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Abstract. Using a multi domain spectral method, we investigate systematically the general-relativistic model for axisymmetric
uniformly rotating, homogeneous fluid bodies generalizing the analytically known Maclaurin and Schwarzschild solutions.
Apart from the curves associated with these solutions and a further curve of configurations that rotate at the mass shedding
limit, two more curves are found to border the corresponding two parameter set of solutions. One of them is a Newtonian
lens shaped sequence bifurcating from the Maclaurin spheroid sequence, while the other one corresponds to highly relativistic
bodies with an infinite central pressure. The properties of the configuration for which both the gravitational and the baryonic
masses, moreover angular velocity, angular momentum as well as polar red shift obtain their maximal values are discussed in
detail. In particular, by comparison with the static Schwarzschild solution, we obtain an increase of 34.25% in the gravitational
mass. Moreover, we provide exemplarily a discussion of angular velocity and gravitational mass on the entire solution class.
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1. Introduction

Various numerical methods have been developed to investigate
relativistic rotating models for extraordinarily compact astro-
physical objects like neutron stars (Wilson 1972; Bonazzola
& Schneider 1974; Friedman et al. 1986, 1989; Komatsu
et al. 1989a, 1989b; Lattimer et al. 1990; Neugebauer &
Herold 1992; Herold & Neugebauer 1992; Bonazzola et al.
1993, 1998; Eriguchi et al. 1994; Stergioulas & Friedman 1995;
Nozawa et al. 1998). For reviews see Friedman (1998) and
Stergioulas (1998).

Although at present more realistic equations of state are ex-
plored, we consider in this paper only homogeneous and uni-
formly rotating star models. This is interesting and important
for subsequent computations, because the Newtonian and the
static cases are well understood, in particular the analytically
known Maclaurin and Schwarzschild solutions. These mod-
els were first studied by Butterworth & Ipser (1975, 1976),
who found that, in addition to the analytic solutions, they are
bounded by a sequence of configurations rotating at the mass
shedding limit1. The investigation of such limiting configura-
tions is instructive since certain physical quantities reach max-
imal values there. With regard to the astronomical observa-
tions and a reliable identification of black holes, one is most
interested in an upper bound on the gravitational mass and
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1 Due to uniform rotation, a shedding of matter sets in when cen-
trifugal forces balance gravity at the equator. Then a cusp at the star’s
equatorial rim appears.

especially on how it is affected by rotation. Butterworth & Ipser
for example estimated a 30% increase for fixed central pressure
owing to rotation.

In the present paper we completed their studies, finding
two further limiting curves, in particular a sequence of stars
with infinite central pressure and a sequence of Newtonian
lens-shaped configurations that bifurcates from the Maclaurin
spheroids before ending in a mass shedding limit (Bardeen
1971; Ansorg et al. 2003b). All five limiting curves were found
to circumscribe entirely the general relativistic solution for
homogeneous star models that are continuously joined to the
static Schwarzschild solution – hereafter called the “general-
ized Schwarzschild solution”2. This was done using the re-
cently developed AKM method (Ansorg et al. 2002, 2003c),
which allows one to solve the Einstein equations to high accu-
racy even for critical configurations. In particular we are able
to determine to high precision the extreme configuration pos-
sessing both a mass shed and infinite central pressure. At this
point several physical quantities reach their global maxima and
we provide explicit values for these.

In what follows we use units in which the speed of light and
Newton’s constant of gravitation assume the value 1.

2 This name (and not for example “generalized Maclaurin solu-
tion”) was chosen since every possible Schwarzschild solution is con-
tained within this class of solutions. In contrast, only those Maclaurin
spheroids with axis ratios above 0.17126 are contained in this class
(see Sect. 4).
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2. Metric tensor and field equations

The line element of a stationary, axisymmetric and asymptot-
ically flat spacetime describing a uniformly rotating perfect
fluid body can be cast into the form

ds2 = e−2U
[
e2k(dρ2 + dζ2) +W2dϕ2

]
− e2U(adϕ + dt)2 .

The corresponding Lewis-Papapetrou coordinates (ρ, ζ, ϕ, t)
are uniquely defined if we require continuity of the metric co-
efficients and their first derivatives at the body’s surface. In a
comoving frame, for which the metric assumes the same form
with metric functionsU ′, k′, W′ anda′, the relativistic Euler
equation can easily be integrated to determine the pressurep.
For constant mass-energy densityµ this results in

p = µ
(
eV0−U′ − 1

)
, (1)

whereV0 is the constant surface value ofU′.
Taking into account asymptotic flatness, boundary and tran-

sition conditions at the surface and regularity along the rota-
tional axis (ρ = 0), the interior and exterior field equations form
a complete set of equations to be solved, which is done by ap-
plying the AKM method. For a comprehensive discussion of
this multi domain spectral method see Ansorg et al. (2003c).

