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Abstract

It is shown that a spacetime with collisionless matter evolving from
data on a compact Cauchy surface with hyperbolic symmetry can be glob-
ally covered by compact hypersurfaces on which the mean curvature is
constant and by compact hypersurfaces on which the area radius is con-
stant. Results for the related cases of spherical and plane symmetry are
reviewed and extended. The prospects of using the global time coordinates
obtained in this way to investigate the global geometry of the spacetimes
concerned are discussed.

1 Introduction

One of the key mathematical problems in general relativity is the determination
of the global properties of solutions of the Einstein equations coupled to various
matter fields. We investigate this problem in the case of collisionless matter
described by the Vlasov equation. The underlying strategy is to first estab-
lish the existence of a suitable global time coordinate ¢ and then to study the
asymptotic behaviour of the solution when ¢ tends to its limiting values, which
might correspond to the approach to a singularity or to a phase of unending
expansion. The following is almost exclusively concerned with the first of these
two steps. Since the general case is beyond the range of current mathematical
techniques we study a case with symmetry.

There are several existing results on global time coordinates for solutions of
the Einstein-Vlasov system. In the spatially homogeneous case it is natural to



choose a Gaussian time coordinate based on a homogeneous hypersurface. The
maximal range of a Gaussian time coordinate in a globally hyperbolic solution
of the Einstein-Vlasov system evolving from data on a compact manifold which
are homogeneous (or locally homogeneous) was determined in [R(]. It is finite
for models of Bianchi IX and Kantowski-Sachs types and finite in one time di-
rection and infinite in the other for the other Bianchi types. All other results
presently available on the subject concern spacetimes which admit a group of
isometries acting on two-dimensional spacelike orbits, at least after passing to a
covering manifold. The group may be two-dimensional (local U(1) x U(1) sym-
metry) or three-dimensional (spherical, plane or hyperbolic symmetry). In all
these cases the quotient of spacetime by the symmetry group has the structure
of a two-dimensional Lorentzian manifold ). The orbits of the group action
(or appropriate quotients in the case of a local symmetry) are called surfaces
of symmetry. Thus there is a one-to-one correspondence between surfaces of
symmetry and points of Q.

Three types of time coordinates which have been studied in the inhomoge-
neous case are CMC, areal and conformal coordinates. A CMC time coordinate
t is one where each hypersurface of constant time has constant mean curvature
and on each hypersurface of this kind the value of ¢ is the mean curvature of
that slice. In the case of areal coordinates the time coordinate is a function of
the area of the surfaces of symmetry. In some papers in the literature it is taken
to be proportional to the area. In this paper it is taken to be proportional to
the square root of the area. In the case of conformal coordinates the metric on
the quotient manifold @ is conformally flat. The properties of the last two kinds
of time coordinates will be described in more detail later.

Next the known results concerning these time coordinates in solutions of the
Einstein-Vlasov system will be summarized briefly. For the detailed statements
the reader is referred to the original papers. In the case of spherical symmetry
the existence of one compact CMC hypersurface implies that the whole space-
time can be covered by a CMC time coordinate which takes all real values [[Ld, .
The existence of one compact CMC hypersurface in this case was proved later
by Henkel [, thus providing a complete picture in the spherically symmetric
case. His proofs use the concept of prescribed mean curvature (PMC) folia-
tion which may be useful more generally. A general local existence theorem
for PMC foliations was proved in [[L]]. In the case of U(1)x U(1) symmetry
(which includes plane symmetry as a special case) it was proved in [1] that the
existence of one compact CMC hypersurface (without loss of generality with
negative mean curvature) implies that there is a foliation by compact CMC
hypersurfaces where the mean curvature takes on all negative values. It was
also shown that the foliation covers the whole spacetime between the initial hy-
persurface and the singularity, but it was left open whether it covers the whole
spacetime in the other time direction. The latter question will be discussed fur-
ther in Section E In the special case of Gowdy symmetry (which includes plane
symmetry) the existence of one compact CMC hypersurface follows from [@]
Finally, in the case of hyperbolic symmetry, the results of imply that the
existence of one compact CMC hypersurface leads to the same conclusions as in



the U(1) x U(1)-symmetric case, provided the Hawking mass is positive on the
initial hypersurface. (The question of whether the CMC foliation includes all
negative numbers as values of the mean curvature was not discussed in [@], it
will be settled in Section E) Under the same positivity condition the existence
of one compact CMC hypersurface is proved in [@]

The main concern of this paper is with the areal and conformal time coordi-
nates. In fact it is the first of these which is of fundamental interest—conformal
coordinates serve as a convenient tool in an intermediate step in the proofs.
Note that the areal time coordinate is automatically positive so that the largest
possible time interval on which the solution could exist is ]0,00[. It was shown
in [E] for spacetimes with spherical symmetry that if there is one symmetric
Cauchy surface of constant areal time and if the data on that hypersurface sat-
isfy a certain inequality then the past of the initial hypersurface is covered by
an areal time coordinate and this coordinate takes on all values in the range
10, R1], where Ry is its value on the initial hypersurface. A result improving this
time interval cannot be expected since these spacetimes tend to recollapse, and
then the areal coordinate will break down at some point in the time direction
corresponding initially to expansion. The results on the areal coordinate in [@]
for the case of plane symmetry are superseded by those on Gowdy symmetry in
[

E] For Gowdy symmetry the spacetime is globally covered by an areal time
coordinate which takes all values in the range | Ry, 00| for some Ry >0. In some
cases, such as the vacuum Gowdy spacetimes, it is known that Ry =0, cf. [@],
but it is not understood in what generality this holds. For hyperbolic symmetry
a direct analogue of the result for restricted data in spherical symmetry stated
above was also proved in [[Lq].

In the case of hyperbolic symmetry two main questions were left open by
the work up to now. Firstly, is there always one symmetric Cauchy surface of
constant areal time? Secondly, is there an areal time coordinate whose level
surfaces are compact and symmetric which covers the whole spacetime, and
does it take on arbitrarily large values? These questions will be answered in
the affirmative in the following (Theorem B.1]). The proofs are modelled on the
approach of [E], which in turn was inspired by the work of [E] on the vacuum
case. A conformal time coordinate is used in an intermediate step.

