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Abstract

It is shown in detail that the dynamics of the Einstein-dilaton-p-form system
in the vicinity of a spacelike singularity can be asymptotically described, at a
generic spatial point, as a billiard motion in a region of Lobachevskii space
(realized as a hyperboloid in the space of logarithmic scale factors). This
is done within the Hamiltonian formalism, and for an arbitrary number of
spacetime dimensions D > 4. A key role in the derivation is played by the
Iwasawa decomposition of the spatial metric, and by the fact that the off-
diagonal degrees of freedom, as well as the p-form degrees of freedom, get
‘asymptotically frozen’ in this description. For those models admitting a Kac—
Moody theoretic interpretation of the billiard dynamics, we outline how to
set up an asymptotically equivalent description in terms of a one-dimensional
nonlinear o-model formally invariant under the corresponding Kac—-Moody

group.

PACS numbers: 04.65.+e,04.50.+h, 11.10.Kk, 11.15.—q

1. Introduction

1.1. BKL analysis in spacetime dimension D = 4

The nonlinearities of the Einstein equations are notably known to prevent the construction of
an exact general solution. Only peculiar solutions, corresponding to idealized situations, have
been explicitly derived. The singularity theorems of [48] predict the generic appearance of
spacetime singularities under certain conditions, but do not provide a detailed description of
how the spacetime becomes singular. From this perspective, the work of Belinskii, Khalatnikov
and Lifshitz [6, 8], also known as ‘BKL’, is quite remarkable as it gives a description of the
generic asymptotic behaviour of the gravitational field in four spacetime dimensions in the
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vicinity of a spacelike singularity. As argued by these authors, near the singularity the spatial
points essentially decouple, in the sense that the dynamical evolution of the spatial metric
at each spatial point is asymptotically governed by a set of second-order, nonlinear ordinary
differential equations with respect to time.

These differential equations are the same, at each spatial point, as those that arise in some
spatially homogeneous cosmological models, which therefore provide valuable insight into
the qualitative features of the general solution. In the vacuum case, the spatially homogeneous
models that capture the behaviour of the general solution are of Bianchi type IX or VIII (with
homogeneity groups SU(2) or SL(2, R)). The asymptotic evolution of the metric can then
be pictured as an infinite sequence of ‘oscillations’ of the scale factors along independent
spatial directions [6, 8]. This regime is called ‘oscillatory’ or ‘of mixmaster type’ [83], or
also ‘chaotic’ because it exhibits strong chaotic features [16, 77]. The coupling to matter
fields does not change the picture, except if one includes a massless scalar field (equivalent
to a perfect fluid with ‘stiff” equation of state p = p), in which case the chaotic evolution is
replaced by a monotonic power law evolution of the scale factors [2, 5], which mimics the
Kasner solution at each spatial point and is therefore called ‘Kasner-like’. In this case, the
spatially homogeneous model that captures the behaviour of the general solution is the Bianchi
I model (with the Abelian group of translations in R* as homogeneity group).

1.2. BKL analysis in spacetime dimensions D > 4

The extension of the BKL analysis to higher dimensions was addressed within the context
of pure gravity (with no symmetry assumption) in [32, 33], where it was shown that the
general BKL approach remains valid: spatial points decouple as one approaches a spacelike
singularity, i.e., the dynamical evolution at each spatial point of the scale factors is again
governed by ordinary differential equations. The main result of [32, 33] was that, while
the general behaviour of solutions of the vacuum Einstein equations remains oscillatory for
spacetime dimensions D < 10, it ceases to be so for spacetime dimensions D > 11, where it
becomes Kasner-like. Let us also note that, as in four spacetime dimensions, the coupling to a
massless scalar field suppresses the chaotic behaviour in any number of spacetime dimensions
and makes the solution monotonic (see, e.g., [29]).

The authors of [33] did not consider the inclusion of massless p-forms, which are part of
the low-energy bosonic sector of superstring/M-theory models. This task was undertaken in
[24, 25], with the finding that these p-forms play a crucial role and can reinstate chaos when it
is otherwise suppressed. In particular, even though pure gravity is non-chaoticin 11 spacetime
dimensions, the 3-form of D = 11 supergravity renders the system chaotic. Similarly, the
bosonic sectors of all D = 10 supergravities related to string models define chaotic dynamical
systems, thanks again to the p-forms, and in spite of the presence of a massless scalar dilaton.
It is remarkable and significant that the (maximally supersymmetric) candidate models for
a unified description of the fundamental forces not only have difficulties accommodating de
Sitter-type spacetimes in any straightforward fashion [45, 80], but furthermore, and without
exception, exhibit BKL chaos as one approaches the initial singularity.

1.3. Billiard description of BKL behaviour

An efficient way to grasp the asymptotic behaviour of the fields as one approaches a spacelike
singularity is based on the qualitative Hamiltonian methods initiated by Misner [84] in the
context of the Bianchi IX models (in four spacetime dimensions). The Hamiltonian approach
naturally leads to a billiard description of the asymptotic evolution, in which the logarithms
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of the spatial scale factors define (after projecting out the dynamics of the overall volume
factor) a geodesic motion in a region of the Lobachevskii plane H,, interrupted by geometric
reflections against the walls bounding this region [17, 85]. Chaos follows from the fact that
the Bianchi IX billiard has finite volume®.

As pointed out in [26, 56, 57, 71, 73] this useful billiard description is quite general and
can be extended to higher spacetime dimensions, with p-forms and dilaton. If d = D — 1 is the
number of spatial dimensions, and if there are n dilatons, the billiard is a region of hyperbolic
space H,.,—1, each dilaton being equivalent, in the Hamiltonian, to the logarithm of a new
scale factor. Besides the dimension of the hyperbolic billiard, the other ingredients that enter
its definition are the walls that bound it. These walls can be of different types [24, 26]:
symmetry walls related to the off-diagonal components of the spatial metric, gravitational
walls related to the spatial curvature and p-form walls (electric and magnetic) arising from the
p-form energy density. All these walls are hyperplanar. The billiard is a convex polyhedron
with finitely many vertices, some of which are at infinity. In many important cases, the billiard
can be identified with the Weyl chamber of a Kac—Moody algebra, and the reflections against
the billiard walls with the fundamental Weyl reflections [23, 26, 27]. This suggests deep
connections with infinite symmetries.

The main purpose of this paper is to provide a self-contained derivation of the billiard
picture, in the general context of inhomogeneous solutions in D dimensions, with dilaton and
p-form gauge fields. In particular, we shall present a detailed derivation of the general results,
announced and used in [24, 26], on the form of the various possible walls. For that purpose, we
shall rely on the Iwasawa decomposition (see, e.g., [49]) of the spatial metric. This provides
an efficient derivation of the symmetry walls in any number of spacetime dimensions, which
we obtain by working out explicitly the Hamiltonian that governs the dynamics in the ‘BKL
limit” or ‘small volume limit’.

The present work is exclusively concerned with properties of solutions of Einstein’s
equations and their generalizations in the vicinity of a spacelike singularity. Accordingly,
our treatment does not apply to timelike singularities, for which no analogue of causal
decoupling exists (the situation may be more subtle for the borderline case of a null singularity).
Furthermore, we are not making the claim here that all spacelike singularities are necessarily
and uniformly of the BKL type. Rather, the results presented here are intended to refine and
to generalize the work of Belinskii ef al [6, 7] by showing that, in higher dimensions and for
many theoretically relevant matter sources, one can self-consistently describe the behaviour
of all fields, in the vicinity of a spacelike singularity, and at a generic spatial point x, in
terms of (i) a simple hyperbolic billiard description of the ‘angular’ dynamics (y, ;) of the
logarithmic scale factors (after projection of the ‘radial’ motion (p, 7)) and (ii) an asymptotic
‘freezing’ of the other phase space variables. This self-consistent asymptotic solution is
general in the sense that it involves as many arbitrary functions of space as the most general
solution.

1.4. Organization of the paper

After fixing our conventions and notation, and defining the class of Lagrangians we shall
consider in section 2, we discuss in section 3 the homogeneous and diagonal Kasner solution
in D spacetime dimensions, with a dilaton (as usual, the term ‘homogeneous’ implies invariance
under spatial translations). This solution plays a crucial role in the BKL approach because it

3 Throughout this paper, the word billiard used as a noun in the singular will denote the dynamical system consisting
of a ball moving freely on a ‘table’ (region in some Riemannian space), with elastic bounces against the edges.
Billiard will also sometimes mean the table itself.
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describes the ‘free motion between collisions’ and allows us to develop an important tool of our
approach: the (Minkowskian) geometry of the scale factors. We then introduce (in section 4)
the other main tool of our investigation: the Iwasawa decomposition of the spatial metric. To
gain some familiarity with it, we discuss the asymptotic behaviour of non-diagonal Kasner
metrics.

In section 5, we explain the appearance of sharp potential walls in full generality, without
imposing any homogeneity conditions on the metric and the matter fields. We then discuss in
great detail the various walls that appear in physical models: symmetry walls, gravitational
walls and p-form walls (section 6). The resulting geometry of the ‘billiard’ made from all
these walls is analysed in section 7. Section 8 is devoted to the case when the billiard can
be identified with the Weyl chamber of a Kac—-Moody algebra. To deal with this case, we set
up a Kac—Moody theoretic formulation of the billiard in terms of a nonlinear o -model based
on the relevant Kac—Moody group. As we will show, the asymptotic limit of these o-models
coincides with the asymptotic limit of the models discussed in the main part of this paper. An
appendix illustrating by a toy model the asymptotic freezing of the off-diagonal degrees of
freedom concludes this paper.

We should stress that our analysis is purely classical and accordingly, as it stands, is valid
only up to the Planck (or string) scale. We shall also ignore fermionic fields throughout.
Nevertheless, it is reasonable to expect that some of the ideas discussed here will remain
relevant in a more general quantum mechanical context, at least qualitatively (see, e.g., [91]
for some recent ideas in this direction). The subject of Hamiltonian cosmology has a long
history in the context of four-dimensional, spatially homogeneous spacetimes and provides
useful insight into the general discussion presented here. For reviews on this subject, with
an extensive bibliography, see [61, 94, 95]; see also the topical review on multidimensional
gravity [59].

2. Models and conventions

2.1. The models

We consider models of the general form

S[Gun. ¢, AP ] = / dDw—_G[R — Iupd"e

1 1 )
__ ¢ 1 (P) (p)My-M .,
22(P+1)!e] FMI"'MpHFp v 1]+ 2.1)
4

where units are chosen such that 167Gy = 1 (where Gy is Newton’s constant) and the
spacetime dimension D = d + 1 is left unspecified. Besides the standard Einstein—Hilbert
term, the above Lagrangian contains a dilaton field ¢ and a number of p-form fields A;f;l) M,
(for p > 0). Asaconvenientcommon formulation, we adopt the Einstein conformal frame and
normalize the kinetic term of the dilaton ¢ with weight 1 w.r.t. the Ricci scalar. The Einstein
metric Gy has Lorentz signature (— + ---+) and is used to lower or raise the indices;
its determinant is denoted by G. The p-form field strengths F") = dA” are normalized
as

F/EZ)---M,,H =(p+ 1)8[M1A5"4’;,“MW[| = aMlA;’;z)mMW + p permutations.  (2.2)

The dots in the action (2.1) indicate possible modifications of the field strength by additional
Yang-Mills or Chapline-Manton-type couplings [11, 15], such as F¢c = dC® —C® dB® for
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two 2-forms C® and B® and a 0-form C©, as they occur in type IIB supergravity. Further
modifications include Chern—Simons terms, as in the action for D = 11 supergravity [22]. The
real parameter A, measures the strength of the coupling of A" to the dilaton. When p = 0,
we assume that Ay % 0 so that there is only one dilaton. This is done mostly for notational
convenience. If there were other dilatons among the O-forms, these should be separated off
from the p-forms because they play a distinct role. They would define additional spacelike
directions in the space of the (logarithmic) scale factors and would correspondingly increase
the dimension of the relevant hyperbolic billiard.

The metric Gy y, the dilaton field(s) ¢ and the p-form fields A;ZI) u, area priori arbitrary
functions of both space and time, on which no symmetry conditions are imposed. Nevertheless,
it will turn out that the evolution equations near the singularity will be asymptotically the same
as those of certain homogeneous cosmological models. It is important to keep in mind that
this simplification does not follow from imposing extra dimensional reduction conditions but
emerges as a direct consequence of the general dynamics.

2.2. Gauge conditions

Our analysis applies both to past and future singularities, and in particular to Schwarzschild-
type singularities inside black holes. To follow historical usage, we shall assume for
definiteness that the spacelike singularity lies in the past, at finite distance in proper time.
More specifically, we shall adopt a spacetime slicing such that the singularity ‘occurs’ on a
constant time slice (r = 0 in proper time). The slicing is built by using pseudo-Gaussian
coordinates defined by vanishing lapse N' = 0, with metric

ds? = —(N(x% x") dx®)? + g;; (x°, x") do’ dx/. (2.3)

In order to simplify various formulae later, we shall find it useful to introduce a rescaled lapse
function

N =Ng 2.4)

where g = det g;;. We shall see that a useful gauge, within the Hamiltonian approach, is that
defined by requiring

N =p? 2.5

where p? is a quadratic combination of the logarithms of the scale factors and the dilaton(s),
which we will define below in terms of the Iwasawa decomposition. After fixing the time
zero hypersurface, the only coordinate freedom left in the pseudo-Gaussian gauge (2.5) is that
of making time-independent changes of spatial coordinates x’ — x" = fi(x/). Since the
gauge condition (2.5) is not invariant under spatial coordinate transformations, such changes
of coordinates have the unusual feature of also changing the slicing.

Throughout this paper, we will reserve the label 7 for the proper time

dt = —Ndx’ = —N /g dx", (2.6)

whereas the time coordinate associated with the special gauge (2.5) will be designated by 7,
namely,

dt
P> /8

dT = — 2.7)
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Sometimes, it will also be useful to introduce the ‘intermediate’ time coordinate t that would
correspond to the gauge condition N = 1. It is explicitly defined by

dr 2
dt = ——— = p~dT. (2.8)

NG
At the singularity, the proper time ¢ is assumed to remain finite and to decrease towards 0*.
By contrast, the coordinates 7 and t both increase towards +00, as ensured by the minus sign
in (2.6). Irrespective of the choice of coordinates, the spatial volume density g is assumed to
collapse to zero at each spatial point in this limit.
As for the p-form fields, we shall assume, throughout this paper, a generalized temporal
gauge, namely,

(p) —
Agiy-.i, =0 (2.9)
where small Latin letters i, j, ... denote spatial indices from now on. This choice leaves the

freedom of performing time-independent gauge transformations, and therefore fixes the gauge
only partially.

3. Geometry of the space of the scale factors

3.1. Supermetric and Hamiltonian

To set the stage for our general Hamiltonian approach, it is useful to study first in detail the
dynamics defined by considering only the kinetic terms of the metric and of the dilaton(s). The
corresponding reduced action is obtained from (2.1) by setting A?”’ = 0 and assuming that
all the other fields depend only on time. In terms of a general time coordinate x this reduced
action reads

- ~_1[1 .
Slgij, ¢, N1 = f dxON "' [Z(ng‘g)z —(Trg'g)H) + ﬂ (3.10)

where we have suppressed an integral [ d?x over the spatial volume for notational simplicity.
Furthermore, we make use of the notation introduced in (2.3) and (2.4) with ¥ = dF /dx?,
and adopt a matrix notation where g(#) € GL(d, R) stands for the matrix (g;;) representing
the spatial components of the metric at each spatial point.

The action (3.10) is the (quadratic-in-velocities) action for a massless free particle with
coordinates (g;;, ¢) moving in a curved target space with metric

do? = 1[Tr(g 'dg)* — (Trg~'dg)’] + d¢™. 3.11)

We designate by do? the line element in this target ‘superspace’ to distinguish it from the line
element in physical spacetime, which we denote by ds>. The first two terms in the rhs of
(3.11) define the so-called DeWitt supermetric in the space of the metric coefficients g;; [34].
If several dilatons ¢’ (fori = 1, ..., n) were present the term d¢? in equation (3.11) would
be replaced by ) ; (d¢")?. That is, each dilaton adds a (flat) direction in the target superspace.

The rescaled lapse N plays the role of an ‘einbein’ in the geodesic action (3.10). As usual,
extremizing over N yields the ‘zero-mass constraint’

1(Tr(g™'9)? = (Trg™')*) +¢° = 0. (3.12)
Thus, the motion is given by a null geodesic of the metric (3.11). An affine parameter along

those geodesics is dt = +N dx? = —dt/ /&, cf equation (2.8). In terms of the parameter ©
the equations of motion read

d _,dg d2
dr <g dr) dt2¢ (3.13)
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For diagonal metrics
gk =expldiag(—28)] <= g/ =exp(—28");; (3.14)
the supermetric (3.11) reduces to

do? = TrdB? — (Trdp)? + d¢?
d d 2
= (A - (Z d,B’) +d¢? = G, dprdB". (3.15)
i=1 i=1

Here we have introduced a (d+1)-dimensional space with coordinates 8/, with indices running
over = 1, ..., d + 1, such that the first d coordinates 8’ correspond to the logarithms of the
scale factors of the spatial metric (cf equation (3.14)), and the (d + 1)th coordinate B! = ¢
represents the dilaton®. The explicit form of the (flat) target space metric G, can be read off
directly from (3.15). The action for diagonal metrics is

S[B", N1 = /deN“ GB B’ (3.16)

In what follows, we shall refer to this space as the ‘extended space of (logarithmic) scale
factors’ or only ‘the B-space’ for short.

Combining the scale factors and the dilaton(s) in a single space is natural because we
know from Kaluza—Klein theory that the dilaton can be viewed as the logarithm of a scale
factor in one extra spatial dimension. Independent of whether the original metric (2.3) has
non-vanishing curvature or not, the metric (3.15) induced in the space of the scale factors
(possibly including the dilaton) is flat. More precisely, the metric G, of the (extended) space
of scale factors is a Minkowski metric in R%*' with signature (— + +---+). For instance,

the direction in which only the dilaton varies (i.e., dg* « (0, ..., 0, 1)) is spacelike, while the
direction in which only one scale factor varies (e.g., dg* o (1,0, ...,0))is null. A timelike
direction in this space is the direction dg* o (1,1,...,1,0). This reflects the familiar

fact that the gravitational action is not bounded from below (even with Euclidean signature):
conformal transformations of the metric, in which the scale factors are all scaled in the same
fashion, make do? negative. It is this characteristic feature of gravity which is responsible for
the Lorentzian nature of the Kac—-Moody algebras which emerge in the analysis of the billiard
symmetries [26]. The Lorentzian signature of the metric in the space of the scale factors
enables one to define the light cone through any point. We define the time orientation to be
such that future-pointing vectors v* have ), v > 0. Geometrically, small volumes (small g)
are associated with large positive values of >, /. Large volumes (large g), on the other
hand, mean large negative values of Zi B'. We are interested in the small volume limit,
ie, Y B — +oo.

