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Abstract
We derive all the axi-symmetric, vacuum and electrovac extremal isolated
horizons. It turns out that for every horizon in this class, the induced metric
tensor, the rotation 1-form potential and the pullback of the electromagnetic
field necessarily coincide with those induced by the monopolar, extremal Kerr–
Newman solution on the event horizon. We also discuss the general case of
a symmetric, extremal isolated horizon. In particular, we analyse the case of
a two-dimensional symmetry group generated by two null vector fields. Its
relevance to the classification of all the symmetric isolated horizons, including
the non-extremal ones, is explained.

PACS numbers: 04.20.Ex, 04.70.Bw

1. Introduction

Isolated horizons. In a new model of black holes in equilibrium [1] the stationarity assumption
is relaxed from spacetime and imposed only on an appropriately distinguished null surface.
An isolated horizon (IH) (�, [�]) is a null surface � equipped with a null flow [�] which
satisfies the following geometric and topological conditions (� stands for a null vector field
tangent to � and generating the flow). The geometric conditions are:

(i) the (degenerate) metric tensor q induced on � is preserved by the flow [�], and
(ii) the same holds for the covariant derivative D, induced4 on �

£�q = 0, [£�, D] = 0. (1)

4 The first condition is equivalent to a condition that, for every pair X, Y of vector fields tangent to �, the spacetime
covariant derivative ∇XY is also tangent to �. The restriction of ∇ to the tangent bundle of � is the induced covariant
derivative D.
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The topological condition is that � contains a space-like 2-surface �̃ homeomorphic to the
2-sphere, and that each orbit is homeomorphic to the line R.

In general, there is no Killing vector field in a neighbourhood of an isolated horizon [6, 2],
radiation may exist even arbitrarily close to it. A local description of mechanics and geometry
of IHs was developed in [1–3, 7]. One of the structures used by this description is the IH
geometry defined by the pair (q, D). If one considers � as a part of the characteristic Cauchy
surface for the evolution of the gravitational field possibly coupled to some matter, then, in
standard cases (Maxwell, scalar, Yang–Mills field, etc) the pair (q, D) provides the part of the
initial data corresponding to the gravitational field. (The pair (q, D) might be thought of as
the spacetime metric tensor given at � up to the first order.) IH geometry has local degrees
of freedom. The tensor q is arbitrary modulo the requirement that � be orthogonal to � and
£�q = 0. The ingredients of D are listed in the next section. Here we introduce one of them,
namely a 1-form ω defined on �, such that

D� = ω ⊗ �, (2)

and called the rotation 1-form potential. The existence of ω follows from £�q = 0. The
rotation of the IH is given by dω. The surface gravity κ(�) of the vector field � is

κ(�) = �aωa. (3)

The surface gravity is constant on �,

κ(�) = const (4)

owing to the Zeroth Law [1], which holds provided the Ricci tensor Rµν satisfies at �
�aRaµe

µ

(�) = 0, (5)

where the subscript (�) denotes the pullback of a covariant tensor onto �. In the Einstein–
Maxwell case considered here, this condition follows from the constraint equations we discuss
in the next section (in a more general context, this condition is implied by natural energy
assumptions [7]). An IH (�, [�]) is called extremal, whenever

κ(�) = 0. (6)

This condition is independent of the choice of generator of the flow [�].
The Einstein–Maxwell equations induce constraint equations on the horizon geometry

(q, D) and on the electromagnetic field possibly present on �. The character of the equations
crucially depends on the value of the surface gravity. Whereas the constraints reduce to a
system of linear algebraic equations in the non-extremal IH case [7], in the extremal case
the constraints become a system of partial differential equations involving the 2-metric q, the
rotation 1-form ω and an electromagnetic field F (sections 2.2, 2.3). The general solution is
not known. This is the issue we address in this paper.

Our results. The most surprising result contained in this paper follows from our derivation of
a general solution of the vacuum and, respectively, electrovac constraints in the axi-symmetric,
extremal IH case (section 4). We prove that if the electro-magnetic field F is also axi-symmetric
on the horizon and preserved by the null flow [�], then q, ω and the pullback of F onto �
coincide with those induced by the monopolar5, extremal Kerr–Newman solution on the event
horizon. That uniqueness of the Kerr–Newman extremal horizon is surprising, because no
non-local condition was imposed except that � contains a slice homeomorphic to the 2-sphere.
The question of what distinguishes the Kerr IH in a quasi-local theory was raised in [5] and
5 The electromagnetic field depends on one more parameter, the possibly non-zero magnetic charge.
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a local characterization of the non-extremal Kerr IH was found. The current result completes
that answer.

Other results concern the general, possibly non-symmetric, electrovac, extremal IH case.
We study integrability conditions for the constraints and their consequences (sections 2.2,
2.3). In particular, we demonstrate the non-vanishing of certain combinations of the Riemann
tensor on �. The results are used to prove that, given a null 3-surface in spacetime, there
is at most one extremal IH structure6 defined on it, in the vacuum and electrovac cases
(section 2.4). That issue was addressed in [7] and our current result completes the discussion
of that paper.

The above result is applied to the discussion of the symmetric extremal IHs (section 3).
A map � → � is called a symmetry, whenever it preserves the geometry (q, D), whereas
the flow [�] is not necessarily preserved. This definition is motivated by the properties of
spacetime isometries: every Killing vector field, if it exists, tangent to a given IH generates
its symmetry. An IH that admits a symmetry which is not an element of the flow [�] is called
symmetric. The cases we analyse are when the symmetry group contains

(i) the O(2) group—the axi-symmetric case already mentioned in this section and,
respectively,

(ii) a two-dimensional group of null symmetries—the null-symmetric case.