In Section 2 the definitions of hyperbolic symmetry and the Einstein-Vlasov
system are recalled. The local existence of conformal coordinates in a neigh-
bourhood of the initial hypersurface is demonstrated. In Section 3 the evolution
of the spacetime in the expanding direction is analysed. A global existence theo-
rem in areal time is proved which answers the second main question modulo the
first one. In the section after that a long-time existence result in the contracting
direction is proved using conformal coordinates. In Section 5 the existence of
a symmetric compact Cauchy surface of constant area radius is demonstrated,
thus answering the first main question. All these results are combined to produce
the main results of the paper in Section 6. Theorem EI asserts the existence
of a global foliation by hypersurfaces of constant areal time in solutions of the
Einstein-Vlasov system with hyperbolic symmetry, and Theorem makes an



analogous statement for hypersurfaces of constant mean curvature. The last
section discusses possible extensions of these results and looks at what is known
about the asymptotic behaviour of solutions.

2 Hyperbolic symmetry

In [IE] a definition of spacetimes with surface symmetry was given. This com-
prised three cases, namely spherical, plane and hyperbolic symmetry. In the fol-
lowing the case of most interest is that of hyperbolic symmetry. The spacetime
M is diffeomorphic to IR x S! x I where F is a compact orientable surface of
genus greater than one. The manifold M has a covering space M diffeomorphic
to IR x S! x F with projection p induced by the projection p from the universal
cover I to F according to p(x,y,2) = (z,y,p(2)). The surface F' admits metrics
of constant negative curvature, and F endowed with the pull-back of any one of
these metrics is isometric to the hyperbolic plane. Let G be the identity com-
ponent of the isometry group of the hyperbolic plane. If F is identified with the
hyperbolic plane then an action ¢ of G on F is obtained. Define an associated
action ¢ on M by ¢(z,y,2) = (z,y,6(z)). A spacetime with underlying manifold
M defined by a metric gog and matter fields is said to have hyperbolic symme-
try if the pull-back g, of the metric and the pull-back of the matter fields to

M via p are invariant under ¢ The surfaces in M diffeomorphic to F' defined
by the product decomposition will be called surfaces of symmetry. A Cauchy
surface S will be called symmetric if it is a union of surfaces of symmetry. Then
S=p~1(S) is invariant under the action of the group G. It is now clear how to
define abstract Cauchy data for the Einstein-matter equations with hyperbolic
symmetry. They should be defined on a manifold S of the form S x F and
should be such that the pull-back of the data to S =51 % F under the natural
covering map is invariant under the natural action of G. The quotient of S by
the action of G is diffeomorphic to S*.

Consider now a choice of matter fields for which the Cauchy problem for the
Einstein-matter equations is well-posed. The example of interest in the following
is that of collisionless matter satisfying the Vlasov equation. Corresponding to
initial data for the Einstein-matter equations with hyperbolic symmetry there
are data on the covering manifold S which have a maximal Cauchy develop-
ment on a manifold M. We will now construct a certain coordinate system on
a neighbourhood of the initial hypersurface in M. As remarked in L9 coordi-
nates can be introduced on the initial hypersurface S so that the metric takes
the form A2(0)d6? + B2(0)dx?, where d%? = da? +sinh® zdy?. Correspondingly
there are local coordinates on S (local in « and y) where the metric takes this
form. On a neighbourhood of the initial hypersurface in M we can introduce
Gauss coordinates based on the given coordinates on S. The group G acts as
a symmetry group on the initial data. On general grounds the action of G on
S extends uniquely to an action on the maximal Cauchy development M by
symmetries (see e.g. [ﬂ . The hypersurfaces of constant Gaussian time are in-
variant under the action of G, as are the hypersurfaces of constant 6. Using the



isotropy group of any point it can be seen that the Oz and éy components of the
metric of these hypersurfaces must vanish. In the same way, the restriction of
the second fundamental form of the hypersurfaces to the surfaces of symmetry
must be proportional to the metric with a factor depending only on t and 6. By
integration in ¢ it then follows that the spacetime metric takes the form

ds® = —dt® + A%(t,0)d0* + B2 (t,0)dx? (2.1)

in the region covered by Gauss coordinates. From this we see that we can
form the quotient of this metric by the action of a discrete group to get a
spacetime on a subset of M which is a Cauchy development of the original data
on S. Furthermore we can form the quotient by G to get the Lorentz metric
—dt? + A2(t,0)d6? on a subset Q of IR x S* referred to in the introduction. On
@ we can pass to double null coordinates (u,v) on a neighbourhood of the
quotient of the initial hypersurface. Defining new coordinates by t= %(u—v)
and 0= %(u—l—v) puts the metric on @ in conformally flat form. By pull-back
these define new coordinates on M where the metric takes the form

ds? = e*1(—dt? +d6?) + R*(dx? +sinh® zdy?) (2.2)

where 1 and R are functions of ¢ and 6 which are periodic in 8. This proves the
existence of a conformal coordinate system close to the initial hypersurface. It
is possible to choose the double null coordinates in such a way that the initial
hypersurface coincides with ¢ =0 and the period of the functions n and R is one.

To conclude this section we formulate the Einstein-Vlasov system which
governs the time evolution of a self-gravitating collisionless gas in the context
of general relativity; for the moment we do not assume any symmetry of the
spacetime. All the particles in the gas are assumed to have the same rest mass,
normalized to unity, and to move forward in time so that their number density
f is a non-negative function supported on the mass shell

PM :={gapp®p” =—1, p°>0},

a submanifold of the tangent bundle T'M of the space-time manifold M with
metric go3. We use coordinates (t,2%) with zero shift and corresponding canon-
ical momenta p®; Greek indices always run from 0 to 3, and Latin ones from 1
to 3. On the mass shell PM the variable p” becomes a function of the remaining
variables (t,z%,p"):

P’ = /=% 1+ gappph.

The Einstein-Vlasov system now reads
P* L
O f+ Ea””“f - Efﬁwpﬁp"@paf =0,

GP =8nT*P,

N N dpldp2dp3
T "=/p PIlgl" = =



where I'§. are the Christoffel symbols, |g| denotes the determinant of the metric,
G°P the Einstein tensor, and T%7 is the energy-momentum tensor. The pull-
back of the number density f to T'M is assumed to be invariant under the action
induced on TM by the action of G on M, a fact which can be used to reduce
the number of independent variables.