The Hamiltonian form of the action for the diagonal metric degrees of freedom and the
dilaton is

S[B*, m., N1 = /dxo [7uB" — NG 7,7, ] (3.17)
where GV is the inverse of G . Explicitly,
d ! d 2
v _ 2 . 2
GH* T, Ty = - T — m (;ﬂl) +7T¢ (318)

6 Obviously, the range of indices would be extended to u, v =1,..., d + n in the presence of n dilatons.
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where 7, = (m;, 74) are the momenta conjugate to 8’ and ¢, respectively, i.e.,
. . dp’
. =2N"'G,pB" = 2G,wdi =2G,,v". (3.19)
T

Here, the T-parameter velocities have been designated by v* = dg*/dr.

3.2. Diagonal Kasner solution

The Kasner solution (with or without dilaton) is now easily obtained by solving (3.12) and
(3.13) in the diagonal case. Indeed, the equations of motion reduce to

d2pr

—=0 3.20
They are solved by

B =T+ By (3.21)
where v* and ,3(‘; are constants of the motion. The ‘zero-mass constraint’ becomes

Gv*v” =0. (3.22)
One can transform the simple affine parameter solution (3.21) into the usual Kasner solution
expressed in terms of the proper time by integrating the relation dt = —,/gdr, with
Jg& =exp (— > ,Bi), whence 1 o< exp (—( Y vi)r), or

1
T=—=— Int + const. (3.23)

v

We require Y, v’ > 0 to remain consistent with our convention that T — +o0c at # — 0% near
the singularity. This yields

d
ds? = —d? + Y AF(1)(dx')?, A; () = btV (3.24)

i=1
¢ =—pslnt+Cy (3.25)

where b; = e % and C, = B*! are integration constants and the minus sign in front of p, in
(3.25) is included for the sake of uniformity in the formulae below (if there is no dilaton one
simply sets ps = C4 = 0). By rescaling the spatial coordinates, one can set b; = 1 and obtain
the standard (proper time) form of the Kasner metric. The Kasner exponents p,, = (p;, py)
are given in terms of the affine velocities v** = dg*/dt by

Iz

Pu = .
2V
Note that the sum in the denominator does not include the dilaton.
They are subject to the quadratic constraint’

d d 2
Do (Z m) +py=0 (3.27)

i=l1 i=1

(3.26)

coming from the ‘zero-mass condition’, and to the linear constraint

d
S opi=1 (3.28)

i=1
coming from their definition above.

7 Contrary to the variables * and the velocities v*, we do not assign any covariance properties to the standard Kasner
exponents, but regard them simply as parameters, leaving their labels always in the lower position.
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If there are no dilatons, it follows from the above equations that there is at least one Kasner
exponent which is negative, so at least one of the scale factors A;(¢z) blows up as t — 0. The
scale factors associated with positive Kasner exponents contract to zero monotonically. By
contrast, in the presence of a dilaton, all the Kasner exponents can be positive simultaneously.
In both cases, there is an overall contraction of the spatial volume since the determinant g of
the spatial metric tends to zero. Indeed, a consequence of the linear constraint above on the
Kasner exponents is

g x 1% (3.29)

Note that relations (3.23) and (3.29) have been derived only for the exact (homogeneous)
Kasner solution in the vacuum.

3.3. Hyperbolic space

Still as a preparation for dealing with the general inhomogeneous case, let us present an
alternative way of solving the dynamics defined by the kinetic terms of diagonal metrics,
i.e., the action (3.16), or its Hamiltonian form. This alternative way will turn out to be very
useful for describing the asymptotic dynamics of general inhomogeneous metrics. It consists
in decomposing the motion of the variables §* into two pieces, namely a radial part p and
an angular one y". Here ‘radial’ and ‘angular’ refer to polar coordinates in the Minkowski
space of the g*. More precisely, shifting, if necessary, the origin in B-space to arrange that
vuﬁg < 0, the B* trajectories (3.21) will, for large enough values of t, get inside the future
light cone of the origin, i.e.,

:BM,B;L = 2Uu:3(l)LT + ,BOM,B(I)L <0. (3.30)
Let us then decompose * in hyperbolic polar coordinates (p, y*), i.e,
B = py", (3.31)

where y* are coordinates on the future sheet of the unit hyperboloid, which are constrained
by

vy =—1 (3.32)
and p is the timelike variable
o’ = —p"B, > 0. (3.33)

This decomposition naturally introduces the unit hyperboloid (‘y-space’), which is a
realization of the m-dimensional hyperbolic (Lobachevskii) space H,,, withm =d — 1 +n if
there are n > 0 dilatons.

In terms of the ‘polar’ coordinates p and y*, the metric in S-space becomes

do? = —dp* + p?dx? (3.34)
where dX? is the metric on the y-space H,,. In these variables, the Hamiltonian reads
N L
Hy = Z —]'L’p + E]Ty (335)

where 7, are the momenta conjugate to the constrained hyperbolic coordinates y*. (It is
straightforward to introduce angular coordinates on H,, to derive more explicit formulae for
d¥? and 7..) The extra index 0 on H is to underline the fact that this Hamiltonian refers only
to a small part of the total Hamiltonian which we shall study below, because it describes only
the kinetic terms associated with the (d + n) variables S*.
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An equivalent expression is

N

Hy = m[—nf +7] (3.36)
where we have introduced the new configuration variable
A=Inp =31In(—G,,B"B") (3.37)

with conjugate momentum ;.
The form (3.36) of the Hamiltonian shows that, when using a radial projection on H,,, the
motion becomes simplest in the gauge

N = p2, (3.38)

in terms of which (3.36) reduces to a free Hamiltonian on the pseudo-Riemannian space with
metric —dA? + dX2. In the gauge (3.38) the logarithmic radial momentum 7, = p7w, is a
constant of the motion. In this gauge, we see that the free motion of the f is projected onto a
geodesic motion on H,,.

The coordinate time 7 associated with this gauge, see equation (2.7), is linked to the affine
parameter T via

d
ar = = (3.39)
0
From (3.30) we get that p? varies linearly with z,
p? = —BuB" = ~20.5T — By Bou (3.40)
which implies
1
T = ——— Int +const. 3.41
2v, 8¢ (341)

Recalling that 7 varies logarithmically with the proper time ¢, we see that 7 o< In |In¢].
One can also use the configuration variable (3.37) as an intrinsic time variable to describe
the dynamics. In view of (3.40) we have

A= %ln T +const = % In|In¢| + const. (3.42)

Note that the various links above between the different time scales are derived only for an exact
Kasner solution. Similar relations will hold asymptotically in the general inhomogeneous case
(see discussion in section 7).

4. Iwasawa decomposition and dynamics of non-diagonal Kasner metrics

4.1. Iwasawa decomposition

For homogeneous solutions in vacuo, the metric remains diagonal if the initial data are so.
This is, in general, not true when matter (such as p-forms) or inhomogeneities are included,
in which case off-diagonal components generically appear even if there are none initially. For
this reason, it is important to understand the role of off-diagonal terms already in this simpler
homogeneous context, by examining the evolution of initial data that are not diagonal. And, as
for the simple diagonal metrics above, it is instructive to study the dynamics of non-diagonal
metrics in several complementary ways.

A first way of dealing with the evolution of initially non-diagonal metrics is to perform a
suitable linear transformation on the diagonal Kasner solution. If L is the linear transformation
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needed to diagonalize the initial data, it is easy to see from (3.13) that the solution is given, in
terms of the parameter t, by

g(r) =L gx(r)L .1)

where superscript 7' denotes transposition and g (7) is the diagonal Kasner solution (3.14),
(3.21). The dilaton, being a scalar, is still given by the same expression as before, i.e.
¢ = B = v + BI*. Note the relation

detg(t) = (det L)* det gg (1), 4.2)

so that relation (3.23) between T and ¢ still holds. Therefore det g still goes to zero like 2.
A second way of describing the evolution of non-diagonal metrics is to perform an
Iwasawa decomposition of the metric,

g=NT AN (4.3)

where N is an upper triangular matrix with 1’s on the diagonal and A is a diagonal matrix
with positive entries, which we parametrize as

A=eF, B = diag(p', g2, ..., p9). (4.4)
The explicit form of (4.3) reads

d
gij =y e NN (4.5)

a=1
The evolution of the new configuration variables B¢ = f(g;;) defined by the Iwasawa

decomposition differs, in general, from that of the quantities B entering the diagonal Kasner
solution (3.21), i.e. B* # B except for the special case N'“; = §¢. Henceforth in this paper, the
notation 8 will always refer to the logarithmic scale factors 8¢ w.r.t. the Iwasawa frame (4.5)
(to be augmented, if needed, by the dilaton as a (d + 1)th coordinate 89*! = ¢). Furthermore,
we adopt the convention here and in the remainder that summation over the spatial coordinate
indices 7, j, ... is always understood, whereas sums over the Iwasawa frame indices a, b, . ..
will always be written out.

One can view the Iwasawa decomposition® as the Gram—Schmidt orthogonalization of
the initial coordinate coframe dx’, which is indeed a triangular process,

d
gijdx'dx/ =) e "0 ®0". (4.6)
a=1

Starting with 8¢ = dx?, one successively constructs the next # by adding linear combinations
of the dx* (for k > j) in such a way that 8¢~ is orthogonal to 8¢, 89~ is orthogonal to both
6 and 997!, etc. Explicitly,

94 = dxd,

69! = dxdt + N9 dx?, @.7)

092 = dxd=2 4+ N2, dxd=' + N2, dx, )
Equivalently,

6 = N, dx'. (4.8)

8 The Iwasawa decomposition applies to general symmetric spaces (see, e.g., [49]). In our case, the relevant
symmetric space is the coset space SL(d,R)/SO(d) since the space of positive definite symmetric matrices can be
identified with GL(d, R)/O(d), which is isomorphic to SL(d, R)/SO(d) x R*.
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Thus N¢; vanishes for a > i, is equal to 1 for ¢ = i, and has a non-trivial coordinate
dependence only for a < i. It is easily seen that the determinant of the matrix N is equal to
1. Therefore the sum of the j is directly related to the metric determinant (as in the diagonal
case): g =detg = det. A =exp (-2, B).

In the following, we shall also need the vectorial frame {e,} dual to the coframe 6,

d
“oxi

ea =N

(4.9)

where the matrix A7, is the inverse of N¢;, i.e., N9, N}, = 8. Itis again an upper triangular
matrix with 1’s on the diagonal.

4.2. Asymptotics of non-diagonal Kasner metrics

Later in this paper we will deal with the generic inhomogeneous, non-diagonal metric
i;(x°, x) and show how to study its Hamiltonian dynamics directly in terms of the Iwasawa
variables (,3", N@ ,~) and their conjugate momenta. But let us first take advantage of the known
explicit solution (4.1) of the non-diagonal evolution in order to understand the qualitative
behaviour of the Iwasawa variables (,3”, /\/”i) ast — 0, 1ie., T — +o0o. To be concrete, let
us explicitly consider the case of three spatial dimensions (d = 3, D = 4) using the results of
[51] for the Iwasawa decomposition of three-dimensional metrics.

Setting
1 n nyp
N = (O 1 n3> (4.10)
0o 0 1
together with
e 0 0
A= ( 0 e # 0 ) 4.11)
3
0 0 ef
one finds
g1 = 672’3[, g2 = n1672ﬂ], 813 = nzefzﬂl,
g»n = n% Cizﬂl + Cizﬂz, 823 = niny Cizﬂl +n3 Cizﬂz, (4]2)

28! _2p2 _7p3
gn=nye P +nje +e ¥

from which one obtains

1 1 — g2
B'=—=Ingy, ,32=——1n[7g”g22 g12j|,
2 2 gl
p——lmn [%} n =82 (4.13)
2 811822 — 812 811
813 823811 — £12813
ny = —, ny=———5—.
811 811822 — &>

On the other hand, (4.1) and (3.24) yield

gij (1) = P Ll + 2P mym  + 2Py (4.14)
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with the constant matrix

L L b
L:(ml noyp M3>, (415)

r r r3

where we have absorbed the b; in /;, m; and r;.
Combining these relations, we can deduce the explicit time dependence of the Iwasawa
variables,

Bl)=—imx.  PWH=-mn [5} ,
2 X

2
; 1| 20 (det )2
B () = 3 In % ,
(4.16)
2P 1 + 2 P2mymy + 12731
I’ll(l‘) = s
X
0 t2pll1l3+l‘2p2mln’l3+t2p3r1r3 () Z
n = , n = —
2 X 3 Y
with
X(t) = tzp'l]2 +t2p2m% +t2p3r]2,
Y(t) = 27722 (Lymy — lmy)? + 1274203 (Lry — Lory)? + 2777203 (myry — mory)?, @.17)

Z(t) = t*P¥2 (Limy — Lmy) (Limy — lymy) + 277273 (g — L) (s — Bry)

+ 127203 (myry — mory) (myrs — mary).

These explicit formulae show that the evolution of the Iwasawa variables (8, ) in the
generic non-diagonal case is rather complicated. However, what will be important in the
following is that they drastically simplify in the asymptotic limit 1 — 0, i.e., T — +00.
Without loss of generality, one can assume p; < p» < ps. If necessary, this can be achieved
by multiplying L by an appropriate permutation matrix. We shall in fact only consider
p1 < p2 < ps, leaving the discussion of the limiting cases to the reader. For generic L, i.e.,
Iy #0,r; #0,limy—Ilym; # 0and mr, —m,r; # 0, one then finds the following asymptotic
behaviourast — 0, 1i.e., T — +00:

T — +00: Loty ,82 ~ UaT, ,83 ~ 13T,
I I3 limz — l3m,
ny — —, ny — ;7 n3 — - - . (4.18)
ll 11 llmg — lgml

Here we used the links derived above between (p,, t) and (v*, 7).

The remarkable feature of these results is that, in the limit T — +00, the evolution of the
Iwasawa variables (8, \V) is essentially as simple as the evolution we obtained in the diagonal
case. Namely, the diagonal degrees of freedom S in the Iwasawa decomposition behave
linearly with 7, while the elements of the upper triangular matrix A/ tend to constants. That
the n; should asymptotically tend to constants should be clear because they are homogeneous
functions of degree zero in the metric coefficients—in fact, ratios of polynomials of degree
one or two in the 727, It is more subtle that the scale factors e 2%, which are homogeneous of
degree one in the g;;, are not all driven by the fastest growing (or least decreasing) term =4
for t — 0%). This is what happens for the first scale factor e 28" However, the second scale
factor e 2% feels the subleading term #27> because the leading term drops from its numerator,
equal to the minor g1 g2 — (g12)2. Similar cancellations occur for the last scale factor e_zﬁz,
which feels only the smallest term #%7% as t — 0*.
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The results (4.18) admit a simple generalization to d dimensions. By repeating the above
explicit calculation, one can prove that, in any dimension d, the f become asymptotically
linear functions of 7, as in the diagonal case, with coefficients that are given by a permutation
of the underlying diagonal Kasner exponents. Furthermore, the N“; tend to constants, a
phenomenon which we will refer to as the ‘asymptotic freezing’ of the off-diagonal metric
variables. More precisely, let vl < v? < -+ < v? be the ordered (unnormalized) underlying
Kasner exponents; then, for generic L, we have

B ~v't and N — const (4.19)

as T — +o0o or, equivalently, r — 0*. An alternative derivation of these results will follow,
as a particular case, from the general result we shall derive below concerning the qualitative
evolution of generic, inhomogeneous, matter-driven solutions in Iwasawa variables (after
projecting out the radial motion of the Iwasawa p variables).

Note also that, in the simple case of homogeneous non-diagonal metrics in vacuo (without
curvature and/or matter) one can discuss not only the limit # — 0, but also the limit r — +00
(i.e, T = —o0). In this second limit, one finds again that the § become asymptotically linear
functions of 7, with coefficients that are given by a permutation of the underlying Kasner
exponents, and that the A/¢; tend to constants. More precisely, for any d, 8¢ ~ v~ t, while
the explicit results in d = 3 read

. 1 2 3
T — —00: B ~ pst, B° ~ pat, B>~ pit,
n rs nrz — nsry (420)
ny— —, ny — —, ny —» —.
r r miyry — mar

Note that in both limits, one has B! < g% < --- < B¢. The fact that the f are ordered in this
way is due to our choice of an upper triangular N'; had we taken N to be lower triangular
instead, these inequalities would have been reversed.

5. Asymptotic dynamics in the general case

Having warmed up with the simple diagonal and homogeneous Kasner solution in section 3,
and having introduced the Iwasawa decomposition of the metric (section 4), we are now ready
to apply these techniques to the description of the asymptotic dynamics in the limit 1 — 0
to the general inhomogeneous, matter-driven case. The main ingredients (already introduced
above for the homogeneous solutions) of our study are as follows:

e Use of the Hamiltonian formalism.

o Iwasawa decomposition of the metric, i.e., g;; — (,8“, ./\/”,-).

e Decomposition of * = (8¢, ¢) into radial (p) and angular (y*) parts.

e Use of the pseudo-Gaussian gauge (2.5), i.e., of the time coordinate 7 as the evolution
parameter.

More explicitly, with the conventions already described before, we assume that in some
spacetime patch, the metric is given by (2.3) (pseudo-Gaussian gauge), such that the local
volume g collapses at each spatial point as x” — +00, in such a way that the proper time ¢
tends to 0*. We work in the Hamiltonian formalism, i.e., with first-order evolution equations
in the phase space of the system. For instance, the gravitational degrees of freedom are
initially described by the metric g;; and its conjugate momentum /. We systematically
use the Iwasawa decomposition (4.5) of the metric to replace the d(d + 1)/2 variables g;;
by the d + d(d — 1)/2 variables (8, N'*;). Note that (89, N'“;) are ultralocal functions of
gij» that is they depend, at each spacetime point, only on the value of g;; at that point, not



Topical Review R159

on its derivatives. This would not have been the case if we had used a ‘Kasner frame’ (as
defined below) instead of an Iwasawa one. The transformation g — (B, N) then defines a
corresponding transformation of the conjugate momenta, as we will explain below. We then
augment the definition of the 8 by adding the dilaton field, i.e., * = (8%, ¢), and define
the hyperbolic radial coordinate p as in (3.33). Note that p is also an ultralocal function of
the configuration variables (g;;, ¢). We assume that the hyperbolic coordinate p can be used
everywhere in a given region of space near the singularity as a well-defined (real) quantity
which tends to +0o as we approach the singularity. We then define the slicing of spacetime
by imposing the gauge condition (2.5). The time coordinate corresponding to this gauge
is called T as above (see (2.7)). Our aim is to study the asymptotic behaviour of all the
dynamical variables B8(T), N(T), ... as T — +oo (recall that this limit also corresponds to
t—0,./g— 0,p— +oo, with B going to infinity inside the future light cone). Of course,
we must also ascertain the self-consistency of this limit, which we shall refer to as the ‘BKL
limit’.

