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Highly accurate calculation of rotating neutron stars

Detailed description of the numerical methods
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Abstract. We give a detailed description of the recently developed multi-domain spectral method for constructing highly
accurate general-relativistic models of rapidly rotating stars. For both “ordinary” and “critical” configurations, we show using
representative examples, how the accuracy improves as the order of the approximation increases. As well as homogeneous fluid
bodies, we also discuss models of polytropic and strange stars.
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1. Introduction which led to an accuracy of up to 12 digits for rapidly rotating,

I i _ .__strongly relativistic homogeneous fluid bodies (Ansorg et al.
The structure and the gravitational field of relativistic, aX'Sy”EOOZ). Its further development enabled us to calculate rotating

metric_ and §tation§ry, uniformly rotating perfect_fluid bodgyroidal bodies (the relativistic Dyson rings; see Ansorg et al.
ies is investigated in order to model extraordinarily compaﬁbo3a)

?3};%2?/?:3'1eostgegﬁelcl:l':se ch:tiﬁg :L%rjzc;rg? ;;gg?:%";l ;:al- The corresponding fundamental features of the AKM-
. i ethod are as described above for the BGSM-code. However,
eral authors (see Bonazzola & Schneider 1974; Wilson 19?‘

h in the following:
Butterworth & Ipser 1975, 1976; Friedman et al. 1986, 1985'C Metnods dier in the following
Lattimer et al. 1990; Neugebauer & Herold 1992; Herold & . |nstead of the three domains in the BGSM-code (two of
Neugebauer 1992; Komatsu et al. 1989a, 1989b; Eriguchi et al. them exterior to the star), we have only two domains, since
1994; Stergioulas & Friedman 1995; Bonazzola et al. 1993; for \ve do not split up the region exterior to the star.

reviews see Friedman 1998 and Stergioulas 1998). 2. As described in Bonazzola et al. (1998), the BGSM-code

The idea to use a “multi-domain spectral method” was in- is an iterative scheme with each iteration step consisting
troduced by Bonazzola et al. (1993, 1998). In their “BGSM-  of several procedures including the solving of nonlinear
code”, the space of physical coordinates is divided into several Poisson-like equations and the determination of an im-
subregions, each one of them to be mapped onto a cross prodproved approximation of the star’s surface. In the AKM-
uct of intervals. The physical field quantities are expressed in method, a large set of nonlinear algebraic equations for
a spectral expansion with respect to all coordinates defined onthe unknown spectral cfiicients corresponding to all field
the specific intervals. If the interior region of the star is cho- quantities and the unknown shape of the star’s surface is
sen to be exactly one of the domains, then it is possible to simultaneously solved by a Newton-Raphson method.
obtain representations of the field quantities that are smoagh For the AKM-method, the restriction to only two domains,
functions within the cross product of intervals. The spectral one of them exactly corresponding to the interior region of
expansions then provide a very precise approximation of the the star, can be maintained when the mass shedding limit
field quantities. In particular, this choice for the domains cir- is approached. In this limit, the star is characterized by a
cumvents the occurrence of the Gibbs phenomenon at the star'scusp at its equatorial rim, thus requiring that the inner-most
surface, which appears when non-smooth physical fields (such domain of the BGSM-code deviate slightly from the star’s
as the mass-energy density) are expressed in terms of a spectrahterior (see Bonazzola et al. 1998; the resulting Gibbs phe-
expansion. nomenon is limited since the displacement is small).

The subject of this paper is a detailed description of

our multi-domain spectral method (hereafter “AKM-method”yVe begin our description of the AKM-method with a review
of the line element and Einstein’s field equations, boundary,

Send gprint requests toM. Ansorg, regularity and transition conditions as well as the resulting
e-mail:ansorg@tpi.uni-jena.de free boundary value problem. Following this, we provide an
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introduction to the method in question containing a compreéz)w = 4(vpw, + vewy) (5)
hensive description of the specific spectral field representations
and the resulting set of nonlinear algebraic equations that en,W
sures both the validity of the field equations within each do-, o
main and the transition conditions at the domains’ boundaiith the abbreviations
In the subsequent section, we apply the AKM-method to “or-AZ - P @)
dinary” homogeneous, strange as well as polytropic stars (with P
a polytropic exponeri = 2) and display the improvement ofA(,-)
the accuracy as the order of the approximation increases. HEM,
“ordinary” stars means configurations that are not special in tBghce in the comoving frame the energy-momentum tensor
sense that they neither rotate at the mass shedding limit, pesids
sess infinite central pressure, nor show a considerable oblate- ) ) )
ness, but may be strongly relativistic as in the example giventiy = (1 + pu'u“+ pg*, U =e"'s} 9)
'(I';(;)(I)ez)ll of Nozawa et al. (1998) and Table 1 of Ansorg et ?/vl'herey i_s the total_mass-energy densi_ty anthe pressure, the
' . . . interior field equations assume a particularly simple form
Then we give representative examples concerning the ex-
cluded “critical” configurations. At first, we consider homoge- ),
neous, strange as well as polytropic stars at the mass sheddiv
limit. Following this, we study homogeneous configurations

0 (6)

= Ap+ JWHW,0, + W,0,). (8)

+ SW 2N ()2 + @) = 4+ 3p) (10)

with an infinite central pressure. Finally, the last part of this A\(,\‘,l)a’ +4@U,+aU)) =0 (11)
section is devoted to highly flattened homogeneous bodies.
In what follows, units are used in which the speed of light AW = 1676?K-VI W p (12)

as well as Newton’s constant of gravitation are equal to 1. ) ) _ )
As with the above potential, the metric functiork’ can be de-

termined via a line integration from the potentibls a’ andwW

2. Line element, Einstein’s field equations, that follows from

and the free boundary value problem
- . Wp _W( k;; %(pr - W(( )
We use two dierent formulations of the line element de- ’ _ -

scribing the gravitational field of a uniformly rotating per-\ W, W, kg W,/

fect fluid body. The corresponding Lewis-Papapetrou coordi- (13)

nates p, Z, ¢,t) are uniquely defined by the requirement that 2 N2 Danrd AU 12 N2

the metric cofficients and their first derivatives be continuous WI(UR)™ = (U - 3W el(@) - C

at the surface of the body. - WUV’ — IW-1eW g & ’
Exterior to the star in question we write: pe 2 P

d2? = (dp? + d?) + W2e 2 (dy — w dt)? — e2/dit? 1 such that along the rotation axis= 0 the condition

while for the interior we take metric functions valid in theX — |im W(p. ) (14)

comoving frame of reference: 0 p

d<? = eV [ (dp? + d7?) + W2dy'?] — €Y' (dt + a'dy’)2. (2) holds. Additionally, for a given equation of state= p(u) or
) _ ) u = u(p), the relativistic Euler equatiorﬁkk = Oyieldu andp
Here, the only new coordinate ¢g = ¢ — Qt whereQ is the i terms of the metric potenti&)’:

(constant) angular velocity of the star.
Hence, we get the following transformation formulae: v exp[fp dp’
.-t u(P) + ¢
Wi s (w-0) = (We? 5a) ", a=k-U. (3 °
o ) ) . Hence, for the exterior potentialsw, W as well as for the
The exterior field equations following from the above ling.;arior potentialsl’, &, W, particular systems of partial dif-
element read as follows ferential equations emerge. At the surfaef the star, the
(4) pressurep vanishes, which leads to a constant surface poten-
tial U’ = Vp, see Eq. (15). If additionally the boundaByas

1 The basic principles of the AKM-method rely on a rapidly conwell as the corresponding boundary values of the poterdials
verging Chebyshev representation of all physical and geometri@fld W were given, we would have to solve a particular inte-
quantities within appropriate coordinates. The method is therefore &igf and exterior boundary value problem of the respective field
plicable to arbitrary dferentially rotating configurations (with someequations, completed by regularity conditions along the rota-
analytical rotation law). In this article we restrict ourselves to untion axis (here, the-derivatives ofv, w, W/p, U’ anda’ van-
form rotation. In this case we may use the simpler field equations vajigh) and at infinity (here# — 0, w — 0 andW — p — 0).

within the comoving frame of reference. _ However, we have to deal with a free boundary value problem,
2 Oncev, w andW are known, the potential can be determined by

a line integral (withw — 0 asp? + {2 — ). 3 See, for example, Kramer et al. (1980).

= e = const. (15)

1
1 _
AfN)v = Eer 4"(wﬁ + w?)
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where both the bounda and the values o& andW at B t = 0 andt = 1 respectively. Furthermore, the surfégef the
are unknown, but have to be determined such that the norrhatly is characterized by = 1. For the interior and exterior
derivatives of the potentiald’, a andW behave continuously transformation, the poirg = O corresponds to the origin and to
atB4. infinity respectively.

For a given equation of state, the corresponding solution Writing p? ands? (and nop and¢) in terms of the new vari-
depends on two parameters, e.g. the angular velézignd ablessandt already takes the regularity condition along the ro-
the gravitational mas#1. Note that there might be multipletation axis as well as the reflectional symmetry with respect to
solutions corresponding to a specific prescribed parameter pidie equatorial plane into account. Indeed, for any potential that
For the description of the AKM-method, we consider at first the analytic with respect to the variablegndt, it follows that
particular prescription of the paivg, Q2), but treat in a separatethe p-derivative ato = 0 as well as the-derivative at/ = 0
subsection the possible prescription of other parameter pairsanishes provided the above coordinate transformation is in-

Together with the regularity conditions along the rotatiovertible there. The latter condition is only violated fo& 0°.
axis, we assume that all metric potentials possess reflectionallt turns out that the requirements of the regularity of the
symmetry with respect to the equatorial plahe 0, leading to potentials (as functions afandt) att = 0 andt = 1 replace
a vanishing/-derivative in this plane (see, for example, Meined particular boundary condition here, that usually must be im-
& Neugebauer 1995). posed. Similarly, the regularity of the interior potentials super-
sedes a boundary condition at the coordinate’s origin. However,
the asymptotic behaviour at infinity still must be considered,
see Sect. 3.2.

A function, defined and analytic on a closed interval, can Note that for critical configurations we need to modify the
be represented by a rapidly converging Chebyshev-expansiainove mapping, see Sects. 4.2.1 and 4.2.3.

The spirit of the AKM-method is to use this property for all
gravitational potentials, boundary values, and the unknov‘xén
shape of the surface, which therefore need to be defined o'ﬁ
appropriate cross products of intervals. The corresponding
Chebyshev-cdécients are determined by a high-dimensiongor each of the gravitational potentials we use a specific
nonlinear set of algebraic equations that encompasses both fg@gh@ébyshev-expansion that takes known boundary and transi-

equations and transition conditions and is solved by a Newtqyn conditions into account. In particu|ar we know? ( =
Raphson method. P2+ 2):

lim (rv) = =M, rIi_)rr;)(r%) =2J, (19)

r—oo

3. Description of the method

. The representations of the potentials
and the surface

3.1. The mappings of the subdomains

As already mentioned in the introduction, we divide the totalim r2 (wp-1 - 1)
space of physical coordinates into two subregions, an inner d6=*

< 00,

main covering exactly the interior region of the star, and rl]|m , o

outer one encompassing the exterior vacuum region. Both s Oap <% (20)
regions are mapped onto the squkre= [0, 1] x [0, 1], which

we realize by introducing a non-negative functigrdefined on ' |i_r{1OW,0_l < 0o,

the intervall = [0, 1] that describes the surface of the body byp

B={(n.0): p?=r2t % =r2ys(t), O<t<1l), whereM andJ are the gravitational mass and the angular mo-

(16) mentum of the star, respectively, see also Egs. (56, 57) for an

ye(0) =1, ys(1)=0 integral representation. Therefore we write outside the star:

= -1H 21

Herer. andr, are the equatorial and polar coordinate radii of slve(® + (s- DH.(s D] (21)

the body respectively. -3 ) + (s— 1H. (s t 29

A particular example for the mapping in question ig) [wa(®) +( Ho(s 1] (22)

given by WEO = p (14 & [Wa(®) + (5— DHwex(s D)) (23)
p?=rist, Z=risys(t), (st)el? (17) andinside

for the interior region and U’ =V + (s— 1)Huy (s 1) (24)
2 2 ~

P SR L (18) & =218 + (s~ DHa(s )] (25)

for the region exterior to the star. In this manner, the pxis0 W™ = [1 + Wi (t) + (s — 1)Hwin(S. t)] . (26)

and the plang = 0 are mapped to the coordinate boundaries — ) o ]
> Note that the interior coordinate transformation introduced in

4 1t is a consequence of the field equations tkais then also Sect. 4.2.3 is not invertible at the equatorial rim of the star, but it is
differentiable. soats= 0.
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Here, the boundary valueg,, Ws of the potentials’, W are as well as the one-dimensional Chebysheviicents
expressed by the functioas, W in the following manner: (k) R ok .
p y a§, Ws g @) km, W‘(gk,m)’ gk 37)

We = p(Ws + 1) (27) as independent variables. They build up a vest®} consist-
A7 ing of

o = p2 &, (28) " y

The above one- and two-dimensional functions are expresgéﬁa' = 6+ 3m (38)

as limits of Chebyshev-expansions, €.g. components. The firstn® components comprise all two-

i M) dimensional Chebyshev-cieients while the following 81-2

ve(0) = nlﬂo ve (1), (29) are the above one-dimensional Chebyshewfments. The re-
. maining two entries are filled by the valuesrglandry,.

v(Bm)(t) _ Z Vg(;m)Tk—l(ZI 1), (30) We now describe in detail the components of a vector
ko1 £ = £ (M) (39)

also consisting ofmta components that must vanish for the
H,(st) = lim HM(s 1), (31) solutionx™ of themth-order approximation.
oo Given an arbitrary vectax™, we compute the Chebyshev
codficients corresponding to the first and second derivatives of

m
HM (s t) = Z H,(,]k;m)Tj_j_(ZS— 1)Te1(2t - 1). (32) the function§

e | HI™, H e HEY. HE. HED, (40)
Similarly, taking into account the representation of the bound-
ary in (16), we write the boundary functiog as follows and
v = (L= [+ 1 2t9(0)], (33) @)W g™ (41)
with respect tos andt. Together with the coordinate transfor-
g(t) = lim ¢™(v), (34) mations (17, 18), we therewith find the first and second spa-
tial derivatives of all gravitational potentials with respect to the
m-2 coordinatep and{ in our mth-order approximation, at an ar-
g™ (1) = Zg(k;m)Tk—l(ZI -1). (35) bitrary grid point inside the domains (not at the origin or at
k=1 infinity). So, we may fill the first B2 entries off ™ with the

In the orderm of our approximation Scheme, we estabnsﬂifferences of rlght and left hand sides of the exterior EqS (4),
a nonlinear set of algebraic equations that determines @@luated an¥ gridpoints &, t%), j,k = 1...m, correspond-
above cofficients of thamth Chebyshev-expansion. In the limitind to spatial points outside the star. Following the spirit of the
m — oo, this set of algebraic equations is equivalent to the fré@ectral methods and in order to ensure a rapid convergence,
boundary value problem in question, and théh approxima- We take for thes; andt; the roots of themth Chebyshev poly-

tion becomes the solution. nomial, i.e.

Sj=tj= cog (71' 214;11) (sj. tj > 0). (42)

3.3. The nonlinear set of algebraic equations
For a given equation of state, we specify the solution of our fréer the subsequent® components off ™, we first com-
boundary value problem by the prescription of a particular ppute the two-dimensionahth-order Chebyshev cfiicients
rameter pair. At first let us tak&/, Q); a more general choice corresponding to the interior functioki. This is done by
will be discussed in Sect. 3.5. determining the Chebyshev d&eients corresponding to the
We express the boundary valueg and wg in terms t-derivative ofk’ using (13) and again the coordinate transfor-
of (Vo, Q) and the functionsa; and Wg, see Egs. (3). This mation (17), and after that, by integrating with respect to the
ensures the continuity conditions of the field potentials at thais condition (14), see footnote 9. So, the?Zntries in ques-
star's surfac& Hence, in the ordem of our approximation tion can now be filled with the @ierences of right and left hand
scheme, we take the two-dimensional Chebyshevicients  sides of the interior Egs. (10), again evaluated atrtRegrid-
points (;,t) here corresponding to spatial points inside the

(km) y(kem) L Gam) L Gkm) o Gkem) g (ko)
H 7 Hy o, HW,ext SHY 7 H HWint (36) star.

6 The Chebyshev-polynomials are defined byj(x) = 9 Note that it is straightforward to calculate (i) the Chebyshev co-
coslj arccosg)], x € [-1,1]. efficients of a function from its values at the gridpoings, () (or ti

" In order to getm unknowns representing the surface of the stan the one-dimensional case), see Eq. (42), (ii) the value of a func-
in the mth-order approximation discussed in Sect. 3.3, we take ttien at an arbitrary point inside or at the boundaryl &for |) from
radiire, rp, and (n— 2) Chebyshev-cdicients for the functior. its Chebyshev cdicients, and (iii) the Chebyshev d@eients of the

8 The continuity conditions of the fields’ derivatives will be part ofderivative and the integral of a function from its Chebyshevfitoe
the set of algebraic equations in question. cients, see Press et al. (1992).
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The remaining B components of our vectof™ are unknowns from now on. Simultaneously, we add two equations
formed from the dierences of thenth-order interior and ex- to the nonlinear set representing exactly the desired parameter
terior normal derivatives of the gravitational potential® and relation for the solution in question. This can be done since all
W, evaluated at then surface grid pointsq = 1,t). Note that physical quantities concerning the final solution are now con-
the coordinate transformations (17, 18) are regular here, aaghed in the vectox™.
thus the normal derivatives can easily be computed using the For example the potenti&l/ at the origin read$
shape of the star that is incorporatedxi®. The interior nor- | ,
malpderivatives o andw foIIovs from the transformation for- Ue = Vo~ Hu (0,0), (46)
mulae (3) and the interior potentials. which is directly connected to the central presspge see

