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Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise.
II. Bayesian analyses
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In a previous paper~paper I!, we derived a set of near-optimal signal detection techniques for gravitational
wave detectors whose noise probability distributions contain non-Gaussian tails. The methods modify standard
methods by truncating or clipping sample values which lie in those non-Gaussian tails. The methods were
derived, in the frequentist framework, by minimizing false alarm probabilities at fixed false detection prob-
ability in the limit of weak signals. For stochastic signals, the resulting statistic consisted of a sum of an
autocorrelation term and a cross-correlation term; it was necessary to discard ‘‘by hand’’ the autocorrelation
term in order to arrive at the correct, generalized cross-correlation statistic. In the present paper, we present an
alternative derivation of the same signal detection techniques from within the Bayesian framework. We com-
pute, for both deterministic and stochastic signals, the probability that a signal is present in the data, in the limit
where the signal-to-noise ratio squared per frequency bin is small, where the signal is nevertheless strong
enough to be detected~integrated signal-to-noise ratio large compared to 1!, and where the total probability in
the non-Gaussian tail part of the noise distribution is small. We show that, for each model considered, the
resulting probability is to a good approximation a monotonic function of the detection statistic derived in paper
I. Moreover, for stochastic signals, the new Bayesian derivation automatically eliminates the problematic
autocorrelation term.
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I. INTRODUCTION AND SUMMARY

Most of the literature on gravitational-wave data analy
assumes that the detector noise is Gaussian. However,
nificant non-Gaussian tails have been a characteristic fea
of the noise distributions in all gravitational wave detecto
constructed to date. Standard detection strategies for
deterministic and stochastic signals, which were desig
under the assumption of Gaussian noise, perform m
poorly when non-Gaussian noise is present.

In a previous paper in this series@1# ~henceforth paper I!,
we developed a new set of statistical signal-processing t
niques to search for deterministic and stochastic gravitatio
waves in detector data. These techniques arerobust, meaning
that they will work well even if the detector noise is n
Gaussian but falls into a broader statistical class that we
pect includes realistic detectors. These new methods
similar to the older ones: one constructs matched filters
search for known waveforms or cross-correlates the ins
ment outputs at the different detector sites to search fo
stochastic background. The essential difference is that
statistics are modified by truncation: detector samples
fall outside the central Gaussian-like part of the sample
tribution are excluded from~or saturated when constructing!
the measurement statistic. For both deterministic and
chastic signals, a robust statistic was found which perfo
better than the optimal linear filter in the case where
detector noise is non-Gaussian, and almost as well in
0556-2821/2003/67~12!/122002~13!/$20.00 67 1220
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Gaussian-noise case. Alternative methods for dealing w
non-Gaussian noise for stochastic signals have been exp
by Klimenko and Mitselmakher@2#.

In paper I, we derived the statistics using the frequen
criterion of minimizing false alarm probabilities at fixe
false detection probabilities in the limit of weak signals.
the present paper, we present an alternative derivation o
same signal detection techniques from within the Bayes
framework.

We start in Sec. II by reviewing the foundations of th
two different approaches to determining detection statis
used in paper I and this paper. We review the locally optim
criterion used in paper I in Sec. II A. In Sec. II B we expla
how Bayesian considerations lead to a unique choice of
tection statistic, as discussed by Finn@3#. In Secs. III and IV
of the paper, we compute, for a variety of different mod
and sets of assumptions, that unique Bayesian statistic.
show that for each case considered, the Bayesian statis
equivalent to the statistics derived in paper I, in the se
that the false alarm versus false dismissal curves of the
statistics coincide to a good approximation.

The equivalence between the two types of statistic is va
only under certain approximations, discussed below. Un
those approximations, the Bayesian statistics which we
tain are equivalent to a particular type of maximum like
hood statistic described in Refs.@4,5#. That type of maximum
likelihood statistic differs from the type of maximum likeli
hood statistic considered previously in gravitational wa
©2003 The American Physical Society02-1
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data analysis in its treatment of noise parameters.
Section III deals with known, deterministic signals.

Sec. III A we consider the case of a known signal of u
known amplitude, incident on a single detector with whi
Gaussian noise, where the noise variance is assumed
known. For that case the Bayesian statistic is shown to
equivalent to the standard matched filtering statistic. Sec
III B generalizes this analysis by allowing the noise varian
to be an unknown parameter, to be measured from the d
the same result is obtained. In Secs. III C and III D we co
sider the cases of white and colored non-Gaussian dete
noise. For both of these cases we show that the Baye
statistic is equivalent to the corresponding locally optim
statistic derived in paper I.

In Sec. IV we give a similar analysis of stochastic signa
In Sec. IV A we compute the Bayesian statistic for the ca
of a white stochastic signal, and of two co-aligned detect
with white Gaussian noise, where the noise variance is
sumed to be known. The maximum likelihood statistic f
this case was previously computed, in a more general c
text, by Finn and Romano@6#. In this case we recover th
result of Finn and Romano: the optimal statistic is not
standard cross-correlation statistic, but instead is a sum
the cross-correlation statistic and extra autocorrelation ter
In Sec. IV B we show that, under the more realistic assum
tion where the noise variances are taken to be unknown
be determined from the data, then the standard cr
correlation statistic is recovered. Finally, in Sec. IV C w
consider two detectors with white, non-Gaussian noise,
we re-derive the generalized cross-correlation statistic of
per I. Section V contains a short conclusion and summa

II. FOUNDATIONS

We denote the output of a set of gravitational wave det
tors by a vectorx, with

x5n1s. ~2.1!

Here n is the detector noise, ands is a possibly presen
gravitational wave signal. We can write

s5e ŝ, ~2.2!

wheree is a parameter governing the signal strength, and
magnitude ofŝ is fixed. As in paper I, we shall be speciali
ing to weak signals and using an expansion in powers oe
aboute50 throughout this paper.

A. Frequentist signal detection

A key quantity is the probability distribution forx given
e, p(xue). This quantity can be used to compute the perf
mance of detection statistics in the frequentist framewo
Suppose one is given a statistic

G5G~x!, ~2.3!
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say, and that one’s detection criterion is that a signa
present ifG(x).G* and not present otherwise, whereG* is
a threshold. Then the false alarm probability associated w
this statistic is

a~G* !5E
G.G

*

dxp~xu0!, ~2.4!

and the false dismissal probability is

b~G* ,e!5E
G,G

*

dxp~xue!. ~2.5!