3 The expanding direction

In this section we want to investigate the Einstein-Vlasov system with hyperbolic
symmetry in the expanding direction. We write the system in areal coordinates,
i.e., the coordinates are chosen such that R=t. The circumstances under which
coordinates of this type exist are discussed later. We prove that for initial
data on a hypersurface of constant time corresponding solutions exist for all
future time with respect to the areal time coordinate. It should be noted that
our time coordinate has the geometric meaning of the curvature radius of the
hyperbolic spaces which form the orbits of the symmetry action. Since it requires
little additional effort we include for the sake of comparison the case of plane
symmetry and write the metric in the form

ds® = —e?dt? + 2 dh? 4+ t*(da® + sin® z dy?), (3.1)
where p and A are functions of ¢ and @, periodic in 6 with period 1, and

sinz for e=1,
sine x := 1 for e=0,
sinhx for e=—1.

For the case e =1 the orbits of the symmetry action are two-dimensional spheres.
In this spherically symmetric case the global result below is easily seen to be
false, cf. [E], so this case will not be considered further. For the case e=0 the
orbits of the symmetry action are flat tori, and the coordinates z and y range
in the interval [0, 27].

Lemma 3.1 Assume that (the pull-back of) f is invariant under the group
action on T M associated to hyperbolic symmetry. Then f depends only on

t, 6, pt, (p2)2+sinh2x(p3)2.

Actually, we will write
f:f(t,97w,L)
where
w:=e p', L:=t*((p?)? +sinh’z (p*)?).

PP =eP/1+w2+ L/t2=:e""(p),
and L is a conserved quantity along particle orbits. The analogous result holds
in the case of plane symmetry e =0.

In these variables



Proof of Lemma Iﬂ To see the above assertion on the form of f we proceed as
follows. In the coordinates

7’ =6, ' =tcoshx, 72 =tsinhzcosy, > =tsinhxsiny

on the covering manifold M the symmetry orbits are given as {Z° = const} x
H?(t) where

H%(t):={(@",7%,7%) e R3 |z >0, —(z")* + (%) + (z)* = —*},

a hyperbolic space of radius ¢, cf. [IE, p. 108 ff]. The reason for using these
coordinates is that the isometry group of the hyperbolic spaces now has a nice
representation: Its elements are given by the restriction to H?(t) of the linear
maps z = (z',22,2%)" +— Sz with matrices S € GL(3,IR) which have the property
that
(Su,Sv) = (u,v), u,v€R?
where
(u,v) := —u'v' +uv? +ude?

is the usual inner product on three-dimensional Minkowski space. In addition,
the matrices S are required to preserve orientation, i. e.,

S= <acT abs)v ar>0,as €IR**? with detag>0, b,c€ R,

That these matrices represent the isometries of the hyperbolic spaces can be
found in [E, p. 239 ff] or can be seen directly: In the new coordinates

_ _ _ 1) :fc5bdi:d
Goo=¢>*, Goa =0, gabzeab+(1—€2”)acT%b
where
e11=—1, e =e33=1, €5, =0, a#b,
and

'Yab:'-)/ba:_ly (1,:1,():2737 "Yabzl otherwise,

and since for the matrices introduced above one has —S7,51p+ 52459 +
S34:93b = €qp, 1. €., their columns are orthonormal with respect to (-,-), their
isometry property is easily seen. Now denote by p® the canonical momenta
corresponding to the new coordinates ¢, i. e.,

ox™ 97 01  .0%"
o _ .0 1 2 3 3.9
P pat+p89+pax+pay7 (3.2)

in particular p°=p'. Fix some 0=2z"t>0, z€ H%(t), p"€R, and p=
(p*,p%,7%)" €R®. Let S be an isometry such that Sz =(¢,0,0)"" and T a ro-
tation in the (z2,2%)-plane such that T'Sp=(¢*,¢?,0)"" with ¢*>>0. Since TS
represents an isometry under which f should be invariant,

f(07'f’l_)07ﬁ):f(97TS'f7p1’TSﬁ):f(97t70707p1’q1’q270)



and . 1
q'= — (TS, TSp)=—~(@,p),

(a*)*=(a")*=(@")*+ @)+ ()"
When these quantities are re-expressed in the old momentum variables via (B.9)
we find
¢' =1, (¢°)° =*(p*)*+*sinh’z (p°)°
which proves the assertion in the hyperbolic case. For the plane case the argu-
ment is even easier.

In the variables which we have now introduced the complete Einstein-Vlasov
system reads as follows:

u—)\
Ouf + == L0y f — (Aew+ e g (p)) 0 f =0, (3.3)
(2N +1) + e = 87t?p, (3.4)
212ty — 1) — e = 87t’p, (3.5)
o = —4Amter g, (3.6)
e (oo +10 (1o —20)) =€ (M (e +1/) (M —pu) ) =4mq, (37)
where
o(t.0) = 5 / () (4,0,1, L) dL dw = e~2# Too (1,0), (3.8)
—o0J0
p(t.0) == 7;/ / w—f t,0,w,L)dLdw=e > T}, (t,0), (3.9)
t o (p

J(t.0) = t%/ / wf(t,0,w,L)dLdw=—e " Ty (t,6),  (3.10)
0
o L 2
q(t,0) := i f(t,0,w,L)dLdw= t—Qng(t,H); (3.11)
—o0J0

recall that
(p)=+/1+w?+L/t%

We prescribe initial data at some time ¢t =17 >0,
f(tf)ueawuL):fo(eawuL)a )‘(t079):)i(9)7 M(t079):/2(9)

and want to show that the corresponding solution exists for all ¢ >ty. To this
end we make use of the continuation criterion in the following local existence
result:



Proposition 3.2 Let fECl(]RQXIR(J{) with f(@—l—l,w,L):f(@,w,L) for
(0,w,L)eR*xR{, f>0, and

sup{ || (9w, L) € suppf } < o,

sup{L|(9,w,L)€suppf}<oo.
Let X, /i€ C(IR) with X(0) =X(0+1), [i(0+1)=/(0) for 6 R and

fi0(0) = —4meME§(0), O TR.