In this manner we get in theth approximation order a Eq. (15). LikewiseM andJ can be expressed
nonlinear set ofmye = 67 + 3malgebraic equations

M = —rp[vg(0) - H,(0,0)], (47)
fM(xM) = 0 (43)
1
that is solved by a Newton-Raphson method, see Sect. 3.4. J = EFS [we(0) — Hu(0,0)]. (48)
Also the prescription of a parameteiis possible which con-
3.4. The Newton-Raphson method and the initial trols the distance of a configuration to the mass shedding limit:
solution

_ _Gys (t=1)= 0 in the mass shedding limit
In the Newton-Raphson method, the zero of a nonlinear selﬁof dt © 77 |1 foran ellipsoidal shape.
algebraic equations of the form (43) is determined iterativelySimilarly

(49)

one can prescribe more complicated expressions
-1 such as the baryonic mab&, which is defined by an integral
} FM(x™), (44) over the interior field quantities.
Any two conditions of this kind (of which the above
o A . . ones are just examples) can be taken and added to the sys-
requmn.g an|n|t|a.1b<gm) Whlch must alrrneady be ﬁﬁnler\tly Cl.os,e tem of nanIinear eqpuat?ons. The corresponding paramete)r/s
to the final solutior™ = limp-.., X% ). The Jacobi matrix in (herep. M, J 8 or M) must then be prescribed. In this paper
the Eq. (44) is determined approximately usiag« 1) we concentrate on the paipd rp/re) and only take g, 5) in
o fM 1 order to place ourselve exactly on the mass shedding limit, see
gt ~ - [F0 (XM + een) Sect. 4.2.1
6X(m) « AB 26 . L.l

— £ (xM _ eeg)]. 45
A ( )] (45) 3.6. Regularity and uniqueness
Here the subscriptd andB denote the corresponding element ) ) )
of the Jacobi matrix and the vectbf™, andeg is the Bth unit As already depicted in Sect. 3.1, the AKM-method is charac-
VECHOT, €8)a = 6ag. terized by the fact that some of the usual boundary conditions
There are various possibilities for obtaining an initial soll2€ replaced by regularity requirements. Moreover, if for the
tion. For example, one may start from the static solution charomentwe only consider the functions
_acterize_d by2 = 0. He_re the cqrresp(_)nding field equation_sturnw He» Hwexs Hur» Has Hwine (50)
into ordinary diferential equations with respect to the radial co- »
ordinater, and these can be solved e.g. by using a Runge-Kut®2d tr/eat the quantitiese, rp, 2, Vo as well as the func-
method. Taking this solution for the initiag”), one may now U0Nsag, W andg as if they were given, we obtain specific
gradually increase the paramegeand thus eventually explorepart'al df_f(_arentlal equations valid it?, and partlcular bound-
the whole parameter space. Another possibility is to start wily conditions at any edge of are not required for any of the
a Newtonian solution (e.g. a Maclaurin spheroid). Proceediffgictions listed in (50). Nevertheless, the solution of this sys-
into the relativistic regime comes about by increasing the abdgM Of €quations is uniquely determined if we require regularity
lute value ofVo. with respect to all functions. A similar situation can be studied

In our treatment we favoured the latter initialization, fol? the one-dimensional case, e.g. the equatiend/df)

it already provides highly distorted bodies. Moreover, we cak1 — t)h + 2(1 - 2t)h -2h+2=0e[t(1-th]"=-2 (51)

culated configurations with a particular equation of state by ) o o

starting from a constant mass-energy density profile aRBSSesses only the solutir= 1 which is regular withiri.

continuously moving to the desired equation of state. The above approximation scheme sorts out the non-regular
solutions since it is based on Chebyshev-expansions. It more-

_ o over ensures known, additional properties of the functions (50)
3.5. Arbitrary parameter prescription ats =0, e.g.Hy (s = 0,t) = const. Note that these properties
are approached a3 — oo.

o fm

(m _ y(m _
Xp' = Xpg {8X(m)

(m)
Xn—l

With a slight modification of our nonlinear set of equations d
scribed in Sect. 3.3, we are able to take variotfetknt param- 10 Note that the functiomg‘?)(s = 0,t) tends to a constant in the
eter prescriptions into account. The idea is to add the quanthit m — co. Similar properties hold for all functions listed in (40),
tiesQ andVy to the vectox™, resulting inMya = 6MP+3m+2  see also Sect. 3.6.
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Table 1. Results for a constant mass-energy density mqade! f1) with pc = 1, rp/re = 0.7. Here,pc = po/uo, @ = Q/ug*, M = Mup?,
Reirc = Rcimpé/z andJ = Jup are normalized values of the physical quantities, see Egs. (56, 57). Apart from the virial id6BRi&S
andGRV3 in themth order approximation, the Cols. 3-11 display the relative deviation of the specific quantitynithtbeder approximation
with respect to the numerical result obtained flor= 24. The quantitiedVi, Ji, and Moy, Jout refer to the corresponding numerical values

resulting from (56, 57) and (19) respectively.

m=26 m=28 m=10 m=12 m=14 m=16 m=18 m=20 m=22

Pe 1
Ip/Te 0.7
Q 1.41170848318 1.9e-04 1.3e-05 7.8e-07 2.9e-08 8.5e-10 4.6e-11 3.0e-12 1.3e-13 8.0e-15
M 0.135798178809 1.8e-04 3.5e-06 5.9e-08 3.4e-09 3.8e-10 2.6e-11 8.5e-13 3.3e-14 6.8e-15
Reirc 0.345476187602 2.0e-08 1.5e-06 1.7e-08 1.8e-09 4.2e-11 1.8e-11 1.6e-12 1.1e-13 1.3e-14
J 0.0140585992949 8.7e-04 6.8e-05 3.7e-06 1.2e-08 1.2e-08 6.8e-10 8.4e-12 3.5e-12 2.0e-13
Zy 1.70735395213 3.2e-05 6.5e-06 2.4e-07 3.6e-09 4.6e-10 9.1le-12 7.1e-13 1.7e-13 1.6e-14
GRW2 7.5e-05 3.9e-06 3.9e-07 2.2e-08 8.9e-10 4.2e-11 3.1e-12 3.0e-13 7.7e-14
GRV3 1.2e-05 7.5e-06 1.2e-07 2.9e-08 1.4e-09 3.5e-11 1.3e-12 1.8e-13 6.5e-14
|1 — Min/Moud 2.8e-04 49e-06 1.9e-07 1.1e-08 4.1e-10 3.4e-12 1.5e-12 4.2e-13 2.3e-13
11— Jin/Joud 1.2e-03 7.0e-05 4.1e-06 5.0e-08 1.1e-08 7.1e-10 4.6e-12 2.9e-12 1.1e-13
4. Representative examples (as in the case above wheke = 1). In order to treat more