The null symmetric extremal IHs are also relevant for the classification of all symmetric
IHs, including the non-extremal ones. Indeed, all the symmetric non-extremal IHs can be
explicitly constructed by using the invariants introduced in [7] except the case when the
geometry (q, D) of a non-extremal � admits an extra null symmetry. But then by [7], one of
the null generators of the symmetry group defines on the same � another IH structure which
is extremal, in the vacuum IH case. We generalize that result to the electrovac case in the
current paper.

Conventions. The spacetime signature is (−, +, +, +). By the subscript (�) we denote the
pullback of a covariant tensor onto �. (eµ) and (eν) stand for a coframe of 1-forms and a
frame of vectors, respectively, null, unless indicated otherwise. e1 and e2 are complex valued,
e3 and e4 are real valued. The spacetime metric is

g = e1 ⊗ e2 + e2 ⊗ e1 − e3 ⊗ e4 − e4 ⊗ e3. (7)

Due to the symmetry of every IH �, all the considerations will automatically descend to the
sphere �̂ of the null geodesics in �. We will not distinguish between the functions defined on
�̂ and the functions defined on � which are constant along the null geodesics.

2. The constraint equations

In this section, we discuss the constraint equations satisfied by the geometry (q, D) of an
IH (�, [�]) in the vacuum and electrovac cases, respectively and their integrability conditions.
The constraints are given by that part of the spacetime energy–momentum tensor Tµν that can
be derived from (q, D) via the Einstein equations, that is by the pullback of Tµν onto �. The
stress–energy tensor is constructed from an electro-magnetic field present on �. We add to
the system of equations, the constraints on the electromagnetic field F on � following from
the Maxwell equations. The symmetry assumption is that the flow [�] is a symmetry of the
electromagnetic field on �. An arbitrary surface gravity is used in the equations to indicate

6 Of course, a generic null surface admits no IH structure.
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the essential difference between the extremal and non-extremal cases. The non-extremal case
will also be considered in section 3.3.

An IH (�, [�]) is called a vacuum IH whenever the spacetime Ricci tensor Rµν satisfies
on �

(Rµνe
µ ⊗ eν)(�) = 0. (8)

In the presence of an electromagnetic field F at an IH (�, [�]), the part of the Einstein
equations we assume on � is the pullback

((Rµν − 8πTµν)e
µ ⊗ eν)(�) = 0, (9)

where Tµν is the gravitational energy–momentum tensor of the electromagnetic field, which
satisfies in particular Tµ

µ = 0. The Maxwell equations define extra constraints on the
components of the electromagnetic field F on �. We make a small effort now, to write them
in a geometric form. One of the constraints on F at � is

�� � (d(F − i � F )) = 0, (10)

where we used the spacetime Hodge star. For the differential forms defined on � and
transversal to �, there is a well-defined intrinsic Hodge dual (�)� (see the appendix). The
remaining constraint equation on F is

((�) � −i)[(�d(F − i � F ))(�)] = 0. (11)

We will also assume that the electromagnetic field is invariant with respect to the null flow [�].
This assumption reads

£�(F − i � F )ν
µeν

(�) ⊗ eµ = 0, (12)

where the above Lie derivative is well defined for the following reasons. It follows from the
equations (9) and the vanishing of the expansion of � that

Tab�
a�b = 0. (13)

A consequence of this fact is

��(F − i � F )(�) = 0. (14)

Therefore, if we consider the tensor (F − i � F )ν
µ as a 1-form taking vector values, then its

pullback on � takes values in the space T (�) tangent to �.
Concluding, an electrovac isolated horizon is an IH (�, [�]) which admits an

electromagnetic field F such that the constraint equations (9)–(11), (14) and the symmetry
condition (12) are satisfied. The electromagnetic field F will be referred to as an
electromagnetic field that makes � an electrovac IH.

Equation (14) is the condition which implies that �aTaµe
µ

(�) = 0, the condition ensuring
the Zeroth Law (4) via the constraint equations.

2.1. Geometry of an IH and the spacetime Ricci tensor

Ingredients of (q, D) and F(�) in an adapted frame. Before we turn to the constraints on (q, D)

in detail, we specify the elements of (q, D) which are free before imposing the constraints.
It follows from the definition that an isolated horizon � can be viewed as a cylinder �̂ × R

generated by null geodesics where the projection

� : � = �̂ × R → �̂ (15)
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maps each null geodesic into a point of the topological sphere �̂. The induced metric tensor
is

q = g(�) (16)

where g is a spacetime metric.
The assumption

£�q = 0 (17)

implies that q is a pullback by � of a 2-metric tensor q̂ defined on �̂,

q = �∗q̂. (18)

Let us fix a null vector field � tangent to � and representing the flow [�]. It is also
convenient to fix a foliation of � by 2-cross-sections (called ‘slices’ hereafter) of the projection
� preserved by the flow [�]. Then, a null vector field n transversal to � is uniquely defined
by assuming the orthogonality to the slices and the normalizing condition

nµ�µ = −1. (19)

The covariant derivative D consists of the following components:

(i) the metric connection defined on any slice by the 2-metric q,
(ii) the rotation 1-form potential ω,

(iii) the deformations of the induced metric tensor on a 2-slice while it is transported along
the orthogonal null vector field n.

Let (e1, e2, e3, e4) = (m, m̄, n, �) be a null frame defined in a spacetime neighbourhood
of �. The degenerate metric tensor q induced on � is

q = (e1 ⊗ e2 + e2 ⊗ e1)(�). (20)

The real vectors Re(m), Im(m) are (automatically) tangent to �. To adapt the frame further,
we assume the vector fields Re(m), Im(m) are tangent to the slices of the fixed foliation. We
can choose the vector field m such that

£�m = 0, (21)

hence, the projection of m onto �̂ uniquely defines a null frame m̂ tangent to �̂,

�∗m =: m̂. (22)

The frame (e1, e2, e3, e4) is adapted to: the vector field �, the [�] invariant foliation of �, and
the null complex-valued frame m̂ defined on the sphere �. Spacetime frames constructed in
this way on � will be called adapted.