Then there exists a unique, right mazimal, regular solution (f,\,1) of B-3)-(B-9)
with (f,\,p)(to) = (f,/{,ﬁ) on a time interval [to, T with T €]tg,00]. If

sup{,u(t,@) |0eTR, te [tO,T[} < oo
then T = oco.

This is the content of [[, Thms. 3.1 and 6.2]. In fact this was only stated in
the case tg=1 in that reference, but that was an arbitrary choice which makes
no essential difference. For a regular solution all derivatives which appear in the
system exist and are continuous by definition, cf. [E}

We now establish a series of estimates which will result in an upper bound
on y and will therefore prove that T'=oo. Similar estimates were used in [g] for
the Einstein-Vlasov system with Gowdy symmetry. In what follows constants
denoted by C will be positive, may depend on the initial data and may change
their value from line to line.

Firstly, integration of (E) with respect to ¢t and the fact that p is non-
negative imply that

o _1
to(e™2HO) 1 ¢) 8w (1 t

p0) — |0~ Y o OF 2 0)d >, t€to,T].

e l - €=~ tosp(s,)s =t € [to, T[
(3.12)

Next we claim that
1
/ M p(t,0)do < Ct1re, te[to, T (3.13)
0

A lengthy computation shows that

d [! 1!
—/ e“+’\p(t,9)d9=——/ el A 2p+q—m(1+eez“) de.

Now ¢>0 and p <p so that for e=0,

d

1 1 1
E/ e“JrAp(t,@)ng—;/ P p(t,0)do
0 0



and integrating this with respect to ¢ yields () for e=0. For e=—1 we have

d [* 1/t p+p 1! p+p
— HHA t9d9<——/ b - 9——/ AT Z 0
dt/oe p(t,6)d0 < toe pta 2 crt), © 2

1 1
< - HEA (9 d9<——/ pEA

and integrating this inequality with respect to ¢ yields (B.13) for e=—1. Using

(B.13) and (B.6) we find
1 1
<[ [ ote.rirds

M@@—AUMJMoz

1 1
< 47Tt/ e“+)‘|j(t,7')|d7'§4ﬂ't/ et p(t,T)dr
0 0

o (t,7)dr do

< Ct¢, t€to,T[, 0€10,1]. (3.14)
Next we show that
MO0 < Cplte ety T, 0€10,1]. (3.15)
To see this observe that by (B.4), (B.9) and (§.13)

ge“_’\ = et [dmte® (p—p) + (e +1)/t] < el Mee® +1) /t

ot
1 €
< |= B
_{t—’—O—et}e ’

and integrating this inequality with respect to ¢ yields (B.L).
We now estimate the average of 11 over the interval [0,1] which in combination
with ) will yield the desired upper bound on u:

1 1 t 1
/u(t,ﬁ)dez/ u(to,e)dH—l—//ut(s,G)deds
0 0 to JO

t 1
< C+/ i/ [e*(8ms*p+e)+1] dids
to 28 0

= C+—1n(t/t0)+47r/ s/ e“_’\e“+’\pd9ds+e/ —/ e dfds
2 to J0 to 25 Jo

1 ¢ e [t ds
< C+=In(t/to)+C | s*Tsd —/
- +2 n(t/to) + /tos ° S+2 o C—es’

where we used (B.19), (B.19) and (B.13). With (B.14) this implies

t? ate[t(JvT[v 96[071]3 =0,
“(t’”SO{Hmt Ctelto,T] 0€[0,1], e=—1,

(3.16)

which by Proposition @ implies T'=o00. Thus we have proven:

10



Theorem 3.3 For initial data as in Proposition @ the corresponding solution
exists for all t € [ty,00[ where t denotes the area radius of the surfaces of symme-
try of the induced spacetime. The solution satisfies the estimates (B.13), (B-19)
and (B.14).

4 The contracting direction

In this section we consider the Einstein-Vlasov system in the contracting direc-
tion and use conformal coordinates in which the metric takes the form (2.9). As
in the case of areal coordinates used in the expanding direction f depends only
on

t, 6, p*, (p*)? +sinh’z (p®)2
We will write

f=7t0,wL)

where
wi=e"pt, L:=R*(p?)? +sinh?z (p°)2).

p’=e"\/14+w2+L/R2=:¢""(p),
and L is a conserved quantity along particle orbits.

In the variables introduced above the Einstein-Vlasov system can be written
in the following form:

As above,

w ’LU2
Onf+-—0 +[— w— ( +—)+e—2"R }aw =0. 4.1
i f ) o f new —1p | (p) ) ") f (4.1)
1 - -
= Roo -+ Rut 1o Ro+ 5 R?— Ry?—€*"| = 4nwRe*"p, (4.2)
Rig—nt Ro—np Ry = 4w Re*"j, (4.3)
Rtt—Rgg—i-% [Re2— Ro?— €| = 4nRe* (p—p), (4.4)
1 - -
ntt—nee—ﬁ Rt2—R02—€2n :47”3277(19—P—Q)= (4.5)
where
p(t.0) :=%/ / {p) f(t,0,w,L)dLdw=e"*"Ty(t,6), (4.6)
—o0J0
Jj(t.0) ::%/ / wf(t,0,w,L)dLdw=—e Ty (t,6), (4.7)
—o0J0
[e'e] o) 2
p(t,0) == 12/ / w—f(t,e,w,L)dew:e*%Tu(t,o), (4.8)
R —o0J0 <p>
(1,0) == l/oo /Ooif(tew L)dLdw = —-Ts(t,0) (4.9)
qlt, '_R4_Ooo<p> , UV, W, _R2227' .

11



The equations ([.9), (-J) are the constraints and (f.4), (JL5) are the evolution
equations; from the relation of their right hand sides with the energy momentum
tensor it is obvious how this form of the field equations is obtained.

Let a smooth solution of the system ([L.J)-(fl.9) on some time interval ¢, o]
be given. We want to show that if this interval is bounded and if R is bounded
away from zero on this interval then f, R, n and all their derivatives are bounded
as well, with bounds depending on the data at t =ty and the lower bound on R.
To this end we define auxiliary variables

1 1

T::ﬁ(t—H), f::ﬁ(t—i—H)

1 1
%(&5—6@), O = 7

The analysis which follows is modeled on the one in [J], cf. also [{].
Step 1: C'-bounds on R. A short computation using (f.9) and ({t.J) shows that

so that

0, = (D0 +09).