general equations of state, one needs to consider several layer:
inside the star, with each one of them characterized by a spe-
At first we apply the AKM-method to three models of homocific equation of state. The outermost one of them again must

geneous (Egs. (52)), polytropic (with a polytropic exponefiieet the above requirement. The consideration of several lay-
I' = 2, Egs. (53)), and strange stars (Egs. (54)). In particul&fs leads to a corresponding number of subregions into which

we prescribe the corresponding equation of state in the foti€ interior domain needs to be split.

u = u(p) and find from Eq. (15) the relation to the interior In Tables 1 to 3 one finds numerical values of several phys-

4.1. Ordinary stars

potentialU’: ical quantities, for a specified configuration with prescribed
/ central pressur@. (equivalently, for non-homogeneous mod-
P = o (ev"‘u - 1) els, we may prescribe the central mass-energy depsitsee
u(p) = po = const= (52)

Table 2) and radius ratig/re. The angular momentud grav-
itational masdVl, equatorial circumferential radil;,c and the
polar redshifiz, are given by:

M = fo

’ 2
p=(e""Y -1) /(4K) ol
u(p)=p+ Vp/K= ( ) (53) J= —2nf(u+ pa’ e 2 Wdpdg (56)
= (@0 1) /(4K)
M = 2(23+27rf + 3p)e® 2" Wdpd 57
p= B(eHeW) 1) (1 +3p) lodZ (57)
u(p)=4B+3p=> , (54)
K= B(1+ 3etot ))' Reirc = e o [Wm](p:r ¢=0)
Here K andB are the polytropic constant and the MIT bag con-, eVo_ 1 (58)

stant, respectively. Note that for the application of the AKM- Z
method (strictly speaking, only for its rapid convergence) {ith y = ~W-1a’e?V". Note that the above integrals extend over

is necessary to have analytic dependengies p(U’) and  the space op- and¢-coordinates covering the interior of the
u = p(U’), in particular atU’ = Vy. For the equation of state,bodyu_

w = p(p), this requires that A first test of the accuracy of a solution determined numer-

N/(N+l)f[pl/(N+l)] (55) ically is the c_omparison of the calcu_lations pf and J from

the exterior fields (see Egs. (19)) with those from the above
wheref is some function which is positive and analytic wheintegral representations (56, 57). A further check is given by
its argument vanishes, arld is some non-negative integerthe general-relativistic virial identie&RV2 and GRV3, de-
Apart from the homogeneous and the strange star model, tiived by Bonazzola & Gourgoulhon (1994) and Gourgoulhon
condition is met for polytropic equations of state with a poly& Bonazzola (1994). As a consequence of the field equations,
tropic exponenf = 1 + 1/N whenN is a non-negative integerthey identically vanish for an exact analytic solution corre-

— ) _ sponding to a stationary and asymptotically flat spacetime.
11 For a description of the equations of state corresponding to poly-

tropic and strange star matter, see Tooper (1965) and e.g. GourgoulH8nThe quantitiesvl andJ can also be taken from the exterior fields
et al. (1999) respectively. andw, see Egs. (19).

H=p
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Table 2. Results for a polytropic model (polytropic expondht= 2, polytropic constanK) with pc = 1, ry/re = 0.834. Hereyue = Kpg,
Q = K¥2Q, M = K™2M, Rejre = K™Y2Rgc andJ = K~1J are normalized values of the physical quantities, see Egs. (56, 57). For the meaning
of the quantities listed in the Cols. 3-11, see Table 1.

m=26 m=28 m=10 m=12 m=14 m=16 m=18 m=20 m=22

He 1

Ip/Te 0.834

Q 0.4004385709 1.1e-03 9.0e-05 7.3e-06 6.4e-07 6.4e-08 7.2e-09 8.6e-10 1.1e-10 1.3e-11
M 0.1605611357 4.2e-04 5.7e-06 2.5e-06 3.2e-07 3.7e-08 4.1e-09 4.7e-10 5.4e-11 5.9e-12
Reirc 0.6794279802 5.7e-04 6.0e-05 5.4e-06 5.1e-07 5.2e-08 5.9e-09 7.0e-10 8.6e-11 9.8e-12
J 0.009491087857 9.4e-04 3.3e-05 8.5e-06 1.1e-06 1.2e-07 1.3e-08 1.4e-09 1.4e-10 1.2e-11
Z, 0.4580590747 1.7e-03 8.7e-05 4.6e-06 2.6e-07 1.9e-08 1.8e-09 2.0e-10 2.6e-11 3.le-12
GRW2 2.6e-04 8.1e-06 4.8e-07 7.5e-08 1.3e-08 1.8e-09 2.4e-10 3.2e-11 4.3e-12
GRV3 5.5e-05 2.9e-06 2.7e-07 1.5e-08 1.2e-09 2.0e-10 3.9e-11 7.1e-12 1.3e-12
|1 = Min/Mout 1.2e-04 6.5e-06 5.5e-07 5.5e-08 5.5e-09 5.3e-10 4.5e-11 2.4e-12 3.3e-13
11— Jin/ Joutl 2.7e-04 3.7e-05 4.0e-06 4.2e-07 4.1e-08 3.6e-09 2.5e-10 5.6e-13 4.9e-12