The elements of an adapted frame are Lie dragged by �,

£�e
µ

(�) = 0. (23)

Therefore, the connection components defined by D in that frame are constant along the null
geodesics tangent to �. They are

mνDm̄ν = �∗(m̂A∇̂m̂A) =: �∗�̂, (24a)

−nνD�ν = ω = πe2
(�) + π̄e1

(�) + κ(�)e3
(�), (24b)

−m̄νDnν = µe1
(�) + λe2

(�) + πe4
(�), (24c)

mµD�µ = 0, (24d )
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where �̂ is the Levi-Civita connection 1-form corresponding to the covariant derivative ∇̂
defined by q̂ and to the null frame m̂ defined on �̂.

Due to [£�, D] = 0,

£�ω = 0. (25)

Therefore, there is a 1-form ω̂ defined on �, such that

�∗ω̂ = πe2
(�) + π̄e1

(�). (26)

In the case of an extremal IH, ω̂ is uniquely defined on � by [�] and D.
The global existence of solutions to the constraint equations on � will be crucial for us,

hence we conclude this subsection with a discussion of the global existence of the objects
defined above. Defined globally on � are: the vector field � = e4, the covector e4

(�), the
function µ, the tensor λe2 ⊗ e2, the 1-forms ω and ω̂, and the constant κ(�). It will be
convenient to express the 1-form ω̂ by two functions U and ln B globally defined on �̂
(sufficiently many times differentiable) using the well-known decomposition

ω̂ = �̂ dU + d ln B (27)

where �̂ is Hodge star defined by the 2-metric tensor q̂. The coefficient π of ω̂ becomes

π = −iδ̄U + δ̄ ln B. (28)

The Ricci tensor components present in the constraints. We turn now to the pullback of the
spacetime Ricci tensor onto � and express it by (q, D). We still admit a possibly non-zero
surface gravity κ(�) both because the non-extremal case will be considered in the last section,
and to emphasize the difference between the extremal and non-extremal cases.

Due to £�q = 0, £�ω = 0, dκ(�) = 0 and [£�, D] = 0 the Ricci tensor already satisfies

�aRaµe
µ

(�) = 0, £�(Rµνe
µ ⊗ eν)(�) = 0. (29)

The remaining components of the pullback onto � of the Ricci tensor will be expressed in
terms of the following objects defined on the sphere �̂: the null frame (m̂, ¯̂m) and the dual
coframe (ê1, ê2), the complex-valued differential operator

δ := m̂A∂A, (30)

(where A = 1, 2 refers to coordinate system (x1, x2) defined locally on �̂), the connection
form �̂ defined above

�̂ =: 2āê1 + 2aê2, (31)

its curvature scalar

K := 2δa + 2δ̄ā − 8aā, (32)

and the 1-form ω̂ and its divergence

ˆdiv ω̂ = δπ + δ̄π̄ − 2aπ̄ − 2āπ. (33)

The spacetime Ricci tensor components in question are

Rmm̄ = 2κ(�)µ − ˆdiv ω̂ − ω̂2 + K, (34a)

Rm̄m̄ = 2κ(�)λ − 2δ̄π − 4aπ − 2π2, (34b)

where ω̂2 := ω̂Aω̂B q̂AB . As we mentioned before, the components have to be constant along
the null geodesics. Note that the remaining connection components µ and λ are not involved
in the formula for the pullback of the Ricci tensor.
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2.2. The constraints in the extremal vacuum case

We consider now an extremal, vacuum IH; that is, we assume equations (6), (8) hold on �.
The constraints amount to the following equations on the metric q̂ and the 1-form ω̂ defined
on the sphere �̂:

ˆdiv ω̂ + ω̂2 − K = 0, (35a)
δ̄π + 2aπ + π2 = 0. (35b)

This system of equations can also be written in the following compact, tensorial form

∇̂(Aω̂B) + ω̂Aω̂B − 1
2 R̂AB = 0, (36)

where ∇̂ and R̂AB are the covariant derivative and Ricci tensor defined on the sphere �̂ by the
2-metric q̂.

In terms of the functions U and B defined in (27), (28), equations (35a), (35b) read

(δδ̄ + δ̄δ − 2aδ − 2āδ̄ + 2iδUδ̄ − 2iδ̄Uδ + 2δUδ̄U − K)B = 0, (37a)

(δ̄δ̄ + 2aδ̄ − 2iδ̄U δ̄ − iδ̄δ̄U − 2iaδ̄U − δ̄U δ̄U)B = 0, (37b)

where by δU or δδU , etc we mean functions, not the product of the operators. Note that the
equations do not involve the real-valued scalar µ and the complex-valued tensor λê2 ⊗ ê2,
which are therefore freely defined on �̂. An equivalent system of equations was considered
in [7]. An integrability condition given by commuting the δ operator with δδ̄ + δ̄δ as well as δ̄

with δδ is

δ̄�2 + 3π�2 = 0, (38)

where �2 is an invariant which characterizes the geometry (q, D) of a vacuum IH,

�2 = 1
2 (−K + i(δδ̄ + δ̄δ − 2aδ − 2āδ̄)U). (39)

From the spacetime point of view, the function �2 is the spinorial componentC�n�n − C�nmm̄ of
the Weyl tensor Cµναβ , it is always constant along the null generators of � and the integrability
condition (38) is one of the Bianchi identities. The condition implies the following identity
via (28),

�2B
3 e−3iU = C0 = const. (40)