By eliminating G* between Eqs.~2.4! and ~2.5! we obtain
the false-dismissal versus false-alarm curve

b5b~a,e! ~2.6!

which characterizes the performance of the statistic.
In paper I we showed that there is a unique statis

L (1)(x) which minimizesdb/de at e50 for fixeda, defined
by the expansion

p~xue!5p~xu0!@11eL (1)~x!1e2L (2)~x!1O~e3!#.
~2.7!

This statistic therefore has the best false-dismissal ve
false-alarm curve for weak signals.@If L (1)(x) vanishes
identically, thenL (2)(x) is the unique statistic that minimize
d2b/de2 at e50 for fixed a.# We applied this class of de
tection statistics~called locally optimal statistics@8#! to a
variety of different gravitational-wave signal detection pro
lems.

B. Bayesian signal detection

In the Bayesian framework, the probabilityP(1) that a
signal is present in the data is given

P(1)

12P(1)
5L~x!

P(0)

12P(0)
, ~2.8!

whereP(0) is thea priori probability that a signal is presen
andL(x) is the likelihood ratio. In the literature on Bayesia
statisticsL(x) is called aBayes factor. The Bayesian frame-
work uniquely determines a detection criterion, which is
threshold on the probabilityP(1) that a signal is present
From Eq.~2.8! it is clear thatP(1) is a monotonic function of
L(x), so one can equivalently threshold onL(x). Thus, an
optimal detection statistic is uniquely determined in t
Bayesian framework; however, that statistic does depend
choices of prior probability distributions.

We now describe how the likelihood ratio is computed.
is given by the formula

L~x!5E deL~x,e!p(0)~e! ~2.9!

wherep(0)(e) is the prior probability distribution for the sig
nal strengthe, and
2-2
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L~x,e!5
p~xue!

p~xu0!
. ~2.10!

Suppose that the noisen is described by a probability distri
bution pn(n), and the signals by a signal distribution
ps(sue). Then it follows from Eq.~2.1! that

p~xue!5E dspn~x2s!ps~sue!. ~2.11!

The formula~2.10! can therefore be written as

L~x,e!5E ds
pn~x2s!

pn~n!
ps~sue!. ~2.12!

The formula for L(x,e) becomes more complex whe
there are unknown signal and/or noise parameters pre
Suppose the signal distribution depends on some param
us in addition to the signal amplitudee, which themselves
are distributed according to a prior probability distributio
pus

(usue). Then the signal distributionps(sue) can be ex-
panded as

ps~sue!5E dusps~sue,us!pus
~usue!, ~2.13!

where ps(sue,us) is the distribution fors given bothe and
us . Similarly suppose that the noise distribution contains
known parametersun , whose a priori distribution is
pun

(un). Then the noise distribution can be expanded as

pn~n!5E dunpn~nuun!pun
~un!. ~2.14!

Inserting the expansions~2.13! and ~2.14! into Eq. ~2.12!
gives the final expression for the likelihood function:

L~x,e!5E ds
E dunpn~x2suun!pun

~un!

E dun8pn~xuun8!pun
~un8!

3E dusps~sue,us!pus
~usue!. ~2.15!

Equations~2.9! and ~2.15! are the foundational equation
that we will use throughout this paper to compute the like
hood ratioL(x). A key feature of this formalism is that th
noise parametersun are treated as unknowns, to be measu
from the detector data along with the gravitational wave s
nal, rather than being treated as knowna priori. That feature
underlies the elimination of the autocorrelation terms
countered in paper I in the case of a stochastic gravitatio
wave background.

In the next few sections we will revisit several of th
signal detection problems considered in paper I. In each c
we will show thatL(x) is, to a good approximation, a mono
tonic function of the locally optimal detection statistic d
rived in paper I. Since a monotonic function of a detecti
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statistic has the same false alarm versus false dismissal c
as the original statistic, it follows that in each case t
uniquely determined Bayesian statisticL(x) is equivalent to
the statistic computed in paper I. Note, however, that
equivalence only applies at the level of choosing the de
tion statistic, and not at the level of specifying threshol
The Bayesian and frequentist approaches lead to diffe
detection thresholds for a given specified significance le
see, for example, the discussion in Sec. III C of Ref.@7#.

In deriving the formulas for the likelihood ratioL(x), we
shall invoke a number of different approximations. In asse
ing the validity of those approximations, we shall be co
cerned only with their effect on the false alarm versus fa
dismissal curve of the statistic. In other words, the appro
mations might be very inaccurate for computing the value
L(x), but might nevertheless be very accurate in the se
that they have only a small effect on the false alarm ver
false dismissal curve.@We do need to compute accurate n
merical values ofL(x), since we are not concerned he
with computing detection thresholds.# We shall use the nota
tion

L1~x!.L2~x! ~2.16!

to mean that the false alarm versus false dismissal curve
the statisticsL1(x) andL2(x) are approximately the same

III. DETERMINISTIC SIGNALS

A. Single detector, white Gaussian noise, known variance

We first treat the simple case where we are looking fo
signal s, in a single detector, whose values in the time d
main are@12#

sj5e ŝj . ~3.1!

We assume that the quantitiesŝj are known and fixed, so tha
the only unknown parameter characterizing the signal is
amplitudee, which can be positive or negative. Without lo
of generality we can choose the normalization so that

(
j

uŝj u251. ~3.2!

We assume that the detector noise is white and Gaussian
zero mean and unit variance. Then, as shown in paper I,
distribution for the datax given e is

p~xue!5)
j

1

A2p
expF2

1

2
~xj2e ŝj !

2G . ~3.3!

Inserting this formula into Eq.~2.10! gives

L~x,e!5exp@eê~x!2e2/2#, ~3.4!

where

ê~x!5(
j

xj ŝj ~3.5!
2-3
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is the standard matched filtering statistic. Combining t
with Eq. ~2.9! gives for the likelihood ratio

L~x!5eê(x)2/2E dep(0)~e!e2[ e2 ê(x)] 2/2. ~3.6!

Now the quantityu ê(x)u is effectively the signal-to-noise
ratio. Let us assume that we are in the relevant regime wh
the signal is detectable with high confidence, so that

exp@ ê~x!2/2#@1. ~3.7!

Let us also assume that the prior distributionp(0)(e) is
slowly varying and does not strongly constrain the poss
values ofe. Then, we can approximately evaluate the in
gral ~3.6! using the Laplace approximation to obtain

L~x!'A2pp(0)@ ê~x!#exp@ ê~x!2/2#. ~3.8!