1
V2

_ (\/in£+ ﬁm)}z5 - ﬁ

< (\/5775-1- ﬁRr)Rﬁ

observe that by (f.§) and ([.7), || <p. Assume that Re(t,0)=0 for some t€
Jt—,to] and € €IR. Then by the periodicity of R with respect to 6,

OgRe = —(Ri9+ Roo)

e — 22w Re? (p— )

0+1
1
0=Re(t,0+1) < Re(t,0)e / V2ne+ —=—=R. ) db' | =0,
e(t,0+1) < Re( >xp<9 (Vane+ )
a contradiction. Thus Re #0 on ]t_,to] x S*. Similarly,

OpRy > — (x/§m + ﬁRg)RT

which yields the same assertion for R,. This implies that the quantity
1
g“ﬁamaRamﬁR:6*2’7(—Rt2+R92):—56*2"3537
does not change sign. Since R is periodic in 0, there must exist points where

Ry =0, hence the quantity above is negative everywhere, and by our choice of
time direction,

By ([L4).

Ry >0, |Rg| <Ry on Jt_,to] x S*. (4.10)

1 1

3R =35

1 1
ReR,+€*" | = +4nR(p— ——R¢R;;
¢R-+e (R+ mR(p p))> SRl

12



observe that by ([.6) and (.§) p < p. Now we fix some (¢,0) €]t_,to[xIR. Then
for s e [t,to],

diRg(s,H—l—t—s):\/gRgT > —di[lnR(s,H—i—t—s)]Rg(s,G—i—t—s).

Integrating this differential inequality yields

R(to,0+t—to)

Rg(t,9)< R(4,0)

Re(to,0 4+t —to).

Similarly,
R(to,0 —t+to)

R(t,0)
and both estimates together imply that R; is bounded from above on Jt_,tg] x S*
with a bound of the desired sort. Together with ([.10) this provides bounds for
R; and Ry. Note that this argument shows that the spacetime gradient of R?

is bounded even without the assumption that R is bounded away from zero.
Step 2: C*-bounds on 1. From (f.4) and ({.§) we find

1
nﬁT:_ﬁ

We fix some (t,0) €]t_,to[xIR. Then for s € [t,to],

RT(t,9)< RT(to,e—t'i‘lfo),

Rer —2me?q.

d 1d
Eﬁg(s,e—l—t—s):—EERg(S,H—Ft—S)—2\/§7T62nq(8,9+t—5).

Integrating this and integrating the term containing R¢ by parts yields

_ Relto,0+t—to) | Re(t,0)
R(to,0+t—to) ' R(L,0)

fo R, R
+\/§/ (27T€2"q—7> (s,0+t—s)ds. (4.11)
t

775(15,9) = ng(to,e—Ft—to)

We already know that
to 1
/ Rer(5,0+t—s)ds=—=(Re(to,0+t—1to) — Re(t,0))
: V2

is bounded, and on the other hand by @) the left hand side can be written as
o1 1
2/ {E (—Rt2 + R92> + Eezn +4nRe*(p—p)| (5,0 +t —s)ds.
t

Here the first term is bounded by Step 1, and the second and third terms are

non-negative. Thus by ([£.9), (£.6), [{9).

to to 1
/teQ"q(S,H—H—s)dSS/t ﬁe%(p—p)(s,ﬂ—l—t—s)ds

13



is bounded as well; recall that R is bounded away from zero by assumption.
Thus ({.11) implies that ne is bounded on Jt_,to] x S*. Analogously to ([L.11])
we have

RT(tO)e_t+t0) RT(t,G)
R(to,0—t+to) R(t,0)

fo R, R
+\/§/ (27re2"q— ?) (s,0—t+s)ds (4.12)
t

ﬁf(t,o) = nT(to,e—t—Fto)—

from which we can conclude that 7, is bounded on ]t_,to] x S' as well. Thus
also n,mp and 7 itself are bounded there.

Step 3: Bounds on matter quantities. We have for any t€lt_ tg], 6€R, we
R, L>0,

f(taevwaL) :f(th@(thtaevwaL)vw(t()vtveava)aL)

where ©(-,t,0,w,L),W(-,t,6,w,L) is the solution of the characteristic system
L w
(p)’
w? ) 9 L
W= —nw—ng| (p)+7~ | +e "Ry
' (< ) (p) R3(p)
of the Vlasov equation with ©(¢,t,0,w,L)=0, W (t,t,0,w,L)=w. This repre-
sentation of f implies immediately that f remains non-negative and bounded
by its maximum at t=t3. By Steps 1 and 2 the right hand side of the second

equation in the characteristic system is linearly bounded in w, and hence if the
w-support of f is compact initially,

supq{|w||(8,w, L) €suppf(t), t €]t to]} < 0.

This immediately implies that p,p,j,q are bounded on ]t _,to] x St.

Step 4: Bounds on second order derivatives of R and n. Steps 1, 2 and 3
together with ([£.9), (£.J) and ([.4) imply than Rgg, Ryp and Ry are bounded as
claimed on Jt_,#o] x S'. The bounds on the second order derivatives of 1 are a
bit less trivial: We add the equations () and () to obtain a formula for
1p. When this formula is differentiated with respect to 8 there results a number
of terms which are bounded by the previous steps and the terms

to
27T/t R4/ / 89f 8,0+t —s,w,L)dLdwds, (4.13)

to
271'/ —/ / 89f 8,0 —t+s,w,L)dLdwds. (4.14)
To deal with the first term we introduce the differential operators

W =20, =0, — y, s:at+<%>ae
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so that

By the Vlasov equation

sy { mw—n (<p>+w2)+e-2"R L } Ouf
=— | =W —1s RN 0537~ | Qwl-

(p) R3(p)
When this is substituted into ({.13) the resulting term can be integrated by
parts with respect to w, and all the terms which then appear are bounded by
the previous steps. As to the W-contribution,

d
(W§)(s,0+t—s,w,L)= o [f(s,0+t—s,w,L)]
s
so that the corresponding term in () can be integrated by parts with respect
to s which again results in bounded terms. In order to deal with ([L.14) we replace
w by —w in the integral and redefine

)

the rest of the argument should then be obvious, and 7gg is seen to be bounded
on Jt_,tg] x S*. This way of dealing with derivatives in connection with the
Vlasov equation was introduced for the Vlasov-Maxwell system in [E] Now
that 7gg is bounded the same is true for ny by (f.9), and 7 can be dealt with
like 7gg: Taking the difference of ({l.11]) and (£ gives the necessary formula
for n;.