Since B nowhere vanishes (by definition (27)), and K �= 0 on a non-trivial subset of �̂, we
have

C0 �= 0. (41)

The solution for B is

B = B0(�2)
− 1

3 eiU (42)

where B0 �= 0 is a constant. The conditions

B = B̄ > 0 (43)

imply constraints on the remaining unknowns, that is on the metric tensor q and the function
U. Another consequence of (41) that will be important in section 2.4 is the following non-
vanishing lemma:

Lemma 1. For every extremal, vacuum IH the invariant �2 nowhere vanishes on �:

�2(x) �= 0 (44)

for every x ∈ �.
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2.3. The constraints in the extremal electrovac case

Now we consider an extremal, electrovac IH; that is, we assume that equations (6), (9)–
(12) hold on �. Let F = 1

2Fµνe
µ ∧ εν be an electromagnetic field present in a spacetime

neighbourhood of the horizon. We use the standard notation for the components of F in a null
frame,

F = −�0e
4 ∧ e1 + �1(e

4 ∧ e3 + e2 ∧ e1) − �2e
3 ∧ e2 + c.c. (45)

Condition (14) implied by the constraints reads

�0 = 0. (46)

The assumed invariance of Fν
µeν

(�) ⊗ eµ with respect to the null flow [�] is equivalent
to the requirement that the coefficients �1 and �2 be constant along the null geodesics
generating �.

Now, the part of the constraints (10), (11) coming from the Maxwell equations amounts
to the following equation on �1 only,

δ̄�1 + 2π�1 = 0, (47)

which is easy to integrate into the following form:

�1 = E0B
−2 e2iU , (48)

E0 being a complex constant, and the functions U and B being defined by (28).
The part of the constraints following from the Einstein equations (9) becomes

Rmm = 0, Rmm̄ = 4|�1|2. (49)

In terms of the geometry q̂ of the sphere �̂ and the 1-form ω̂, the constraints read

∇̂(Aω̂B) + ω̂Aω̂B − 1
2 R̂AB + 2|�1|2q̂AB = 0. (50)

Finally, after expressing ω̂ by the functions U and B, the constraints read

(δδ̄ + δ̄δ − 2aδ − 2āδ̄ + 2iδUδ̄ − 2iδ̄Uδ + 2δUδ̄U − K)B + 4
|E0|2
B3

= 0, (51a)

(δ̄δ̄ + 2aδ̄ − 2iδ̄U δ̄ − iδ̄δ̄U − 2iaδ̄U − δ̄U δ̄U)B = 0. (51b)

Concluding, an extremal IH (�, [�]) is an extremal, electrovac IH if and only if it admits
an electromagnetic field F (45) such that the components �1,�2 are constant along the null
geodesics in � and the geometry (q, D) and F satisfy equations (46), (48) and (51). Note that
the components µ, λ of D as well as the component �2 of F are not involved in the equations,
and �1 is a complex-valued function defined globally on the sphere �̂. The assumption that
�2 is constant along the null geodesics in � was used to eliminate the derivatives �a∂a�2 from
the Maxwell equations and derive the equation (47).

We complete this subsection by a discussion of the consequences of the constraint
equations. It follows from (48) that:

Lemma 2. The component �1 of the electromagnetic field either vanishes nowhere on �, or it
is zero everywhere on �. In the second case, � is a vacuum isolated horizon (even if �2 �= 0).

Commuting the δ operator with δδ̄ + δ̄δ as well as δ̄ with δδ we derive the following
integrability conditions for the equations (51)

(δ̄ + 3π)�2 − πRmm̄ = 0, (52)
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where as before, �2 is the component C4343 − C4312 of the Weyl tensor, and in the presence of
the electromagnetic field it takes on � the following value:

�2 = 2
|E0|2
B4

+
1

2
(−K + i(δδ̄ + δ̄δ − 2aδ − 2āδ̄)U). (53)

The integrability condition is one of the Bianchi identities.
In this case, we were not able to solve completely the integrability condition for the

functions �2 and B. However, the fact of non-vanishing of �2 on an extremal vacuum IH can
be generalized in the following way (applied later in section 2.4):

Lemma 3. For every extremal electrovac IH �, there is an open and dense subset V ⊂ �
such that

3�2 − Rmm̄|V �= 0. (54)

Proof. In the vacuum case the conclusion of the lemma was already proved, hence we prove
it now assuming that Rmm̄ is not identically zero on �. As a consequence, Rmm̄ is nowhere
zero; that is, for every point x ∈ �,

Rmm̄(x) �= 0. (55)

Using equations (48) and (52) we derive the following equation

δ̄((3�2 − Rmm̄)B3 e−3iU) + 16|E0|2 e−3iU δ̄B−1 = 0, (56)

where

E0 �= 0, (57)

due to the assumption (55). Let U be an open subset of � on which

3�2 − Rmm̄ = 0. (58)

It follows from (56) that

B|U = const �= 0. (59)

Then, equation (51a) takes the following form:

−K + Rmm̄ + 2|δ̄U |2|U = 0. (60)

Moreover, it follows from (58) that

K|U = 1
3Rmm̄, (61)

hence, we have finally

Rmm̄ + 3|δ̄U |2|U = 0. (62)

Since each of the terms is non-negative, they both vanish on U . This contradiction completes
the proof. �

2.4. Uniqueness of the electrovac extremal IH

Given an extremal IH (�, [�]) and its geometry (q, D) a natural question is whether there
exists another null flow

[�′] �= [�] (63)

such that (�, [�′]) is an extremal IH as well. Suppose then that there exists a function f

defined on � such that

�′ = f �, [£�′, D] = 0, D�′�′ = 0. (64)
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The first two equations are equivalent to the following equation [7]:

(DaDb + 2ω(aDb))f = 0. (65)

The last equation in (64) implies that the function f is constant along the null geodesics
tangent to �,

�a∂af = 0. (66)

The integrability condition for (65) obtained by acting on it with Da can be expressed by the
spacetime curvature components [7]

(3�2 − Rmm̄)δ̄f = 0, (67)

where we have already assumed that � is an electrovac IH. Owing to lemma 3, the condition
above implies f = const, and

[�′] = �. (68)

Proposition 1. If (�, [�]) is an extremal electrovac IH (including the vacuum case) and a null
vector field �′ tangent to � satisfies

£�′q = 0, [£�′, D] = 0, D�′�′ = 0, (69)

then [�′] = [�].