5.1. Hamiltonian action

To focus on the features relevant to the billiard picture, we assume first that there are no
Chern—Simons terms or couplings of the exterior form gauge fields through a modification of
the curvatures F7), which are thus taken to be Abelian, F?) = dA”). We verify in section 6.5
that these interaction terms do not change the analysis. The Hamiltonian action in any pseudo-
Gaussian gauge, and in the temporal gauge (2.9), reads

ij P) Jidp
S[gij,ﬂj,fﬁ,ﬂqb,Aj] Jp? (,1,) ]
N o1
_ 0 d ij - o jvdp i (p)
_1/m:/dx(n@u+mw+l”§:mm”Ah]p H) (5.1
4

where the Hamiltonian density H is

H=NH (5.2)
H=K+M (5.3)
ii 1 1 e Mr® 1
Kznwﬁ—szWﬂqﬁ+2:M'¢) T )iy (5.4)
M= g gm0+ 5 e O 55

where R is the spatial curvature scalar. The dynamical equations of motion are obtained by
varying the above action w.r.t. the spatial metric components, the dilaton, the spatial p-form
components and their conjugate momenta. In addition, there are constraints on the dynamical
variables,

H=~0 ‘Hamiltonian constraint’, (5.6)
Hi ~0 ‘momentum constraint’, 5.7)

go(’;) It x Gauss law’ for each p-form (5.8)
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with
; 1
Hi= =2 +mpdi+ ) —miy VEL (5:9)
p P
Juedp=1 _ _Jrdp—1Jp
Pip) =T ljp (5.10)

where the subscript |j stands for the spatially covariant derivative.

Let us now see how the Hamiltonian action gets transformed when one performs, at each
spatial point, the Iwasawa decomposition (4.3), (4.5) of the spatial metric. The ‘supermetric’
(3.11) giving the kinetic terms of the metric and of the dilaton then becomes

do? = Trdp* — (Trdp)* +d¢* + L TH{A*(ANNHAZANVNHT]  (5.11)

ie.,

d d 2
1 b_ga i \2
do® =) (dB")* — At | +de*+ =) XY (AN 5.12)
where we recall that N7, denotes, as in (4.9), the inverse of the triangular matrix A/%; appearing
in the Iwasawa decomposition (4.5) of the spatial metric g;;. Ford = 3, this expression reduces
to that of [51]. This change of variables corresponds to a point canonical transformation, which
can be extended to the momenta in the standard way via

g = E T+ E PN (5.13)
Note that the momenta
, oL b gay o
Ply=——— =30 PIN NI N 5.14
N~ L NTBN T (5.14)

conjugate to the non-constant off-diagonal Iwasawa components A/%; are only defined for
a < i;hence the second sum in (5.13) receives only contributions froma < i.

We next split the Hamiltonian density® 7 (5.2) in two parts, one denoted by H,, which
is the kinetic term for the local scale factors f* (including dilatons) already encountered in
section 3, and a ‘potential density’ (of weight 2) denoted by V, which contains everything
else. Our analysis below will show why it makes sense to group the kinetic terms of both the
off-diagonal metric components and the p-forms with the usual potential terms, i.e., the term
M in (5.2). (Remembering that, in a Kaluza—Klein reduction, the off-diagonal components
of the metric in one dimension higher become a 1-form, it is not surprising that it might be
useful to group together the off-diagonal components and the p-forms.) Thus, we write

H="THo+V (5.15)
with the kinetic term of the 8 variables
Ho = 16" w7, (5.16)

where the rhs is that already defined in (3.18), with the replacement of the coordinate index i
by the frame index a. The total (weight 2) potential density,

V=Vs+Vs+y V,+Vp, (5.17)
4

° We use the term ‘Hamiltonian density” to denote both H and . Note that H is a usual spatial density (of weight 1,
i.e., the same weighNt as ,/g), while H = ,/gH/N is a density of weight 2 (like g = (\/g )2). Note also that 7/ is
of weight 1, while N = N/,/g is of weight —1.
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is naturally split into a centrifugal part linked to the kinetic energy of the off-diagonal
components (the index ‘S’ referring to ‘symmetry’, as discussed below)

1 _ b_pa : 2
Vs = ; e 2P (PN ), (5.18)

a ‘gravitational’ (or ‘curvature’) potential

Ve = —gR, (5.19)
and a term from the p-forms,
_ 1 magn
Vi =Vip + Vi (5.20)
which is a sum of an ‘electric’ and a ‘magnetic’ contribution
—Ap .
1 _ & vy
Vi = S0 Tim T (5.21)
Apd
magn _ L F(p) F(p).il"'jp+l. (522)

P T o+ )18 i

Finally, there is a contribution to the potential linked to the spatial gradients of the dilaton:
Vy = 88" 0i¢9;0. (5.23)
We will analyse in detail these contributions to the potential, term by term, in section 6.

5.2. Appearance of sharp walls in the BKL limit

5.2.1. Derivation of central result. In the decomposition of the Hamiltonian given above,
we have split off the kinetic terms of the scale factors ¢ and of the dilaton f9*! = ¢ from
the other variables, and assigned the off-diagonal metric components and the p-form fields to

various potentials, each of which is a complicated function of g#, N'¢;, P, A;f_)__jp, n(JI',')"j”
and of some of their spatial gradients. The reason why this separation is useful is that, as we
show, in the BKL limit, and in the special Iwasawa decomposition which we have adopted, the
asymptotic dynamics is governed by the scale factors 8#, whereas all other variables ‘freeze’,
just like for the general Kasner solution discussed in section 3. Thus, in the asymptotic limit,
we have schematically

V(B*, N, Play AL w7 ) = V(P (5.24)
where V. (y*) stands for a sum of certain ‘sharp wall potentials’ which depend only on the
angular hyperbolic coordinates y* = " /p. As a consequence, the asymptotic dynamics can
be described as a ‘billiard’ in the hyperbolic space of the y#, whose walls (or ‘cushions’) are
determined by the energy of the fields that are asymptotically frozen.

This reduction of the complicated potential to a much simpler ‘effective potential’ Vi, (y#)
follows essentially from the exponential dependence of V on the diagonal Iwasawa variables
B#, from its independence from the conjugate momenta of the 8, and from the fact that the
radial magnitude p of the 8 becomes infinitely large in the BKL limit.

To see the essence of this reduction, with a minimum of technical complications, let us
consider a potential density (of weight 2) of the general form

V(B Q, P) =) ca(Q, P)exp(—2wa(B)) (5.25)
A

where (Q, P) denote the remaining phase space variables (that is, other than (8, 7g)). Here
wa(B) = wa, B are certain linear forms which depend only on the (extended) scale factors,
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and whose precise form will be derived in the following section. Similarly, we shall discuss
below the explicit form of the pre-factors c4, which will be some complicated polynomial
functions of the remaining fields, i.e., the off-diagonal components of the metric, the p-form
fields and their respective conjugate momenta, and of some of their spatial gradients. The
fact that the w4 (B) depend linearly on the scale factors f# is an important property of the
models under consideration. A second non-trivial fact is that, for the leading contributions,
the pre-factors are always non-negative, i.e., cljadmg > 0. Since the values of the fields
for which ¢4 = 0 constitute a set of measure zero, we will usually make the ‘genericity
assumption’ ¢4 > O for the leading terms in the potential V.!° The third fact following from
the detailed analysis of the walls that we shall exploit is that all the leading walls are timelike,
i.e., their normal vectors (in the Minkowski S-space) are spacelike.

As shown in section 3.3, the part of the Hamiltonian describing the kinetic energy of
the B, Hy = NH,, takes the form (3.36) when parametrizing 8" in terms of p and y*, or
equivalently, A = In p and y* (cf equation (3.37)). Choosing the gauge (2.5) to simplify the
kinetic terms Hy we end up with an Hamiltonian of the form

1

H, m,y,m, Q, P) = NH = Z[—nf +715] +p° ZCA(Q, P)exp(—2pwa(y)) (5.26)
A

where nf is the kinetic energy of a particle moving on H,,. In (5.26) and below we shall
regard A as a primary dynamical variable (so that p = e*).

The essential point now is that, in the BKL limit, A — +o0, i.e., p — +00, each term
p?exp(—2pw4(y)) becomes a sharp wall potential, i.e., a function of w4 (y) which is zero
when w4 (y) > 0, and +oo when wa(y) < 0. To formalize this behaviour, we define the
sharp wall ©-function!! as

0 if x<O

+00 if x> 0. (527

O) = {
A basic formal property of this ®-function is its invariance under multiplication by a positive
quantity. With the above assumption checked below that all the relevant pre-factors c4(Q, P)
are positive near each leading wall, we can formally write

pli_)rgo[CA(Q, P)p* exp(=2pwa(y )] = ca(Q, PYO(=2wa(y)) = O(=2wa(y)). (5.28)

Of course O(—2w4(y)) = O(—wa(y)), but we shall keep the extra factor of 2 to recall
that the arguments of the exponentials, from which the ®-functions originate, come with a
well-defined normalization. Therefore, the limiting Hamiltonian density reads

1
Hoo(ho 13y, 1y, Q. P) = 2 [=7) + 7]+ ) S O(=2wn (), (5.29)
=

where A’ runs over the dominant walls. The set of dominant walls is defined as the minimal
set of wall forms which suffice to define the billiard table, i.e., such that the restricted set of
inequalities {w4/(y) = 0} imply the full set {w4(y) = 0}. The concept of dominant wall
will be illustrated below. (Note that the concept of ‘dominant’ wall is a refinement of the
distinction, which will also enter our discussion, between a leading wall and a subleading
one.)

10 Understanding the effects of the possible failure of this assumption is one of the subtle issues in establishing a
rigorous proof of the BKL picture.

1T One should more properly write ®, (x), but since this is the only step function encountered in this paper, we use
the simpler notation ® (x).
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The crucial point is that the limiting Hamiltonian (5.29) no longer depends on A, Q and P.
Therefore the Hamiltonian equations of motion for A, Q and P tell us that the corresponding
conjugate momenta, i.e., ;, P and Q, respectively, all become constants of the motion in the
limit A — +oo. The total Hamiltonian density H is also a constant of the motion (which
must be set to zero). The variable A evolves according to d\/dT = —%n,\. Hence, in the
limit, A is a linear function of 7. The only non-trivial dynamics resides in the evolution of
(y, m,) which reduces to the sum of a free (non-relativistic) kinetic term nf / 4 and a sum of
sharp wall potentials, such that the resulting motion of the y indeed constitutes a billiard, with
geodesic motion on the unit hyperboloid H,, interrupted by reflections on the walls defined by
wa(y) = 0. These walls are hyperplanes (in the sense of hyperbolic geometry) because they
are geometrically given by the intersection of the unit hyperboloid g* 8, = —1 with the usual
Minkowskian hyperplanes w4 (8) = 0.

We note in passing that an alternative route for reducing the dynamics to a billiard in
y-space would be to eliminate the variable A by solving the Hamiltonian constraint for ;.
This allows one to use A as a time variable, and is similar to going from the quadratic form of
the action of a relativistic particle to its ‘square-root form’,

1/2

1/2
H, = <n§ [4+Y ca(Q, P)p? exp(—zpr(y») — (ni [4+) @(—2wAf(y>)>
A A/
1
= Slmyl+ ; O(—2wa (y)). (5.30)

As the above derivation of the asymptotic constancy of all the phase space variables (Q, P)
may seem a bit formal, we study, in the appendix, a simplified model explicitly showing how
this asymptotic constancy arises. This toy model also exemplifies the residual, asymptotically
decaying variations of (Q, P) as p — o0.

5.2.2. Finite volume versus infinite volume. ~Geodesic motion in a billiard in hyperbolic
space has been much studied. It is known that this motion is chaotic or non-chaotic depending
on whether the billiard has finite or infinite volume [36, 52, 81, 102]. In the finite volume
case, the generic evolution exhibits an infinite number of collisions with the walls with strong
chaotic features (‘oscillating behaviour’).

By contrast, if the billiard has infinite volume, the evolution is non-chaotic. For a generic
evolution, there are only finitely many collisions with the walls. The system generically settles
after a finite time in a Kasner-like motion that lasts all the way to the singularity.

5.2.3. B-space description. The above derivation relied on the use of hyperbolic polar
coordinates (p, y). This use is technically useful in that it represents the walls as being
located at an asymptotically fixed position in hyperbolic space, namely wa (y) = 0. However,
once one has derived the final result (5.29), one can reexpress it in terms of the original variables
B*, which run over a linear (Minkowski) space. Owing to the linearity of w4 (8) = pwa(y)
in this Minkowskian picture, the asymptotic motion takes place in a ‘polywedge’, bounded
by the hyperplanes w4 (8) = 0. The billiard motion then consists of free motions of §* on
straight lightlike lines within this polywedge, which are interrupted by specular reflections
off the walls. (See formula (7.3) for the explicit effect of these reflections on the components
of the velocity vector of the S-particle.) Indeed, when going back to S-space (i.e., before
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taking the BKL limit), the dynamics of the scale factors at each point of space is given by the
Hamiltonian

H(B", m,) = NH=N %G“”nunu + ZCA exp(—2wa(B)) | . (5.31)
A

The B-space dynamics simplifies in the gauge N = 1, corresponding to the time coordinate
7. In the BKL limit, the Hamiltonian (5.31) takes the limiting form (in the gauge N = 1)

Hoo(,BMv 77;1_) = %Guvnuﬂv +Z®(_2wA’(IB)) (5.32)
.

where the sum is again only over the dominant walls. When taking equal time slices of
this polywedge (e.g., slices on which ), B’ is constant), it is clear that with increasing time
(i.e., increasing _; B', or increasing t or p) the walls recede from the observer. The B-space
picture is useful for simplifying the mathematical representation of the dynamics of the scale
factors which takes place in a linear space. However, it is inconvenient both for proving
that the exponential walls of (5.31) do reduce, in the large Y, 8 limit to sharp walls, and
for dealing with the dynamics of the other phase space variables (Q, P), whose appearance
in the coefficients c4 has been suppressed in (5.31). Let us only mention that, in order to
prove, in this picture, the freezing of the phase space variables (Q, P) one must consider
in detail the accumulation of the ‘redshifts’ of the energy—momentum 7, of the S-particle
when it undergoes reflections on the receding walls, and the effect of the resulting decrease
of the magnitudes of the components of 7, on the evolution of (Q, P). (In the notation of
the appendix, it is important to take into account the fact that py decreases with time.) By
contrast, the y-space picture that we used above allows for a more streamlined treatment
of the effect of the limit p — +0o0 on the sharpening of the walls and on the freezing
of (0, P).

In summary, the dynamics simplifies enormously in the asymptotic limit. It becomes
ultralocal in that it reduces to a continuous superposition of evolution systems (depending
only on a time parameter) for the scale factors and the dilatons, at each spatial point, with
asymptotic freezing of the off-diagonal and p-form variables. This ultralocal description
of the dynamics is valid only asymptotically. It would make no sense to speak of a
billiard motion prior to this limit, because one cannot replace the exponentials by ©-
functions. Prior to this limit, the evolution system for the scale factors involves the
coefficients in front of the exponential terms, and the evolution of these coefficients depends
on various spatial gradients of the other degrees of freedom. However, one may contemplate
setting up an expansion in which the sharp wall model is replaced by a model with
exponential (‘Toda-like’) potentials, and where the evolution of the quantities entering the
coefficients of these ‘Toda walls’ is treated as a next to leading effect. See [28] for
the definition of the first steps of such an expansion scheme for maximal supergravity in
11 dimensions.

5.3. Kasner frames versus Iwasawa frames

At this point, we want to clarify an issue that might at first sight seem paradoxical to the
reader. In most of the BKL literature (notably in the original analysis of [6, 8]), one tries
to construct the metric in frames equal (or close) to ‘Kasner frames’!2. These are defined as
frames with respect to which both the spatial metric and the extrinsic curvature are diagonal.

12 We know, however, no detailed development of the Hamiltonian formalism within such a frame whose definition
involves both the metric variables and their conjugate momenta.
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Once the time slicing has been fixed, this geometric frame is unique, up to time-dependent
rescalings of each basis vector, when the eigenvalues of the extrinsic curvature are distinct
and some definite ordering of the (time-independent) eigenvalues p, has been adopted.
It is not clear how to fix in a rigorous (and useful) manner the arbitrary time-dependent
rescalings of each basis vector. However, this can be done (following [7]) in an approximate
manner by considering the evolution of the geometry at each spatial point as a succession
of free Kasner flights interrupted by collisions against the walls. More precisely, one can
uniquely fix the normalization of the Kasner frame by imposing the two requirements that
(i) the Kasner frame be time independent during each Kasner epoch, i.e., the Lie derivative
of the frame vectors along d/d¢ be zero, and (ii) the linear transformation between two
successive Kasner frames has the special form given in (5.35) up to some time-independent
rescalings.

More explicitly, if we consider the three-dimensional case for definiteness and denote the
covariant components of the frame by {/;, m;, r;}, one has (suppressing the x-dependence)

gij (1) = AZOLL; + AS(tymim j + AS(t)r;r, (5.33)
during a certain Kasner epoch, and
8ij (1) = AT, + A5(0)ymim'; + A3(0)r]r] (5.34)

during the subsequent Kasner epoch. Here the two successive Kasner frames {/;, m;, r;},
{I{,m}, r} are (in this approximation) independent of time, while the scale factors A, (t) vary
like a power law during each Kasner free flight (say A,(t) ~ b,tP* during the first epoch,
and A, (t) ~ b/ tP« during the next, with some interpolating behaviour during the collision).
Belinskii er al [7] have argued (by studying the effect of one collision in the ‘incoming’ frame
{l;, m;, r;}, and by rediagonalizing the ‘outgoing’ metric) that the transformation between the

two successive Kasner frames could be written as
/ / I
I =1, m; = m; + opl;, r; =1+ 0. (5.35)

Here, 0,, and o, are quantities which can a priori be of order unity.

The seeming paradox is that according to [7] the o,, and o, do not get smaller for collisions
closer to the singularity, so that the transformation (5.35) from the old Kasner axes [ to the
new Kasner axes [’ is of order 1, no matter how close one gets to the singularity; therefore, the
Kasner axes generically never ‘come to rest’ if there is an infinite number of collisions. On
the other hand, as we saw, the Iwasawa frames become approximately time independent for
asymptotic values of t, and the extrinsic curvature approximately diagonal.

