s
surface, which appears when non-smooth physical fields (such
as the mass-energy density) are expressed in terms of a spectral
expansion.

The subject of this paper is a detailed description of
our multi-domain spectral method (hereafter “AKM-method”)
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which led to an accuracy of up to 12 digits for rapidly rotating,
strongly relativistic homogeneous fluid bodies (Ansorg et al.
2002). Its further development enabled us to calculate rotating
toroidal bodies (the relativistic Dyson rings; see Ansorg et al.
2003a).

The corresponding fundamental features of the AKM-
method are as described above for the BGSM-code. However,
the methods differ in the following:

1. Instead of the three domains in the BGSM-code (two of
them exterior to the star), we have only two domains, since
we do not split up the region exterior to the star.

2. As described in Bonazzola et al. (1998), the BGSM-code
is an iterative scheme with each iteration step consisting
of several procedures including the solving of nonlinear
Poisson-like equations and the determination of an im-
proved approximation of the star’s surface. In the AKM-
method, a large set of nonlinear algebraic equations for
the unknown spectral coefficients corresponding to all field
quantities and the unknown shape of the star’s surface is
simultaneously solved by a Newton-Raphson method.

3. For the AKM-method, the restriction to only two domains,
one of them exactly corresponding to the interior region of
the star, can be maintained when the mass shedding limit
is approached. In this limit, the star is characterized by a
cusp at its equatorial rim, thus requiring that the inner-most
domain of the BGSM-code deviate slightly from the star’s
interior (see Bonazzola et al. 1998; the resulting Gibbs phe-
nomenon is limited since the displacement is small).

We begin our description of the AKM-method with a review
of the line element and Einstein’s field equations, boundary,
regularity and transition conditions as well as the resulting
free boundary value problem. Following this, we provide an



712 M. Ansorg et al.: Highly accurate calculation of rotating neutron stars

introduction to the method in question containing a compre-
hensive description of the specific spectral field representations
and the resulting set of nonlinear algebraic equations that en-
sures both the validity of the field equations within each do-
main and the transition conditions at the domains’ boundary.
In the subsequent section, we apply the AKM-method to “or-
dinary” homogeneous, strange as well as polytropic stars (with
a polytropic exponentΓ = 2) and display the improvement of
the accuracy as the order of the approximation increases. Here,
“ordinary” stars means configurations that are not special in the
sense that they neither rotate at the mass shedding limit, pos-
sess infinite central pressure, nor show a considerable oblate-
ness, but may be strongly relativistic as in the example given in
Table 11 of Nozawa et al. (1998) and Table 1 of Ansorg et al.
(2002).

Then we give representative examples concerning the ex-
cluded “critical” configurations. At first, we consider homoge-
neous, strange as well as polytropic stars at the mass shedding
limit. Following this, we study homogeneous configurations
with an infinite central pressure. Finally, the last part of this
section is devoted to highly flattened homogeneous bodies.

In what follows, units are used in which the speed of light
as well as Newton’s constant of gravitation are equal to 1.

2. Line element, Einstein’s field equations,
and the free boundary value problem

We use two different formulations of the line element de-
scribing the gravitational field of a uniformly rotating per-
fect fluid body1. The corresponding Lewis-Papapetrou coordi-
nates (ρ, ζ, ϕ, t) are uniquely defined by the requirement that
the metric coefficients and their first derivatives be continuous
at the surface of the body.

Exterior to the star in question we write:

ds2 = e2α(dρ2 + dζ2) +W2e−2ν(dϕ − ωdt)2 − e2νdt2 (1)

while for the interior we take metric functions valid in the
comoving frame of reference:

ds2 = e−2U′ [e2k′(dρ2 + dζ2) +W2dϕ′2] − e2U′ (dt + a′dϕ′)2. (2)

Here, the only new coordinate isϕ′ = ϕ − Ωt whereΩ is the
(constant) angular velocity of the star.

Hence, we get the following transformation formulae:

W−1e2ν ± (ω −Ω) =
(
We−2U′ ∓ a′

)−1
, α = k′ − U′. (3)

The exterior field equations following from the above line
element read as follows2:

4(1)
W ν =

1
2

W2e−4ν(ω2
ρ + ω

2
ζ ) (4)

1 The basic principles of the AKM-method rely on a rapidly con-
verging Chebyshev representation of all physical and geometrical
quantities within appropriate coordinates. The method is therefore ap-
plicable to arbitrary differentially rotating configurations (with some
analytical rotation law). In this article we restrict ourselves to uni-
form rotation. In this case we may use the simpler field equations valid
within the comoving frame of reference.

2 Onceν, ω andW are known, the potentialα can be determined by
a line integral (withα→ 0 asρ2 + ζ2 →∞).

4(3)
Wω = 4(νρωρ + νζωζ) (5)

42W = 0 (6)

with the abbreviations

42 = ∂
2
ρ + ∂

2
ζ (7)

4( j)
W = 42 + j W−1(Wρ∂ρ +Wζ∂ζ). (8)

Since in the comoving frame the energy-momentum tensor
reads

Tik = (µ + p)uiuk + pgik , uk = e−U′δk4 (9)

whereµ is the total mass-energy density andp the pressure, the
interior field equations assume a particularly simple form3:

4(1)
W U′ +

1
2

W−2e4U′ [(a′ρ)
2 + (a′ζ)

2] = 4πe2(k′−U′ )(µ + 3p) (10)

4(−1)
W a′ + 4(a′ρU

′
ρ + a′ζU

′
ζ) = 0 (11)

42W = 16πe2(k′−U′) W p. (12)

As with the above potentialα, the metric functionk′ can be de-
termined via a line integration from the potentialsU′, a′ andW
that follows from

Wρ −Wζ

Wζ Wρ




k′ρ

k′ζ

 −


1
2(Wρρ −Wζζ )

Wρ ζ

 =

=


W[(U ′ρ)2 − (U′ζ)

2] − 1
4W−1e4U′ [(a′ρ)2 − (a′ζ)

2]

2WU′ρU′ζ − 1
2W−1e4U′a′ρa′ζ

 ,
(13)

such that along the rotation axisρ = 0 the condition

ek′ = lim
ρ→0

W(ρ, ζ)
ρ

(14)

holds. Additionally, for a given equation of state,p = p(µ) or
µ = µ(p), the relativistic Euler equationsTik