In conclusion, given a null surface � in a spacetime, there is at most one extremal IH [�]
defined thereon.

3. Symmetric IHs

Given an IH (�, �) suppose that there is a vector field X tangent to �, such that

£Xq = 0 = [£X, D]. (70)

We call X a generator of a symmetry of the geometry (q, D). Obviously, the vector field � is
a symmetry itself. If X /∈ [�], then we call � a symmetric IH. Note that it is not assumed
that the symmetries preserve [�]. Nonetheless they do so, however, at least in the extremal,
electrovac or vacuum case, due to proposition 1.

Corollary 1. Given an electrovac extremal IH (�, [�]), suppose X is a generator of a symmetry
of the geometry (q, D). Then, the flow [X] preserves the flow [�], that is

[X, �] = a0�, a0 = const. (71)

In this section we discuss two cases of symmetric extremal isolated horizons: the
axisymmetric case and the null-symmetric case. Since the geometry (q, D) of a null-symmetric
extremal electrovac IH admits also a non-extremal IH structure, for completeness we formulate
in the last subsection a converse statement.

3.1. Axisymmetric extremal IHs

Consider an extremal IH (�, [�]) whose geometry (q, D) has a symmetry group isomorphic
to O(2) and which satisfies the conclusion of corollary 1. We show now that in this case,
the symmetry group O(2) commutes with the flow [�], and we adapt coordinates on �. The
constraint equations will be solved in the next section.
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Label the elements of the group by a parameter, [0, 2π] � ϕ �→ U(ϕ) such that

U(ϕ1)U(ϕ2) = U(ϕ1 + ϕ2), U(0) = U(2π) = identity. (72)

According to corollary 1, a vector field U(ϕ)∗� defines the same IH as �, hence

U(ϕ)∗� = a0(ϕ)�, (73)

where a0(ϕ) ∈ R is a constant. As a function of ϕ, it satisfies

a0(ϕ1)a0(ϕ2) = a0(ϕ1 + ϕ2), a0(0) = a0(2π) = 1. (74)

The only solution is

U(ϕ)∗� = �. (75)

Therefore, the following is true.

Proposition 2. Suppose (�, [�]) is an extremal, electrovac IH; suppose further a vector field
Φ tangent to � is a generator of a proper symmetry group of the IH geometry, and the group
it generates is isomorphic to O(2). Then

£�Φ = 0. (76)

Given an axisymmetric IH, we adjust coordinates on � in the following way. Note first
that due to proposition 2 the projection �∗Φ defines uniquely a vector field on �̂,

Φ̂ := �∗Φ (77)

and the first equality in (70) implies that

£�̂q̂ = 0. (78)

Therefore Φ̂ indeed generates a group of rotations of q̂. It follows that there are spherical
coordinates (θ, ϕ) on �̂ naturally pulled back to �, and an extra coordinate v on �, such that

Φ = a(θ, ϕ)∂v + ∂ϕ, (79)

modulo a constant factor. To kill the first term locally, it is enough to replace v by a new
coordinate

v′ = v − A(θ, ϕ), A(θ, ϕ) :=
∫ ϕ

ϕ0(θ)

a(θ, ϕ′). (80)

The resulting v′ is a continuous function defined globally on �, due to the condition∫ ϕ0+2π

ϕ0

a(θ, ϕ) = 0, (81)

which follows from the assumption that the orbits of � are closed and from the fact that
each orbit can intersect each null geodesics in � only once (otherwise, the orbit would have
a self-intersection). The differentiability of v′ may be ensured by appropriate choice of the
boundary of integration ϕ0(θ) as a function of θ . In the coordinates (v′, θ, ϕ), the vector field
Φ is

Φ = ∂ϕ. (82)

Instead of the auxiliary coordinate θ on �̂, used implicitly above, we introduce a ‘Hamiltonian’
function, naturally defined by the vector field �̂ and the area 2-form ε̂ of q̂, namely a function
x such that

�̂�ε̂ = 2 dx. (83)
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The global existence on �̂ and the differentiability of this function is ensured by the fact that

d(�̂�ε̂) = £�̂ε̂ = 0. (84)

The function x has exactly two extremal points, a minimum and a maximum, at the two zero
points of �̂, and the additive constant is fixed by the condition

sup x = A

8π
, inf x = − A

8π
, (85)

where A is a constant, equal to the area of �̂. Concluding, we are going to use the functions
(ϕ, x) as spherical coordinates on �̂, and, denoting in the same way their pullbacks to �, the
functions (v′, ϕ, x) as coordinates on �. Adjusting the 2-frame m̂ on �̂ such that

£�̂m̂ = 0, (86)

we get the adapted frame (e1, e2, e3, e4) whose pullbacks onto � are invariant with respect to
the rotations generated by �.