We now show that there is no contradiction between the oscillatory behaviour of the
Kasner axes (in the generic inhomogeneous case) and the asymptotic freezing of the off-
diagonal components A in the Iwasawa frame. The key point is the very restricted form of the
change (5.35) of the covariant components during a collision. Recall first that the covariant
components of the Iwasawa frame are given by the three covectors appearing as the three
lines of the matrix NV, i.e. 0! = dx' +n; dx? + no dx3, 62 = dx? + n3 dx3, 03 = dx>. (Note
also in passing that, contrary to the Kasner frames, the Iwasawa frames are not geometrically
uniquely defined since one can redefine the coordinates x'.)

Let us now see what (5.35) implies for the change in the Iwasawa variables. For doing
this we need to relate these to the /;, m;, n;. This was done in section 4.2 for the simple exact
Kasner solution and is easy to generalize to the case of an oscillatory metric. Indeed, when
one is not in the ‘collision region’ (and this can be applied both before and after the specific
collision under consideration in (5.35)), the coordinate components of the metric take the form
(5.33) or (5.34) with A3 < A7 and A3 < A3. As the definition of the Iwasawa components
n, is purely algebraic, we can apply the formulae (4.16), (4.17) of section 4.2 to the present
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case. It suffices to replace 17« by A, everywhere. Then, it is easy to see that n|, n, and n3 are
still given by the same final formula as above, i.e.,

l l [ —1
n ==, ny = =, ny = M (5.36)
I A limy — lom
(before the collision) and
l/ l/ l/ I l/ ’
" = 2 p=2 oy =T (537)

= —, Ny = -,

I S
(after the collision). If we substitute in this second formula I/, m} and ] in terms of /;, m; and
r; according to (5.35), we obtain the same values for the Iwasawa off-diagonal variables n;, n,
and n3, before and after the collision, namely, n| = n,n, = ny, ny = n3. There is thus no
contradiction between the change of Kasner axes (5.35) and the freezing of the off-diagonal
Iwasawa variables. The same conclusion holds for collisions against the other types of walls,
where the Kasner axes ‘rotate’ as in (5.35).

’ ’ ’
Limy — lymy

5.4. Constraints

‘We have just seen that in the BKL limit, the evolution equations become ordinary differential
equations with respect to time. Although the spatial points are decoupled in the evolution
equations, they are, however, still coupled via the constraints. These constraints just restrict
the initial data and need only be imposed at one time, since they are preserved by the dynamical
equations of motion. Indeed, one easily finds that, in the BKL limit,

H=0 (5.38)

since [H(x), H(x")] = O in the ultralocal limit. This corresponds simply to the fact that
the collisions preserve the lightlike character of the velocity vector. Furthermore, the gauge
constraints (5.8) are also preserved in time since the Hamiltonian constraint is gauge invariant.
In the BKL limit, the momentum constraint fulfils

It is important that the restrictions on the initial data do not bring dangerous constraints on
the coefficients of the walls in the sense that these may all take non-zero values. For instance,
it is well known that it is consistent with the Gauss law to take non-vanishing electric and
magnetic energy densities; thus the coefficients of the electric and magnetic walls are indeed
generically non-vanishing. In fact, the constraints are essentially conditions on the spatial
gradients of the variables entering the wall coefficients, not on these variables themselves. In
some non-generic contexts, however, the constraints could force some of the wall coefficients
to be zero; the corresponding walls would thus be absent. (For example, for vacuum gravity
in four dimensions, the momentum constraints for some Bianchi homogeneous models force
some symmetry wall coefficients to vanish. But this is peculiar to the homogeneous case.)

It is easy to see that the number of arbitrary physical functions involved in the solution
of the asymptotic BKL equations of motion is the same as in the general solution of the
complete Einstein-matter equations. Indeed, the number of constraints on the initial data and
the residual gauge freedom are the same in both cases. Further discussion of the constraints
in the BKL context may be found in [2, 29].

5.5. Consistency of BKL behaviour in spite of the increase of spatial gradients

The essential assumption in the BKL analysis, also made in the present paper, is the asymptotic
dominance of time derivatives with respect to space derivatives near a spacelike singularity.
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This assumption has been mathematically justified, in a rigorous manner, in the cases where
the billiard is of infinite volume, i.e., in the (simple) cases where the asymptotic behaviour is
not chaotic, but is monotonically Kasner-like [2, 29].

On the other hand, one might a priori worry that this assumption is self-contradictory in
those cases where the billiard is of finite volume, when the asymptotic behaviour is chaotic,
with an infinite number of oscillations. Indeed, it has been pointed out [4, 72] that the
independence of the billiard evolution at each spatial point will have the effect of infinitely
increasing the spatial gradients of various quantities, notably of the local values of the Kasner
exponents p, (x). This increase of spatial gradients towards the singularity has been described
as a kind of turbulent behaviour of the gravitational field, in which energy is pumped into
shorter and shorter length scales [4, 72], and, if it were too violent, it would certainly work
against the validity of the BKL assumption of asymptotic dominance of time derivatives. For
instance, in our analysis of gravitational walls in the following section, we will encounter
subleading walls, whose pre-factors depend on spatial gradients of the logarithmic scale
factors .

To address the question of consistency of the BKL assumption we need to know how
fast the spatial gradients of 8, and of similar quantities entering the pre-factors, grow near the
singularity. Let us consider the spatial gradient of 8 = py, which is

9B = pdiy + pydir. (5.40)
As we work here in the gauge (2.5), the spatial derivatives must be taken with fixed 7. We know
that, asymptotically, A is a linear function of 7, i.e., A = a(x)T +b(x) where a(x) = — %m (x)

is linked to the (spatially dependent) conjugate momentum of A. Therefore the spatial gradient
0;A = Td;a(x) + 9;b(x) behaves linearly in 7, so that 9;A o< A = In p. The second term in
(5.40) consequently behaves as ypInp when p — oo. Let us now estimate the first term
(which will turn out to dominate the sum).

To estimate d;y we can use the standard results on billiards on hyperbolic space. Indeed,
dx'd;y can be thought of as the infinitesimal deviation between two billiard trajectories. The
chaotic behaviour of the billiard implies that this deviation will grow exponentially with 7. In
fact, because we work on H,, with curvature —1 the Liapunov exponent for billiard trajectories
is equal to 1, when using geodesic length as time parameter. Remembering the Hamiltonian
constraint 77 = 715, the geodesic length is simply equal to A. This yields the growth estimate

dy =0 et =0()p (5.41)

where the coefficient O(1) is a chaotically oscillating quantity. This estimate is not affected
by the collisions against the walls because these preserve the angles made by neighbouring
trajectories (the walls are hyperplanes). Inserting (5.41) in (5.40), we see that the first term
indeed dominates the second. We conclude that the chaotic character of the billiard indeed
implies an unlimited growth of the spatial gradients of B, but that this growth is only of
polynomial order in p

3p = O()p>. (5.42)

This polynomial growth of 9; 8 (and of its second-order spatial derivatives) entails a polynomial
growth of the pre-factors of the subdominant walls in section 6.2. Because it is polynomial
(in p), this growth is, however, negligible compared to the exponential (in p) behaviour of the
various potential terms. It does not jeopardize our reasoning based on keeping track of the
various exponential behaviours. As we will see, the potentially dangerously growing terms
that we have controlled here appear only in subdominant walls. The reasoning of the appendix
shows that the pre-factors of the dominant walls are self-consistently predicted to evolve very
little near the singularity.
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We conclude that the unlimited growth of some of the spatial gradients does not affect
the consistency of the BKL analysis done here. This does not mean, however, that it will be
easy to promote our analysis to a rigorous mathematical proof. The main obstacle to such
a proof appears to be the existence of exceptional points, where a pre-factor of a dominant
wall happens to vanish, or points where a subdominant wall happens to be comparable to a
dominant one. Though the set of such exceptional points is (generically) of measure zero,
their density might increase near the singularity because of the increasing spatial gradients.
This situation might be compared to the KAM (Kolmogorov—Arnold—Moser) one, where the
‘bad’ tori have a small measure, but are interspersed densely among the ‘good’ ones.

5.6. BKL limit versus other limits

The last issue which we wish to address in this section concerns the relation of the BKL limit
to other limits considered in the literature, such as the strong coupling limit or the ‘small
tension limit’, as well as the relation with asymptotically velocity dominated solutions.

It is sometimes useful to separate the time derivatives (conjugate momenta) in the
Hamiltonian from the space derivatives, namely,

H=K +&V (5.43)

where ¢ = %1 according to whether the spacetime signature is Lorentzian (¢ = 1) or Euclidean
(e = —1). Here,

K'=Ho+Vs+ V), (5.44)
contains all the kinetic terms, and
V' =V + ng;gn +Vs (5.45)

the terms with spatial derivatives. We stress that this split is different from that introduced
in section 5.1, where only the kinetic terms of the scale factors and the dilatons were kept as
such. The above split is useful because for some models the asymptotic dynamics is entirely
controlled by K, i.e., by the limit ¢ = 0. This happens whenever the billiard that emerges
in the BKL limit is defined by the symmetry and electric walls, as, for instance, for D = 11
supergravity [24] or the pure Einstein—Maxwell system in spacetime dimensions D > 5
[25, 74]. Curvature and magnetic walls are then subdominant, i.e., spatial gradients become
negligible as one approaches the singularity.

If the curvature and magnetic walls can be neglected, the evolution equations are exactly
the same as the equations of motion obtained by performing a direct torus reduction to 1 + 0
dimensions. We stress, however, that no homogeneity assumption has to be made here. The
effective torus-dimensional reduction follows from the dynamics and is not imposed manually.

The limit ¢ = 0 is known as the ‘zero signature limit’ [98] and lies half-way between
spacetimes of Minkowskian or Lorentzian signature. It corresponds to a vanishing velocity
of light (or vanishing ‘medium tension’); the underlying geometry is built on the Carroll
contraction of the Lorentz group [50]. The terminology ‘strong coupling’ is also used [55]
and stems from the fact that, with appropriate rescalings, H can be rewritten as

H=GyK +Gy'V (5.46)

such that the limit in question corresponds to large values of Newton’s constant G . The
interest in this ultrarelativistic (‘Carrollian’) limit has recently been revived in [1, 30, 46, 78].

If there are only finitely many collisions with the walls (corresponding to a billiard of
infinite volume) the dynamics in the vicinity of the singularity becomes even simpler. After
the last collision, the asymptotic dynamics is controlled solely by the kinetic energy H, of the
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scale factors. This case where both spatial gradients and matter (here p-form) terms can be
neglected, has been called ‘asymptotically velocity-dominated’ (or ‘AVD’) in [35] and allows
a rigorous analysis of its asymptotic dynamics by means of Fuchsian techniques [2, 29]. By
contrast, rigorous results are rare for the case of infinitely many collisions (see, however, the
recent analytic advances in [92]). Besides the existing rigorous results, there also exists a
wealth of numerical support for the BKL ideas [9, 10].

6. Walls

The decomposition (5.15) of the Hamiltonian gives rise to different types of walls, which we
now discuss in turn. Specifically, we will derive explicit formulae for the linear forms w4 ()
and the field dependence of the pre-factors c4 entering the various potentials.

6.1. Centrifugal (or symmetry) walls

We start by analysing the effects of the off-diagonal metric components which will give rise
to the so-called ‘symmetry walls’. As they originate from the gravitational action they are
always present. The relevant contribution to the potential is the centrifugal potential (5.18).
When comparing (5.18) to the general form (5.25) analysed above, we see that firstly the
summation index A must be interpreted as a double index (a, b), with the restriction a < b,
secondly that the corresponding pre-factor is ¢, = (P-f NP j)z is automatically non-negative
(in accordance with our genericity assumptions, we shall assume ¢,, > 0). The centrifugal
wall forms read

Wi (B) = wiyy, B4 =B — B (a < b). (6.1)
We refer to these wall forms as the ‘symmetry walls’ for the following reason. When applying
the general collision law (7.3) derived below to the case of the collision on the wall (6.1) one
easily finds that its effect on the components of the velocity vector v* is simply to permute
the components v and v”, while leaving unchanged the other components i # a, b.
The hyperplanes w(sab) (B) = 0 (i.e., the symmetry walls) are timelike since

s s
G Wiy Wiapyy = +2. (6.2)

This ensures that the symmetry walls intersect the hyperboloid G, 8#g" = —1, %", p* > 0.
The symmetry billiard (in S-space) is defined to be the region of Minkowski space determined
by the inequalities

Wean (B) = 0, (6.3)

with )~ B* > 0 (i.e., by the region of B-space where the © functions are zero). Its projection
on the hyperbolic space H,, is defined by the inequalities wfab)(y) > 0.

The explicit expressions above of the symmetry wall forms also allow us to illustrate the
notion of a ‘dominant wall’ defined in section 5.2.1. Indeed, the d(d — 1)/2 inequalities (6.3)
already follow from the following minimal set of d — 1 inequalities:

B2—p' =08 -p*=0,....8 —p >0 (6.4)

More precisely, each linear form which must be positive in (6.3) can be written as a linear
combination, with positive (in fact, integer) coefficients of the linear forms entering the subset
(6.4). Forinstance, 8> — B! = (83— B> +(B>—B"), etc. In the last section, we will reinterpret
this result by identifying the dominant linear forms entering (6.4) with the simple roots of
SL(n, R). Note that, in principle, the final set of dominant walls can only be decided when
one starts from the complete list of all the dynamically relevant walls. In all the models we
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examine the set of dominant symmetry walls (6.4) will, however, be part of the final minimal
set of dominant walls defining the complete billiard table.

If only the symmetry walls were present in the Hamiltonian, one would easily deduce from
the above the following picture of the dynamics: when the trajectory hits a wall g¢*! = g¢
from within the interior of the billiard 8%*! — 8 > 0 it undergoes a reflection which reorders
v+ and v? from the incident state v**' < v? (in which g¢*' — B¢ decreases towards zero) into
an outgoing state v**! > v (in which B**! — B¢ increases away from zero). Each collision
reorders a pair of velocity components so that, after a finite number of collisions, they will
get reordered in a stable configuration where v! < v?.-- < v¢ and B! < B2--- < B9. The
motion would then continue freely, i.e., without collisions, after the last reordering reflection.
The same conclusion was already reached in section 4 by a direct calculation of the dynamics
of the Iwasawa scale factors of non-diagonal Kasner metrics (which is, indeed, a case where
only symmetry walls are present).

If we still consider for a moment the simple case of homogeneous but non-diagonal metrics
and recall that the metric can be diagonalized at all times by a time-independent coordinate
transformation x* — x" = L' ;x/, it might appear that the symmetry walls, which are related
to the off-diagonal components, are only a gauge artefact with no true physical content. This
conclusion, however, would be incorrect. First, the transformation needed to diagonalize the
metric may not be a globally well-defined coordinate transformation if the spatial sections
have non-trivial topology, e.g., are tori, since it would conflict in general with periodicity
conditions. Second, even if the spatial sections are homeomorphic to R?, the transformation
x' — x" = L';x/, although a diffeomorphism, is not a proper gauge transformation in the
sense that it is generated by a non-vanishing charge, and therefore two solutions that differ
by such a transformation should be regarded as physically distinct (although related by a
symmetry). Initial conditions, for which the metric is diagonal and hence the symmetry walls
are absent, form a set of measure zero.

Let us finally mention the possibility of alternative treatments of the dynamics of off-
diagonal metric components. We have just shown that the Iwasawa decomposition of the spatial
metric leads to a projected description of the GL(d, R)/SO (d)-geodesics as motions in the
space of the scale factors with exponential (“Toda-like’) potentials. An alternative description
can be based on the decomposition G = RT AR of the spatial metric, where R € SO (d) and
A is diagonal [70, 93]. One then obtains Calogero-like potentials o sinh~>(8* — ). In the
BKL limit, these potentials can be replaced by sharp wall potentials but whether the system
lies to the left or to the right of the wall 8¢ — 8” = 0 depends on the initial conditions in this
alternative description.

6.2. Curvature (gravitational) walls

Next we analyse the gravitational potential, which requires a computation of curvature. To
that end, one must explicitly express the spatial curvature in terms of the scale factors and the
off-diagonal variables A/%;. Again, the calculation is most easily done in the Iwasawa frame
(4.8), in which the metric assumes the form (4.6). We use the short-hand notation A, = ¢
for the (Iwasawa) scale factors. Let C%,.(x) be the structure functions of the Iwasawa basis
{64}, namely,

do* = —1C*,.0" A 6° (6.5)

where d is the spatial exterior differential. The structure functions obviously depend only on
the off-diagonal components N/%;, but not on the scale factors. Using the Cartan formulae for
the connection 1-form w?,
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do° + Zw“b ABY =0 (6.6)
dyab = Wap + Wpa (6.7)

where wg, = V.0, and

Yab = 8ap Al = e " 8 (6.8)
is the metric in the frame {0}, one finds
1 A? A2 A?
C — _ Cb Cd _a _ CL _c eb
@d Xb: 2 ( S PRR Y Af,)
1 2 b
+y T2 8a(A42) , + 801 (A7) , — San (A7) J0". (6.9)

b c

In the last bracket above, the commas denote the frame derivatives 9, = N7 ,9;.
The Riemann tensor R, s, the Ricci tensor Ry, and the scalar curvature R are obtained
through

QY =do'y+ ) o'c Ao (6.10)
1
= EZR”befGe/\Of (611)
e.f

where Q¢ is the curvature 2-form and

Rab =) Ruch, R=Y" A%Raa. (6.12)

Direct, but somewhat cumbersome, computations yield

1
RZ_ZZAzAz “bc) +Z_F(azﬂ 96, 9C. €) (6.13)

a,b,c

where F, is some complicated function of its arguments whose explicit form will not be
needed here. The only property of F, that will be of importance is that it is a polynomial of
degree two in the derivatives 9 and of degree one in 3>f. Thus, the exponential dependence
on the  which determines the asymptotic behaviour in the BKL limit, occurs only through
the A2-terms written explicitly in (6.13).

In (6.13) one obviously has b # ¢ because the structure functions C¢;, are antisymmetric
in the pair [bc]. In addition to this restriction, we can assume, without loss of generality,
that a # b, c in the first sum on the right-hand side of (6.13). Indeed, the terms with either
a = b or a = c can be absorbed into a redefinition of F,. We can thus write the gravitational
potential density (of weight 2) as

Vo =—gR = Z e 2aahr(ﬂ) Ze ZMa(ﬂ)F (6.14)
abc

where the prime on Y _ indicates that the sum is to be performed only over unequal indices,
i.e.,a # b, b # c, c # a, and where the linear forms o, (8) and u,(B) are given by

anc(B) =28+ Y B (a#bbFccta) (6.15)

e#a,b,c
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and

Ha(B) =) B, (6.16)
c#a
respectively. Note that «,; is symmetric under the exchange of b with ¢, but the index a plays
a special role.