Table 3. Results for a strange star model (MIT bag cons@Bntwith p. = 2, rp/re = 0.5. Here,p; = B™p;, Q = B120, M = BY2M,
irc = BY?Ryc andJ = BJ are normalized values of the physical quantities, see Egs. (56, 57). For the meaning of the quantities listed in the
Cols. 3-11, see Table 1.

m=26 m=28 m=10 m=12 m=14 m=16 m=18 m=20 m=22

Pe 2
Ip/fe 0.5
Q 3.4304996 2.1e-04 1.5e-05 4.0e-07 1.6e-07 6.2e-08 1.9e-08 5.3e-09 1.5e-09 3.4e-10
M 0.035510326 5.3e-03 5.9e-04 6.4e-05 7.2e-06 9.2e-07 1.4e-07 2.6e-08 5.8e-09 1.3e-09
Reirc 0.14117783 3.3e-05 3.2e-09 1.8e-07 8.4e-08 3.0e-08 9.4e-09 2.9e-09 8.2e-10 2.0e-10
J 0.0011024838 1.6e-03 2.8e-04 5.4e-05 8.5e-06 1.4e-06 2.8e-07 6.4e-08 1.6e-08 3.5e-09
Zy 0.72634557 8.6e-05 1.8e-05 5.2e-06 1.3e-06 3.2e-07 8.4e-08 2.4e-08 6.3e-09 1.5e-09
GRWV2 1.2e-04 4.8e-06 4.1e-07 4.0e-08 3.9e-09 3.9e-10 3.8e-11 3.2e-12 4.7e-14
GRV3 6.7e-04 3.9e-05 2.8e-06 2.4e-07 2.1e-08 1.8e-09 1.5e-10 1.1le-11 5.2e-14
11— Min/Mou 5.9e-03 6.0e-04 6.2e-05 6.5e-06 6.9e-07 7.4e-08 7.9e-09 8.4e-10 8.9e-11
11— Jin/ Joud 2.2e-03 2.7e-04 4.6e-05 6.0e-06 6.5e-07 8.1e-08 1.1e-08 1.2e-09 1.5e-10
Particularly, for our rotating star models they read region of the star since both pressyrand energy-mass den-
sity u vanish outside the body).
GRVB=|1-1/ls, GRV2=[1-Ji/d| (59) SWH y)

Apart from the values for the above physical quantities with
the accuracy that was reached in the 24th approximation order,
u? _ay we provide in Tables 1-3 the improvement of the accuracy as
= V1 -2 Y | gx-3u
= 4”[[3p 1=+ (u+p) m} ¢ Wi dZ the ordemis increased. Also given are the corresponding nu-
merical values of the general-relativistic virial ident@RV2

with:

, 1 3.0 4 ) andGRV3 as well as those of the relative deviations concerning
l2 = f ¢ {p [(V") - 5veVn - gWe (Vo) ] the integral and far-field representations\dfandJ.
1 @) 1 We note generally an expt_)nential convergence of the nu-
2 (1_ ¢ ) @ =5 do d¢ merical solution as the orden increases. This is a common
2 feature of the spectral methods. However, the star’s field quan-
J. =81 f P+ (u+ p)1 uz] e Vdpds tities may vary in their “smoothness” resulting in a variably

rapid convergence. For example, the convergence of the numer-
ical solution corresponding to the homogeneous star (Table 1)
= f[(vy)2_ §er—4v (vw)2} dod¢ is much faster than that corresponding to the strange one

4 (Table 3). In a sense, the strange star is closer to the mass-
(we use the abbreviations= ~W-1a’'€?’, pe’ = We™). The shedding limit (here8 ~ 0.39 while for the homogeneous
Nabla-operator has its usual meaning, in terms of the coor@lodels ~ 0.84) and moreover more flattened.

nateso andc, i.e. for any two functions andb The models in Tables 1 and 2 have been calculated by
Nozawa et al. (1998). Note that for the polytropic model there
(60) . . : i
is a steeper gradient of the pressure as a function of the radial
The above integrals are taken over the whole spage ahd coordinater, e.g. within the equatorial plane. In order to take
Z-coordinates (foll; and J; this reduces again to the interiorthis property into account, we used for this model the following

(Va)2 = af) + a?’ vavb = apbp + a(b(
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i)
dg/dt
/

-01

0 0.2 0.4 0.6 0.8 1
Fig. 1. Meridional cross-section of the homogeneous mass-shedding t

configuration specified in Table 4 (with the axes scaled identically).

The dashed curves indicate the boundary of the corresponding efgi@- 2. First derivative of the functiog = g(t) with respect td for the
region. homogeneous Newtonian mass-shedding configuration (A) of Table 2

in Ansorg et al. (2003b). The numerical methods explained in section
3 ibid. have been carried out up to the approximation oier 80.

slightly modified interior coordinate transformation

(61) Table 4. Results for a constant mass-energy density model rotating at
the mass-shedding limit with, = 1. For the meaning of the quanti-
ties, see Table 1.

P2 =rio(s;iedt, P =rio(sicys(), (st)el?

with
—GCs m=10 m=16 m=22
o(s;Cs) = S 62 -
G e s (62) = 1
Ip/Te 0.4918 7.2e-04 1.2e-04 1.6e-05
and the constant parametgr= 0.6 (for the other models we Q 16588 6.1e-05 5.5e-06 5.8e-07
took cs = 0). Minor modifications of this kind, specially suited M 0.1623  7.2e-05 3.8e-06 6.1e-07
to the particular problem in question, may accelerate the con- Reic 04041  3.2e-05 7.1e-06 1.2e-06
vergence, see below for further examples. J 002431 1.8e-04 9.4e-06 1.6e-06
Zy 2.6685 1.2e-04 1.6e-05 2.1e-06
5 itical GRWV2 1.2e-04 1.6e-05 4.3e-06
4.2. Critical stars GRV3 1.3e-04 1.8¢-05 4.9e-06
. . |1 — Min/Mou 2.8e-04 4.9e-05 1.4e-05
4.2.1. Stars at the mass shedding limit L 3 doud 42604 81605 230-05