3.2. Null-symmetric extremal IHs

An IH is called null-symmetric if it admits a generator X of a symmetry, such that

qabX
aXb = 0, X /∈ [�]. (87)

Suppose this is the case. There exists a function f defined on �, such that

X = f �, (88)

and the equations (65) hold. It follows from them that

Db�
a∂af = 0. (89)

If v is a function defined on �, such that

�a∂av = 1, (90)

then the general solution of (89) is

f = b + κ0v, �a∂ab = 0, κ0 = const �= 0. (91)

The case of κ0 = 0 is excluded by proposition 1. Note that every linear combination
X − a0�, a0 a constant, defines a non-extremal IH (�, [X]) (that is, the null surface � admits
many distinct IHs). Therefore [7], every cross section of � → �̂ given by the equation

b + κ0v = const, (92)

has identically vanishing shear and expansion in each null direction orthogonal to this cross
section. In other words, if we use a null frame (m, m̄, n, �) adapted to the foliation of � given
by (92), then the following coefficients of D vanish (see (24c))

µ = λ = 0. (93)

The converse is also true. Suppose an extremal IH (�, [�]) admits a foliation by 2-space-
like surfaces such that every null vector field tangent to any leaf has zero shear and expansion
on �. Then [7] � is a null-symmetric IH. The proper null symmetry is generated by the vector
field

X = v�, (94)

where v is a function constant on the leaves and such that �av,a = 1.



Extremal isolated horizons: a local uniqueness theorem 599

Even though there are still some degrees of freedom left in the geometry of a null-
symmetric extremal IH (�, [�]), the group of the null symmetries is always the same in the
electrovac case. We characterize this group now.

It follows from (91) that the Lie algebra defined by the vector fields � and X above is
unique, namely given by the following commutator:[

�,
1

κ0
X

]
= �. (95)

Suppose X′ is another null generator of a null symmetry. We will see it belongs to the Lie
algebra spanned by � and X. Indeed, as before

X′ = (b′ + κ ′
0v)�, �a∂ab

′ = 0, κ ′
0 �= 0. (96)

Consider the following linear combination of the generators:

Y := 1

κ0
X − 1

κ ′
0

X′. (97)

It is also a null generator of a symmetry of (q, D). Note that

Y =
(

1

κ0
b − 1

κ ′
0

b′
)

� = b′′�, �a∂ab
′′ = 0. (98)

Therefore,

DYY = 0. (99)

Owing to proposition 1, if (�, [�]) is an extremal electrovac IH, then there is a constant a′
0

such that

Y = a′
0�. (100)

In conclusion,

Proposition 3. A general null-symmetric electrovac (including vacuum) extremal IH (�, [�])
is given by any solution (q̂, ω̂) of the constraint equations (51a), (51b) and µ = 0 = λ in
(24c). Its group of the null symmetries is exactly two-dimensional, the generators are a vector
field � ∈ [�] and X = v� where v is a function constant on the foliation corresponding to µ

and λ, and such that �av,a = 1. The commutator between the generators is

[�,X] = �. (101)

3.3. Null-symmetric non-extremal IHs

As noted above, a null-symmetric, extremal, electrovac IH admits a null vector field which
defines on the same null surface a non-extremal IH. In this subsection, we discuss a converse
statement.

Consider a non-extremal IH (�, [�]) such that there exists on � a null vector field X
whose flow is different from [�] and which generates a symmetry of the IH geometry (q, D).
If (�, [�]) is a vacuum IH, then [7] there is another vector field �′ tangent to �, such that
(�, [�′]) is an extremal null-symmetric IH characterized above. We generalize now this result
to the electrovac case. (Our proof will also be valid for the vacuum case. In this way we fill a
small gap in the proof sketched in [7].) The vector field X can be written as

X = f �, (102)

where the function f satisfies the equations (65). Those equations imply that

f = b e−κ(�)v + a0, (103)
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where a0 is a constant, κ(�) �= 0 is the surface gravity of �,

�a∂av = 1, �a∂ab = 0, (104)

and the function b satisfies the following equations[
1
2 (δδ̄ + δ̄δ − (α − β̄)δ − (ᾱ − β)δ̄) + πδ + π̄ δ̄ + µκ(�)

]
b = 0, (105a)

[(δ + ᾱ − β + 2π̄)δ + λ̄κ(�)]b = 0. (105b)

The resulting vector field satisfies

DXX = a0κ
(�)X. (106)

Therefore, if b nowhere vanishes, then X corresponding to a0 = 0 defines an extremal IH on �.
We show the non-vanishing of the function b assuming that (�, [�]) admits an electromagnetic
field F of the properties which make � an electrovac IH, and such that

£f �

(
Fµ

νeµ ⊗ eν

) = 0. (107)

The integrability condition for the equations (105) has the following form

(3�2 − Rmm̄)δ̄b + ((δ̄ + 3π)�2)b = 0, (108)

whereas (107) implies

�2�
a∂af − 2�1δ̄f = 0. (109)

The part of Maxwell equations used in the definition of the electrovac isolated horizon allows
us to express �2 by �1:

κ(�)�2 = δ̄�1 + 2π�1. (110)

Then, equation (109) for f given by (103) becomes

(δ̄�1 + 2π�1)b + 2�1δ̄b = 0. (111)

This constraint can easily be integrated and is equivalent to

�1b
2 e−2iU = E0 = const. (112)

If E0 is not zero then b cannot vanish, therefore we assume that

E0 = 0. (113)

Let

U = {x ∈ � : b(x) �= 0}. (114)

Since

�1|U = 0 (115)

the condition (108) implies that the following complex-valued function C given by

C := �2b
3 e−3iU , (116)

is constant on U . Suppose C �= 0 on a connected component of U . If it is not the entire sphere
�̂, then there is a sequence xn ∈ U, n = 1, 2, 3, . . . such that

xn → x0 and b(x0) = 0. (117)

But then

|�2(xn)| → ∞. (118)
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Hence, the only possibility for b to vanish somewhere on � is