Comparing the result (6.14) to the general form (5.25) we see that there are, a priori, two
types of gravitational walls: the «-type and the u-type. The a-type walls clearly come with
positive pre-factors, proportional to the square of a structure function C%,.. The u-type terms
seem to pose a problem because they do not have a definite sign. It would therefore seem that,
in the BKL limit, the gravitational potential would tend to

/
lim Vg =Y O[—2aanc(B)]+ Y (£O[-2114(B))). (6.17)

p—>00
a,b,c a

However, the indefinite p-type terms can generically be neglected in the BKL limit. This
is most simply seen by noting that the inequalities o 5. (8) = 0 imply w,(8) = 0 because
U, 1s a linear combination with positive coefficients of the «,,.. Indeed, we can write
e = (Cape + Upea) /2. Therefore the a-walls dominate the p-ones.

In fact, one can establish a stronger result, namely n,(8) > 0 within the entire future
light cone of the 8. For this purpose, we note first that each linear form w,(B) is lightlike,
ie., G*"(wa)u(ta)y = 0. Therefore, each hyperplane u,(8) = 0 is tangent to the light cone
along some null generator. This means that the future light cone is entirely on one side of
the hyperplane u,(8) = 0 (i.e., either u,(B) > 0 for all points inside the future light cone
or 1a(B) < 0). Now, the point 8! = p? = ... = B¢ = 1 is inside the future light cone
and makes all the u, positive. Hence u,(8) > 0 inside the future light cone for each a and
O[—2u.(B)] = 0, and we really have

lim Vi = (;/@[—Zaabc(ﬂ)]- (6.18)

Note, however, that the u-type walls may make their existence felt in the exceptional case
when f is close to the lightlike direction defined by . This is the case of ‘small oscillations’
considered by BKL in [6, 8], for which they verify (for d = 3) that the evolution is indeed
controlled by the «,;.-terms even in that region.

From these considerations, we deduce the additional constraints

aabc(,B) = 0 (D > 3) (619)

besides the symmetry inequalities (6.4). The hyperplanes o,.(8) = 0 are called the
‘curvature’ or ‘gravitational’ walls. Like the symmetry walls, they are timelike since

G"" (@ape) p (ape)y = +2. (6.20)

The restriction D > 3 is due to the fact that in D = 3 spacetime dimensions, the gravitational
walls o (B) = 0 are absent, simply because one cannot find three distinct spatial indices. In
this case all gravitational walls are of subdominant type 1, and thus, in the BKL limit,

Vo = ) (FOl-2u (A =0 (D =3). ©.21)

This is, of course, in agreement with expectations, because gravity in three spacetime
dimensions has no propagating degrees of freedom (gravitational waves).

The fact that the gravitational potential becomes, in the BKL limit, a positive sum of
sharp wall potentials, is remarkable for several reasons. First, the final form of the potential is



Topical Review R173

quite simple, even though the curvature is a rather complicated function of the metric and its
derivatives. Secondly, the limiting expression of the potential is positive, even though there
are subdominant terms in Vs with indefinite sign. Thirdly, it is ultralocal in the scale factors,
i.e., involves only the scale factors but not their derivatives. It is this fact that accounts for the
decoupling of the various spatial points.

The coefficients of the dominant exponentials involve only the undifferentiated structure
functions C“,.. Consequently, one can model the gravitational potential in leading order
by spatially homogeneous cosmologies, which have constant structure functions, and by
considering homogeneity groups that are ‘sufficiently non-Abelian’ so that none of the
coefficients of the relevant exponentials vanish (Bianchi types VIII and IX for d = 3, other
homogeneity groups for d > 3—see [31]). By contrast, inspection of (6.13) and (6.14) reveals
that the subleading terms not only lack manifest positivity, but also do depend on spatial
inhomogeneities via the spatial gradient of the structure functions, and the first and second
spatial derivatives of the scale factors. It is quite intriguing that the associated walls are
lightlike, unlike the walls associated with the leading terms all of which are timelike. Terms
involving lightlike walls will thus have to be taken into account in higher orders of the BKL
expansion. A Kac—-Moody theoretic interpretation of this fact was recently proposed in [28].

The computations in this subsection involve only the Cartan formulae. They remain valid
if in (4.8) we replace the 1-forms dx’ by some anholonomic frame f* = f';(x)dx/. This
modifies the Iwasawa frame {6}, which has no intrinsic geometrical meaning. The structure
functions C“p.(x) of the new frame get extra contributions from the spatial derivatives acting
on fi. In fact, for f/ = dx’ not all gravitational walls o appear because from (4.7) we then
have C?,. = 0 for the top component (since 8¢ = dx?), and C?~',. = 0 (b, ¢ # d). Hence,
the corresponding gravitational walls are absent. To obtain all the gravitational walls, one
therefore needs an anholonomic frame f’. However, the dominant gravitational wall aj4_14
is always present, and this is the one relevant for the billiard, when gravitational walls are
relevant at all.

6.3. p-form walls

While none of the wall forms considered so far involved the dilatons, the electric and magnetic
ones do as we shall now show. To make the notation less cumbersome, we will omit the
super-(or sub-)script (p) on the p-form fields in this subsection.

6.3.1. Electric walls. The electric potential density can be written as

Vi =5 2 e ey (6.22)

Caya,...a,
where £% are the components of the electric field 7r/t"» in the basis {6},
ENt = NG N® G, - N T (6.23)

(recall our summation conventions for spatial coordinate indices) and where e,,...q, (8) are the
electric wall forms,

A
Cara,(B) = B+ + B — 224, (6.24)

Here the indices a; are all distinct because £ is completely antisymmetric. The variables
E4 % do not depend on the B*. It is thus rather easy to take the BKL limit. The exponentials
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in (6.22) are multiplied by positive factors which generically are different from zero. Thus, in
the BKL limit, V(ell,) becomes

Ve~ Z O[—2eq,a,(B)]- (6.25)

ay<ay<--<a,

The transformation from the variables (N;, P'y, Aj,...; , /") to the variables (N;, P/,
Aal...ap, 5"1"'“”) is a point canonical transformation whose explicit form is obtained from

SOPING Y ﬁnﬁ“’fﬂAiil...JAp =Y PLNGHY D isA (6.26)
a p : a

p!
»

The new momenta P’ ,, conjugate to A/; differ from the old ones P’, by terms involving £, N
and A since the components Ay, ..., of the p-forms in the basis {#“} depend on the N/,
Aa]"'ah = Nj]a] o .le)aliAjl"'jﬂ'

However, it is easy to see that these extra terms do not affect the symmetry walls in the BKL
limit.

6.3.2. Magnetic walls. The magnetic potential is dealt with similarly. Expressing it in the
{6“}-frame, one obtains

1
magn _ Z 2y (B) 2
Yo = ag 1! e Fr ey ) (6.27)

ap,az,..., Ap+1

where Fy, ..q,,, are the components of the magnetic field Fy, ..., in the basis {6},

‘Fal"'ap-ﬂ = Nj]a] T ij+la,)+l F./l "'jp+l . (6'28)
The mg, ...q,,, (B) are the magnetic linear forms
A
Maa B) = D B+ (6.29)

bélar,az,...aps}

where again all a; are distinct. One sometimes rewrites my,...q,,, (B) as fitg,,,..q,» Where

{aps2, apy3, - .., aq} is the set complementary to {ai, as, ...a,41}; €.g.,
. oA
Mioapr =B+ BT =ma (6.30)

Of course, the components of the exterior derivative F of A in the non-holonomic frame {6}
involve the structure coefficients, i.e., 7y, .a,,, = 94, Aay-a,.,;] + C.A-terms where 9, = N ,0;
is the frame derivative.

Again, the BKL limit is quite simple and yields (assuming generic magnetic fields)

ymen Z O[—2b4yay ,  (B)]- 6.31)

ay<--<dq_p-1

As the off-diagonal variables, the electric and magnetic fields freeze in the BKL limit since
the Hamiltonian no longer depends on the p-form variables. These drop out because one can
rescale the coefficient of any ®-function to be 1 (when it is not zero), thereby absorbing the
dependence on the p-form variables.

The scale factors are therefore constrained by the further ‘billiard” conditions

Caray(B) =0, Mayay , 1 (B) = 0. (6.32)
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The hyperplanes €qy-a, (B) = 0 and r1g,...q pet (B) = 0 are called ‘electric’ and ‘magnetic’
walls, respectively. Both walls are timelike because their gradients are spacelike, with squared

norm
d—p—1 A \2
pd—p-D, <—”) > 0. (6.33)
d—1 2

(For D = 11 supergravity, we have d = 10, p = 3 and A, = 0 and thus the norm is equal
to +2.) This equality explicitly shows the invariance of the norms of the p-form walls under
electric-magnetic duality.

6.4. Walls due to dilatons or to a cosmological constant

The fact that the leading walls originating from the centrifugal, gravitational and p-form
potentials, are all timelike, is an important ingredient of the overall BKL picture. As we
saw above, however, there exist subleading contributions in the gravitational potential whose
associated wall forms are lightlike. Such is the case also for the dilaton contribution

Vo = 88" 09,9, (6.34)
which has the same form as the subleading gravitational walls, since the exponentials that
control its asymptotic behaviour are easily seen to be e 2%} Consequently, at least to
leading order, we can neglect Vy in the BKL limit.

The only example of a spacelike wall that we know is the cosmological constant term (in
its weight —2 form)

Vi = Ag = Aexp [—2 Zﬂj| ) (6.35)

When A is positive (de Sitter sign) the spacelike wall (6.35) is repulsive. Depending on the
initial conditions—which set the scale—this wall either prevents the system from reaching
the BKL small volume regime or does not prevent the collapse. In the first case, the spacelike
wall acts as a ‘barrier’ to the motion of the billiard ball, and the reflection against it forces
the billiard ball to run ‘backwards in B-time’ in the direction of increasing spatial volume
(this is analogous to the bounce in the (global) de Sitter solution, which is a hyperboloid—a
sphere that first contracts and then expands). In the second case, the billiard ball is already
‘beyond the barrier’, and the presence of the spacelike wall has only a subdominant effect on
its motion. In the BKL picture it quickly becomes negligible: the cosmological potential Ag
tends to zero as g goes to zero. When A is negative (anti-de Sitter sign) the spacelike wall
(3.37) is attractive and tends to favour collapse. It, however, quickly becomes negligible in
the BKL limit.

6.5. Chern—Simons and Yang—Mills couplings

The addition of Chern—Simons terms, Yang—Mills or Chapline-Manton couplings does not
bring in new (asymptotically relevant) walls. The only change in the asymptotic dynamics is
a modification of the constraints.

For Yang—Mills couplings, the contribution to the energy density from the Yang—Mills
field takes the same form as for a collection of Abelian 1-forms, with the replacement of the
momenta 7’ by the Yang—Mills momenta 71;' (wherea = 1,..., N and N is the dimension
of the internal Lie algebra) and of the magnetic fields by the corresponding non-Abelian field
strengths. As their Abelian counterparts, these do not involve the scale factors g*. Because
of this key property, the same analysis goes through. Each electric and magnetic 1-form wall
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is simply repeated a number of times equal to the dimension of the Lie algebra. Gauss law is,
however, modified and reads

Dl = Virrl + P AS = 0. (6.36)

Here, V; is the standard metric covariant derivative. Similarly, the momentum constraints are
modified and involve the non-Abelian field strengths.

The discussion of Chapline-Manton couplings or Chern—Simons terms proceeds in the
same way. The energy density of the p-forms has the same dependence on the scale factors
as in the absence of couplings, i.e., provides the same exponentials. The only difference is
that the wall coefficients are different functions of the p-form canonical variables; but this
difference is again washed out in the sharp wall limit, where the coefficients can be replaced by
1 (provided they are different from zero). The momentum and Gauss constraints are genuinely
different and impose different conditions on the initial data.

Nevertheless, the Chern—Simons terms may play a more significant role in peculiar
contexts when only specialized field configurations are considered. This occurs for instance
in [58], where it is shown that the D = 11 supergravity Chern—Simons term for spatially
homogeneous metrics and magnetic fields may constrain some electromagnetic walls to
disappear ‘accidentally’. This changes the finite volume billiard to that of infinite volume.

7. Cosmological billiards

Let us summarize our findings. The dynamics in the vicinity of a spacelike singularity is
governed by the scale factors, while the other variables (off-diagonal metric components,
p-form fields) tend to become mere ‘spectators’ which get asymptotically frozen. This simple
result is most easily derived in terms of the hyperbolic polar coordinates (p, ), and in the
gauge (2.5). In this picture, the essential dynamics is carried by the angular variables y
which move on a fixed billiard table, with cushions defined by the dominant walls w4/ (y).
However, it is often geometrically more illuminating to ‘unproject’ this billiard motion in
the full Minkowski space of the extended scale factors 8*. In that picture, the asymptotic
evolution of the scale factors at each spatial point reduces to a zigzag of null straight lines w.r.t.
the metric G, dB* dB”. The straight segments of this motion are interrupted by collisions
against the sharp walls

wa(B) = waup" =0 (7.1

defined by the symmetry, gravitational and p-form potentials, respectively. As we showed all
these walls are timelike, i.e., they have spacelike gradients:

G""wapway >0 (7.2)

Indeed, the gradients of the symmetry and gravitational wall forms have squared norm equal
to +2, independent of the dimension d. By contrast, the norms of the electric and magnetic
gradients, which are likewise positive, depend on the model. As we saw, there also exist
subdominant walls, which can be neglected as they are located ‘behind’ the dominant walls.
In the B-space picture, the free motion before a collision is described by a null straight
line of the type (3.21), with the constraint (3.22). The effect of a collision on a particular wall
w4 (B) is easily obtained by solving (5.31), or (5.32), with only one term in the sum. This
dynamics is exactly integrable: it suffices to decompose the motion of the S-particle into two
(linear) components: (i) the component parallel to the (timelike) wall hyperplane and (ii) the
orthogonal component. One easily finds that the parallel motion is left unperturbed by the
presence of the wall, while the orthogonal motion suffers a (one-dimensional) reflection, with
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a change of the sign of the outgoing orthogonal velocity with respect to the ingoing one. The
net effect of the collision on a certain wall w() then is to change the ingoing velocity vector
v entering the ingoing free motion (3.21) into an outgoing velocity vector v'** given (in any
linear frame) by the usual formula for a geometric reflection in the hyperplane w(8) = O:

. 14
RN R

w0 (7.3)
Here, all scalar products, and index raisings, are done with the B-space metric G,,. Note
that the collision law (7.3) leaves invariant the (Minkowski) length of the vector v*. Because
the dominant walls are timelike, the geometric reflections that the velocities undergo during
a collision, are elements of the orthochronous Lorentz group. Each reflection preserves the
norm and the time orientation; hence, the velocity vector remains null and future oriented.

From this perspective, we can also better understand the relevance of walls which are not
timelike. Lightlike walls (like some of the subleading gravitational walls) can never cause
reflections because in order to hit them the billiard ball would have to move at superluminal
speeds in violation of the Hamiltonian constraint. The effect of spacelike walls (like the
cosmological constant wall) is again different: they are either irrelevant (if they are ‘behind the
motion’), or otherwise they reverse the time orientation inducing a motion towards increasing
spatial volume (‘bounce’).

The hyperbolic billiard is obtained from the B-space picture by a radial projection onto
the unit hyperboloid of the piecewise straight motion in the polywedge defined by the walls.
The straight motion thereby becomes a geodesic motion on hyperbolic space. The ‘cushions’
of the hyperbolic billiard table are the intersections of the hyperplanes (7.1) with the unit
hyperboloid, such that the billiard motion is constrained to be in the region defined as
the intersection of the half-spaces w4 (8) > 0 with the unit hyperboloid. As we already
emphasized, not all walls are relevant since some of the inequalities w4 () > 0 are implied by
others [26]. Only the dominant wall forms, in terms of which all the other wall forms can be
expressed as linear combinations with non-negative coefficients, are relevant for determining
the billiard. Usually, these are the minimal symmetry walls and some of the p-form walls.
The billiard region, as a subset of hyperbolic space, is in general non-compact because the
cushions meet at infinity (i.e., at a cusp); in terms of the original scale-factor variables S, this
means that the corresponding hyperplanes intersect on the light cone. It is important that, even
when the billiard is non-compact, the hyperbolic region can have finite volume.

Given the action (2.1) with definite spacetime dimension, menu of fields and dilaton
couplings, one can determine the relevant wall forms and compute the billiards. For
generic initial conditions, we have the following results, as to which of the models (2.1)
exhibit oscillatory behaviour (finite volume billiard) or Kasner-like behaviour (infinite volume
billiard):

e Pure gravity billiards have finite volume for spacetime dimension D < 10 and infinite
volume for spacetime dimension D > 11 [33]. This can be understood in terms of the
underlying Kac—Moody algebra [27]: as shown there, the system is chaotic precisely if
the underlying indefinite Kac—Moody algebra is hyperbolic.

e The billiard of gravity coupled to a dilaton always has infinite volume, hence exhibits
Kasner-like behaviour [2, 5, 29].

e If gravity is coupled to p-forms (with p # 0 and p < D — 2) without a dilaton the
corresponding billiard has a finite volume [25]. The most prominent example in this class
is D = 11 supergravity, whereas vacuum gravity in 11 dimensions is Kasner-like. The
3-form is crucial for closing the billiard. Similarly, the Einstein—-Maxwell system in four
(in fact any number of) dimensions has a finite-volume billiard (see [60, 75, 100] for
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a discussion of four-dimensional homogeneous models with Maxwell fields exhibiting
oscillatory behaviour).

e The volume of the mixed Einstein-dilaton-p-form system depends on the dilaton
couplings. For a given spacetime dimension D and a given menu of p-forms, there exists
a subcritical domain D in the space of the dilaton couplings, i.e., an open neighbourhood
of the origin A, = 0 such that (i) when the dilaton couplings A, belong to D the general
behaviour is Kasner-like, but (ii) when the A, do not belong to D the behaviour is
oscillatory [24, 29]. For all the superstring models, the dilaton couplings do not belong
to the subcritical domain and the billiard has finite volume. Note, however, that the
superstring dilaton couplings are precisely ‘critical’, i.e., on the borderline between the
subcritical and the overcritical domain, for the heterotic and type I theories.

As a note of caution let us point out that some indicators of chaos must be used with care
in general relativity, because of reparametrization invariance, and in particular redefinitions of
the time coordinate; see [18, 54] for a discussion of the original Bianchi IX model.

We next discuss the link between the various time coordinates used in the analysis. When
working in the gauge (2.5), the basic time coordinate is 7. Let us see how the other time
coordinates depend on 7. First, we note that the dynamical variable A is asymptotically a linear
function of 7. Indeed, its conjugate momentum 77; < 0 is asymptotically constant, so that the
integration of dA/dT = —1m; yields

A= —%JUT + const. (7.4)
Hence p is an exponential function of 7:
p=¢e" e 2T, (7.5)

From this behaviour, we infer the time dependence of the intermediate time coordinate T by
integrating its defining relation dt = p>dT = —(2/m;)p> dA = —(2/m,)p dp. This yields

T = —(1/7t,\),o2 + const. (7.6)

At this stage, the asymptotic links between T, 7, A and p are similar to the results derived
above for a Kasner solution and do not depend on whether the system is chaotic or non-chaotic.