;k = 0 yieldµ andp
in terms of the metric potentialU ′:

eU′ exp

[∫ p

0

dp′

µ(p′) + p′

]
= eV0 = const. (15)

Hence, for the exterior potentialsν, ω,W as well as for the
interior potentialsU′, a′,W, particular systems of partial dif-
ferential equations emerge. At the surfaceB of the star, the
pressurep vanishes, which leads to a constant surface poten-
tial U ′ = V0, see Eq. (15). If additionally the boundaryB as
well as the corresponding boundary values of the potentialsa′
andW were given, we would have to solve a particular inte-
rior and exterior boundary value problem of the respective field
equations, completed by regularity conditions along the rota-
tion axis (here, theρ-derivatives ofν, ω,W/ρ,U′ anda′ van-
ish) and at infinity (hereν → 0, ω → 0 andW − ρ → 0).
However, we have to deal with a free boundary value problem,

3 See, for example, Kramer et al. (1980).
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where both the boundaryB and the values ofa′ andW at B
are unknown, but have to be determined such that the normal
derivatives of the potentialsU ′, a′ andW behave continuously
at B 4.

For a given equation of state, the corresponding solution
depends on two parameters, e.g. the angular velocityΩ and
the gravitational massM. Note that there might be multiple
solutions corresponding to a specific prescribed parameter pair.
For the description of the AKM-method, we consider at first the
particular prescription of the pair (V0,Ω), but treat in a separate
subsection the possible prescription of other parameter pairs.

Together with the regularity conditions along the rotation
axis, we assume that all metric potentials possess reflectional
symmetry with respect to the equatorial planeζ = 0, leading to
a vanishingζ-derivative in this plane (see, for example, Meinel
& Neugebauer 1995).

3. Description of the method

A function, defined and analytic on a closed interval, can
be represented by a rapidly converging Chebyshev-expansion.
The spirit of the AKM-method is to use this property for all
gravitational potentials, boundary values, and the unknown
shape of the surface, which therefore need to be defined on
appropriate cross products of intervals. The corresponding
Chebyshev-coefficients are determined by a high-dimensional
nonlinear set of algebraic equations that encompasses both field
equations and transition conditions and is solved by a Newton-
Raphson method.

3.1. The mappings of the subdomains

As already mentioned in the introduction, we divide the total
space of physical coordinates into two subregions, an inner do-
main covering exactly the interior region of the star, and an
outer one encompassing the exterior vacuum region. Both sub-
regions are mapped onto the squareI2 = [0, 1] × [0, 1], which
we realize by introducing a non-negative functionyB defined on
the intervalI = [0, 1] that describes the surface of the body by

B = {(ρ, ζ): ρ2 = r2
et, ζ2 = r2

p yB(t) , 0 ≤ t ≤ 1},

yB(0) = 1 , yB(1) = 0 .
(16)

Herere andrp are the equatorial and polar coordinate radii of
the body respectively.

A particular example for the mapping in question is
given by

ρ2 = r2
est , ζ2 = r2

psyB(t) , (s, t) ∈ I2 (17)

for the interior region and

ρ2 =
r2
et

s2
, ζ2 =

r2
p yB(t)

s2
, (s, t) ∈ I2 (18)

for the region exterior to the star. In this manner, the axisρ = 0
and the planeζ = 0 are mapped to the coordinate boundaries

4 It is a consequence of the field equations thatk′ is then also
differentiable.

t = 0 andt = 1 respectively. Furthermore, the surfaceB of the
body is characterized bys = 1. For the interior and exterior
transformation, the points= 0 corresponds to the origin and to
infinity respectively.

Writing ρ2 andζ2 (and notρ andζ) in terms of the new vari-
ablessandt already takes the regularity condition along the ro-
tation axis as well as the reflectional symmetry with respect to
the equatorial plane into account. Indeed, for any potential that
is analytic with respect to the variabless andt, it follows that
the ρ-derivative atρ = 0 as well as theζ-derivative atζ = 0
vanishes provided the above coordinate transformation is in-
vertible there. The latter condition is only violated fors= 05.

It turns out that the requirements of the regularity of the
potentials (as functions ofs andt) at t = 0 andt = 1 replace
a particular boundary condition here, that usually must be im-
posed. Similarly, the regularity of the interior potentials super-
sedes a boundary condition at the coordinate’s origin. However,
the asymptotic behaviour at infinity still must be considered,
see Sect. 3.2.

Note that for critical configurations we need to modify the
above mapping, see Sects. 4.2.1 and 4.2.3.

3.2. The representations of the potentials
and the surface

For each of the gravitational potentials we use a specific
Chebyshev-expansion that takes known boundary and transi-
tion conditions into account. In particular we know (r2 =

ρ2 + ζ2):

lim
r→∞(rν) = −M, lim

r→∞(r3ω) = 2J, (19)

∣∣∣∣∣ lim
r→∞ r2 (Wρ−1 − 1)

∣∣∣∣∣ < ∞,∣∣∣∣∣ limρ→0
a′ρ−2

∣∣∣∣∣ < ∞,
∣∣∣∣∣ limρ→0

Wρ−1
∣∣∣∣∣ < ∞,

(20)

whereM andJ are the gravitational mass and the angular mo-
mentum of the star, respectively, see also Eqs. (56, 57) for an
integral representation. Therefore we write outside the star:

ν = s[νB(t) + (s− 1)Hν(s, t)] (21)

ω = s3 [ωB(t) + (s− 1)Hω(s, t)] (22)

W(ext) = ρ
(
1+ s2

[
ŴB(t) + (s− 1)HW,ext(s, t)

])
(23)

and inside

U ′ = V0 + (s− 1)HU′ (s, t) (24)

a′ = ρ2 [
â′B(t) + (s− 1)Ha′(s, t)

]
(25)

W(int) = ρ
[
1+ ŴB(t) + (s− 1)HW,int(s, t)

]
. (26)

5 Note that the interior coordinate transformation introduced in
Sect. 4.2.3 is not invertible at the equatorial rim of the star, but it is
so ats= 0.
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Here, the boundary valuesa′B,WB of the potentialsa′,W are
expressed by the functions ˆa′B, ŴB in the following manner:

WB = ρ(ŴB + 1) (27)

aB = ρ
2 â′B. (28)