Step 5: Higher order derivatives. Via the characteristic system the C?-bounds
on R and 7n give bounds on the first order derivatives of O(-,t,6,w,L) and
W (-,t,0,w, L) with respect to §,w,L. This yields corresponding C*-bounds first
on f and then as in Step 3 on p,p,7,q. These in turn imply C3-bounds on R.
The third order derivatives of 7 then have to be dealt with by repeating the ar-
gument of Step 4, and although the details would be tedious it should be clear
that this process can be iterated to bound any desired derivative on Jt_,#o] x S*
in terms of the data at t =ty and the positive lower bound on R.

Later we will require a slight generalization of these results. The essence
of the first part of Step 1 above is to show that the gradient of R is timelike.
The argument is carried out on a region which is covered by Cauchy surfaces
of constant conformal time. However this fact is also true for any solution of
the Einstein-Vlasov system with hyperbolic symmetry and a compact Cauchy
surface. This follows from , Lemma 2.5]. Once this has been established
the estimates in the later steps hold for any subset Z of the half-plane t <t
provided Z is a future set. By definition this means that any future directed
causal curve in the region ¢t <t starting at a point of Z remains in Z. (For
information on concepts such as this concerning causal structures see e.g. [E])
Thus if R is bounded away from zero on Z and t is bounded on Z then all the
unknowns and their derivatives can be controlled on Z.

W:8t+89, S=0;— 80;
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Now consider a special choice of the subset Z, namely that which is defined
by the inequalities t; <t <tg and 01 +tg—t <0 < 03—ty +1t for some numbers 61,
02 and t; satisfying the inequalities 6; <03 and t1 >to— (1/2)(02 —61). Suppose
a solution of the Einstein-Vlasov system in conformal coordinates defined on
this region is such that R is bounded away from zero. Then the functions
defining the solution extend smoothly to the boundary of Z at t =¢;. They define
smooth Cauchy data for the Einstein-Vlasov system. Applying the standard
local existence theorem (without symmetry) allows the solution to be extended
through that boundary. Repeating the construction of conformal coordinates
in Section P then shows that we get an extension of the solution written in
conformal coordinates through that boundary.

5 Existence of an areal time coordinate

In Section E it was shown that the maximal Cauchy development of initial data
for the Einstein-Vlasov system with hyperbolic symmetry admits conformal
coordinates in a neighbourhood of the initial hypersurface. The aim of this
section is to show that a spacetime of this kind always admits a symmetric
compact Cauchy surface of constant areal time. The basic strategy follows that
of . The fundamental object of study is a spacetime in conformal coordinates
which develops (to the past) from initial data on the hypersurface t=0. The
solution will exist on a subset of the region ¢t <0 of IR2. We will consider solutions
defined on open subsets of the half-plane ¢ <0 containing t =0 which are future
sets. The union of all regions admitting solutions of this type is an open future
set. Denote it by D. By definition R is a positive function defined everywhere
on D.

Consider first the case that the past boundary of D is empty, i.e., that
D=]—00,0]xS*. Let ¥, be the level set defined by the equation R(t,0)=p
for some p less than the minimum of R on t=0. Since the gradient of R is
everywhere timelike the level sets 3, are smooth spacelike submanifolds. These
level sets can be represented in the form ¢= f(#), and since the coordinates
are conformal and the level sets spacelike it follows that |f’|<1. Hence the
Y, are compact and their pull-backs define compact spacelike hypersurfaces in
a Cauchy development of the initial data of interest. By [E] these are Cauchy
surfaces. As a consequence the maximal Cauchy development of those data
contains symmetric compact Cauchy surfaces of constant areal time.

It remains to consider the case where D has a non-empty past boundary.
Call this boundary B. It is achronal. Hence for any given 6 there is only one ¢
such that (¢,0) € B. If p is a point of B then all points of B close to p are outside
the light cone of p. Hence B is a Lipschitz curve with Lipschitz constant one.
In other words it can be represented in the form ¢=h(6) for a function h with
Lipschitz constant one. This is a special case of a general property of achronal
boundaries, cf. [H, p. 187]. As a consequence B is compact. Since the gradient
of R? is bounded on the whole region where the solution is defined (as shown
in Section i) it follows that R? is uniformly continuous. Hence the function R?
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extends to a continuous function on the closure D of D. Its square root R is a
continuous extension of R to D. It will now be proved that R=0 on B. From
this point on it is possible to argue as above to obtain the existence of a Cauchy
surface on which R is constant.

Consider first a point 8y where h has a local maximum and let to =h(fp).
Then there exists € >0 such that for any ¢ greater than ¢y the points (¢,6) with
Op—e<BO<bOp+elie in D. If R(ty,0y) >0 then the solution has a smooth limit
at the points (tg,0) with 0y —e <60 <8y+¢€ provided e is small enough. This
gives Cauchy data at ¢ =t,. The corresponding local solution of the evolution
equations can be used to extend the original solution, thus contradicting the
assumed maximality of D. It follows that in fact R vanishes at any point of B
where h has a local maximum.

Let D; be the intersection of D with the hypersurface where the time coor-
dinate takes the value ¢t. It is an open subset of S'. It is either the whole of
S1, the empty set or a disjoint union of open intervals which are its connected
components. Consider now a point (¢g,0y) of B which is an endpoint of a com-
ponent of D;,. Suppose further that R(tp,0p)>0. Without loss of generality
we can assume that 0y is a right endpoint of a component; the argument for a
left endpoint is strictly analogous. For some € >0 the solution extends smoothly
to the points (to,0) with 8y —e <8 <8y. This can be extended to smooth data
at t =tp on the interval 8y —e <6 <6y+e€. There is a corresponding local solu-
tion. Using the domain of dependence we see that this new solution extends the
original solution at those points outside the past light cone of the point (to,6p).
In this way we obtain an extension of the original solution and a contradiction
unless the part of B immediately to the left of 6 is a null curve. If Bj is the set
of points of B which are endpoints of components of some D, and which have
R >0 then it has now been shown that B; is a union of null segments. Return-
ing to the point (¢,fy) we can ask what happens to the interval of which it is
an endpoint as t increases. The endpoint could vanish if the interval coalesces
with another while R remains positive. However that would mean that g would
have to be a local maximum of &, a case already excluded. Hence as we move
to the right in @ the corresponding point of B must continue to be an endpoint.
Eventually R must become zero. But in that case the future-pointing character
of the gradient of R can be used to obtain a contradiction. It can be concluded
that B; is empty.