The situation is more subtle for the proper time 7 in the chaotic case (in the non-chaotic case
where one settles in a Kasner regime after a finite number of collisions, nothing is changed,
of course). The proper time is obtained by integrating

dt = Jgdr = Jgp?dT = —(2/m)/gp dp. (7.7)
The main term in the integrand is \/g = e #?, where o = ), y!. The quantity o oscillates
chaotically and is difficult to control. As argued in [69], however, one nevertheless obtains
(in the four-dimensional case) the usual Kasner relation /g ~ ¢ (and thus 7 ~ In¢ and
T ~ In|Int|) up to subdominant corrections. We refer the interested reader to [69] for the
details.

Concerning the frequency of collisions, note that the billiard picture makes it clear that
the typical time interval between two collisions is constant as a function of 7. In other words,
the number of collisions goes like A ~ 1 Int ~ In|Inz|.

The hyperbolic billiard description of the (3 + 1)-dimensional homogeneous Bianchi IX
system was first worked out by Chitre [17] and Misner [85]. It was subsequently generalized
to inhomogeneous metrics in [56, 71]. The extension to higher dimensions with perfect
fluid sources was considered in [73], without symmetry walls. Exterior p-form sources were
investigated in [57, 58] for special classes of metric and p-form configurations. As far as we
know, however, the uniform approach used in the present paper based on a systematic use of
the Iwasawa decomposition of the spatial metric is new.
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8. Kac-Moody theoretic formulation

Although the billiard description holds for all systems governed by the action (2.1), the
billiard in general has no notable regularity property. In particular, the dihedral angles
between the faces, which can depend on the (continuous) dilaton couplings, need not be
integer submultiples of 7. In some instances, however, the billiard can be identified with the
fundamental Weyl chamber of a symmetrizable Kac—Moody (or KM) algebra of indefinite
type'?, with Lorentzian signature metric [23, 26, 27]. Such billiards are called ‘Kac-Moody
billiards’. More specifically, in [26], superstring models were considered and the rank 10 KM
algebras E|p and BE)|y) were shown to emerge, in line with earlier conjectures made in
[62, 64]."* This result was further extended to pure gravity in any number of spacetime
dimensions, for which the relevant KM algebra is AE;, and it was understood that chaos
(finite volume of the billiard) is equivalent to hyperbolicity of the underlying KM algebra [27].
For pure gravity in D = 4 the relevant algebra is the hyperbolic algebra A E5 first investigated
in [38]. Further examples of emergence of Lorentzian KM algebras, based on the models of
[13, 21], are given in [23].

The main feature of the gravitational billiards that can be associated with KM algebras is
that there exists a group theoretical interpretation of the billiard motion: the asymptotic BKL
dynamics is equivalent (in a sense to be made precise below), at each spatial point, to the
asymptotic dynamics of a one-dimensional nonlinear o-model based on a certain infinite-
dimensional coset space G /K, where the KM group G and its maximal compact subgroup K
depend on the specific model. As we have seen, the walls that determine the billiards are the
dominant walls. For KM billiards, they correspond to the simple roots of the KM algebra.
Some of the subdominant walls also have an algebraic interpretation in terms of higher-height
positive roots. This enables one to go beyond the BKL limit and to see the beginnings of a
possible identification of the dynamics of the scale factors and of all the remaining variables
with that of a nonlinear o -model defined on the cosets of the KM group divided by its maximal
compact subgroup [28].

The KM theoretic reformulation will not only enable us to give a unified group theoretical
derivation of the different types of walls discussed in the preceding section, but also shows
that the B-space of logarithmic scale factors, in which the billiard motion takes place, can be
identified with the Cartan subalgebra of the underlying indefinite KM algebra. The various
types of walls can thus be understood directly as arising from the large field limit of the
corresponding o -models. It is the presence of gravity, which comes with a metric in scale-
factor space of Lorentzian signature, which forces us to consider infinite-dimensional groups
if we want to recover all the walls found in our previous analysis, and this is the main reason
why we need the theory of KM algebras. For finite-dimensional Lie algebras, we obtain
only a subset of the walls: one of the cushions of the associated billiard is missing, and one
always ends up with a monotonic Kasner-type behaviour in the limit #+ — 0" (for instance, the
non-diagonal Kasner solution discussed in section 4 has only symmetry walls corresponding
to the finite-dimensional coset space GL(d, R)/SO(d)). The absence of chaotic oscillations
for models based on finite-dimensional Lie groups is consistent with the classical integrability
of these models. While they remain formally integrable for infinite-dimensional KM groups,
one can understand the chaotic behaviour as resulting from the projection of a motion in an
infinite-dimensional space onto a finite dimensional subspace.

13 Throughout this section, we will use the abbreviations ‘KM’ for ‘Kac—-Moody’ and ‘CSA’ for ‘Cartan subalgebra’.
14 Note that the Weyl groups of the E-family have been discussed in a similar vein in the context of U-duality
[3,79, 891.
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Before proceeding we would like to emphasize that the equivalence between the models
discussed in the foregoing sections and the KM o -models to be presented in this section has
so far only been established, in the case of general models, for their asymptotic dynamics.
A proposal relating the infinitely many off-diagonal degrees of freedom arising in the KM
o-model to spatial gradients of the metric and other fields, as well as possibly other degrees of
freedom has recently been made in [28]. The first steps of this proposal have been explicitly
checked for the relation between D = 11 supergravity and the £y o-model. The relevance of
nonlinear o -models for uncovering the symmetries of M-theory has also been discussed from
a different, spacetime-covariant point of view in [96, 97, 101], but there it is E; rather than
Eo that has been proposed as a fundamental symmetry.

8.1. Some basic facts about KM algebras

We first summarize some basic results from the theory of KM algebras, referring the reader
to [66, 86] for comprehensive treatments. As explained there, every KM algebra g = g(A) is
defined by means of an integer-valued Cartan matrix A and a set of generators and relations
[66, 86]. We shall assume that the Cartan matrix is symmetrizable since this is the
case encountered for cosmological billiards. The Cartan matrix can then be written as
(i, j =1, ...r, with r denoting the rank of g(A))

Aijj = 2Houlay) 8.1)

(aila;)

where {«;} is a set of r simple roots, and where the angular brackets denote the invariant
symmetric bilinear form of g(A) [66]. Here the bilinear form acts on the roots, which are
linear forms on the Cartan subalgebra (CSA) hh C g(A). The generators, which are also

referred to as Chevalley—Serre generators, consist of triples {4;, ¢;, f;} withi = 1,...,r, and
for each i form an s/(2, R) subalgebra. The CSA | is then spanned by the elements /;, so that

[hi, hj]=0. (8.2)
Furthermore,

lei, fi]1=6ijh; (8.3)
and

[hi, ej] = Aije;j, [hi, fi]1=—Aij fj (8.4)

so that the value of the linear form « ;, corresponding to the raising operator e, on the element /;
of the preferred basis {h;} of his «;(h;) = A;;. More abstractly, and independent of the choice
of any basis in the CSA, the roots appear as eigenvalues of the adjoint action of any element
h of the CSA on the raising (e;) or lowering (f;) generators: [h, e;] = +a;(h)e;, [h, fi] =
—a;(h) f;. Last but not least, we have the so-called Serre relations

ad(e;)' "% (e;) =0, ad(f)'"= Y (f)) =0 8.5
Every KM algebra possesses the triangular decomposition
gAy=n"@dhdn* (8.6)

where n* and n™, respectively, are spanned by the multiple commutators of the ¢; and f; which
do not vanish on account of the Serre relations and the Jacobi identity. To be completely
precise, n* is the quotient of the free Lie algebra generated by the ¢; by the ideal generated
by the Serre relations (idem for n~ and f;). In more mundane terms, when the algebra is
realized, in a suitable basis, by infinite-dimensional matrices, n* and n~ simply consist of the
‘nilpotent” matrices with non-zero entries only above or below the diagonal. Exponentiating
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them formally, one obtains infinite-dimensional matrices again with non-zero entries above or
below the diagonal, and 1’s on the diagonal—as exemplified in the finite-dimensional case by
the matrices N\ in section 4.

One of the main results of the theory is that, for positive definite A, one only recovers
from these relations Cartan’s list of finite-dimensional Lie algebras (see, e.g., [53] for a clear
introduction). For non-positive definite A, on the other hand, the associated KM algebras are
infinite dimensional. If A has only one zero eigenvalue (with all other eigenvalues strictly
positive) one obtains the so-called affine algebras, whose structure and properties are rather
well understood [47, 66]. For indefinite A (i.e., at least one negative eigenvalue of A), on the
other hand, very little is known, and it remains an outstanding problem to find a manageable
representation for them [66, 86] (see also [43] for a physicist’s introduction). In particular,
there is no single example of an indefinite KM algebra for which the root multiplicities, i.e., the
number of Lie-algebra elements associated with a given root, are known in closed form. The
scarcity of results is even more acute for the ‘KM groups’ obtained by formal exponentiation
of the associated Lie algebras. In spite of these caveats, we will proceed formally, making
sure that our definitions reduce to the standard formulae in the truncation to finite-dimensional
Lie groups, and more generally remain well defined when we restrict the number of degrees
of freedom to any finite subset.

In the remainder, we will thus assume A to be Lorentzian, i.e., non-degenerate and
indefinite, with one negative eigenvalue. We shall see that this choice is physically motivated
by the fact that the negative eigenvalue can be associated with the conformal factor which,
as we saw, is the one degree of freedom making the reduced Einstein action unbounded
from below. As a special, and important case, this class of Lorentzian KM algebras includes
hyperbolic KM algebras whose Cartan matrices are such that the deletion of any node from
the Dynkin diagram leaves either a finite or an affine subalgebra, or a disjoint union of
them.

The ‘maximal compact’ subalgebra £ is defined as the invariant subalgebra of g(A) under
the standard Chevalley involution, i.e.,

O(x)=x forall x et (8.7)
with
0(hi) = —h;, 0(e;) = —fi, 0(fi) = —ei. (8.8)

More explicitly, it is the subalgebra generated by multiple commutators of (¢; — f;). For
finite-dimensional g(A), the inner product induced on the maximal compact subalgebra € is
negative definite, and the orthogonal complement to € has a positive definite inner product.
This is not so, however, for indefinite A (see the footnote on page 438 of [65]).

It will be convenient in the following to introduce the operation of transposition acting
on any Lie-algebra element E as

ET .= —0(E). (8.9)

In this notation, the relations above become h! = h;, ¢/ = f;, f7 = e;, and the subalgebra ¢
is generated by the ‘antisymmetric’ elements satisfying E7 = —E. After exponentiation, the
elements of the corresponding maximally compact subgroup K formally appear as ‘orthogonal
matrices’ obeying k7 = k=

Sometimes it is convenient to use the so-called Cartan—Weyl basis for g(A). Using Greek
indices w, v, ... to label the root components corresponding to an arbitrary basis H,, in the
CSA, with the usual summation convention and a Lorentzian metric G, for an indefinite
g, we have h; := a!'H,, where o are the ‘contravariant components’, G,/ = oy, of

i
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the simple roots «; (i = 1, ..., r), which are linear forms on the CSA, with usual ‘covariant
components’ defined as o;, = o; (H,,).

To an arbitrary root « corresponds to a set of Lie-algebra generators E,;, where
s = 1,..., mult(«) labels (in general) the multiple Lie-algebra elements associated with
a. The root multiplicity mult («) is always 1 for finite-dimensional Lie algebras, and is also
1 for the positive norm roots o? = (a|e) > 0 (i.e., the ‘real roots’) of general KM algebras
(including, of course, the simple roots), but generically exhibits exponential growth as a
function of —a? for indefinite A. In this notation, the remaining Chevalley—Serre generators
are given by ¢; := E,, and f; := E_,,. Then we have

[H/La Ea,s] == a/LEC(,S (810)
and

[EC(,S’ Ea’,t] = ZC;’;"uEa+a’,u~ (811)

The elements of the Cartan—Weyl basis are normalized such that

(H[LIHU> = Gp_vv (Ea,SIE,B,t> = 8st5a+ﬁ,0 (8]2)
where we have assumed that the basis satisfies El = E_,. Let us finally recall that the
Weyl group of a KM algebra is the discrete group generated by reflections in the hyperplanes
orthogonal to the simple roots.

8.2. Decomposition of AE3 into SL(3) representations

As a special example, let us consider the hyperbolic KM algebra A E3, with Cartan matrix'

2 -1 0
Aj=|-1 2 =2 (8.13)
0 -2 2

and work out the first few terms of its decomposition into SL(3, R) representations. This
decomposition refers to the adjoint action of the s/(3, R) subalgebra defined below on the
complete KM algebra.

From the mathematical point of view, the algebra (8.13) was first studied in [38] as it is
the simplest hyperbolic KM algebra containing a non-trivial affine subalgebra (see also [68]
and references therein for more recent work). From the physical perspective, this algebra is of
special interest for pure gravity in four dimensions both because its regular subalgebras and
its Chevalley—Serre generators can be physically identified with known symmetry groups
arising in dimensional reductions of general relativity [87], and because its Weyl chamber is
related to the original BKL billiard [27] (see footnote 16). First of all, the SL(2, R) subgroup
corresponding to the third diagonal entry of A;; can be identified with the Ehlers group [37]
which acts on solutions of Einstein’s equations with one Killing vector. The affine subgroup
corresponding to the submatrix

2 =2
(2 ) w10

is the Geroch group acting on solutions of Einstein’s equations with two commuting Killing
vectors [44] (axisymmetric stationary or colliding plane wave solutions, respectively); see,
e.g., [12, 62, 63, 88] and references therein. Both the Ehlers group and the Geroch group act
in part by nonlocal transformations on the metric (or vierbein) components.

15 This algebra is also called F [38], H3 [66], HA!" [68] or A" [27].
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A crucial role, in our analysis, is played by the SL (3, R) subgroup generated by (ey, fi, /1)
and (ez, f>, hy), corresponding to the submatrix

2 —1
(_1 2). (8.15)

This group can be realized as acting on the spatial components of the metric (or vierbein), as an
extension of the so-called Matzner—Misner SL(2, R) group for solutions with two commuting
Killing vectors [82].

The billiard picture for pure gravity in four dimensions can be readily understood in terms
of the Weyl group of AE3 [27], whose even part is just the modular group PGL(2, Z) [38].
For SL(3, R), which has two simple roots, the Weyl group is the permutation group on three
objects. The two hyperplanes orthogonal to the simple roots of SL(3, R) can be identified
with the symmetry walls encountered in section 6.1. The third simple root extending (8.15)
to the full rank 3 algebra (8.13), which ‘closes off” the billiard, can then be identified with
curvature wall orthogonal to «,3 [27]. Readers may indeed check that the scalar products
between the two symmetry wall forms and the curvature wall form reproduce the above Cartan
matrix 6.

Let us now expand the nilpotent subalgebra n* in terms of representations of the
A, = sl(3,R) subalgebra of AE5 exhibited in (8.15). For this purpose, given any root
a, we define its s/(3, R) level £ to be the number of times the root a3 appears in it, to wit

o =may +nos + Las. (8.16)

Note that this notion of level is different from the affine level (=m) which counts the number of
appearances of the overextended root «; [38]. The hyperbolic algebra is thus decomposed into
an infinite tower of irreducible representations of its s/(3, R) subalgebra. Such a decomposition
is simpler than that in terms of the affine subalgebra, whose representation theory is far more
complicated (and, unlike that of s/(3, R), only incompletely understood).

After inclusion of the third Cartan generator /3, the level £ = 0 sector is only a g/(3, R)
subalgebra with generators K'; (where i, j = 1, 2, 3) and commutation relations

[K'j K" ] =85k, — 8] K. (8.17)

These Lie-algebra elements will be seen to generate the G L (3, R) group acting on the spatial
components of the vierbein. The restriction of the A E3-invariant bilinear form to the level-0
sector is

(K';|K*) = ojok — sisf. (8.18)
The identification with the Chevalley—Serre generators is

er =K', fi = K%, h =K' — K%

e =K%, fr= K, hy =K% — K3 (8.19)

h3 = —Kll — K22+K33

16 Note that in the original analysis of [6, 8, 17, 85], the symmetry walls are not included; the KM algebra that arises
has the 3 x 3 Cartan matrix

2 2 =2
Aj=|-2 2 =2
2 -2 2

and its fundamental Weyl chamber (radially projected on the hyperbolic plane H») is the ideal equilateral triangle
having its three vertices at infinity.
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manifestly showing how the overextended CSA generator /3 enlarges the original s/(3, R)
generated by (ey, f1, h1) and (ez, f2, hy) to the Lie algebra g/(3, R). The CSA generators are
related to the ‘central charge’ generator ¢ by

c=hy+hy=—K",. (8.20)

This is indeed the expected result: in the reduction of gravity to rwo dimensions (i.e., with two
commuting Killing vectors), the central charge does not act on the internal degrees of freedom,
but as a scaling on the conformal factor [12, 63, 88] (here realized as the 1-1 component of
the vierbein). The affine level counting operator d is given by [38]

d=h+hy+hy=—-K* (8.21)

and in contradistinction to c¢ it does act on the internal volume in the reduction to two dimensions
(i.e., the ‘dilaton’ p in the notation of [12, 88]). The operator d may be viewed as the L
operator of a full Witt—Virasoro algebra enlarging the Geroch group via a semidirect product
[65].

The irreducible representations of SL(3, R) are most conveniently characterized by their
Dynkin labels. Let us recall that these labels are non-negative integers which characterize
any highest-weight representation of any finite-dimensional Lie algebra. Let us consider a
representation with maximal vector vy, of (highest) weight A, i.e., such that for any element
h in the CSA, h(vpy) = A(h)va, where the Lie algebra acts on the representation vector
space (or ‘module’), and where A is a linear form on the CSA. The Dynkin labels of this
representation are defined as p;(A) = 2(o;|A)/{w;|o;), where «; are simple roots of the Lie
algebraunder consideration. Note that in the case of simply laced algebras such as s/(3, R) and
AEj3, the simple roots have all a squared length equal to 2, so that the definition of the labels
reduces to p;(A) = (o;|A) (while the Cartan matrix similarly simplifies to A;; = («;|a;)).
In the case of s/(3, R) we have two simple roots, 1 and «», and therefore two Dynkin labels:
P1(A) = {(a1|A), p2(A) = (x2|A). In terms of the Young tableau description of s/(3, R)
representations, the first Dynkin label p; counts the number of columns having two boxes,
while p, counts the number of columns having only one box. For instance, (p;, p2) = (1, 0)
labels an antisymmetric two-index tensor, while (p;, p») = (0, 2) denotes a symmetric two-
index tensor. Note also that the dimension of the s/(3, R) representation described by the
labels (p1, p2) is (p1+ D(p2+ D(p1 + p2+2)/2.