The above one- and two-dimensional functions are expressed
as limits of Chebyshev-expansions, e.g.6

νB(t) = lim
m→∞ ν

(m)
B (t), (29)

ν(m)
B (t) =

m∑
k=1

ν(k;m)
B Tk−1(2t − 1), (30)

Hν(s, t) = lim
m→∞H(m)

ν (s, t), (31)

H(m)
ν (s, t) =

m∑
j,k=1

H( jk;m)
ν Tj−1(2s− 1)Tk−1(2t − 1). (32)

Similarly, taking into account the representation of the bound-
ary in (16), we write the boundary functionyB as follows7

yB = (1− t) [1 + r−2
p tg(t)], (33)

g(t) = lim
m→∞ g

(m)(t), (34)

g(m)(t) =
m−2∑
k=1

g(k;m)Tk−1(2t − 1). (35)

In the orderm of our approximation scheme, we establish
a nonlinear set of algebraic equations that determines the
above coefficients of themth Chebyshev-expansion. In the limit
m→ ∞, this set of algebraic equations is equivalent to the free
boundary value problem in question, and themth approxima-
tion becomes the solution.

3.3. The nonlinear set of algebraic equations

For a given equation of state, we specify the solution of our free
boundary value problem by the prescription of a particular pa-
rameter pair. At first let us take (V0,Ω); a more general choice
will be discussed in Sect. 3.5.

We express the boundary valuesνB and ωB in terms
of (V0,Ω) and the functionsa′B and WB, see Eqs. (3). This
ensures the continuity conditions of the field potentials at the
star’s surface8. Hence, in the orderm of our approximation
scheme, we take the two-dimensional Chebyshev-coefficients

H( jk;m)
ν ,H( jk;m)

ω ,H( jk;m)
W,ext ,H

( jk;m)
U′ ,H

( jk;m)
a′ ,H( jk;m)

W,int (36)

6 The Chebyshev-polynomials are defined byTj (x) =

cos[j arccos(x)], x ∈ [−1,1].
7 In order to getm unknowns representing the surface of the star

in the mth-order approximation discussed in Sect. 3.3, we take the
radii re, rp and (m− 2) Chebyshev-coefficients for the functiong.

8 The continuity conditions of the fields’ derivatives will be part of
the set of algebraic equations in question.

as well as the one-dimensional Chebyshev-coefficients

(â′B)(k;m), Ŵ(k;m)
B , g(k;m) (37)

as independent variables. They build up a vectorx(m) consist-
ing of

mtotal = 6m2 + 3m (38)

components. The first 6m2 components comprise all two-
dimensional Chebyshev-coefficients while the following 3m−2
are the above one-dimensional Chebyshev-coefficients. The re-
maining two entries are filled by the values ofre andrp.

We now describe in detail the components of a vector

f (m) = f (m)(x(m)) (39)

also consisting ofmtotal components that must vanish for the
solutionx(m) of themth-order approximation.

Given an arbitrary vectorx(m), we compute the Chebyshev
coefficients corresponding to the first and second derivatives of
the functions9

H(m)
ν ,H

(m)
ω ,H

(m)
W,ext,H

(m)
U′ ,H

(m)
a′ ,H

(m)
W,int (40)

and

(â′B)(m), Ŵ(m)
B , g

(m) (41)

with respect tos andt. Together with the coordinate transfor-
mations (17, 18), we therewith find the first and second spa-
tial derivatives of all gravitational potentials with respect to the
coordinatesρ andζ in our mth-order approximation, at an ar-
bitrary grid point inside the domains (not at the origin or at
infinity). So, we may fill the first 3m2 entries of f (m) with the
differences of right and left hand sides of the exterior Eqs. (4),
evaluated atm2 gridpoints (sj , tk), j, k = 1 . . .m, correspond-
ing to spatial points outside the star. Following the spirit of the
spectral methods and in order to ensure a rapid convergence,
we take for thesj andt j the roots of themth Chebyshev poly-
nomial, i.e.

sj = t j = cos2
(
π

2 j − 1
4m

)
(sj , t j > 0). (42)

For the subsequent 3m2 components off (m), we first com-
pute the two-dimensional,mth-order Chebyshev coefficients
corresponding to the interior functionk′. This is done by
determining the Chebyshev coefficients corresponding to the
t-derivative ofk′ using (13) and again the coordinate transfor-
mation (17), and after that, by integrating with respect to the
axis condition (14), see footnote 9. So, the 3m2 entries in ques-
tion can now be filled with the differences of right and left hand
sides of the interior Eqs. (10), again evaluated at them2 grid-
points (sj , tk) here corresponding to spatial points inside the
star.

9 Note that it is straightforward to calculate (i) the Chebyshev co-
efficients of a function from its values at the gridpoints (sj , tk) (or tk
in the one-dimensional case), see Eq. (42), (ii) the value of a func-
tion at an arbitrary point inside or at the boundary ofI2 (or I ) from
its Chebyshev coefficients, and (iii) the Chebyshev coefficients of the
derivative and the integral of a function from its Chebyshev coeffi-
cients, see Press et al. (1992).
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The remaining 3m components of our vectorf (m) are
formed from the differences of themth-order interior and ex-
terior normal derivatives of the gravitational potentialsν, ω and
W, evaluated at them surface grid points (s = 1, tk). Note that
the coordinate transformations (17, 18) are regular here, and
thus the normal derivatives can easily be computed using the
shape of the star that is incorporated inx(m). The interior nor-
mal derivatives ofν andω follow from the transformation for-
mulae (3) and the interior potentials.

In this manner we get in themth approximation order a
nonlinear set ofmtotal = 6m2 + 3m algebraic equations

f (m)(x(m)) = 0 (43)

that is solved by a Newton-Raphson method, see Sect. 3.4.

3.4. The Newton-Raphson method and the initial
solution

In the Newton-Raphson method, the zero of a nonlinear set of
algebraic equations of the form (43) is determined iteratively,

x(m)
n = x(m)

n−1 −
 ∂ f (m)

∂ x(m)

∣∣∣∣∣∣
x(m)

n−1


−1

f (m)(x(m)
n−1) , (44)

requiring an initialx(m)
0 which must already be sufficiently close

to the final solutionx(m) = limn→∞ x(m)
n . The Jacobi matrix in

the Eq. (44) is determined approximately using (ε � 1)[
∂ f (m)

∂ x(m)

∣∣∣∣∣∣
x(m)

]
AB

≈ 1
2ε

[
f (m)

A

(
x(m) + ε eB

)

− f (m)
A

(
x(m) − ε eB

)]
. (45)

Here the subscriptsA andB denote the corresponding element
of the Jacobi matrix and the vectorf (m), andeB is theBth unit
vector, (eB)A = δAB.