Finally, we argue that we can neglect the dependence onx of
the factorp(0)@ ê(x)# in the expression~3.8!. The reason is
that the prior distributionp(0)(e) is a slowly varying func-
tion of e, and so this factor has a much weaker depende
on x than the exponential factor in the regime~3.7!. There-
fore, dropping the factorp(0)@ ê(x)# will have a negligible
effect on the false alarm versus false dismissal curve of
statistic. In this approximation we see thatL(x) is a mono-
tonic function of the standard detection statisticu ê(x)u,

L~x!.exp@ ê~x!2/2#, ~3.9!

as claimed@13#.
We remark that there is a key technical difference

tween the above computation and the corresponding com
tation in Sec. II A of paper I. The Bayesian computati
presented here requires expanding the quantity lnL(x,e) to
second order ine aboute50 @Eq. ~3.4! above#, whereas in
paper I it sufficed to compute lnL(x,e) to linear order ine
@Eqs.~2.3! and~2.5! of paper I#. This difference is a common
feature of all of our subsequent computations.

B. Single detector, white Gaussian noise, unknown variance

We now add one additional complication to the analys
by taking the noise variance to be an unknown constans.
We define an inner product^,& on the space of signals by

^x,y&[(
j

xj y j . ~3.10!

Note that this isnot the standard inner product used in d
cussions of matched filtering, which incorporates a weig
ing factor ofs22. We define the statisticŝ(x) by

ŝ~x!2[
1

N
^x,x&, ~3.11!

whereN is the number of data points; this is the conventio
estimator ofs. We also define the quantityr by
12200
s

re

e
-

ce

e

-
u-

,

t-

l

r5
e

s
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which from the normalization condition~3.2! is the conven-
tional signal to noise ratio. The corresponding estimator

r̂~x!5
e

ŝ~x!
. ~3.13!

The conventional matched filtering statistic is

1

s
^x,ŝ&, ~3.14!

and if we replace the noise variance by its estimatorŝ(x) we
obtain the statistic

r̂1~x![
1

ŝ~x!
^x,ŝ&. ~3.15!

We shall show below that the likelihood ratioL(x) is to a
good approximation equivalent to the conventional statis
~3.15!.

The noise distribution givens is taken to be

pn~nus!5)
j

1

A2ps
expF2

nj
2

2s2G . ~3.16!

The full noise distribution is@cf. Eq. ~2.14! above#

pn~n!5E
0

`

dsps~s!pn~nus!, ~3.17!

whereps(s) is the prior probability distribution fors. In-
serting Eq.~3.17! into Eq. ~3.16! and using the definition
~3.11! we obtain

pn~n!5E
0

`

dsps~s!exp@2NJ~s!/2#, ~3.18!

where

J~s!5 ln~2ps2!1
ŝ~n!2

s2
. ~3.19!

We can approximately evaluate the integral~3.18! in the
limit where N is large. The functionJ(s) can be expanded
about its local minimum ats5ŝ as

J~s!511 ln~2pŝ2!1
2

ŝ2
~s2ŝ !21O@~s2ŝ !3#.

~3.20!

Using this expansion we obtain
2-4
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pn~n!5Ap

N
~2pe!2N/2ps@ŝ~n!#ŝ~n!2(N21)

3F11OS 1

AN
D G . ~3.21!

We assume thatps(s) is slowly varying, and so have ne
glected in Eq.~3.21! a fractional error of order the fractiona
change inpn over an interval of widthŝ/AN.

We next insert the formula~3.21! for the noise distribu-
tion into the expression~2.12! for the likelihood ratio, using

ps~sue!5dN~s2e ŝ!. ~3.22!

The result is

L~x!5E
0

`

dep(0)~e!
ps@ŝ~x2e ŝ!#

ps@ŝ~x!#
F ŝ~x2e ŝ!

ŝ~x!
G2(N21)

~3.23!

5E
0

`

dep(0)~e!
ps@ŝ~x2e ŝ!#

ps@ŝ~x!#

3expF2
N21

2
lnH 122e

^x,ŝ&

^x,x&
1

e2

^x,x&2J G . ~3.24!

To obtain the second line we used Eqs.~3.2! and ~3.11!.
Expanding the logarithm to second order ine, we can re-
express this as

L~x!5E
0

`

dep(0)~e!
ps@ŝ~x2e ŝ!#

ps@ŝ~x!#
exp@ âe2b̂e21O~e3!#,

~3.25!

where

â5~N21!
^x,ŝ&

^x,x̂&
~3.26!

and

b̂5
1

2
~N21!F 1

^x,x̂&
22

^x,ŝ&2

^x,x̂&2G . ~3.27!

Before proceeding further with the computation of t
likelihood ratio, we clarify the domain of validity of the
weak signal expansion~expansion in powers ofe) used in
going from Eq.~3.24! to Eq. ~3.25!. We will estimate the
expected sizes and the scale of statistical fluctuations in
two terms appearing in the argument of the logarithm in E
~3.24!; the expansion will be good when both of these ter
and their fluctuations are small compared to unity. For
purpose of making these estimates we can identifys andŝ,
andr, r̂, and r̂1.

We can compute the expected value and variance of
statistic^x,x& using Eqs.~2.1!, ~2.2! and~3.16!, which gives
12200
he
.
s
e

e

^x,x&;~Ns21e2!6A2Ns414e2s2. ~3.28!

The notation here is that the first term gives the expec
value, and the second term gives an estimate of the statis
fluctuations. We can rewrite this formula in terms of th
signal-to-noise ratior5e/s as

^x,x&;Ns2F S 11
r2

N D6A2

N
14

r2

N2G . ~3.29!

Similarly we have

^x,ŝ&;e6s. ~3.30!

We assume thatN@1 and thatr*1. We now consider two
different cases:

~i! When r2/N!1, the fluctuations in̂ x,x& are small
compared to the expected value, and we have from
~3.29! that^x,x&;Ns26ANs2. Using this together with Eq
~3.30! shows that the first term in the argument of the log
rithm in Eq. ~3.24! is

e
^x,ŝ&

^x,x&
;

r2

N
6

r

N
!1, ~3.31!

and similarly the second term is

e2

^x,x&
;

r2

N
6

r2

N3/2
!1. ~3.32!

Thus the approximation is good in this regime.
~ii ! When r2/N@1, a similar computation gives tha

^x,x&;r2s26rs2. The first term in the argument of th
logarithm in Eq.~3.24! now scales as

e
^x,ŝ&

^x,x&
;16

1

r
~3.33!

and similarly the second term scales as

e2

^x,x&
;16

1

r
. ~3.34!