Let us determine the representations of s/(3, R) appearing at the first level (¢ = 1) of
AE;.'7 At this level, one sees that, under the adjoint action of s/(3, R), i.e., of (ey, fi, k1) and
(e2, f>, h2), the extra Chevalley—Serre generator f3 is a maximal vector. Indeed,

eil(f3) =ler, 31=0 ex(f3) = lez, 31 =0. (8.22)
The weight of f3 is A = —a3 because, by definition i (f3) = [k, f3] = —a3(h) f3. Hence, the
Dynkin labels of the representation built on the maximal vector f3 are p; = —(a;|o3) = —As3

with i = 1,2. Explicitly, this gives (p1, p2) = (0,2). These labels also show up as the
eigenvalues of the actions of the (specially normalized) Cartan generators (4, hy) on the
maximal vector f3, namely,

hi(f3) =[h1, 3]1=0 ha(f3) = [ha, 31 =213 (8.23)

As we mentioned above, the representation (p;, p») = (0, 2) corresponds to a symmetric
(two-index) tensor.

Thus, at the levels £1 we have A E3 generators which can be represented as symmetric
tensors E/ = EJ' and F;; = Fj;. One verifies that all algebra relations are satisfied

17 This analysis is analogous to that performed in [38] for the affine subalgebra AE]).
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with (a¢j) = (aij +aji)/2)
(K’ EM] = 85E" + 8" EX
[K'j, Fu] = —68,Fji — 8 Fi (8.24)
[E", Ful = 280K — 808 (K" + K% + K*3)
(Fij|Ekl) _ 8;"8_],«)
and the identifications
ey = E®, f3 = Fs3. (8.25)

As one proceeds to higher levels, the classification of SL (3, R) representations becomes
rapidly more complicated due to the exponential increase in the number of representations
with level £. Generally, the representations that can occur at level £+ 1 must be contained in the
product of the level-¢ representations with the level-1 representation (0, 2). Working out these
products is elementary, but cumbersome. Moreover, many of the representations constructed in
this way will drop out (i.e., not appear as elements of the A E3 Lie algebra). The complications
are not yet visible at low levels; for instance, the level-2 generator E*?1/* = ¢® E; /% with
labels (1, 2), is straightforwardly obtained by commuting two level-1 elements

[EY, E"] = ¢V E, D + "V E, ¥, (8.26)

A more economical way to sift the relevant representations is to work out the relation between
Dynkin labels and the associated highest weights, using the fact that the highest weights of the
adjoint representation are the roots. More precisely, the maximal vectors being (as exemplified
above at level 1) of the ‘lowering type’, the corresponding highest weights are negative roots,
say A = —a with o of the form (8.16) with non-negative integers ¢, m, n. Working out the
Dynkin labels of A = —a by computing, the scalar products with the two simple roots of
s1(3, R) then yields

pi=p=n-—2m, pp=q=20+m—2n. (8.27)

As indicated, we shall henceforth use the notation (p;, p2) = (p, q) for the Dynkin labels.
This formula is restrictive because all the integers entering it must be non-negative.
Inverting this relation we obtain

m=3-3p—3g n={-ip-3q 8.28)

with n > 2m > 0. A further restriction derives from the fact that the highest weight must be
aroot of A E3, namely, its square must be smaller or equal to 2:

A* = %(p2 +q°+pg — %) <2. (8.29)

Consequently, the representations occurring at level £ must belong to the list of all the solutions
of (8.28) which are such that the labels m, n, p, g are non-negative integers and the highest
weight A is a root, i.e., A> < 2. These simple diophantine equations/inequalities can be
easily evaluated manually up to rather high levels.

However, the task is not finished. Although the above procedure substantially reduces
the number of possibilities, it does not tell us how often (including zero times!) a given
representation appears (i.e., its outer multiplicity). For this purpose, we have to make use of
more detailed information about A E3, namely the root multiplicities computed in [38, 66].
Matching the combined weight diagrams with the root multiplicities listed in table H3 on page
215 of [66], we obtain the following representations in the decomposition of AE3 w.r.t. its
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s1(3, R) subalgebra up to level £ < 5:18
t=1 — (p,q9) =1(0,2)
t=2 — (p,q) =(1,2)
t=3 — (p,q =22

(1, D

t=4 — (p,9)=G@,2)
(1,3)
2,1) (occurs twice)
©.2) (8.30)
(1,0)

t=5 - (p9)=42)
2,3) (occurs twice)
0,4 (occurs twice)
3,1 (occurs three times)
(1,2) (occurs four times)
2,0 (occurs three times)
O, 1) (occurs twice)

(we have not listed the representations compatible with (8.28) and (8.29), which drop out,
i.e., have outer multiplicity zero). Going to yet higher levels will require knowledge of AE;
root multiplicities beyond those listed in [38, 66, 68]. There is, however, an infinite set of
admissible Dynkin labels that can be readily identified by searching for ‘affine” highest weights
for which m = 0 in (8.16). They are

(p.g)=—-1,2) < (m,n)=(0,—1). (8.31)

Because the associated highest weights all obey A% = 2 all these representations (and their
‘transposed’ representations) appear with outer multiplicity 1 independent of £. A second
series of affine representations is

(p,qg)=U,00) < (m,n)=1(0,%). (8.32)

Now we have A? = 0, and the corresponding representations have outer multiplicity
zero because the corresponding states are already contained as lower weight states in the
representations (8.31).

The Lie-algebra elements corresponding to (8.31) are thus given by the two conjugate
infinite towers of s/(3, R) representations (for £ = 1,2, 3, ...)

E Ik, Firie (8.33)

The affine representations are distinguished because they contain the affine subalgebra
A(ll) C AEj;. This embedding was already studied in [38], but in view of future applications
and because the identification is a little subtle we here spell out some more details. The
affine subalgebra is identified by requiring its elements to commute with the central charge
¢ (8.20). From this requirement we infer that we must truncate the full algebra to the
subalgebra generated by the elements K’ ; for i, j € {2, 3} and those generators in (8.33) with

iy =...ip—1 = land j, k € {2, 3}. In physicists’ notation, the affine subalgebra is spanned by
the current algebra generators {7, , 7,2, T, } and the central charge c. The affine level m € Zis

18 This decomposition is now available for levels £ < 56; see http://www.arXiv.org/e-print/hep-th/0301017.
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the eigenvalue of the affine level counting operator d: [d, T,,] = mT,,. We therefore conclude
that the affine level-0 sector!® consists of the generators of the Ehlers SL(2, R) group, namely,

T, = f3(=F»), Ty = hs, Ty = es (=EY). (8.34)
At affine level m = —1 we have

T-, = e (=K7)

T’, = ley. 3] = 2E7 (8.35)

T*) = lle2, 3], e3] = 2[E®, E¥] = 2E,%.
Similarly, at affine level m = +1 we obtain

T, =112 f3], 51 = 2[Fa, Fi3]l = 2F 53

T =[f, f5]1= Fx (8.36)

T1+ = f2 (EK32)
and so on for higher affine levels. The precise identification of the affine subalgebra is
of crucial importance for understanding the embedding of the Geroch group into the full
hyperbolic algebra.

Other cases of interest, where similar decompositions can be worked out include the
indefinite KM algebras Ejo and Ej;, both of which have been conjectured to appear in
D = 11 supergravity and M-Theory, see [62, 64, 28] and [101], respectively. The first six
rungs in the s/(10, R) level decomposition of Ejy have been worked out in [28], and are
extended to higher levels, as well as to Ey, in [39].

8.3. Nonlinear o -models in one dimension

Notwithstanding the fact that we know even less about the ‘groups’ associated with indefinite
KM algebras, we will formulate nonlinear o-models in one time dimension and thereby
provide an effective and unified description of the asymptotic BKL dynamics for several
physically important models. The basic object of interest is a one-parameter dependent KM
group element V = V(¢), which is assumed to be an element of the coset space G/K, where
G is the group obtained by formal exponentiation of the KM algebra g, and K its maximal
compact subgroup, which is again obtained by formal exponentiation of the associated maximal
compact subalgebra £ defined above. (In the ‘transpose’ notation defined above, the group K
is the group of ‘orthogonal elements’: k7 = k~'.) For finite-dimensional g(A) our definitions
reduce to the usual ones, whereas for indefinite KM algebras they are formal constructs to
begin with. (Formal constructs similar to our objects ), YVY~1 etc have been used in somewhat
different settings in [19, 20, 101].) However, to ensure that our definitions are meaningful
operationally, we will make sure at every step that any finite truncation of the model is well
defined and can be worked out explicitly in a finite number of steps.

In physical terms, V can be thought of as an extension of the vielbein of general relativity,
with G and K as generalizations of the GL(d, R) and local Lorentz symmetries of general
relativity. For infinite-dimensional G, the object V thus becomes an ‘oco-bein’. It is then
natural to associate with this vielbein a ‘metric’, namely,

M:=VTy (8.37)

which is invariant under the left action (VV — kV) of the ‘Lorentz group’ K (actually the
truncation of M to the relevant G L(n, R) subgroup of the KM algebras entering the models

19 Recall that the affine level m must not be confused with the level £ used in our decomposition of A E3, cf definition
(8.16).
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we study turns out to correspond to the matrix defined by the contravariant components, g/,
of the spatial metric used in section 4). Exploiting this invariance, we can formally bring V
into a ‘triangular gauge’,

V=A-N= M=NTAN (8.38)

where the Abelian part A belongs to the exponentiation of the CSA, and the nilpotent part
N to the exponentiation of n* thus recovering the formulae which we have already used in
sections 4.1 and 4.2. This formal Iwasawa decomposition, which is an infinite-dimensional
generalization of that we used before, can be made fully explicit by decomposing A and A in
terms of bases of f and n™,

mult(o)
A(t) = CXP(,BM(I)HM), N(t) = exp (Z Z Va,s (t)Ea,s> (8.39)

aeA, s=I

where A, denotes the set of positive roots. The components §/, parametrizing a generic
element in the CSA b, will turn out to be in direct correspondence with the logarithmic scale
factors g* = (B¢, ¢) introduced in section 3. We anticipated this correspondence by using
the same notation. (As explained above, the apparently ‘wrong sign’ of the exponents of A is
due to the fact that M will correspond to the inverse of the spatial metric.) The main technical
difference with the kind of Iwasawa decompositions used in the foregoing sections is that now
the matrix V(¢) is infinite dimensional for indefinite g(A). Observe that for finite-dimensional
matrices, there was no need to worry about root multiplicities, as these are always 1. By
contrast, there are now infinitely many v, and consequently A/ contains an infinite tower of
new degrees of freedom. Next we define

mult(o)
NN =33 jusEas ent (8.40)
aeAN, s=1
with
Joas = Vas + VD +VVD + -7 (8.41)

(we put quotation marks to avoid having to write out the indices). To define a Lagrangian we
proceed in the usual way. First we consider the quantity

mult(w)

T =prH Y Y P jusEay (8.42)

aeA, s=l1
which has values in the Lie algebra g(A). Here, we have set
a(f) = 0‘;“3“ (8.43)
for the value of the root o (=linear form) on the CSA element § = " H,,. Next we define

mult(o)

(w OV = prHy + 5 30 Y Jas e P (Eay+ Ea) € g O

aeA+ s=1

where we arranged the basis so that £, T = E_, . Then we define a KM-invariant o -model
action as [ dz£ where the Lagrangian i is deﬁned by using the KM-invariant bilinear form (.|.)
(cf (8.12))

1 mult(c)
L= Y(PIP)=n"" ( GunB" B Z > exp(za(ﬁ»mm). (8.44)

aeA+ s=1
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Here, the Lorentzian metric G, is the restriction of the invariant bilinear form to the CSA. It
can be identified with the metric in the space of the scale factors, which is why we adopt the
same notation. We have introduced in this Lagrangian a ‘lapse function’ n (not to be confused
with the lapse function N introduced before), which ensures that our formalism is invariant
under reparametrizations of the time variable. Finally, we can simply describe our Lagrangian
(8.44) as that of a null geodesic in the coset space G/K .

Taking the algebra A E3 as an example, this Lagrangian contains the Kasner Lagrangian
(3.10) (without dilaton) as a special truncation. More specifically, retaining only the level-0
fields (corresponding to a GL(3, R)/ O (3) o-model)

V(©)le=o = exp (5K ") (8.45)
and defining from 4%, a vielbein by matrix exponentiation ¢*;, = (e"),, and a corresponding
contravariant metric g*> = e“.e”., one checks that the bilinear form (8.18) reproduces (half)
the Lagrangian (3.10). (This computation works more generally for any G L(n, R), and was
already used in [28] in the GL(10,R) decomposition of Ejy.) The level-O sector is thus
associated with the Einsteinian dynamics of a spatial dreibein depending only on time.

Let us then consider the fields ¢;; associated with the level-1 generators E/. This leads
to a truncation of our KM-invariant o -model to the levels £ = 0, 1, i.e.,

V(1)le=o.1 = exp (h'5 (DK "a) exp(¢pas E). (8.46)
In the gauge n = 1, the Lagrangian now has the form £ ~ (g7'¢)> + g 'g '¢¢, where g
denotes the covariant metric g;;. As the ¢;; enter only through their time derivatives, their
conjugate momenta I1" are constants of the motion. Eliminating the ¢ in favour of the
constant momenta I1 by a partial Legendre transformation yields the reduced Lagrangian (for
the dynamics of g;;(t)) of the form £ ~ (g~'¢)> — g*!g*' TII1. In other words, the elimination
of the ¢ has generated a potential Viy = V4 (g) (in the gauge n = 1)

Vi (g) o +gi;gu T (8.47)

It is then easy to check that this potential can be identified with the leading (weight —2)
gravitational potential in (6.14) (corresponding to the gauge N = 1), namely Vgadmg =
(—gR)'eading — +% 284i8% g°*C}.C' ;i under the identification of the structure constants C’ j

with the momenta conjugate to ¢;;:
7 o XDy, (8.48)
Note that the trace C/ ;; drops out of this relation, and that IT" is of weight 1, like &/,

Consequently, when neglecting the subleading gravitational walls o« F,, in (6.14) and in
four spacetime dimensions, the BKL dynamics at each given spatial point xg is equivalent
to the £ = 0, 1 truncation of the AEj-invariant dynamics defined by (8.44). The fields
¢i;(t) parametrizing the components of the A E3 coset element along the £ = 1 generators are
canonically conjugate to the structure constants Ci_ik(t, X0).

Similarly, one would like to associate the generators (8.33) with higher-order spatial
gradients. However, the proper physical interpretation of these fields as well as of the
other higher-level components remains yet to be found. In the case of the relation between
supergravityin D = 11 and the E( coset model, one could pursue the correspondence between
spacetime fields and coset coordinates up to the g/(10, R) level £ = 3 included (corresponding
to height 29) [28]. The correspondence worked, thanks to several ‘miraculous’ agreements
between the numerical coefficients appearing in both Lagrangians.

Varying (8.44) w.r.t. the lapse function n gives rise to the constraint that the coset
Lagrangian vanish. Let us define the canonical momenta

8L

Ty = . n' Gup’ (8.49)
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and the (non-canonical) momentum-like variables

oL 1
My, = —=-n1e*Pj, . (8.50)

Sjas 2
The latter variables are related to the momenta canonically conjugate to the vy, i.e.,
Da.s := 8L/8Vy s, by expressions of the form I, s = pys + ‘Vp+vvp +-- -7, see section 8.4.

In terms of these variables, the KM-invariant Hamiltonian corresponding to the above
Lagrangian reads

1 mult(c)
H(B, 7, v, p) =n (EG“”an + Y Y e Py My ). (8.51)

aeA, s=1

The constraint of a vanishing Lagrangian becomes that of a vanishing Hamiltonian:
H ~ 0. (8.52)

The momentum-like variables I1, ; can be thought of as infinite-dimensional generalizations
of the asymptotically frozen combinations P/, N?; used in section 5.1, cf equation (5.14).
They do not Poisson-commute with one another in general. Instead, one has Poisson brackets
of the form {Ig,,, g} = ngﬁﬂj(v)l'[%,. Note that 7, is timelike or null because the
potential is manifestly non-negative; the motion in the CSA is timelike—in fact, in the limit
to be studied below, a broken future-oriented lightlike line.

Because the coefficients of the exponentials in (8.51) are non-negative we can now apply
exactly the same reasoning as in section 5. The crucial point is that the Cartan variables g do
not enter the commutation relations of the IT as indicated above. Therefore, as above, the off-
diagonal components v, s and the momentum-like variables I1, ; get frozen asymptotically,
provided all spacelike walls are ‘behind the motion’ so that they do not conflict with the
BKL limit. As before, we can introduce hyperbolic polar coordinates for parametrizing the
dynamics of the Cartan variables f* = py*. When taking the limit p — oo, the Hamiltonian
(8.52) behaves as

H~Hap (B, ) = %G’wnﬂnv + Z Ky e 2P (8.53)
aeA,

with constants K, > 0. This looks like a Toda Hamiltonian, except that the sum extends over
all roots, rather than only the simple ones, and that the underlying KM algebra is indefinite,
and not only finite or affine as in standard Toda theory. However, the dominant potential
walls in the limit p — oo are given by those terms K, e 2*® for which « is a simple root.
Indeed, by definition, the non-simple roots & = nj«; + nan + - - - give rise to potential terms
x[e 2B g2 ]2 . . . which are subdominant w.r.t. the set of potentials corresponding
to the simple roots.?’ Therefore, the o -model Hamiltonian is asymptotically equivalent to the
truncation of (8.53) to the simple roots:

1 r
—2u;

H ~ Himple (B, 7) = Ecwnunu + Z K;e 2P (8.54)

i=1
Such hyperbolic Toda models, restricted to the simple roots, were first introduced and studied

in [42].

Furthermore, as explained in section 5.2, the potentials become sharp wall potentials in
the BKL limit 8#* — oco. Making again the ‘genericity assumption’ K; > 0 for the dominant
20 perhaps a useful analogy is to think of a mountainscape (defined by Toda exponential potentials for all roots); when

the mountaintops rise into the sky, only the nearest mountains (corresponding to the simple roots) remain visible to
the observer in the valley (the Weyl chamber).
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simple root contributions (which is subject to the same caveats as before), we finally obtain
the asymptotic Hamiltonian

Hoo(B, 1) 1= plLrIgoH(ﬂ, ) = %n“nu + Z O(—20;(B)) (8.55)
i=1

where the sum is over the simple roots only, and the motion of the " is confined to the
fundamental Weyl chamber «; (8) > 0. Note that, in the present KM set-up, all the walls enter
on the same footing. There is nothing left of the distinctions that entered our foregoing BKL-
type studies between different types of walls (symmetry walls, gravitational walls, electric
walls and so on). The only important characteristic of a wall is its height htae = n; +np + - - -
for a root decomposed along simple roots as &« = njo; + nyon + - - -.