There are various possibilities for obtaining an initial solu-
tion. For example, one may start from the static solution char-
acterized byΩ = 0. Here the corresponding field equations turn
into ordinary differential equations with respect to the radial co-
ordinater, and these can be solved e.g. by using a Runge-Kutta-
method. Taking this solution for the initialx(m)

0 , one may now
gradually increase the parameterΩ and thus eventually explore
the whole parameter space. Another possibility is to start with
a Newtonian solution (e.g. a Maclaurin spheroid). Proceeding
into the relativistic regime comes about by increasing the abso-
lute value ofV0.

In our treatment we favoured the latter initialization, for
it already provides highly distorted bodies. Moreover, we cal-
culated configurations with a particular equation of state by
starting from a constant mass-energy density profile and
continuously moving to the desired equation of state.

3.5. Arbitrary parameter prescription

With a slight modification of our nonlinear set of equations de-
scribed in Sect. 3.3, we are able to take various different param-
eter prescriptions into account. The idea is to add the quanti-
tiesΩ andV0 to the vectorx(m), resulting inmtotal = 6m2+3m+2

unknowns from now on. Simultaneously, we add two equations
to the nonlinear set representing exactly the desired parameter
relation for the solution in question. This can be done since all
physical quantities concerning the final solution are now con-
tained in the vectorx(m).

For example the potentialU′c at the origin reads10

U′c = V0 − HU′ (0, 0), (46)

which is directly connected to the central pressurepc, see
Eq. (15). Likewise,M andJ can be expressed

M = −rp [νB(0)− Hν(0, 0)] , (47)

J =
1
2

r3
p [ωB(0)− Hω(0, 0)] . (48)

Also the prescription of a parameterβ is possible which con-
trols the distance of a configuration to the mass shedding limit:

β = −dyB
dt

(t = 1) =

{
0 in the mass shedding limit
1 for an ellipsoidal shape.

(49)

Similarly, one can prescribe more complicated expressions
such as the baryonic massM0, which is defined by an integral
over the interior field quantities.

Any two conditions of this kind (of which the above
ones are just examples) can be taken and added to the sys-
tem of nonlinear equations. The corresponding parameters
(herepc,M, J, β or M0) must then be prescribed. In this paper
we concentrate on the pair (pc, rp/re) and only take (pc, β) in
order to place ourselve exactly on the mass shedding limit, see
Sect. 4.2.1.

3.6. Regularity and uniqueness

As already depicted in Sect. 3.1, the AKM-method is charac-
terized by the fact that some of the usual boundary conditions
are replaced by regularity requirements. Moreover, if for the
moment we only consider the functions

Hν,Hω,HW,ext,HU′ ,Ha′ ,HW,int (50)

and treat the quantitiesre, rp,Ω,V0 as well as the func-
tions a′B,WB andg as if they were given, we obtain specific
partial differential equations valid inI2, and particular bound-
ary conditions at any edge ofI2 are not required for any of the
functions listed in (50). Nevertheless, the solution of this sys-
tem of equations is uniquely determined if we require regularity
with respect to all functions. A similar situation can be studied
in the one-dimensional case, e.g. the equation ( ˙= d/dt)

t(1− t)ḧ+ 2(1− 2t)ḣ− 2h+ 2 = 0⇔ [t(1− t)h] ·· = −2 (51)

possesses only the solutionh ≡ 1 which is regular withinI .
The above approximation scheme sorts out the non-regular

solutions since it is based on Chebyshev-expansions. It more-
over ensures known, additional properties of the functions (50)
at s = 0, e.g.HU′ (s = 0, t) = const. Note that these properties
are approached asm→ ∞.

10 Note that the functionH(m)
U′ (s = 0, t) tends to a constant in the

limit m→ ∞. Similar properties hold for all functions listed in (40),
see also Sect. 3.6.
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Table 1. Results for a constant mass-energy density model (µ = µ0) with p̄c = 1, rp/re = 0.7. Here,p̄c = pc/µ0, Ω̄ = Ω/µ
1/2
0 , M̄ = Mµ1/2

0 ,
R̄circ = Rcirc µ

1/2
0 and J̄ = Jµ0 are normalized values of the physical quantities, see Eqs. (56, 57). Apart from the virial identitiesGRV2

andGRV3 in themth order approximation, the Cols. 3–11 display the relative deviation of the specific quantity in themth order approximation
with respect to the numerical result obtained form = 24. The quantitiesMin, Jin and Mout, Jout refer to the corresponding numerical values
resulting from (56, 57) and (19) respectively.

m= 6 m= 8 m= 10 m= 12 m= 14 m= 16 m= 18 m= 20 m= 22
p̄c 1
rp/re 0.7
Ω̄ 1.41170848318 1.9e-04 1.3e-05 7.8e-07 2.9e-08 8.5e-10 4.6e-11 3.0e-12 1.3e-13 8.0e-15
M̄ 0.135798178809 1.8e-04 3.5e-06 5.9e-08 3.4e-09 3.8e-10 2.6e-11 8.5e-13 3.3e-14 6.8e-15
R̄circ 0.345476187602 2.0e-08 1.5e-06 1.7e-08 1.8e-09 4.2e-11 1.8e-11 1.6e-12 1.1e-13 1.3e-14
J̄ 0.0140585992949 8.7e-04 6.8e-05 3.7e-06 1.2e-08 1.2e-08 6.8e-10 8.4e-12 3.5e-12 2.0e-13
Zp 1.70735395213 3.2e-05 6.5e-06 2.4e-07 3.6e-09 4.6e-10 9.1e-12 7.1e-13 1.7e-13 1.6e-14