Thus, the approximation breaks down in this regime.
We now return to computing the likelihood ratioL(x).

We can approximately evaluate the integral~3.25! using the
Laplace approximation to obtain

L~x!'p(0)~ ê !
ps@ŝ~x2 ê ŝ!#

ps@ŝ~x!#
Aâp

b̂
expF â2

4b̂
G , ~3.35!

where

ê~x!5
â~x!

2b̂~x!
. ~3.36!

This approximation will be good whenever the exponen
factor in Eq.~3.35! is large, which it will be in the regime
where the signal is detectable~see below!, and when the
2-5
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prior probability distributionp(0)(e) is slowly varying. Us-
ing Eqs.~3.11!, ~3.15!, ~3.26! and ~3.27!, we can write the
exponential factor as

expFN21

2
g~ r̂1

2/N!G , ~3.37!

where the functiong is given byg(x)5x/(122x). Since we
are in the regimer2/N!1, the argument of the functiong is
small, and we can replaceg( r̂1

2/N) by r1
2/N. This gives,

usingN@1,

L~x!'p(0)~ ê !
ps@ŝ~x2 ê ŝ!#

ps@ŝ~x!#
Aâp

b̂
expF1

2
r̂1~x!2G .

~3.38!

Finally, we argue as before that in the regime exp@r2/2#@1
where the signal is detectable, the dependence onx of all the
other factors in Eq.~3.38! can be neglected in comparison
the exponential factor, assuming that the prior distributio
are slowly varying. This gives

L~x!.exp@ r̂1~x!2/2#, ~3.39!

as claimed.
Our final answer~3.39! is essentially the same as the a

swer~3.9! obtained when the noise variances is assumed to
be known. Therefore, treatings as an unknown paramete
rather than as a fixed, known parameter does not make m
difference in this case. However, we will see below for t
case of stochastic signals that treating the properties of
noise distribution as unknowns does have a significant ef
on the analysis, and that the correct answer is obtained
when those properties are treated as unknowns.

We end this subsection by recapitulating the various
proximations and assumptions we have invoked:

~i! The largeN approximationN@1.
~ii ! The assumption that we are in the regime where

signal is detectable, exp(r2/2)@1. This is necessary fo
evaluating the integral overe to obtain Eq.~3.35!, and also
for the validity in neglecting the prefactors in deriving E
~3.39!. From a practical point of view the assumptio
exp(r2/2)@1 is not a serious restriction, as it does not mat
how our statistics perform in the regime exp(r2/2);1 where
signals are not detectable.

~iii ! The assumption that the prior probability distributio
p(0)(e) andps(s) are slowly varying.

~iv! We have clarified the ‘‘weak signal’’ assumption o
paper I; it is the assumption that the signal-to-noise ra
squared per data point is small,r2/N!1. This requirement
ensures that the presence of the signal does not significa
bias the estimate~3.11! of the noise variance. In practice w
can always choose segments of data large enough to sa
this assumption.

C. Single detector, white non-Gaussian noise

We now turn to the case where the noise has a kno
non-Gaussian distribution. In this subsection we follo
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Sec. II A of paper I, and assume that the noise samples in
time domain are statistically independent but identically d
tributed, with a known distribution. We can write the noi
probability distribution as

pn~n!5)
j

e2 f (nj ). ~3.40!

We assume that the probability distributione2 f (x) has a cen-
tral Gaussian regionuxu,xb in which

f ~x!5
x2

2s2 , ~3.41!

which contains most of the probability, and a tail regionuxu
>xb containing a total probabilityptail with ptail!1.

As before, the signal is assumed to be known up to
overall amplitude parameter. From Eqs.~2.11! and~3.22! we
obtain the following modified version of Eq.~3.3!:

p~xue!5)
j

exp@2 f ~xj2e ŝj !#, ~3.42!

and inserting this into Eqs.~2.9! and ~2.10! gives

L~x!5E dep(0)~e!)
j

exp@2 f ~xj2e ŝj !1 f ~xj !#.

~3.43!

Expanding to second order ine gives

L~x!5E dep(0)~e!exp@ â~x!e2b̂~x!e21O~e3!#,

~3.44!

where

â~x!5(
j

f 8~xj !ŝj ~3.45!

and

b̂~x!5
1

2 (
j

f 9~xj !ŝj
2 . ~3.46!

Evaluating the integral overe using the same types of argu
ments as in Sec. III B gives

L~x!.expF â~x!2

2b̂~x!
G . ~3.47!

Now the statisticâ(x) is the locally optimal statistic com
puted in paper I@Eq. ~2.9! of paper I#. Therefore it remains to
show that we can neglect thex dependence of the factorb̂(x)
in the argument of the exponential in Eq.~3.47!.

We can split the sum~3.46! into contributions from the
Gaussian region and from the tail. Using the fact thatf 9(x)
51/s2 in the Gaussian region, we obtain
2-6
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b̂~x!5
1

2 (
xj ,xb

ŝj
2

s2
1

1

2 (
xj>xb

f 9~xj !ŝj
2 . ~3.48!

Most of the values ofxj will fall in the central Gaussian
region, sincexj5nj1e ŝj , ande ŝj!s for each individualj
@14#. Since( j ŝj

251, the first term gives 1/(2s2), up to frac-
tional corrections of orderptail . Similarly the second term
will be bounded above by;ptail /(2s2), sincef 9(x) will be
smaller in the tails than in the central Gaussian region.
conclude that

b̂~x!5
1

2s2 @11O~ptail!#. ~3.49!

It follows in particular that thex-dependent fluctuations in
b̂(x) are smaller than its expected value by a factor ofptail

!1, and therefore we can neglect thex dependence ofb̂(x)
in Eq. ~3.47!, as required.

D. Single detector, colored non-Gaussian noise

We next consider the model of colored, non-Gauss
noise of Sec. II B of paper I, where each frequency bin
assumed to be statistically independent. This is given by

pn~n!5 )
k51

[(N21)/2]
2

pPk
expF22gkS uñku2

Pk
D G , ~3.50!

where the volume element is understood to be

)
k51

[(N21)/2]

d~Reñk!d~ Im ñk!. ~3.51!