3. Known static and Newtonian limits

3.1. Schwarzschild solution

Solving Einstein’s equation for a static homogeneous star
yields the famous Schwarzschild metric which reads in the
above coordinates

eU =
1− M/(2r)
1+ M/(2r)

ek = 1−
(M
2r

)2
W = ekρ a = 0

for the exterior (r ≡ √ρ2 + ζ2 ≥ R) and

eU′ =
1
2

[
3

1− M/(2R)
1+ M/(2R)

− 1− Mr2/(2R3)
1+ Mr2/(2R3)

]

ek′ =
[1 + M/(2R)]3

1+ Mr2/(2R3)
eU′ W′ = ek′ρ a′ = 0

for the interior region (0≤ r ≤ R). Here M is the gravita-
tional mass andR denotes the coordinate radius given implic-
itly through

M = µ
4π
3

R3
(
1+

M
2R

)6
·

For any physically relevant solution the pressure (1) has to re-
main finite, which is fulfilled forR> M. This imposes an upper
bound on the mass, namely

M <
4

9
√

3πµ
= 0.14477. . .

1√
µ
·

3.2. Maclaurin spheroids

In Newtonian gravity the problem of self gravitating rotating
ideal fluids requires solving the Poisson equation for the body’s
gravitational field while satisfying the Euler-Lagrange equa-
tion governing its motion as an ideal fluid. This leads to a free
boundary problem. A particular solution for uniform rotation
and constant mass densityµ can be found by assuming the
surface to be a spheroid. One obtains the so called Maclaurin
spheroids, parametrized here by focal distanceρ0 and the ra-
tio rp/re between polar radiusrp and equatorial radiusre.

Having computed the gravitational field, the Euler-
Lagrange equation is seen to be satisfied for a squared angular
velocity

Ω2 = 2πµξ
[
(3ξ2 + 1) arccotξ − 3ξ

]
, ξ ≡

 r
2
e

r2
p
− 1


− 1

2

(bottom solid curve in Fig. 1). This relation holds independent
of ρ0.

Note that Maclaurin spheroids exist for everyrp/re ∈ [0, 1]
andρ0 ∈ [0,∞[ , thus comprising a two parameter solution with
arbitrary mass for fixedµ.

3.3. First Newtonian lens sequence

On the Maclaurin curve, an infinite series of points corre-
sponding to axisymmetric secular instabilities occurs, begin-
ning at rp/re = 0.17126, and accumulating in the Maclaurin
disk limit rp/re → 0 (Chandrasekhar 1967; Bardeen 1971).
They are bifurcation points of further Newtonian sequences and
correspond to singular post-Newtonian corrections (see Petroff

2003). The first one of these sequences is comprised of two
segments that depart from the first bifurcation point. One seg-
ment proceeds towards the Dyson rings (Dyson 1892, 1893;
Wong 1974; Kowalewsky 1885; Poincar´e 1885a, 1885b, 1885c;
Eriguchi & Sugimoto 1981) whereas the other one ends in a
mass shedding limit (Bardeen 1971; Ansorg et al. 2003b). The
latter we will refer to as the “first Newtonian lens sequence”
motivated by the shape of the corresponding bodies.

4. Generalized Schwarzschild solution

For a systematic investigation of the general case the choice
of parameters is not restricted by the numerical approach.
Nevertheless it is convenient to take non-ambiguous param-
eters that are restricted to a compact interval (here [0, 1]) in
such a way that the endpoints represent limiting configurations.
Corresponding to the limits found, we selected the following
magnitudes:

– Mass shed parameter (as defined in Ansorg et al. 2003c)

β ≡ − r2
e

r2
p

d(ζ2s )

d(ρ2)

∣∣∣∣∣∣
ρ=re

= − re

r2
p

lim
ρ→re

ζs
dζs
dρ
,

whereζs(ρ) is the function describing the surface shape.
Maclaurin and Schwarzschild bodies are characterized
by β = 1 and the mass shed limit is fixed byβ = 0.
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Fig. 1. Squared angular velocity on the generalized Schwarzschild
solution. Dotted lines indicate curves of constant central pressure
(equally spaced in ˜pc = pc/(µ + pc), pc being the central pressure
andµ the constant mass density). Ergo-toroids appear for configura-
tions situated above the dashed line.

– p̃c ≡ pc/(µ + pc), wherepc is the central pressure. Thus
p̃c = 0 stands for the Newtonian limit where mass and
hence pressure vanish and ˜pc = 1 for the limiting configu-
rations with infinite central pressure.

Additionally we will use the ratiorp/re of polar to equatorial
coordinate radius that is 1 only for Schwarzschild solutions.