GRV2 7.5e-05 3.9e-06 3.9e-07 2.2e-08 8.9e-10 4.2e-11 3.1e-12 3.0e-13 7.7e-14
GRV3 1.2e-05 7.5e-06 1.2e-07 2.9e-08 1.4e-09 3.5e-11 1.3e-12 1.8e-13 6.5e-14
|1− Min/Mout| 2.8e-04 4.9e-06 1.9e-07 1.1e-08 4.1e-10 3.4e-12 1.5e-12 4.2e-13 2.3e-13
|1− Jin/Jout| 1.2e-03 7.0e-05 4.1e-06 5.0e-08 1.1e-08 7.1e-10 4.6e-12 2.9e-12 1.1e-13

4. Representative examples

4.1. Ordinary stars

At first we apply the AKM-method to three models of homo-
geneous (Eqs. (52)), polytropic (with a polytropic exponent
Γ = 2, Eqs. (53)), and strange stars (Eqs. (54)). In particular,
we prescribe the corresponding equation of state in the form
µ = µ(p) and find from Eq. (15) the relation to the interior
potentialU′:

µ (p) = µ0 = const⇒


p = µ0

(
eV0−U′ − 1

)
µ = µ0

(52)

µ (p) = p+
√

p/K ⇒


p =
(
eV0−U′ − 1

)2
/(4K)

µ =
(
e2 (V0−U′) − 1

)
/(4K)

(53)

µ (p) = 4B+ 3p⇒


p = B
(
e4 (V0−U′ ) − 1

)

µ = B
(
1+ 3e4 (V0−U′)

)
.

(54)

Here,K andB are the polytropic constant and the MIT bag con-
stant, respectively11. Note that for the application of the AKM-
method (strictly speaking, only for its rapid convergence) it
is necessary to have analytic dependenciesp = p(U′) and
µ = µ(U ′), in particular atU′ = V0. For the equation of state,
µ = µ(p), this requires that

µ = pN/(N+1) f [p1/(N+1)] (55)

where f is some function which is positive and analytic when
its argument vanishes, andN is some non-negative integer.
Apart from the homogeneous and the strange star model, this
condition is met for polytropic equations of state with a poly-
tropic exponentΓ = 1+ 1/N whenN is a non-negative integer

11 For a description of the equations of state corresponding to poly-
tropic and strange star matter, see Tooper (1965) and e.g. Gourgoulhon
et al. (1999) respectively.

(as in the case above whereN = 1). In order to treat more
general equations of state, one needs to consider several layers
inside the star, with each one of them characterized by a spe-
cific equation of state. The outermost one of them again must
meet the above requirement. The consideration of several lay-
ers leads to a corresponding number of subregions into which
the interior domain needs to be split.

In Tables 1 to 3 one finds numerical values of several phys-
ical quantities, for a specified configuration with prescribed
central pressurepc (equivalently, for non-homogeneous mod-
els, we may prescribe the central mass-energy densityµc, see
Table 2) and radius ratiorp/re. The angular momentumJ, grav-
itational massM, equatorial circumferential radiusRcirc and the
polar redshiftZp are given by:

J = −2π
∫

(µ + p)a′e2k′−2U′Wdρdζ (56)

M = 2ΩJ + 2π
∫

(µ + 3p)e2k′−2U′Wdρdζ (57)

Rcirc = e−V0
[
W
√

1− u2
]

(ρ=re, ζ=0)

Zp = e−V0 − 1
(58)

with u = −W−1a′e2U′ . Note that the above integrals extend over
the space ofρ- andζ-coordinates covering the interior of the
body12.

A first test of the accuracy of a solution determined numer-
ically is the comparison of the calculations ofM and J from
the exterior fields (see Eqs. (19)) with those from the above
integral representations (56, 57). A further check is given by
the general-relativistic virial identiesGRV2 andGRV3, de-
rived by Bonazzola & Gourgoulhon (1994) and Gourgoulhon
& Bonazzola (1994). As a consequence of the field equations,
they identically vanish for an exact analytic solution corre-
sponding to a stationary and asymptotically flat spacetime.

12 The quantitiesM andJ can also be taken from the exterior fieldsν
andω, see Eqs. (19).
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Table 2. Results for a polytropic model (polytropic exponentΓ = 2, polytropic constantK) with µ̄c = 1, rp/re = 0.834. Here, ¯µc = Kµc,
Ω̄ = K1/2Ω, M̄ = K−1/2M, R̄circ = K−1/2Rcirc and J̄ = K−1J are normalized values of the physical quantities, see Eqs. (56, 57). For the meaning
of the quantities listed in the Cols. 3–11, see Table 1.

m= 6 m= 8 m= 10 m= 12 m= 14 m= 16 m= 18 m= 20 m= 22
µ̄c 1
rp/re 0.834
Ω̄ 0.4004385709 1.1e-03 9.0e-05 7.3e-06 6.4e-07 6.4e-08 7.2e-09 8.6e-10 1.1e-10 1.3e-11
M̄ 0.1605611357 4.2e-04 5.7e-06 2.5e-06 3.2e-07 3.7e-08 4.1e-09 4.7e-10 5.4e-11 5.9e-12
R̄circ 0.6794279802 5.7e-04 6.0e-05 5.4e-06 5.1e-07 5.2e-08 5.9e-09 7.0e-10 8.6e-11 9.8e-12
J̄ 0.009491087857 9.4e-04 3.3e-05 8.5e-06 1.1e-06 1.2e-07 1.3e-08 1.4e-09 1.4e-10 1.2e-11
Zp 0.4580590747 1.7e-03 8.7e-05 4.6e-06 2.6e-07 1.9e-08 1.8e-09 2.0e-10 2.6e-11 3.1e-12

GRV2 2.6e-04 8.1e-06 4.8e-07 7.5e-08 1.3e-08 1.8e-09 2.4e-10 3.2e-11 4.3e-12
GRV3 5.5e-05 2.9e-06 2.7e-07 1.5e-08 1.2e-09 2.0e-10 3.9e-11 7.1e-12 1.3e-12
|1− Min/Mout| 1.2e-04 6.5e-06 5.5e-07 5.5e-08 5.5e-09 5.3e-10 4.5e-11 2.4e-12 3.3e-13
|1− Jin/Jout| 2.7e-04 3.7e-05 4.0e-06 4.2e-07 4.1e-08 3.6e-09 2.5e-10 5.6e-13 4.9e-12

Table 3. Results for a strange star model (MIT bag constantB) with p̄c = 2, rp/re = 0.5. Here, p̄c = B−1pc, Ω̄ = B−1/2Ω, M̄ = B1/2M,
R̄circ = B1/2Rcirc and J̄ = BJ are normalized values of the physical quantities, see Eqs. (56, 57). For the meaning of the quantities listed in the
Cols. 3–11, see Table 1.