C|U = 0, �2|U = 0. (119)

In the non-extremal case we can always choose a foliation by space-like cross sections,
preserved by �, such that

π = −iδ̄U. (120)

Given that foliation, consider on �̂ a 1-form

β := ∂(eiUb) := ∂

∂z
(e−2iUb) dz, (121)

where z is any local holomorphic coordinate on �̂. Then the vanishing of �2 and
equation (105a) imply

∂̄(e−2iUβ) = 0 (122)

everywhere on �̂. On a sphere, the only solution to this equation is

β = 0 = ∂(eiUb). (123)

And that implies

b = const (124)

on the entire �. Since we assumed
[(

b e−κ(�)v + a0
)
�
] �= [�], the conclusion is that

b(x) �= 0 for every x ∈ �, (125)

and the vector field

�′ = b e−iv� (126)

defines an extremal IH on �. Our discussion is summarized by the following:

Proposition 4. Suppose a non-extremal IH (�, [�]) admits a null vector field X /∈ [�] which
generates a symmetry of the IH geometry. If � admits an electromagnetic field F which makes
it an electrovac IH, and such that

£X

(
Fµ

νeµ ⊗ eν

)
(�)

= 0, (127)

then (�, [X]) is an extremal IH.

4. General axisymmetric solution: the uniqueness of the monopolar extremal
Kerr–Newman IH

In this section, we consider an axi-symmetric extremal IH (�, [�]) and an electromagnetic
field F such that

£Φ(F − i � F )ν
µeν

(�) ⊗ eµ = 0, (128)

where Φ is a generator of the axial symmetry of �. We solve completely the constraint
equations (9)–(12) imposed on the geometry (q, D) and on the pullback F(�). First, we find
all the local solutions. Next we select those that can be defined globally on � = �̂ × R.
Finally, we identify the solutions by using their area, and electric and magnetic charges as
corresponding to those defined by the extremal Kerr–Newman solution (of the electromagnetic
field modified by the allowed magnetic charge).
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4.1. General solution of the constraints

The local constraints. In the coordinates (ϕ, x), the null 2-frame on �̂ takes the following
form:

m̂ = 1

2

(
1

P
∂x + iP∂ϕ

)
, ê1 =

(
P dx − i

1

P
dϕ

)
. (129)

Due to the rotational symmetry, the function P and all the functions used in the constraint
equations are functions of the variable x only. For this frame, the connection coefficient a of
(31) is

a = Px

4P 2
. (130)

The constraints (51) on the functions P,U,B,�1 read(
B

P

)
xx

+ (Px)
2 B

P
+ 8P

|E0|2
B3

= 0 (131a)

Bxx − (Ux)
2B = 0, (UxB

2)x = 0, (131bc)

where the second and the third equations above, are the real and the imaginary parts of the
constraint (51b) (the third one being extra multiplied by B). The gauge freedom is

U �→ U + U0, B �→ B0B, (132)

whereas the freedom in the choice of the coordinates is already eliminated by the choice of
the coordinate x.

The global existence conditions. The global existence conditions are that the metric tensor

q̂ := ê1 ⊗ ê2 + ê2 ⊗ ê1 (133)

derived from the function P and the scalar functions U,B,�1 are globally defined on �̂ and
differentiable as many times as one needs, and that B are nowhere zero on �̂ and the metric
tensor q̂ is nowhere degenerate.

In the consideration below, the global existence conditions will be applied in the following
way. We will first find local solutions of the constraint equations (51); subsequently we will
find B,U,�1 and P well defined everywhere on �̂ except the poles x = x± := ± A

8π
. Next,

we will apply the following condition for the coordinate function P at the poles, necessary for
the metric q̂ to be of the class C1,

lim
x→x±

1

P
= 0, (134a)

lim
x→x±

(
1

P 2

)
x

= ∓2. (134b)

Integration. We start with the equations (131b), (131c). The integration of the second one
gives

UxB
2 = �̃ = const. (135)

Note that �̃ = 0 if and only if the horizon � is non-rotating,

�̃ = 0 ⇔ dω̂ = 0 ⇔ dω = 0. (136)
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Consider the rotating case first,

ω �= 0. (137)

We use (135) to eliminate the function U from the first equation in (131b), (131c), which now
reads

Bxx − �̃2

B3
= 0. (138)

The general solution for B is

B = B0(�
2 + (x − x0)

2)
1
2 , � = �̃

B0
2
, (139)

where B0 and x0 are arbitrary constants. Using the integral (135) again we find U,

U = arctan

(
x − x0

�

)
+ U0, U0 = const. (140)

In this way we have exhausted the vanishing of the Ricci tensor component Rmm, and
found both of the potentials defining the rotation 1-form potential ω. But to know the 1-form
ω itself we need the frame operator given by P. To find P we turn to the equation (51a) with
the above solutions substituted for U and B and �1 given by (48),[

d2

dx2
+

2(x − x0)

(x − x0)2 + �2

d

dx
+

4�2

((x − x0)2 + �2)2

]
1

P 2
= − 16|E0|2

B0
4((x − x0)2 + �2)2

. (141)

The general solution is

1

P 2
=

c1(�
2 − (x − x0)

2) + 2c2�(x − x0) − 8|E0|2
B0

4

�2 + (x − x0)2
. (142)

The requirement that P be finite on the open interval x ∈ ]− A
8π

, A
8π

[, and satisfy the conditions

(134) at the poles determines the values of the constants x0, c1, c2,
|E0|2
B0

4 .

