English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Maximal mass of uniformly rotating homogeneous stars in Einsteinian gravity

MPS-Authors

Ansorg,  Marcus
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

405-408.pdf
(Publisher version), 142KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schöbel, K., & Ansorg, M. (2003). Maximal mass of uniformly rotating homogeneous stars in Einsteinian gravity. Astronomy & Astrophysics, 405(2), 405-408. doi:10.1051/0004-6361:20030634.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-5239-2
Abstract
Using a multi domain spectral method, we investigate systematically the general-relativistic model for axisymmetric uniformly rotating, homogeneous fluid bodies generalizing the analytically known Maclaurin and Schwarzschild solutions. Apart from the curves associated with these solutions and a further curve of configurations that rotate at the mass shedding limit, two more curves are found to border the corresponding two parameter set of solutions. One of them is a Newtonian lens shaped sequence bifurcating from the Maclaurin spheroid sequence, while the other one corresponds to highly relativistic bodies with an infinite central pressure. The properties of the configuration for which both the gravitational and the baryonic masses, moreover angular velocity, angular momentum as well as polar red shift obtain their maximal values are discussed in detail. In particular, by comparison with the static Schwarzschild solution, we obtain an increase of 34.25% in the gravitational mass. Moreover, we provide exemplarily a discussion of angular velocity and gravitational mass on the entire solution class.