m= 6 m= 8 m= 10 m= 12 m= 14 m= 16 m= 18 m= 20 m= 22
p̄c 2
rp/re 0.5
Ω̄ 3.4304996 2.1e-04 1.5e-05 4.0e-07 1.6e-07 6.2e-08 1.9e-08 5.3e-09 1.5e-09 3.4e-10
M̄ 0.035510326 5.3e-03 5.9e-04 6.4e-05 7.2e-06 9.2e-07 1.4e-07 2.6e-08 5.8e-09 1.3e-09
R̄circ 0.14117783 3.3e-05 3.2e-09 1.8e-07 8.4e-08 3.0e-08 9.4e-09 2.9e-09 8.2e-10 2.0e-10
J̄ 0.0011024838 1.6e-03 2.8e-04 5.4e-05 8.5e-06 1.4e-06 2.8e-07 6.4e-08 1.6e-08 3.5e-09
Zp 0.72634557 8.6e-05 1.8e-05 5.2e-06 1.3e-06 3.2e-07 8.4e-08 2.4e-08 6.3e-09 1.5e-09

GRV2 1.2e-04 4.8e-06 4.1e-07 4.0e-08 3.9e-09 3.9e-10 3.8e-11 3.2e-12 4.7e-14
GRV3 6.7e-04 3.9e-05 2.8e-06 2.4e-07 2.1e-08 1.8e-09 1.5e-10 1.1e-11 5.2e-14
|1− Min/Mout| 5.9e-03 6.0e-04 6.2e-05 6.5e-06 6.9e-07 7.4e-08 7.9e-09 8.4e-10 8.9e-11
|1− Jin/Jout| 2.2e-03 2.7e-04 4.6e-05 6.0e-06 6.5e-07 8.1e-08 1.1e-08 1.2e-09 1.5e-10

Particularly, for our rotating star models they read

GRV3 = |1− I1/I2|, GRV2 = |1− J1/J2| (59)

with:

I1 = 4π
∫ [

3p
√

1− u2 + (µ + p)
u2

√
1− u2

]
e2k′−3U′Wdρdζ

I2 =

∫
eη

{
ρ

[
(∇ν)2 − 1

2
∇α∇η − 3

8
W2e−4ν (∇ω)2

]

− 1
2

(
1− e2(α−η)) (αρ − 1

2
ηρ

)}
dρdζ

J1 = 8π
∫ [

p+ (µ + p)
u2

1− u2

]
e2k′−2U′dρdζ

J2 =

∫ [
(∇ν)2 − 3

4
W2e−4ν (∇ω)2

]
dρdζ

(we use the abbreviationsu = −W−1a′e2U′ , ρeη = We−ν). The
Nabla-operator has its usual meaning, in terms of the coordi-
natesρ andζ, i.e. for any two functionsa andb

(∇a)2 = a2
ρ + a2

ζ , ∇a∇b = aρbρ + aζbζ. (60)

The above integrals are taken over the whole space ofρ- and
ζ-coordinates (forI1 and J1 this reduces again to the interior

region of the star since both pressurep and energy-mass den-
sity µ vanish outside the body).

Apart from the values for the above physical quantities with
the accuracy that was reached in the 24th approximation order,
we provide in Tables 1–3 the improvement of the accuracy as
the orderm is increased. Also given are the corresponding nu-
merical values of the general-relativistic virial identiesGRV2
andGRV3 as well as those of the relative deviations concerning
the integral and far-field representations ofM andJ.

We note generally an exponential convergence of the nu-
merical solution as the orderm increases. This is a common
feature of the spectral methods. However, the star’s field quan-
tities may vary in their “smoothness” resulting in a variably
rapid convergence. For example, the convergence of the numer-
ical solution corresponding to the homogeneous star (Table 1)
is much faster than that corresponding to the strange one
(Table 3). In a sense, the strange star is closer to the mass-
shedding limit (hereβ ≈ 0.39 while for the homogeneous
modelβ ≈ 0.84) and moreover more flattened.

The models in Tables 1 and 2 have been calculated by
Nozawa et al. (1998). Note that for the polytropic model there
is a steeper gradient of the pressure as a function of the radial
coordinater, e.g. within the equatorial plane. In order to take
this property into account, we used for this model the following
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ρ

ζ

Fig. 1. Meridional cross-section of the homogeneous mass-shedding
configuration specified in Table 4 (with the axes scaled identically).
The dashed curves indicate the boundary of the corresponding ergo-
region.

slightly modified interior coordinate transformation

ρ2 = r2
eσ(s; cs)t , ζ2 = r2

pσ(s; cs)yB(t) , (s, t) ∈ I2 (61)

with

σ(s; cs) =
1− cs

1− css
s (62)

and the constant parametercs = 0.6 (for the other models we
tookcs = 0). Minor modifications of this kind, specially suited
to the particular problem in question, may accelerate the con-
vergence, see below for further examples.

4.2. Critical stars

4.2.1. Stars at the mass shedding limit

The endpoint of a sequence of rotating stars is often marked by
a mass shedding limit. It is of particular interest since specific
physical quantities such as the angular velocity reach maximal
values there. A highly accurate determination of this limit is
therefore desirable.

The mass shedding limit is reached when the angular ve-
locity Ω of the star attains the angular velocity of test particles
moving on a prograde circular orbit at the star’s equatorial rim.
For theρ-derivative of the field quantityU′ it follows:

U ′ρ(re, 0) = 0. (63)

Moreover, a cusp at the surface occurs (see Fig. 1), which corre-
sponds to a vanishing mass-shedding parameterβ, see Eq. (49).

Numerical investigations of a homogeneous Newtonian
configuration rotating at the mass-shedding limit suggest that
the surface functiong becomes singular in higher derivatives at
this limit, see Fig. 2. This causes a similar singular behaviour
of all gravitational potentials, and we expect a failure of the
spectral methods. Nevertheless, since the singularities show up

t

dg
/d

t

0

0

1

−0.1

0.2 0.4 0.6 0.8

Fig. 2. First derivative of the functiong = g(t) with respect tot for the
homogeneous Newtonian mass-shedding configuration (A) of Table 2
in Ansorg et al. (2003b). The numerical methods explained in section
3 ibid. have been carried out up to the approximation orderN = 80.