Here

ñk5
1

AN
(

j
e2p i jk /Nnj ~3.52!

are the components of the discrete Fourier transform of
time domain samplesnj . The quantitiesPk describe the
noise spectrum. For each frequency bink, the functiongk(x)
is arbitrary except for the normalization conditions

E
0

`

dxe2gk(x)5E
0

`

dxxe2gk(x)51, ~3.53!

and the requirement thatgk(x)5x in a central Gaussian re
gion containing most of the probability.

By paralleling the analysis of Sec. III C, we again arri
at the formulas~3.44! and ~3.47!, where now the statistics
â(x) and b̂(x) are given by

â~x!54(
k

gk8S ux̃ku2

Pk
DRe~ x̃k* s̃k!

Pk
~3.54!

and
12200
e

n
s

e

b̂~x!52(
k

gk8S ux̃ku2

Pk
D us̃ku2

Pk
14(

k
gk9S ux̃ku2

Pk
D @Re~ x̃k* s̃k!#

2

Pk
2

.

~3.55!

As before, the statisticâ(x) coincides with the locally opti-
mal statistic derived in paper I@Eq. ~2.21! of paper I#, and it
suffices to show that thex dependence of the factorb̂(x) can
be neglected in Eq.~3.47!. We evaluate the sums in Eq
~3.55! by splitting them into Gaussian and tail contributio
as before. Sincegk8(x)51 in the Gaussian region, the firs

term in Eq.~3.55! yields 2(kus̃ku2/Pk@11O(ptail)#. Also the
second term is proportional toptail sincegk9(x) vanishes in
the Gaussian region. Thus we obtain

b̂~x!5F2(
k

us̃ku2

Pk
G @11O~ptail!#, ~3.56!

and the rest of the argument follows as before.

E. Signals with unknown parameters

We now generalize the analysis of the preceding subs
tions by allowing the signals to depend on additional para
eters other than the overall amplitude parametere. We write

s5e ŝ~us!, ~3.57!

where the signal parametersus are distributed according to
the distributionpus

(usue). Then from Eq.~2.15! we can write

L~x!5E deE dusp
(0)~e!pus

~usue!L~x,e,us!,

~3.58!

whereL(x,e,us) is given by Eq.~2.11! with ps(sue) replaced
by ps(sue,us). In the regime where the signal is detectab
we can repeat the arguments of the preceding subsectio
approximately evaluate the integrals as

L~x!.max
us

max
e

L~x,e,us!. ~3.59!

Thus the result is to take the statistics previously derived
to maximize over the signal parameters. Such a maxim
tion is the standard thing to do for linear matched filterin
the above argument indicates that it is also the appropr
procedure for the more general class of locally optimal s
tistics.

IV. STOCHASTIC SIGNALS

The standard method of detecting a stochastic backgro
is to compute a cross-correlation between two different
struments@9#; see Ref.@10# for a detailed description. In Sec
IV A below we compute the likelihood ratioL(x) for the
simplest case of a white stochastic signal, and of two
aligned detectors with white Gaussian noise, where the n
variance is assumed to be known. For this case we do
recover the standard cross-correlation statistic, but inst
2-7
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we obtain a statistic with extra autocorrelation terms. T
statistic was first derived and has been investigated in d
in a more general context by Finn and Romano@6#. We then
argue that it is unrealistic to take the noise variances to
known parameters. In Sec. IV B we show that, when
noise variances are taken to be unknowns to be determ
from the data, then the likelihood ratioL(x) is to a good
approximation equivalent to the standard cross-correla
statistic. This computation is again in the simple context
coincident aligned detectors with white noise. The compu
tion of Sec. IV B is a simplified version of the computatio
in Appendix A of Ref.@11#.

We then turn to non-Gaussian noise models. In pape
we derived a generalized cross-correlation~GCC! statistic
appropriate for non-Gaussian noise, which is a modificat
of the standard cross-correlation statistic. In Sec. IV C be
we re-derive that statistic using the Bayesian approach.

A. Two coincident co-aligned detectors, white Gaussian noise
known variances

The output of the pair of detectors isx5(x1 ,x2), where

x15n11s ~4.1!

is the output of the first detector, and

x25n21s ~4.2!

is the output of the second. We assume, for simplicity, t
the noise in each detector is white and Gaussian with
variance:

pn1
~n1!5)

j

1

A2p
expF2

n1 j
2

2 G , ~4.3!

with a similar equation for the second detector. We assu
that the stochastic background signal is also white
Gaussian with variancee:

ps~sue!5)
j

1

A2pe
expF2

sj
2

2eG , ~4.4!

wheree>0. As in earlier sections,e parametrizes the signa
strength, and we will be using a weak signal expansion
expanding in powers ofe aboute50.

By inserting the distributions~4.3! and ~4.4! into the for-
mulas~2.11! and ~2.14! we obtain

p~xue!5expF2
N

2
J~e,x!G , ~4.5!

where

J~e,x!52 ln~2p!1 ln@112e#

1
~11e!ŝ2

21~11e!ŝ1
222eê

112e
, ~4.6!

and where
12200
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ŝ1
25

1

N (
j

x1 j
2 , ~4.7!

ŝ2
25

1

N (
j

x2 j
2 , ~4.8!

and

ê5
1

N (
j

x1 j x2 j . ~4.9!

The statisticê is the standard cross-correlation statistic.
Before proceeding further we discuss the validity of t

weak signal approximation in the context of a stochas
background signal. Suppose that a stochastic backgroun
present and just barely detectable by cross-correlating
tween the two detectors. Then we haveê;1/AN. In the con-
text of ground based detectors such as the Laser Interf
metric Gravitational Wave Observatory~LIGO!, when this
analysis is generalized to colored noise,N is replaced by the
productTD f , whereT is the observation time andD f is the
effective bandwidth in the usual formula for the signal-t
noise ratio@Eq. ~1.2! of Ref. @11##. Using the estimatesT
;1/3 year andD f ;50 Hz we find

ê;
1

ATD f
;1024. ~4.10!

Therefore in all our analyses it will be sufficient to work
first order inê. The approximation would only break down
ê;1, that is, if the stochastic background could be seen
single detector, which is thought to be very unlikely.

We define the statisticsd̂1 and d̂2 by

d̂1~x!5ŝ1~x!2212 ê~x! ~4.11!

and

d̂2~x!5ŝ2~x!2212 ê~x!. ~4.12!

Now ^ŝ1
2&511e, so the quantitiesd̂1 and d̂2 will be small;

ud̂1,2~x!u&O~1/AN!1O~ ê !. ~4.13!