The sum in (8.52) ranges not only over the real roots, which give rise to infinitely many
timelike walls, but also over null and purely imaginary roots of the KM algebra giving rise
to lightlike and spacelike walls, respectively. In view of our discussion in section 7, the
significance of the latter for the KM billiard remains to be fully elucidated. Here, we only
remark that imaginary roots are of no relevance for the Weyl group of the KM algebra, which
by definition consists only of reflections against the timelike hyperplanes orthogonal to real
roots.

We conclude that in the limit where one goes to infinity in the Cartan directions, the
dynamics of the Cartan degrees of freedom of the coset model become equivalent to a billiard
motion within the Weyl chamber; subject to the zero-energy constraint H(, =) = 0. Therefore,
in the cases where the cosmological billiards that we discussed in the first part of this paper are
of KM type, the gravitational models are asymptotically equivalent (modulo the imposition
of the additional momentum and Gauss constraints) to the product over the spatial points of
independent (1 + 0)-dimensional KM coset models G /K.

8.4. Integrability, chaos and consistent truncations

In this final subsection, we show that the one-dimensional KM o-models are formally
integrable. Then we address the issue of why this formal integrability is not incompatible
with the occurrence of chaos in the billiard description. We also discuss various possible
finite-dimensional truncations of our infinite-dimensional KM-invariant o -model.

The equations of motion of the off-diagonal fields constitute an infinite system of
nonlinear ordinary differential equations of second order. As usual, they are equivalent to
the conservation of the g(A)-valued Noether charge

J=v'py
mult(c)
=J'Hy+ Y Y (usEas+JasE-us) (8.56)
aeA, s=1

in the gauge n = 1. It is easily checked from the first line of this equation that

J=M""M. (8.57)
This equation can be formally solved as
M(t) = M(0) - €. (8.58)

For finite-dimensional matrices M, the system is thus completely integrable. This fact was
already used in section 4 where we wrote down the exact solution (4.1) of a GL(n, R)/O (n)
model. More precisely, the G L (n, R) analogue of the (Lie-algebra valued) conserved charge
Jis 7' j = % g% g > whose conservation is clear from equation (3.13). (Note again that the
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KM gauge n = 1 corresponds to N = 1 so that the KM time variable 7 corresponds to the
gravitational time scale 7.) In the finite-dimensional case, we could derive the general solution
by diagonalizing the constant matrix 7' ;, which led to the Kasner solution, written in terms of
the eigenvalues v of 7' ; and of the diagonalizing matrix L as in (4.1). Then, thanks to finite
dimensionality of the diagonalizing matrix, we showed there that, after a finite transition time
(subsequently interpreted as linked to the finite number of collisions on the symmetry walls
needed to reorder the eigenvalues v), the resulting asymptotic motion assumed a very simple
monotonic form.

By contrast, for infinite-dimensional matrices the existence of the formal solution (8.58)
does not necessarily imply regular behaviour for the CSA degrees of freedom in the asymptotic
limit where all other degrees of freedom get frozen. First of all, and in marked contrast to
the finite-dimensional case, it is not known for indefinite KM algebras whether a generic Lie-
algebraelement J can always be ‘diagonalized’, i.e., conjugated into the CSA by an element of
the KM group G, see however [67]. Indeed, if that were the case, it would mean that a generic
solution of the KM coset dynamics could be conjugated to a simple monotonic and diagonal
Kasner-like solution g* = vt + B in the CSA, a conclusion difficult to reconcile with the
chaotic motion that obtains in the BKL limit if the KM algebra is hyperbolic. Secondly, even
if J could be conjugated into the CSA (as might be the case for certain non-generic elements)
there remains the possibility that the required diagonalizing matrix (an infinite-dimensional
analogue of the matrix L in (4.1)) introduces an infinite number of effective collisions in the
time development of the analogue of (4.1), because the number of effective collisions was
found to increase with the rank of the matrix. In the latter case, the chaotic motion for the
CSA degrees of freedom would be the result of the projection onto a finite-dimensional space
of a regular geodesic motion taking place in an infinite-dimensional phase space. In the
former case, it might be the geodesic motion on the infinite-dimensional coset space G/K
which could be intrinsically chaotic. We will leave further investigation of these delicate
mathematical questions to future work.

In order to better understand why the existence of an infinite number of conserved
quantities {J#, Jys, J_as} does not rule out chaos, let us consider possible consistent
truncations of our o-model. By a ‘consistent truncation’ we here mean a submodel whose
solutions are solutions of the full model. In order to formalize this notion, let us introduce
a gradation D of root space: the D-degree of a root @« = njo; + npay + --- is defined
as D(«) := n1Dy +nyD, + - -+, where (Dy, D,, ...) is a given set of non-negative integers.
Examples are the s1(3, R)-level £, the affine level m or the height D(«) = ht («) = nj+ny+- - -
In terms of an expansion according to increasing gradation D, the full o-model Lagrangian
(8.44) has the structure (with all coefficients suppressed and in the gauge n = 1)

L~ B2 +9Pp12 4 expQaa(B)[V* + v 0!
+e26B3 1192 102! 4wl P (8.59)

The notation here is somewhat schematic: the lower indices on the roots and the upper indices
on the off-diagonal fields refer to the gradation D (so «;, oz, . .. are not simple roots here).
Furthermore, the degree zero term coincides with the free CSA kinetic term A2 only if D; > 0
for all i; for other gradations, the level-0 sector is described by the o-model Lagrangian for
the respective level-0 subalgebra (which may be non-Abelian as was the case for the level
£ used in section 4.2). The various terms within parentheses correspond to the gradation of
the j, s above: j; ~ AR Jo ~ 24 vlpl, Jz ~ v+ vp2 4020+ 1!, . The momenta
canonically conjugate to the off-diagonal variables v'!, v2, . .. have a similar graded structure
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i~ 2B 420 B) 1y 2B 2 T

=TI, + v + T2+ vl + -,

203(B) ;

1 ] (8.60)
Jav +-- =T +Tl3v + -+,

pr~ e P e

p3~e2’a"(ﬂ)]3+:n3+’

where, consistently with the above definition, we have introduced the short-hand notation
I1, = exp2w,(B)j,. Formally, the triangular relations above can be inverted iteratively to
obtain infinite series of the form

IT; ~ p; +pgv1 +p3[v2+v1v1]+o~,
M~ pa+psv' + pa? +0' '+ (8.61)
H3~p3+p41)1+---.

This yields a formal expression for the Hamiltonian in terms of the canonical variables
(B, m; V", pu), where n again refers to the gradation,

HB, w3 v, pp) ~ w2 +e 2O + e 2P + e 2P+ ... (8.62)

It is now easy to see that one can obtain a consistent finite-dimensional truncation of the
dynamics by requiring that all canonical momenta above a certain D-degree ng vanish. For
instance, if we require p, = 0 for n > 3 implying I, = O for all » > 3 we obtain a consistent
dynamics following from the finite Hamiltonian

HPB, ;0! provi po) ~ w2 +e 2P p + pov' P +e 2P pl. (8.63)
The finite-dimensional Lagrangian corresponding to this Hamiltonian reads
L ~ B2 B 4 2B 2 4 plpl]2, (8.64)

and is obtained from the original Lagrangian (8.59) by setting equal to zero all j, forn > 3,
where, for instance, j3 = 3+ o2 + 020! + vlvp! and so on. Note that the highest-degree
variable v? does not explicitly appear in the truncated Hamiltonian ®. This implies that the
corresponding highest-degree canonical momentum p; is a constant of the motion. However,
non-trivial dynamics is obtained for the remaining degrees of freedom g, 7; vl p1. Note
also that a particular set of solutions of the D-degree-2 dynamics above is obtained when the
constant of motion p, happens to vanish. This particular case of the D-degree-2 dynamics is
simply the D-degree-1 truncation of the original dynamics, obtained by setting equal to zero

all momenta above level 2, i.e., p» = p3 = --- = 0. The corresponding Hamiltonian is simply
HOB, v p) ~ 72 +e 2P pl, (8.65)

Again the highest-degree momentum, which is now pj, is a constant of the motion, so that
H directly defines the reduced dynamics of the Cartan variables S, 7.

For D = ht, the truncated dynamics (8.65) at degree D = 1 defines the finite hyperbolic
Toda model (8.54) involving only the simple roots. We have seen in the previous subsection
that this height-1 Hamiltonian universally describes the asymptotic dynamics of the full
o-model. (Its BKL limit directly yields the universal Weyl-chamber billiard (8.55).) On the
other hand, when the chosen gradation is the s/(3) level of AE3, we obtain the low-level
truncations of section 8.2 above: the level-0 truncation (p; = --- = 0) yields the Kasner
dynamics, while the level-1 dynamics describes the leading effect of the gravitational walls. A
similar hierarchy of truncations appears in the E;9 model of [28], where the analysis included
levels £ =0, 1,2, 3 w.r.t. the subalgebra s/(10, R) = Ay (see also [25]).
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Let us now clarify the meaning of the infinite set of conserved charges Ji,, within
the context of the finite-dimensional truncations which we just discussed. To this aim, one
expresses J in terms of the (non-canonical) Hamiltonian variables (8, &, v, IT):

mult(er) mult(e)
J=m'NTHN+ Y Y e Py N Eg N+ Y Y Mo NTE N, (8.66)
aeN, s=1 aeN, s=I1

Here only the third term spreads over the full algebra g = n~ @ h @ n*, while the first and
second are entirely contained in the parabolic subalgebras h @& n* and n*, respectively. From
this fact, it is easy to see that any truncation where the I1, ; vanish for all roots strictly above
some degree, i.e., for D(«) > ng, implies the vanishing of the correspondingly low ‘negative-
root charges” J_, . As for the non-zero highest-degree momenta I1,, ; with D(cg) = ny,
equation (8.66) simply yields Iy, s = J_q4,s. We thus recover the result above concerning
the constancy of the highest-degree momenta. We can then move up (always in D-degree) by
adding simple roots «; to «g. Equation (8.66) then implies Iy, s = J—apras,s + CVe; J—ag,5»
where the constant ¢ is determined by the commutation relations. Continuing in this manner
until one reaches the degree zero, one obtains for all the negative-degree (non-vanishing)
momenta expressions which are linear in the charges and polynomial of ascending order in
the off-diagonal fields v, ;. Note, however, that these relations do not suffice to eliminate
non-trivial degrees of freedom from the truncated Hamiltonian, i.e., to replace it by an (on-
shell) equivalent Hamiltonian depending on fewer variables. (The only degrees of freedom
that one can straightforwardly eliminate are the trivial highest-degree ones, whose associated
‘position variables’ do not enter the Hamiltonian.) One might think that one would get further
relations, and eventually enough relations to eliminate the off-diagonal degrees of freedom,
by considering the higher-degree components of equation (8.66). However, it does not work
this way. The degree-zero projection, namely

mult(c)
T H Y Y oW E_g (M)l = ¢ Hy, (8.67)

aeA, s=I

(where c”* is a constant vector) gives an expression for the degree-zero momenta 7* which
is linear in the charges and polynomial in the v, . On the other hand, the positive-degree
projection of equation (8.66) yields for the positive-degree components of the charges J, g
expressions which (for any positive degree) will involve ‘hidden’ off-diagonal fields v, ; of
degree D(«) > ng. These new variables did not enter the truncated Hamiltonians (8.63),
which shows explicitly that the infinite number of conserved charges J, ; of the original
o -model do not provide sufficiently many autonomous constants of the motion for the truncated
Hamiltonian to guarantee its ‘integrability’ in the trivial sense of allowing one to reduce the
number of degrees of freedom to zero.

Let us also dispose of another paradox concerning the formal integrability of KM-related
models. Even if we consider the hyperbolic Toda model defined by the truncation of our
general o-model to height 1, i.e., Hgimpie (B, ) given by equation (8.54) with (strictly) positive
constants K;, one finds that it has formal integrability features. Indeed, the model (8.54)
admits a Lax pair. Setting 5; = +/(o;|o;)/2, rescaling the Chevalley—Serre generators as
e =sie;, fl =si fi,h, = s?f,-, and defining W;; = («;|a;), we replace the variables (8", 7,,)
by (I, p)y by I = /K; e %® and > Wi;p/ = G"(a;),m,. One can then check that the
Lie-algebra valued expressions

M = Z[pih; +1i (e + f1, K = Zzi(e; -1, (8.68)
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satisfy the Lax-pair evolution equation M = [K, M]. One would then expect to be able to write
down (infinitely) many conserved quantities associated with the isospectrality of the evolution
of M(t). (In the finite-dimensional case all the traces of the matrix M (¢) are constants of the
motion, see, e.g., [90] and references therein.] However, in the KM case this formal Lax-pair
integrability does not yield any concrete constants of the motion because there is no useful
analogue of the matrix trace in the KM algebra. The integrability properties of hyperbolic
Toda theories have also been discussed in [42].

Let us note also in passing that there is full compatibility between our general result of the
asymptotic constancy of all the off-diagonal degrees of freedom v, s, I, ; and the existence
of an infinite number of conserved quantities J, ;. Morally speaking, the two infinite sets
of asymptotic constants of integration {lim v s}, {lim I, s} correspond to the doubly infinite
set of charges {Jiy s} (in non-zero degree), and one can check the compatibility of this
correspondence by using the results above concerning truncated models. As for the zero-level
conservation law (8.67) it is also compatible with the asymptotic limit because, in the gauge we
use here (analogous to the B-space picture of the billiard) all the components of the zero-degree
momenta r* tend to zero asymptotically (because of the redshifts accumulated on the receding
walls).

In summary, there is thus no contradiction between the formal integrability of our
o-model and the chaos that appears in its generic asymptotic dynamics. This is mainly due to
the presence of infinitely many degrees of freedom, and the dynamics of the finite-dimensional
truncations of the o-model of strictly positive degree.

9. Conclusions

In this paper, we have shown that theories involving gravity admit a remarkable asymptotic
description in the vicinity of a spacelike singularity in terms of billiards in hyperbolic space.
Depending on whether the actual billiard has finite or infinite volume, the dynamical evolution
of the local scale factors is chaotic (oscillatory) or monotonic (Kasner-like). The billiard,
and in particular its volume, is a fundamental characteristic of the theory, in the sense that
it is determined solely by the field content and the parameters in the Lagrangian, and not
by the initial conditions (in the generic case; i.e., there may be initial conditions for which
some walls are absent—and the billiard is changed—but these are exceptional). Although we
have not investigated the physical implications of this property for cosmological scenarios (in
particular, string-inspired cosmologies [14, 40, 41, 76, 99]), nor its quantum analogue, we
believe that this result is interesting in its own right because it uncovers an intrinsic feature
of gravitational theories. As discussed in section 8, the regularity properties of some billiards
appear to give a powerful handle on possible hidden Kac—Moody symmetries, which remain
to be exploited for their full worth.
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Appendix. Asymptotic freezing: a simple model

We have seen in the text that the ‘non-diagonal’ phase space variables (Q, P) (i.e., all variables
except the extended scale factors 8 parametrizing the diagonal-Iwasawa-part of the metric
and the dilaton), get frozen to constant values in the BKL limit. We provide here a more
detailed understanding of this property by discussing a simpler model which captures the
essential features of the Hamiltonian (5.25).

Consider a system with two canonically conjugate pairs (¢, p), (Q, P) and time-
dependent Hamiltonian

H(g,p,Q,P;T)= %pz + %(f(Q, P))?pke=ra (k being any real number) (A.1)

where p = e’ with T the time variable. We have simplified here the Hamiltonian (5.26) by
eliminating the variable A, i.e., by replacing it by an explicit function of the coordinate time
T, in the approximation of a constant ;, so that X is a linear function of 7 (we scaled things
so that A = T'). One can think of (¢, p) as mimicking the scale factors, while (Q, P) mimics
the off-diagonal components or the p-form variables. In (A.1), there is only one potential wall
for g (namely, the second term). We shall consider later the case with several walls.

Let us start by remarking the important fact that the variable f(Q, P) has zero Poisson
bracket with H, therefore it is a constant of the motion. To simplify the following argument,
we assume that we perform a canonical transformation such that P*¥ = f(Q, P). Dropping
henceforth the label ‘new’, we obtain P = Py where P, is a constant which we assume to be
different from zero. The basic aim of this appendix is then to show that the (new) conjugate
variable Q will also tend to a constant as 7 — +00.

In the limit of large times, the motion in ¢ is a free motion interrupted by a collision
against the potential wall,

q = polT — To| +qo (A2)

where T is the time of the collision, g the turning point, and py the constant momentum of
q far from the wall. The location of the turning point is determined by energy conservation
(using the fact that p(7p) vanishes before changing sign):

Pipfe P = p;. (A.3)

The time scale AT of the collision (during which one feels the influence of the exponential
potential) is roughly of the order 1/(popo): the later the collision, the sharper the wall. Let
us evaluate the change in Q in the collision. To that end, we need to integrate Q = Pp* e 4
over the collision, which yields

AQ = P, /Oo dTpk e P (Pl T—=Tol+q0) (A.4)

oo

The integrand is maximum at 7 = 7. We can approximate the integral by the value at the
maximum times the time scale of the collision. Using (A.3), one obtains
P _ o
Popo  Po '
Hence, the variable Q receives a kick during the collision (which can be of order 1 at early
times), but the later the collision (i.e., the larger Tj), the smaller the kick.

Assume now that there is another wall with the same pre-factor and the same time
dependence, say at ¢ = d, so that ¢ bounces between these two walls,

AQ ~ (A.5)

| p2 k —pld—
Vadditiona = 5 P*p" e ™79

At each collision Q receives a kick of order 1/p9 = e 0. Because the speed of g remains
constant (in the large 7 limit), the collisions are equally spaced in 7. Therefore, the time of
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the nth collision grows linearly with n: roughly TO(") ~ nd/po. The total change in Q is then
obtained by summing all the individual changes, which yields

(AQ)Toa ~ Y e /P, (A.6)

This sum converges. Therefore, after a while, one can neglect the further change in Q, i.e.,
assume Q = 0. The Hamiltonian describing the large time limit is obtained by taking the
sharp wall limit in the above H, and reads therefore

H=1p*+0(—q)+0(q — d). (A7)

The pair (Q, P) drops out because it is asymptotically frozen. Our analysis justifies taking
the sharp wall limit directly in H for this system, which is the procedure we followed in the
text to obtain the gravitational billiards.

Note that, had we studied a more complicated model with different pre-factors for the
different walls, the pre-factors f4(Q, P) would no longer have been exactly conserved.
However, their non-conservation would only have been driven by the ‘far-away’ walls, so that
their time variation would have been exponentially small.
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