Table 4.Results for a constant mass-energy density model rotating at
the mass-shedding limit with ¯pc = 1. For the meaning of the quanti-
ties, see Table 1.

m= 10 m= 16 m= 22
p̄c 1
rp/re 0.4918 7.2e-04 1.2e-04 1.6e-05
Ω̄ 1.6588 6.1e-05 5.5e-06 5.8e-07
M̄ 0.1623 7.2e-05 3.8e-06 6.1e-07
R̄circ 0.4041 3.2e-05 7.1e-06 1.2e-06
J̄ 0.02431 1.8e-04 9.4e-06 1.6e-06
Zp 2.6685 1.2e-04 1.6e-05 2.1e-06

GRV2 1.2e-04 1.6e-05 4.3e-06
GRV3 1.3e-04 1.8e-05 4.9e-06
|1− Min/Mout| 2.8e-04 4.9e-05 1.4e-05
|1− Jin/Jout| 4.2e-04 8.1e-05 2.3e-05

only in higher derivatives, it is possible to achieve a slow con-
vergence, see Tables 4–613. However, it is then necessary to
modify the coordinate transformations (17, 18) such that the
curvess= const do not possess a cusp (except fors= 1). Here
we use

ρ2 = r2
es t, ζ2 = s(1− t) [r2

p + stg(t)] , (s, t) ∈ I2 (64)

and

ρ2 =
r2
et

s2
, ζ2 =

(1− t) [r2
p + stg(t)]

s2
, (s, t) ∈ I2 (65)

for the interior and exterior region respectively.
From the numerical results listed in Tables 4–6 we may

speculate that the behaviour of the pressure at the star’s surface
(which is determined by the equation of state) affects the type

13 Note that the example listed in Table 5 has previously been calcu-
lated, see Nozawa et al. (1998).
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Table 5. Results for a polytropic model (polytropic exponentΓ = 2)
at the mass-shedding limit with ¯µc = 0.34. For the meaning of the
quantities, see Table 2.

m= 10 m= 16 m= 22
µ̄c 0.34
rp/re 0.5845178 9.1e-05 9.7e-07 3.6e-08
Ω̄ 0.3770150 2.0e-04 7.0e-07 3.8e-09
M̄ 0.1883522 8.7e-05 9.7e-08 1.1e-09
R̄circ 1.0920220 3.4e-05 3.0e-07 2.6e-08
J̄ 0.02023980 3.0e-05 1.4e-06 9.5e-09
Zp 0.4035809 2.9e-04 6.0e-07 2.3e-09

GRV2 1.5e-05 8.7e-08 1.6e-09
GRV3 5.5e-06 8.4e-08 1.3e-09
|1− Min/Mout| 6.7e-05 2.7e-07 3.2e-09
|1− Jin/Jout| 2.8e-04 1.6e-06 1.8e-08

Table 6. Results for a strange star model at the mass-shedding limit
with p̄c = 3. For the meaning of the quantities, see Table 3.

m= 10 m= 16 m= 22
p̄c 3
rp/re 0.4713 6.0e-04 1.4e-04 1.9e-05
Ω̄ 3.6505 4.0e-05 6.3e-06 6.0e-07
M̄ 0.03719 1.5e-04 9.4e-06 1.3e-06
R̄circ 0.1444 3.0e-04 6.8e-05 9.8e-06
J̄ 0.001205 1.3e-04 2.6e-05 3.7e-06
Zp 0.82865 5.2e-05 1.6e-05 1.9e-06

GRV2 1.2e-04 1.8e-05 5.0e-06
GRV3 1.6e-04 2.4e-05 6.5e-06
|1− Min/Mout| 9.1e-05 3.5e-05 9.6e-06
|1− Jin/Jout| 4.6e-04 8.4e-05 2.4e-05

of the above singularities. They seem to be weaker for smoother
equations of state, when the pressure and some higher deriva-
tives vanish at the equator.

4.2.2. Stars with infinite central pressure

Another possible endpoint of a sequence of rotating stars in
General Relativity is reached when the pressure diverges at the
star’s centre. For example, the sequence of static homogeneous
configurations is characterized by this limit. Here, the star is
spherical (rp = re andg = 0), and the corresponding gravita-
tional fields are analytically given by the Schwarzschild solu-
tion which reads in our chosen coordinates (withr2 = ρ2 + ζ2)

eU′ =
3 [1− M/(2re)]
2 [1+ M/(2re)]

− 1− Mr2/(2r3
e)

2+ Mr2/(r3
e)

(66)

We−U′ = ρ
[1 + M/(2re)] 3

1+ Mr2/(2r3
e)

(67)

a′ = 0 (68)

inside (i.e. forr < re) and

eν =
1− M/(2r)
1+ M/(2r)

(69)

We−ν = ρ [1 + M/(2r)] 2 (70)

ω = 0 (71)

ρ

ζ

Fig. 3.Meridional cross-section of a homogeneous configuration with
infinite central pressure, specified in Table 7 (with the axes scaled
identically). The dashed curves indicate the boundary of the corre-
sponding ergo-region.

Table 7. Results for a homogeneous model with infinite central pres-
sure andrp/re = 0.7. For the meaning of the quantities, see Table 1.
The virial identities are not defined for ¯pc = ∞ since the integrals
I1, I2, J1, J2 diverge.

m= 10 m= 16 m= 22
p̄c ∞
rp/re 0.7
Ω̄ 1.765 4.4e-04 8.0e-06 1.0e-06
M̄ 0.1804 6.7e-04 1.7e-04 2.5e-05
R̄circ 0.3865 4.3e-04 1.3e-04 2.0e-05
J̄ 0.02984 2.1e-03 4.0e-04 6.0e-05
Zp 5.179 2.9e-03 5.0e-04 7.5e-05
|1− Min/Mout| 1.6e-04 9.7e-05 4.3e-05
|1− Jin/Jout| 4.7e-04 1.6e-04 6.8e-05

outside the star (r > re). In the limit Mr−1
e → 1 the central

value eU
′
c vanishes which corresponds topc → ∞ since the

surface potentialV0 = U′(r = re) remains finite.
A rotating configuration with an infinite central pressure is

characterized by an ergo-region that extends in the inside up
to the coordinate origin, see Fig. 3. Hence, at this point the
space-time violates the requirement of stationarity14 and there-
fore some irregular behaviour of the gravitational potentials
arises here, which, in the slow rotation limit, has been studied
by Chandrasekhar & Miller (1974). Consequently, we again ex-
pect a failure of the AKM-method. But as in the case when the
mass-shedding limit occurs, we are still able to obtain slowly
converging numerical solutions, see Table 7. It is however nec-
essary (i) to modify the Chebyshev representation of the inte-
rior gravitational potentials and (ii) to introduce a slightly dif-
ferent coordinate mapping of the interior region. In particular,