We now insert Eqs.~4.11! and ~4.12! into the formula
~4.6! for the functionJ. We expand to second order ine, ê,
d̂1, and d̂2, treating these quantities as formally all of th
same order. We then insert the result into Eqs.~2.9!, ~2.10!,
and ~4.5!, which yields

L~x!5E dep(0)~e!exp@2N~e2 êb!21Nêb
2#, ~4.14!

where
2-8
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êb~x!5 ê~x!1
1

4
@ d̂1~x!1d̂2~x!#

5
1

2
ê~x!1

1

4
@ŝ1~x!221#

1
1

4
@ŝ2~x!221#. ~4.15!

Evaluating the integral overe using the same types of argu
ments as in previous sections gives, usingp(0)(e)50 for e
,0,

L~x!'Q~êb!Ap

N
p(0)~ êb!exp@Nêb

2#. ~4.16!

HereQ is the step function. If follows by the same type
arguments as before thatL(x).Q( êb)exp@Nêb

2#.

Our final result identifies the statisticêb as the optimal
detection statistic; see Ref.@6# for a more general version o
this statistic. From Eq.~4.15! this statistic is not the standar
cross-correlation statisticê, but instead contains the autoco
relation termsŝ1

221 andŝ2
221. The interpretation of thes

terms is that it is possible, under the assumptions of
subsection, to measure the stochastic background signal
just one detector. If the detector’s noise variance is kno
then one can just measure the variance of the detector’s
put and subtract the known noise variance to reveal the
chastic background contribution.

Of course, in reality, the noise in detectors is not knowa
priori , and is measured from the data. In particular, there
no way that the detectors noise can be known beforehan
a fractional accuracy of 1024. Therefore we have to gene
alize the preceding analysis by allowing the noise varian
to be unknown parameters.

B. Two coincident co-aligned detectors, white Gaussian noise,
unknown variances

We assume that the noise in each detector is white
Gaussian with variancess1 and s2. We replace Eq.~4.3!
with

pn1
~n1us1!5)

j

1

A2ps1

expF2
n1 j

2

2s1
2G , ~4.17!

with a similar equation for the second detector. The pr
distribution for the parameterss1 , s2 will be written as
ps(s1 ,s2). By inserting the distributions~4.17! and ~4.4!
into the formulas~2.11! and ~2.14! we obtain

p~xue!5E
0

`

ds1E
0

`

ds2ps~s1 ,s2!expF2
N

2
J~e,s1 ,s2!G ,

~4.18!

where the functionJ is now given by
12200
is
ith
,

ut-
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J~e,s1 ,s2!52 ln~2p!1 ln@s1
2s2

21e~s1
21s2

2!#

1
~s1

21e!ŝ2
21~s2

21e!ŝ1
222eê

s1
2s2

21e~s1
21s2

2!
.

~4.19!

To evaluate the integral overs1 ands2 in Eq. ~4.18!, we
make a change of variables to variablesf 1 , f 2 defined by

s1
21e5 f 1

2ŝ1
2 ~4.20!

and

s2
21e5 f 2

2ŝ2
2 . ~4.21!

We also define the rescaled variables

a5
e

ŝ1ŝ2

, â5
ê

ŝ1ŝ2

. ~4.22!

We expandJ to second order around its local minimum
f 15 f 251, a5â:

J52 ln~2pŝ1ŝ2!121 ln~12â2!1
11â2

~12â2!2
Da2

2
4â

~12â2!2
Da~D f 11D f 2!1

2

~12â2!2
~D f 1

21D f 2
2

12â2D f 1
2D f 2

2!. ~4.23!

HereD f 15 f 121, D f 25 f 221, andDa5a2â. At fixed a,
J is minimized at

f 15 f 2511
â

~11â2!
~a2â !. ~4.24!

We now perform the Gaussian integral overs1 , s2 or f 1 ,
f 2, which gives

p~xue!5
ps@ŝ1b~e!,ŝ2b~e!#

~2pŝ1ŝ2!N21

~12â2!3/2

4~11â2!1/2
J~e!

3expF2
N

2~11â2!
~a2â !2G . ~4.25!

Here ŝ1b(e) is the value ofs1 at the peak~4.24! of the
integrand, given from Eqs.~4.20! and ~4.24! by

ŝ1b
2 ~e!52e1F11

â~a2â !

11â2 G 2

ŝ1
2 , ~4.26!

and similarly forŝ2b(e). The factorJ(e) is a Jacobian fac-
tor given by
2-9



ve

l

ap

th
e

lit

t
t

n
n

ec.
be

nti-

ise
n
ysis
ck-

bu-
.
s

n

to

ms,
We
m-

te-

m-

d

ve

ALLEN et al. PHYSICAL REVIEW D 67, 122002 ~2003!
J~e!5S 12
e

f 1
2ŝ1

2D 21/2S 12
e

f 2
2ŝ2

2D 21/2

, ~4.27!

where f 1 and f 2 are given in terms ofe by Eqs.~4.22! and
~4.24!.

We next insert the result~4.25! for p(xue) into Eqs.~2.9!
and ~2.10!. The result is

L~x!5E dep(0)~e!
ps@ŝ1b~e!,ŝ2b~e!#

ps@ŝ1b~0!,ŝ2b~0!#

J~e!

J~0!

3expF2
N

2~11â2!
~a222aâ!G . ~4.28!

Finally, integrating overe gives

L~x!5A2p~11â2!

N
p(0)~ ê !

ps@ŝ1b~ ê !,ŝ2b~ ê !#

ps@ŝ1b~0!,ŝ2b~0!#

J~ ê !

J~0!

3expF Nâ2

2~11â2!
GQ~â!, ~4.29!

and invoking the arguments of Secs. III A and III B abo
for neglecting the prefactors gives

L~x!.expF Nâ2

2~11â2!
GQ~â!. ~4.30!

Thus, in the limit â!1, L(x) is equivalent to the usua
cross-correlation statisticQ(â)â defined by Eqs.~4.7!,
~4.8!, ~4.9!, and~4.22!.

We end this subsection by recapitulating the various
proximations necessary to obtain the result:

~i! The largeN approximationN@1, necessary for the
validity of the Laplace approximation in integrating overs1 ,
s2.

~ii ! The assumption that we are in the regime where
signal is detectable, exp@Nâ2/2#@1. This is necessary for th
evaluation of the integral overe in Eq. ~4.28!, and for ne-
glecting the prefactors in deriving Eq.~4.30!.