Our numerical analysis revealed that the generalized
Schwarzschild solution is entirely bounded by the following
five limiting curves (joined in the order listed):

– the sequence of Schwarzschild solutions
(rp/re = 1, β = 1, p̃c ∈ [0, 1]);

– the Maclaurin sequence from the sphere to the first axisym-
metric bifurcation point
(rp/re ∈ [0.171, 1], β = 1, p̃c = 0);

– the first Newtonian lens sequence
(rp/re ∈ [0.171, 0.192],β ∈ [0, 1], p̃c = 0);

– a sequence of configurations rotating at the mass shedding
limit ( rp/re ∈ [0.192, 0.573],β = 0, p̃c ∈ [0, 1]);

– a sequence of configurations with infinite central pressure
(rp/re ∈ [0.573, 1], β ∈ [0, 1], p̃c = 1).

This makes it possible to determine maximal values of all in-
teresting physical quantities (see Sect. 5). Moreover, we can
now state that on the generalized Schwarzschild solution no
quasistationary transition to a Kerr black hole is possible (in
contrast to what was found for the relativistic Dyson rings by
Ansorg et al. 2003a) and that the surface remains convex inρ-
ζ-coordinates.

Figure 1 depicts the (squared) angular velocity versus
the radius ratiorp/re. This is the completion of results of
Butterworth & Ipser (1975, 1976)3. It shows that the configura-
tion with maximal angular velocity rotates at the mass shedding
limit and possesses infinite central pressure. The magnification
in Fig. 2 demonstrates that the mass shedding curve does not

3 Note that in contrast to our work they used proper radial distances
and kept the baryonic mass constant.

Fig. 2.Magnification of Fig. 1 in the vicinity of the first axisymmetric
bifurcation point (C). Values for the first Newtonian lens sequence
were taken from Ansorg et al. (2003b). Points (A) and (C) correspond
to the cross sections thus labelled in Fig. 6 ibid.

Fig. 3. Gravitational mass on the generalized Schwarzschild solution.
The small interval on therp/re-axis, emphasized by a thick line,
represents the first Newtonian lens sequence. Dotted lines indicate
curves of constant central pressure (equally spaced in ˜pc, see Fig. 1).
Ergo-toroids appear for configurations situated above the dashed line.

terminate at the first axisymmetric bifurcation point (C), as was
conjectured by Butterworth and Ipser. Instead it is linked to the
Maclaurin spheroids at this point via the first Newtonian lens
sequence.

The evolution of the gravitational mass for fixed central
pressure is seen in Fig. 3 and reveals a 34.25% increase in the
maximal mass with respect to the static case. The global max-
imum is again found for the same configuration as for angular
velocity. In both figures we included the line above which ergo-
regions appear. Interestingly, this line corresponds roughly to
one of constant mass.

Other physical quantities as baryonic mass, angular mo-
mentum, polar red shift and circumferential radius show a sim-
ilar behaviour: for fixed mass shed parameter or radius ratio
they increase with increasing central pressure. Likewise they
increase with decreasing mass shed parameter or decreasing
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Table 1. Properties of the maximal mass configuration. Only valid
digits are given. An asterisk indicates that the corresponding quantity
has a global maximum there.

Physical quantity value

Gravitational mass M = 0.19435µ−1/2 ∗
Baryonic mass M0 = 0.27316µ−1/2 ∗
Angular velocity Ω = 1.8822µ1/2 ∗
Angular momentum J = 0.03637µ−1 ∗
Polar radius rp = 0.04856µ−1/2

Equatorial radius re = 0.08475µ−1/2

Radius ratio rp/re = 0.5730

Circumferential radius Rcirc = 0.41538µ−1/2 ∗
Polar red shift Zp = 7.378 ∗

Fig. 4. Meridional coss section (solid line) and ergo-region (dashed
line) of the maximal mass configuration. Axes are scaled identically.

radius ratio if the central pressure is kept constant. So a global
maximum for each of them is obtained on the common edge of
mass shed and infinite central pressure curves, corresponding
thus to a very special limit star.

5. Maximal mass configuration

In Table 1 masses and other quantities are listed for this ex-
treme configuration. Because it resides on two critical curves
we notice a loss in accuracy that was somewhat recovered
by an extrapolation to an infinite approximation orderm of
the AKM method (cf. Ansorg et al. 2003c). Observe also the
unexpectedly high value for the red shiftZp of a photon emit-
ted at one of the poles.

Figure 4 shows a meridional cross section of this config-
uration including the border of the ergo-region. As in general
for diverging central pressure, the ergo-toroid degenerates by
pinching together in the center.

We see the above work as a first step in the direction of the
investigation of more realistic equations of state with the AKM

method. The results, including the relation to relativistic ring
solutions and further aspects like stability, will be published
elsewhere.
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