The endpoint of a sequence of rotating stars is often marked by

a mass shedding limit. It is of particular interest since specific . o o _ _

physical quantities such as the angular velocity reach maxir?8f¥ In higher derlvatlvesa, itis possible to achieve a slow con-
values there. A highly accurate determination of this limit i6T9€NCe, see Tables 426However, it is then necessary to
therefore desirable. modify the coordinate transformations (17, 18) such that the

The mass shedding limit is reached when the angular Jalrvess = const do not possess a cusp (excepsierl). Here

locity Q of the star attains the angular velocity of test particlé’él.e use
moving on a prograde circular orbit at the star’s equatorial rhpz =r2st, 2 =g1-1)[r2+ sig(t) (st)el? (64)
For thep-derivative of the field quantity” it follows: ¢ i [*s ]

and
U/(re,0)=0. (63)
e , 12, (L-9[rZ+sy()] e -
Moreover, a cusp at the surface occurs (see Fig. 1), which coffe™ @’ - ? CUL (65)

sponds to gvaqishing ma}ss-shedding pararfigtsze Eq. (49)'. for the interior and exterior region respectively.
I\_Iumer_lcal mvgsﬂga’uons of a homogengogs Newtonian From the numerical results listed in Tables 4-6 we may
configuration rotating at the mass-shedding limit suggest t@?}eculate that the behaviour of the pressure at the star’s surface

the surface functiop becomes singular in higher derivatives hich | : .
o X : . . : ch is determined by the equation of statépats the type
this limit, see Fig. 2. This causes a similar singular behaviour ienis I Y quat statéipats yp

of all gravitational potentials, and we expect a failure of the® Note that the example listed in Table 5 has previously been calcu-
spectral methods. Nevertheless, since the singularities showatgd, see Nozawa et al. (1998).
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Table 5. Results for a polytropic model (polytropic exponéht 2)

at the mass-shedding limit witla, = 0.34. For the meaning of the ¢
quantities, see Table 2.
m=10 m=16 m=22
He 0.34
Io/fe 0.5845178 9.1e-05 9.7e-07 3.6e-08
Q 0.3770150 2.0e-04 7.0e-07 3.8e-09 {
M 0.1883522 8.7e-05 9.7e-08 1.1e-09 ip
Reirc 1.0920220 3.4e-05 3.0e-07 2.6e-08
J 0.02023980 3.0e-05 1.4e-06 9.5e-09 '
Zy 0.4035809 2.9e-04 6.0e-07 2.3e-09
GRW2 1.5e-05 8.7e-08 1.6e-09 e 7| Tl
GRV3 55e-06 8.4e-08 1.3e-09
|1 = Min/Moud 6.7e-05 2.7e-07 3.2e-09
11— Jin/ Joud 2.8e-04 1.6e-06 1.8e-08

Table 6. Results for a strange star model at the mass-shedding Iirﬁ|?' 3; Merl(:lolnal cross-sectlon_fc_)fg ho¢ogen$ou§tﬁot1f|guratlon W'Ithd
with p. = 3. For the meaning of the quantities, see Table 3. infinite central pressure, specified in Table 7 (wi € axes scale

identically). The dashed curves indicate the boundary of the corre-
sponding ergo-region.

m=10 m=16 m=22

Pe 3

" 0.4713 6.0e-04 1.4e-04 1.9e-05 Table 7. Results for a homogeneous model with infinite central pres-
é ¢ 3.6505 4.0e-05 63606 6.0e07 Sureandy/re = 07.Forthe meaning of the quantities, see Table 1.
M 003719 15e-04 04e-06 1.3e-06 1he virial identities are not defined fgi. = co since the integrals
Rere 0.1444  3.0e-04 6.8e-05 9.8e-06 b l2JnJdiverge.
J 0.001205 1.3e-04 2.6e-05 3.7e-06
z, 0.82865 5.2e-05 1.6e-05 1.9e-06 _ m=10 m=16 m=22
GRV2 12604 18605 5.0e06 f’“/r o
GRV3 1.6e-04 2.4e-05 6.5e-06 2re '
Thoe i s sem 5 i den ame e
1= I/ Joud 4.6e-04 84e-05 24e-05 Rerc 0.3865 4.3e-04 1.3e-04 2.0e-05
J 0.02984 2.1e-03 4.0e-04 6.0e-05
of the above singularities. They seem to be weaker for smoother_2» 5179  2.9e-03 5.0e-04 7.5e-05

equations of state, when the pressure and some higher deriva- '+ = Min/Moul 16e-04 9.7e-05 4.3e-05
tives vanish at the equator. 11 = Jin/ Joud 4.7e-04 16e-04 6.8e-05

4.2.2. Stars with infinite central pressure

Another possible endpoint of a sequence of rotating stars
General Relativity is reached when the pressure diverges at YR
star’s centre. For example, the sequence of static homogen

configurations is characterized by this limit. Here, the star i]sq

tside the starr(> re). In the limit Mrg — 1 the central
iue &< vanishes which corresponds pg — o since the

ce potentid¥y = U’(r = r¢) remains finite.
A rotating configuration with an infinite central pressure is
spherical ¢, = ro andg = 0), and the corresponding gravita-c aracterized by an ergo-region that extends in the inside up

tional fields are analytically given by the Schwarzschild soIL'iQ the c_oordl_nate ongin, see Fig. 3. Henc_e, at_thls point the
tion which reads in our chosen coordinates (wh- p2 + £?) space-time violates the requirement of stationétiand there-
fore some irregular behaviour of the gravitational potentials

o 3[L-M/@rd]  1-Mr?/(2rd) 66 arises here, which, in the slow rotation limit, has been studied
2[4+ M/(2re)] 2+ Mr2/(rd) (66) by Chandrasekhar & Miller (1974). Consequently, we again ex-
, [1+ M/(2ro)]3 pect a failure of the AKM-method. But as in the case when the
weV =p 72'33 (67) mass-shedding limit occurs, we are still able to obtain slowly
1+ Mr2/(2re) converging numerical solutions, see Table 7. It is however nec-
a=0 (68) essary (i) to modify the Chebyshev representation of the inte-
rior gravitational potentials and (ii) to introduce a slightly dif-
ferent coordinate mapping of the interior region. In particular,