The solution. In the rotating case, the resulting solutions P,U,B,�1 of the Maxwell–
Einstein equations (47), (51) on � can be expressed by three real parameters A,α and θ0 of
the domain of dependence specified below, where the third one is a constant phase of �1 and
does not affect the horizon geometry (q, D):

P 2(x) = 4π(1 + α2)

A

A2 + (8π)2 1−α2

1+α2 x2

A2 − (8π)2x2
, (143a)

U = ± arctan

(
8π

√
1 − α2

1 + α2

x

A

)
, (143b)

B =
(

1 +
1 − α2

1 + α2

(8πx)2

A2

) 1
2

, (143c)

�1 = eiθ0
2
√

πA
3
2 α

1 + α2

(
A2 − 1−α2

1+α2 (8πx)2
) ± 2iA

√
1−α2

1+α2 (8πx)(
A2 + 1−α2

1+α2 (8πx)2
)2 , (143d )

α ∈ [0, 1[, A ∈ ]0,∞[, θ0 ∈ [0, 2π[. (144)

Above we have fixed the gauge freedom in the rescaling of B by a constant and adding a
constant to U such that as α → 1 the function B has a finite limit and U goes to zero.
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In the non-rotating case, we take the constant �̃ in (135) to be zero,

�̃ = 0, (145)

and repeat all the steps of the derivation above including solving the conditions (134) at the
poles. The result is a family of solutions parametrized by a real constant A > 0,

P 2(x) = 8πA

A2 − (8πx)2
(146a)

U = 0 (146b)

B = 1 (146c)

�1 = eiθ0

(π

A

) 1
2
. (146d )

It turns out that the non-rotating solutions coincide with P,U,B,�1 obtained by substituting
the parameter α in the rotating case for the excluded values ±1. (Locally, the non-rotating
case then has as solutions those obtained by the limit α → 1.)

4.2. The uniqueness of the extremal Kerr–Newman IH

The solutions (q, ω, F(�)) are given by (24b), (26), (28), (45), (46), (129), (143), (146) and set
up a three-parameter family. To compare the solutions with those given by the Kerr–Newman
metrics, we use the horizon area, and the electromagnetic charges. The electric and magnetic
charges are given by the real and, respectively, the imaginary part of the following integral:

1

4π

∫
�̂

∗F + iF = eiθ0α

√
A

4π
. (147)

The condition that magnetic charge vanishes implies

eiθ0 = ±1. (148)

Therefore, in the absence of magnetic charge, the derived family of (q, ω, F(�)) is globally
and uniquely parametrized by the area A of (a slice of ) the horizon and the electric charge Q
contained therein, having the following domain of dependence,

A ∈ ]0,∞], Q ∈
[
−

√
A

4π
,

√
A

4π

]
. (149)

But for each pair (A,Q) of (149) there is the extremal Kerr–Newman metric and the
corresponding electromagnetic field defining an isolated horizon of area A and electric charge
Q. Therefore, our family of (q, ω, F(�)) consists of the ones given by the extremal Kerr–
Newman solutions. In conclusion,

Theorem 1. Suppose (�, [�]) is an extremal isolated horizon and Fµ
νe

µ

(�) ⊗ eν is an
electromagnetic field defined on �, such that the flow [�] is a symmetry of the electromagnetic
field and the total magnetic charge of � is zero. Suppose also that both the IH geometry and
the electromagnetic field admit a symmetry group of motions of � isomorphic to O(2). Then,
the Einstein–Maxwell constraints (9)–(11) are satisfied if and only if the induced metric q, the
rotation potential 1-form ω and the pullback of the electromagnetic field 2-form F(�) coincide
with those defined by the extremal Kerr–Newman solution on the event horizon. Admitting a
non-zero magnetic charge does not affect the possible geometries (q, D).
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Recall that, after solving the constraints, the remaining components of the induced
connection D, that is the transversal expansion µ, and transversal shear λ(e2 ⊗ e2)(�) of
the lives of a preserved by the symmetries foliation, are an arbitrary real function and a
complex-valued tensor, respectively, satisfying the symmetry conditions

�a∂aµ = 0 = Φa∂aµ, (150a)

£�(λe2 ⊗ e2)(�) = 0 = £Φ(λe2 ⊗ e2)(�). (150b)

Similarly, the component �2 of the electromagnetic field has to satisfy the symmetry
assumptions, whereas the Einstein–Maxwell equations do not impose any extra constraint
on it at �. Despite this arbitrariness, the symmetries of those remaining components affected
the form of the constraints which were solved above. For completeness, the full extremal
Kerr–Newman geometry (q, D) is given by the following µ and λ:

µ = −
√

8π
1+α2 A

3
2

A2 + 1−α2

1+α2 (8πx)2
, (151a)

λ = −
√

8π
1+α2 A

1
2

1−α2

1+α2 (A2 − (8πx)2)(
A2 + 1−α2

1+α2 (8πx)2
)(

A ∓ i
√

1−α2

1+α2 (8πx)
) , (151b)

modulo the choice of the foliation of �.
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Appendix. The intrinsic Hodge dual

The intrinsic Hodge dual we used in (11) is defined on � as follows. An orientation and time
orientation of spacetime are used to define an orientation of space-like 2-surfaces of �. A
neighbourhood of a 2-surface �̂ is diffeomorphic to �̂×R×R where the factors R correspond
to the null geodesics orthogonal to �̂: the first factor the ones transverse to � and the second
to those contained in �. The factors R are oriented according to the time orientation. Then
the orientation of �̂ is such that the orientation of �̂ × R × R agrees with the orientation of
spacetime. Next, we introduce on � the 2-volume form [1] (2)ε, a 2-form such that the area
of any 2-surface �̂ ⊂ � is

∫
�̂

(2)ε. Given a 1-form µ defined on �, such that �aµa = 0, we
define

(2) ∗ µa = (2)εabq
bcµc, (152)

where qab is such that qabq
bcνc = νa for every 1-form ν orthogonal to �.
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