~iii ! The assumption, as before, that the prior probabi
distributionsp(0)(e) andps(s1 ,s2) are slowly varying.

~iv! The weak signal approximationâ!1, which will be
satisfied unless the stochastic background contribution to
output of one of the detectors becomes comparable to
noise in that detector. As discussed above, for sig
strengths at the margin of detectability, and for several mo
searches for a stochastic background with ground based
terferometers, we haveâ;1024.
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C. Two coincident, co-aligned detectors,
white non-Gaussian noise

We next turn to the non-Gaussian noise model of S
III A of paper I. The noise in each detector is assumed to
white, with each sample statistically independent and ide
cally distributed, so that

pn~n1 ,n2!5)
j

exp@2 f 1~n1 j !2 f 2~n2 j !#. ~4.31!

However, it is clear that we cannot assume that the no
distributionse2 f 1 and e2 f 2 in each detector are known i
advance. Otherwise, as explained in Sec. IV A, the anal
would predict that one can measure the stochastic ba
ground in a single detector by measuring the noise distri
tion and subtracting from it the ‘‘known’’ noise distribution

Therefore, in this subsection, we will allow the function
f 1(x) and f 2(x) to be arbitrary except for the normalizatio
conditions

E e2 f 1(x)dx5E e2 f 2(x)dx51. ~4.32!

Formally, there are an infinite number of parameters
specify to determine the functionsf 1 and f 2. However, in
practice these distributions will be measured as histogra
determined by a finite set of numbers or parameters.
identify this finite set of parameters with the noise para
etersun of Eq. ~2.14!. We rewrite Eq.~2.14! as

pn~n1 ,n2!5E Df 1E Df 2pn~n1 ,n2u f 1 , f 2!pf@ f 1 , f 2#.

~4.33!

Here for simplicity we have used a functional or path in
gral notation for the integral over the noise parameters~even
though the integral is only over a finite number of para
eters!. In Eq. ~4.33!, pf@ f 1 , f 2# is the prior probability den-
sity functional for the functions f 1 and f 2, and
pn(n1 ,n2u f 1 , f 2) is given by the expression on the right han
side of Eq.~4.31!. The probability distributionpf@ f 1 , f 2# en-
codes our assumption that the noise distributions will ha
central Gaussian regions, with unknown variancess1 and
s2, and arbitrary tail regions containing a small fractionptail
of the total probability.

We now insert the distributions~4.4! and~4.33! into Eqs.
~2.11! and~2.14! and expand to second order ine. The result
is

p~xue!5E Df 1Df 2pf@ f 1 , f 2#)
j

e2 f 1(x1 j )2 f 2(x2 j )

3)
j

@11eAj1eCj1e2Ej1O~e3!#, ~4.34!

where
2-10
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Aj5
1

2
@ f 18~x1 j !

21 f 28~x2 j !
22 f 19~x1 j !2 f 29~x2 j !#,

~4.35!

and

Cj5 f 18~x1 j ! f 28~x2 j !. ~4.36!

The quantityEj is a sum of terms of the formf 1
(n)(x1 j )

m,
f 2

(n)(x2 j )
m, and f 1

(n)(x1 j )
mf 2

( l )(x2 j )
r for integers n,m,l ,r ,

whose exact form will not be needed here.
Working to second order ine, we can re-express Eq

~4.34! as

p~xue!5E Df 1E Df 2pf@ f 1 , f 2#exp@2J~e, f 1 , f 2!#,

~4.37!

where

J~e, f 1 , f 2!5J0@ f 1 , f 2#1eJ1@ f 1 , f 2#1e2J2@ f 1 , f 2#

1O~e3!, ~4.38!

where

J0@ f 1 , f 2#52(
j

f 1~x1 j !1 f 2~x2 j !, ~4.39!

J1@ f 1 , f 2#5(
j

~Aj1Cj !, ~4.40!

and

J2@ f 1 , f 2#5(
j

FEj2
1

2
~Aj1Cj !

2G . ~4.41!

We now note that we can eliminate the autocorrelat
termsAj from Eq. ~4.40! by making a change of variables
We define the operatorPe that acts on functions via

~Pe f !~x!5 f ~x!2
1

2
e f 8~x!21

1

2
e f 9~x!, ~4.42!

and we define the functionsF1 andF2 by

F15Pe f 1 , F25Pe f 2 . ~4.43!

Using Eqs.~4.35!, ~4.38!–~4.40!, ~4.42! and~4.43! the func-
tional J can be rewritten as

J~e, f 1 , f 2!5J0@F1 ,F2#1eJ̃1@F1 ,F2#1e2J̃2@F1 ,F2#

1O~e3!. ~4.44!

Here the first order pieceJ̃1 consists only of the cross
correlation term,

J̃1@F1 ,F2#5(
j

F18~x1 j !F28~x2 j !; ~4.45!
12200
n

the corrections to this cross-correlation expression due
changing fromf 1 , f 2 to F1 , F2 do not appear at this~linear!
order in e and instead contribute to the second order te

J̃2@F1 ,F2#. The exact form of the functionalJ̃2@F1 ,F2#
will not be needed for our arguments below.

We define the functionsf̂ 1(x) and f̂ 2(x) to be the func-
tions corresponding to the measured noise distributions a
two detectors. That is, they are step functions defined by
requirement

E
2`

x

e2 f̂ 1(u)du5
1

N (
j with x1 j<x

1, ~4.46!

with a similar equation forf̂ 2.
Consider now the evaluation of the integral~4.37! with J

given by the expression~4.44!. Consider first thee→0 limit.
In this limit one can show from the normalization conditio
~4.32! that J will be minimized at the measured noise di
tributions:

F15 f̂ 1 , F25 f̂ 2 . ~4.47!

For nonzeroe, the leading order correction to thee50 result
will be given by evaluating the function~4.44! at the local
minimum ~4.47!. We thus arrive at

p~xue!5J~x!pf@P e
21 f̂ 1 ,P e

21 f̂ 2#exp$2J0@ f̂ 1 , f̂ 2#%

3exp$2eJ̃1@ f̂ 1 , f̂ 2#2e2J2@ f̂ 1 , f̂ 2#%. ~4.48!

Here J(x) is a width factor whose origin is approximatin
the integrals overf 1 and f 2 as the value of the integrand a
the peak times the ‘‘width’’ of the peak@15#. This factor is
analogous to the various factors that appear in front of
exponential in Eq.~4.25!. It depends weakly onx in com-
parison to the exponential factors. The second order fu
tional JM 2 in Eq. ~4.48! will differ from the corresponding

functionalJ̃2 in Eq. ~4.44! since the location of the peak o
the integrand will receive a correction of ordere away from
the value~4.47! which will give a correction of orderO(e2)
to the value of the integral.