It remains to consider the case that there is a point (t9,6p) of B which is
not an endpoint of a component of some D;. In this case (¢,6p) belongs to D
for every t>to. Let (a(t),b(t)) be the component of D, containing 6. The
functions a(t) and b(t) are decreasing and increasing, respectively. Let ag and
bo be their limits as t — ¢y from above. If ag < by then (tg,0y) corresponds to a
local maximum of f and so R=0 there. Otherwise it is a limit of the points
(¢t,b(t)) which are right endpoints of components of Dy, and so by continuity
R=0.

A natural question arising in this context is whether a spacetime which exists
globally in one time direction with respect to a conformal time coordinate cannot
be extended in that direction to a strictly larger globally hyperbolic spacetime.
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It will be shown that this is impossible. As an aid in doing this we consider the
action of the symmetry group on M. We know exactly what the action looks
like near the initial hypersurface. There is a two-dimensional subgroup H of G
which acts transitively on the orbits of the action of G. Corresponding to H
there are two Killing vector fields which are spacelike and linearly independent
near the initial hypersurface. We claim that they are spacelike and linearly
independent on the whole of M, so that the orbits of the action of H are
everywhere spacelike and two-dimensional. To show this it suffices to show that
a Killing vector generated by the action of H can neither vanish nor become
null anywhere on M, cf. [ﬂ, Prop. 2.4]. Suppose that a Killing vector of this
kind vanishes at a point p. Without loss of generality we can assume that p lies
to the future of the initial hypersurface and that the Killing vector is spacelike
and non-zero on the chronological past of p. The integral curve of the Killing
vector through p is null and if we extend it maximally it must either reach the
initial hypersurface or tend to a zero of the Killing vector. The first of these
possibilities contradicts the fact that the Killing vector is spacelike on the initial
hypersurface. In the second case we see that the Killing vector has a zero to
the future of the initial surface.

Now it will be shown that the existence of zero of the Killing vector at a
point p to the future of the initial hypersurface leads to a contradiction. The
flow generated by the Killing vector leaves p invariant. Its linearization maps
the space of null vectors at p to itself and must have a fixed point. In other words
the linearization leaves a null direction invariant. The null geodesic with this
initial direction is then also invariant. It must intersect the initial hypersurface,
and the point of intersection is invariant under the flow. This gives the desired
contradiction.

Now we come back to the question of inextendibility. Suppose that the
spacetime exists for all conformal time in one time direction, without loss of
generality the future. Suppose that there is a point p belonging to a future
development of the initial data but not in the region covered by the conformal
coordinates. It lies on an orbit of H. Let v; and 2 be the two null geodesics
through p orthogonal to the orbit. They are orthogonal to all orbits they meet.
They must enter the region covered by conformal coordinates and then they
coincide with the curves with t=46+C for some constant C' and constant
values of the other coordinates. Without loss of generality we can assume that
p is on the boundary of the region covered by the conformal coordinates. In the
approach to p the geodesic v, intersects the geodesic v; infinitely many times.
This contradicts the strong causality and hence the global hyperbolicity of the
extension. The conclusion is that an interval of conformal time which is infinite
in one time direction proves that the maximal Cauchy development is exhausted
in that time direction.

There is also another criterion for inextendibility which can conveniently be
discussed here. It is related to an argument given in [E] Consider the action
of the group H on M introduced above and the corresponding Killing vectors.
Since they are always linearly independent with spacelike orbits, the 2 x 2 matrix
of inner products of these vectors always has positive determinant A. Suppose
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that a solution is given which exists globally towards the future in areal time.
It will now be shown that it has no proper globally hyperbolic extension to the
future. If there was such an extension there would be a point p of the extension
not belonging to the original spacetime. Let 1 be a null geodesic through p as
above. We may assume without loss of generality that it immediately enters the
original spacetime on leaving p towards the past. In the region covered by the
areal time coordinate it has constant values of the coordinates z and y. Along
the part of y; belonging to the original spacetime A is proportional to R*. As
a point on ~; approaches p the areal time coordinate ¢ tends to infinity, which
means that A tends to infinity. But A is a smooth function at the point p.
Hence no point p of this kind can exist.

6 Main results

In this section the analytical and geometrical information obtained in previous
sections is combined to obtain the main results of the paper.

Theorem 6.1 Let (M,gas,f) be the mazimal globally hyperbolic development
of initial data for the Einstein-Viasov system with hyperbolic symmetry. Then
M can be covered by symmetric compact hypersurfaces of constant area radius.
The area radius of these hypersurfaces takes all values in the range | Ry, 00[ where
Ry is a non-negative number.

The quantity Ry depends on the solution, but there is no good understanding
of how many solutions have Ry # 0.
Proof of Theorem . For a spacetime satisfying the hypotheses of the theorem
we know from Section H that a conformal coordinate system can be introduced
on a neighbourhood of the initial hypersurface Sy corresponding to the original
data. By the results of Section E it follows that this region can be extended to
the past so as to include a Cauchy surface S4 of constant areal time. Moreover,
either the conformal time coordinate extends to all negative values, or R tends
to zero as the past boundary B of the region covered by conformal coordinates
is approached. In the first of these cases the region covered by the conformal
time coordinate includes the entire past of the initial hypersurface in the max-
imal Cauchy development, as shown in Section ﬂ Also the past of S4 in that
region admits a foliation by hypersurfaces of constant R. In that region we can
transform to areal coordinates. For we can choose the spatial coordinate 6 so
that its coordinate lines in @) are orthogonal to that foliation. In the second
case (where R tends to zero on a boundary B) the past of S4 is also covered
by areal coordinates. It exhausts the past of S4 in the maximal Cauchy devel-
opment, as will now be shown. A well-known argument related to Hawking’s
singularity theorem shows that it is enough to check that the mean curvature of
the foliation tends uniformly to infinity as R tends to zero. The mean curvature
is given in areal coordinates by [Lq]

trk=—e " (A+2/t) (6.1)
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Substituting the field equation for A and using the fact that p>0 gives the
inequality

trk < —(1/2t)(3e *+eH) < —V/3/t (6.2)
and hence the desired result. Thus in both cases the entire past of Sy in the
maximal Cauchy development is covered. It follows from the results of Sectionﬁ
that the spacetime and the areal time coordinate can be extended so that the
time coordinate covers the interval |Rg,0c0[. It can then be concluded by the
argument at the end of Section E that the entire future of Sy in the maximal
Cauchy development is covered.