inside (i.e. for < rg) and

., 1-M/(2r)
“1+ M /(2r) (69) 1 locally stationary, axisymmetric spacetime requires the exis-
tence of a timelike linear combination of the two Killing vectors cor-
We™ = p [1 + M/(2r)]2 (70) g

responding to stationarity and axisymmetry. The latter one vanishes
w=0 (71) on the symmetry axis.
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this is done by writing ;
eV =e% +(s- DHy (s t) (72)
ae” = p?[&(t) + (s~ DHx(s9)] (73)
WIMeV" = p e™Vo |1+ We(t) + (s — 1)Fwin(S 1)] (74)

and using again the transformation (61). The reformulation C p

of the interior Chebyshev expansions is motivated by the
Schwarzschild solution given above. We learn from here that
the vanishing of & coincides with that of the central value of
W/p. Moreover, we note that the combination

200 = (07 WV - (ot )2 (75)

remains positive (and finite) at the origin whe¥t e~ 0. So

the above reformulation ensures particular dependencies of i 4. Meridional cross-section of a highly distorted homogeneous

metric functions at the origin wheie— 0. configuration_ at the mass shedding limit, specified in Table 9 (with the
The use of the transformation (61) allows one to lay tH&es scaled identically).

coordinate mesh more densely in the vicinity of the origin. This

helps to take the singular behaviour in higher derivatives of tﬁ%b'e 8. Results for a homogeneous model with = 0.002 and

functionsHy:, Ha andFiwn into account and thus provides d/"e = 0.2 For the meaning of the quantities, see Table 1.

better convergence. For the example given in Table 7 and Fig.=3;

we usects = 0.65. In the approximation scheme we prescribed—

m=10 m=16 m=22

the parameters fe, ry/re) and finally pushed'® to zero. fC/r 8'202
e )

(J; 1.089864e-00 2.8e-06 9.4e-08 6.8e-10
4.2.3. H|gh|y ﬂattened stars |\_ﬁ 8.371248e-04 4.0e-05 1.8e-06 2.3e-08

Reirc 1.027320e-01 5.6e-06 2.2e-07 2.5e-09
As with the situations above, the coordinate transforma-J 3.703716e-06 1.7e-04 2.7e-06 3.7e-08
tions (17, 18) need to be modified if one wants to calculatez, 1.592971e-02 3.3e-05 1.3e-06 1.6e-08
models of strongly distorted stars (such as the examples give@RV2 4.2e-06 4.7e-08 6.3e-10
in Table 2 of Ansorg et al. 2002). When using (17, 18), then GRV3 6.0e-06 6.2e-08 8.5e-10

each curves = const represents an image which is similar to the 11 = Min/Mou 2.2e-06  5.4e-08 4.2e-10
star's boundary. This leads for distorted stars to a non-uniform1 = Jin/Jou 1.0e-04 3.8e-07 1.8e-09
partition of the domains by the coordinate net®t)-variables.

Moreover, the oblateness of the configurations suggests adagle 9. Results for a highly distorted homogeneous configuration at
ing the coordinates andt for the exterior domain to resemblethe mass shedding limit with. = 0.003. For the meaning of the quan-
oblate spheroidal coordinates. A possible mapping which taki¥§s. see Table 1.

these considerations into account is given lsytj(e 12]:

m=10 m=16 m=22

p? = rete(t), (76) Pe 0.003

- ) ro/Te 004534 1le-02 1.3e-03 1.3e-04
¢" = s(1-9[rp +tg(t)] 77 Q 09883  1.5e-03 3.9¢-05 1.9e-06
o . M 0.03900 6.9e-03 9.8e-04 5.5e-05
for the interior region and Rerc 0.4005  2.5e-03 6.9e-05 2.3e-05
2 J 0.002717 1.2e-02 1.7e-03 9.5e-05

=t[rs —ri + &(9][1 — s+ sr(t)], 78
P , [re P Ol ®] (78) Z, 0.2388  4.8¢-03 7.8e-04 4.4e-05
¢° = ([A-1)[&(s) + tg(1)] (79) GRW2 6.2e-05 2.3e-05 5.9e-06
. _ GRV3 1.3e-04 3.0e-05 7.3e-06
exterior to the star with 17 = Min/Moul 15e-04 2.1e-05 4.6e-06
1 o 11— Jn/Joud 2.0e-03 1.3e-05 8.8e-06

M)=——— | &9=rp+—=(1-9. 80

0= Ty 9=+ 29 (80)

For the examples (b) and (c) in Ansorg et al. (2002) we tod&r these models, including the appearance of the correspond-
¢s = 0.07 andc, = —0.2 whereas for the example (a) in Ansorgng cross sections. Here, the high accuracy is needed in order
et al. (2002) as well as for that presented in Table 8 the véb-distinguish between these two nearby configurations.

uescs = 0.2 andc; = 0 were chosen. Note that the prescribed A final example (see Table 9 and Fig. 4) exhibits that even
parameter pair, [, rp/re), is the same for the latter two con-in the highly flattened regime, configurations at the mass shed-
figurations. All other physical quantities are also very similating limit can be calculated (herey = 0.2 andc; = 0).



M. Ansorg et al.: Highly accurate calculation of rotating neutron stars 721

This particular model is close to the configuration (a) iRriedman, J. L., Ipser, J. R., & Parker, L. 1986, ApJ, 304, 115; Erratum
Ansorg et al. (2003a), which marks the transition body be- 1990, ApJ, 351, 705

tween spheroidal and toroidal configurations at the mass shetledman, J. L., Ipser, J. R., & Parker, L. 1989, Phys. Rev. Lett., 62,
ding limit. A more detailed investigation of highly flattened 3015

homogeneous bodies in General Relativity will be pubnsh&ourioulhon, E., & Bonazzola, S. 1994, Class. Quantum Grav., 11,

443
elsewhere. .
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