We now insert the formula~4.48! for p(x,e) into Eqs.
~2.9! and ~2.10!. This gives

L~x!5E
0

`

dep(0)~e!
pf@P e

21 f̂ 1 ,P e
21 f̂ 1#

pf@ f̂ 1 , f̂ 1#
exp$2eJ̃1@ f̂ 1 , f̂ 2#

2e2J2@ f̂ 1 , f̂ 2#%. ~4.49!

Evaluating the integral overe gives

L~x!5A p

JM 2

p(0)~ ê !
pf@P ê

21
f̂ 1 ,P ê

21
f̂ 1#

pf@ f̂ 1 , f̂ 1#

3expH J̃1@ f̂ 1 , f̂ 2#2

4J2@ f̂ 1 , f̂ 2#
J Q~J̃1!, ~4.50!
2-11



in
tic
t
ct
l-

at
he

s
o

.
e

tis
f
of

a
p
a

ore

de-

gnal
the
uld

on-
riva-

sig-
ods

k,
in-
di-
in

in-
long
t be
as

he
; this

of
too
tic

e in
ail

HY-
8,
nd

nd

ALLEN et al. PHYSICAL REVIEW D 67, 122002 ~2003!
and as before we can neglect the prefactors to give

L~x!.expH J̃1@ f̂ 1 , f̂ 2#2

4JM 2@ f̂ 1 , f̂ 2#
J Q~J̃1!. ~4.51!

Now the statisticJ̃1@ f̂ 1 , f̂ 2# defined by Eqs.~4.45! and
~4.46! coincides with the locally optimal statistic obtained
paper I@Eq. ~3.8! of paper I, specialized to a white stochas
background#, except for the following modification. One firs
measures the noise probability distributions in each dete
separately@cf. Eq. ~4.46!#. Then, one computes the genera
ized cross-correlation statistic~4.45! using those distribu-
tions and the measured data.

From Eq.~4.51!, we see thatL(x) will be approximately

equivalent to the locally optimal statisticJ̃1@ f̂ 1 , f̂ 2# if the
statisticJM 2@ f̂ 1 , f̂ 2# has a weak dependence on the datax. To
establish this, consider the limitptail→0, whereptail!1 is
the total probability in the noise distribution tails. In th
limit our assumptions imply that the noise distributions in t
two detectors are Gaussians with unknown variancess1 ,
s2, and therefore the analysis of this subsection reduce
the analysis of Sec. IV B above. Therefore we can read
the ptail→0 limit of the statisticJM 2@ f̂ 1 , f̂ 2# by comparing
Eqs.~4.28! and ~4.49! and identifying the coefficients ofe2

in the arguments of the exponentials. We thus obtain

JM 2@ f̂ 1 , f̂ 2#5
N

2~11â2!

1

ŝ1
2ŝ2

2 @11O~ptail!#. ~4.52!

In the limit â!1 we can neglect theâ dependence in Eq
~4.52!. We then see that thex-dependent fluctuations in th
statistic are suppressed by either the small parameterptail , as
in Secs. III C and III D above, or by the parameter 1/AN
governing the size of the fractional fluctuations of the sta
tics ŝ1 , ŝ2. Thus, we can neglect thex dependence o
JM 2@ f̂ 1 , f̂ 2# in Eq. ~4.51!, and the approximate equivalence

L(x) and the locally optimal statisticJ̃1@ f̂ 1 , f̂ 2# follows.
Finally, we remark that we have not analyzed, in this p

per, the most general situation for stochastic signals of se
rated, nonaligned detectors with colored noise, which w
,

rt

e

12200
or

to
ff

-

-
a-
s

analyzed in Sec. IV B of paper I@16#. However, the results
we have obtained make it very plausible that, for that m
general situation, the Bayesian statisticL(x) should again be
equivalent to the generalized cross-correlation statistic
rived in paper I.

We also note that our assumption that the stochastic si
be Gaussian is necessary for our analysis. Modifying
signal by making it non-Gaussian instead of Gaussian wo
alter Eqs.~4.6!, ~4.19! and ~4.38! at O(e2). Therefore, the
derivation here does not generalize straightforwardly to n
Gaussian stochastic signals, unlike the corresponding de
tions in paper I. In Ref.@5# it is shown that one can find
detection techniques tailored to non-Gaussian stochastic
nals that perform better, for such signals, than the meth
considered here.

V. CONCLUSION

The derivation in this paper, from a different framewor
of the detection strategies obtained in paper I gives us
creased confidence in the utility of those strategies. In ad
tion, the analysis of this paper has clarified the regime
which we expect the strategies to work well. For determ
istic signals, data segments to be analyzed should be
enough that the signal-to-noise squared per data poin
small. This requirement is easy to satisfy in practice,
signal-to-noise thresholds are usually in the range 5210. In
addition, the strategies will only be close to optimal in t
regime where signals are strong enough to be detectable
restriction is unimportant in practice, as the performance
detection statistics in the regime where signals are far
weak to be detected is not important. Finally, for stochas
signals, the signal must be small compared to the nois
each individual detector, and the total probability in the t
part of the noise distributions must be small.
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@13# In the case where the prior distributionp(0)(e) restricts the
sign of e to be positive, one can similarly show that, in th

relevant regime given byê(x).0 together with the condition
~3.7!, L(x) is to a good approximation a monotonic functio

of the standard detection statisticQ@ê(x)#ê(x), whereQ is the
step function. Similar comments apply to the statistics~3.39!
and ~3.47!.

@14# This follows from the relationr2/N5 ŝrms
2 e2/s2, whereŝrms is

the rms average of the quantitiesŝj , and from the assumption
r2/N!1.
12200
@15# In order that the integrand in Eq.~4.37! be sharply peaked, it is
necessary to make the number of parameters specifying

functionsf 1 , f 2 , f̂ 1, and f̂ 2 considerably less than the numb
N of data points, by modifying Eq.~4.46! to incorporate a
suitable coarse-graining of the binning. This modification do
not affect our argument.

@16# For Gaussian noise, the equivalence ofL(x) and the standard
cross-correlation statistic has been demonstrated for separ
nonaligned detectors with colored noise in Appendix A of R
@11#, in the limit of weak signals.
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