Theorem 6.2 Let (M,gag,f) be the mazimal globally hyperbolic development
of initial data for the Einstein-Viasov system with hyperbolic symmetry. Then
M can be covered by compact hypersurfaces of constant mean curvature. The
mean curvature of these hypersurfaces takes all values in the range | —o00,0[.

Proof. 1t follows from (B.2) that there are Cauchy surfaces with everywhere
negative mean curvature. Under these circumstances it was shown by Henkel
[ that the initial singularity is a crushing singularity and thus a neighbour-
hood of it can be foliated by CMC hypersurfaces. Next the statement about the
range of the CMC time coordinate will be proved. The important observation
is that the argument used to prove the corresponding statement in [@] extends
straightforwardly to the case of hyperbolic symmetry. It is more powerful than
the arguments used to extend the CMC foliation in [19]. It remains to see
that the CMC foliation covers the entire future of the initial hypersurface. It
is enough to show that if p is any point of the spacetime there is a compact
CMC hypersurface which contains p in its past. Let S; be the Cauchy surface
of constant areal time passing through p. Equation (@) shows that the mean
curvature of S; is strictly negative. Hence it has a maximum value H; <0. Let
Sy be the compact CMC hypersurface with mean curvature H;/2. Then the
infimum of the mean curvature of S5 is greater than the supremum of the mean
curvature of S7 and a standard argument [E] shows that Ss is strictly to the
future of S;. Hence p is in the past of S5, as required.
Remark. In the case of Gowdy symmetry the mean curvature of the hypersur-
faces of constant areal time is negative and the corresponding argument applies,
thus showing that the CMC foliation covers the spacetime in that case too.
The considerations of this paper were confined to the case where the matter
content of spacetime is described by the Vlasov equation, but in fact many of the
arguments do not depend on the details of the matter model. It would be worth
to investigate which parts of the conclusions extend to which matter models.
Some relevant estimates for scalar fields, wave maps and electromagnetic fields

can be found in [, [f, R and [

7 Possible further developments

In this paper we have seen how it is possible to get rather complete information
on the existence of global geometrically defined time coordinates in spacetimes
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with hyperbolic symmetry and, more generally, with surface symmetry. The
motivation for being interested in this question was that its answer could provide
a tool for understanding the global geometry of these spacetimes. To do so it
is necessary to understand something about the asymptotic behaviour of the
solutions as expressed with respect to these time coordinates. The kind of
questions which we would like to answer are the following. Is the spacetime
geodesically complete towards the future? Is there a curvature singularity in
the past? Is the singularity in the past velocity dominated? Does the solution
become homogeneous in the future in some sense? Can we obtain detailed
asymptotic expansions for the solution in these regimes?

The one strong and rather general result concerning questions like this which
is available is the following theorem of [@] If there is a foliation by Cauchy sur-
faces of constant R such that R approaches zero as the singularity is approached
and if, in the hyperbolic case, the Hawking mass is positive near the singularity
then the Kretschmann scalar blows up as the singularity is approached. That
some restriction is required is shown by the pseudo-Schwarzschild solution (cf.
[E]) For negative values of the mass parameter this solution, which has hy-
perbolic symmetry, has negative Hawking mass, and R does not approach zero
at the boundary of the maximal Cauchy development. The Kretschmann scalar
remains finite near that boundary. A guess, which is not contradicted by any
known results, is that the pseudo-Schwarzschild solutions are the only solutions
of the Einstein-Vlasov system with hyperbolic symmetry which do not have a
singularity where the Kretschmann scalar blows up. It would be very interesting
to have a rigidity theorem of this kind.

Apparently the only other source of information about the asymptotics of
surface symmetric solutions of the Einstein-Vlasov system comes from the study
of spatially homogeneous solutions. The spatially homogeneous solutions with
spherical, plane and hyperbolic symmetry are the spacetimes of Kantowski-
Sachs, Bianchi I and Bianchi III types respectively. There are exceptional cases
(all vacuum) which are the Schwarzschild solution (appropriately identified),
the flat Kasner solution and the pseudo-Schwarzschild solution. These were
presented in Appendix B to [@] All other solutions are such that curvature
invariants blow up in both time directions (Kantowski-Sachs) or that curva-
ture invariants blow up in one time direction and the spacetime is geodesically
complete in the other time direction (Bianchi types I and IIT) [2d].

More detailed results on the asymptotics have been obtained for Bianchi
types I and III [RJ]. Translating the theorems obtained there into the notation
of this paper leads to the following results. All non-vacuum solutions of either of
these two Bianchi types are such that R — 0 as the past boundary of the maximal
Cauchy development is approached. Generically o~ (1/2)Int and A~ —(1/2)Int
as t — 0, where we only indicate the leading term in an asymptotic expansion.
There is a smaller class of solutions (not explicitly known) where p~ (1/2)Int
and A\~ const. as t — 0. Finally there is an even smaller class where p~Int and
A~1Int as t — 0. In the expanding direction all solutions of both Bianchi types
are geodesically complete. For type I we have i~ (1/2)Int and A~1Int as t — oo.
The behaviour of the type III solutions was not completely determined in [2J].
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It was shown that (in the notation of the present paper) A is increasing for large
t but probably it grows slower than any positive multiple of Int.

Clearly the next step is to extend these results on asymptotic behaviour
to the inhomogeneous case. It would be convenient if the inhomogeneous solu-
tions behaved essentially like the homogeneous ones in their asymptotic regimes.
There are, however, phenomena which may prevent this. These are the possi-
bility of the occurrence of analogues of the spikes found in Gowdy spacetimes
[R3] in the contracting direction and the Jeans instability [ in the expanding
direction.
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