14 A locally stationary, axisymmetric spacetime requires the exis-
tence of a timelike linear combination of the two Killing vectors cor-
responding to stationarity and axisymmetry. The latter one vanishes
on the symmetry axis.
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this is done by writing

eU′ = eV0 + (s− 1)H̃U′ (s, t) (72)

a′eU′ = ρ2
[
ã′B(t) + (s− 1)H̃a′(s, t)

]
(73)

W(int)e−U′ = ρ e−V0
[
1+ W̃B(t) + (s− 1)H̃W,int(s, t)

]
(74)

and using again the transformation (61). The reformulation
of the interior Chebyshev expansions is motivated by the
Schwarzschild solution given above. We learn from here that
the vanishing of eU

′
c coincides with that of the central value of

W/ρ. Moreover, we note that the combination

ρ−2gϕϕ = (ρ−1We−U′ )2 − (ρ−1a′eU′ )2 (75)

remains positive (and finite) at the origin when eU′c → 0. So
the above reformulation ensures particular dependencies of the
metric functions at the origin when eU′c → 0.

The use of the transformation (61) allows one to lay the
coordinate mesh more densely in the vicinity of the origin. This
helps to take the singular behaviour in higher derivatives of the
functionsH̃U′ , H̃a′ andH̃W,int into account and thus provides a
better convergence.For the example given in Table 7 and Fig. 3,
we usedcs = 0.65. In the approximation scheme we prescribed
the parameters (eU′c , rp/re) and finally pushed eU

′
c to zero.

4.2.3. Highly flattened stars

As with the situations above, the coordinate transforma-
tions (17, 18) need to be modified if one wants to calculate
models of strongly distorted stars (such as the examples given
in Table 2 of Ansorg et al. 2002). When using (17, 18), then
each curves= const represents an image which is similar to the
star’s boundary. This leads for distorted stars to a non-uniform
partition of the domains by the coordinate net of (s, t)-variables.
Moreover, the oblateness of the configurations suggests adapt-
ing the coordinatess andt for the exterior domain to resemble
oblate spheroidal coordinates. A possible mapping which takes
these considerations into account is given by [(s, t) ∈ I2]:

ρ2 = r2
et τ(t) , (76)

ζ2 = s(1− t)[r2
p + tg(t)] (77)

for the interior region and

ρ2 = t[r2
e − r2

p + ξ
2(s)][1 − s+ sτ(t)], (78)

ζ2 = (1− t)[ξ2(s) + tg(t)] (79)

exterior to the star with

τ(t) =
1

1− ct(1− t)
, ξ(s) = rp +

cs

s
(1− s). (80)

For the examples (b) and (c) in Ansorg et al. (2002) we took
cs = 0.07 andct = −0.2 whereas for the example (a) in Ansorg
et al. (2002) as well as for that presented in Table 8 the val-
uescs = 0.2 andct = 0 were chosen. Note that the prescribed
parameter pair, (pc, rp/re), is the same for the latter two con-
figurations. All other physical quantities are also very similar

ρ

ζ

Fig. 4. Meridional cross-section of a highly distorted homogeneous
configuration at the mass shedding limit, specified in Table 9 (with the
axes scaled identically).

Table 8. Results for a homogeneous model with ¯pc = 0.002 and
rp/re = 0.2. For the meaning of the quantities, see Table 1.

m= 10 m= 16 m= 22
p̄c 0.002
rp/re 0.2
Ω̄ 1.089864e-00 2.8e-06 9.4e-08 6.8e-10
M̄ 8.371248e-04 4.0e-05 1.8e-06 2.3e-08
R̄circ 1.027320e-01 5.6e-06 2.2e-07 2.5e-09
J̄ 3.703716e-06 1.7e-04 2.7e-06 3.7e-08
Zp 1.592971e-02 3.3e-05 1.3e-06 1.6e-08
GRV2 4.2e-06 4.7e-08 6.3e-10
GRV3 6.0e-06 6.2e-08 8.5e-10
|1− Min/Mout| 2.2e-06 5.4e-08 4.2e-10
|1− Jin/Jout| 1.0e-04 3.8e-07 1.8e-09

Table 9. Results for a highly distorted homogeneous configuration at
the mass shedding limit with ¯pc = 0.003. For the meaning of the quan-
tities, see Table 1.

m= 10 m= 16 m= 22
p̄c 0.003
rp/re 0.04534 1.1e-02 1.3e-03 1.3e-04
Ω̄ 0.9883 1.5e-03 3.9e-05 1.9e-06
M̄ 0.03900 6.9e-03 9.8e-04 5.5e-05
R̄circ 0.4005 2.5e-03 6.9e-05 2.3e-05
J̄ 0.002717 1.2e-02 1.7e-03 9.5e-05
Zp 0.2388 4.8e-03 7.8e-04 4.4e-05
GRV2 6.2e-05 2.3e-05 5.9e-06
GRV3 1.3e-04 3.0e-05 7.3e-06
|1− Min/Mout| 1.5e-04 2.1e-05 4.6e-06
|1− Jin/Jout| 2.0e-03 1.3e-05 8.8e-06

for these models, including the appearance of the correspond-
ing cross sections. Here, the high accuracy is needed in order
to distinguish between these two nearby configurations.

A final example (see Table 9 and Fig. 4) exhibits that even
in the highly flattened regime, configurations at the mass shed-
ding limit can be calculated (herecs = 0.2 and ct = 0).
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This particular model is close to the configuration (a) in
Ansorg et al. (2003a), which marks the transition body be-
tween spheroidal and toroidal configurations at the mass shed-
ding limit. A more detailed investigation of highly flattened
homogeneous bodies in General Relativity will be published
elsewhere.
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