
ar
X

iv
:h

ep
-t

h/
02

12
11

9 
v3

   
24

 A
pr

 2
00

3

Asymmetric Cosets

Thomas Quellaa,b and Volker Schomerusb

a Max-Planck-Institut für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1, D-14476 Golm, Germany

b Service de Physique Théorique, CEA/DSM/SPhT
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Abstract

The aim of this work is to present a general theory of coset models G/H in which
different left and right actions of H on G are gauged. Our main results include a
formula for their modular invariant partition function, the construction of a large set
of boundary states and a general description of the corresponding brane geometries.
The paper concludes with some explicit applications to the base of the conifold and
to the time-dependent Nappi-Witten background.
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1 Introduction

Many interesting models can be obtained as cosets G/H of a compact group G. Usually,

H is identified with a subgroup of G and in forming the coset one employs the adjoint

action for which H acts symmetrically from the left and from the right. Such symmetric

transformations always possess fixed points (e.g. the group unit). These lead to all kinds

of singularities of the resulting coset geometry, including boundaries and corners.

It is possible, however, to work with an enlarged class of exactly solvable cosets and

this is the theme of the following note. The idea is to admit different left and right

actions of H on G. Even though conformal invariance imposes strong constraints on

asymmetric quotients G/H , one gains a lot of freedom in model building. Some of the

interesting new theories possess smooth background geometries. One such example is

provided by the five-dimensional base SU(2)×SU(2)/U(1) of the conifold. Other models

have isolated singularities such as the big-bang singularity in the four-dimensional Nappi-

Witten geometry SU(2) × SL(2,R)/R × R.

In spite of these interesting features, asymmetric cosets have not been studied very

systematically in the past. One reason for this is that they are typically heterotic, i.e. they

possess different left and right chiral algebras. Among the few publications which deal

with special cases of asymmetric cosets one may find two early publications by Guadagnini

et al. [1, 2]. The models which are studied in these papers can be applied to the base of

the conifold as was pointed out some years ago by Pando-Zayas and Tseytlin [3]. Actions

for a wider class of asymmetrically gauged WZNW models were written down in [4]. We

shall recall below that they are relevant for Nappi-Witten type models [5]. The latter

have been employed recently to investigate string theory in time-dependent backgrounds

with big-bang singularities [6]. Branes in asymmetrically gauged WZNW models were

also studied in [7] but our analysis will give boundary theories with a different geometric

interpretation.

The plan of this paper is as follows. In the next section we shall present a compre-

hensive discussion of the bulk theory and, in particular, spell out an expression for its

modular invariant partition function. The third section is then devoted to the construc-

tion of boundary states for asymmetric cosets. We will also identify the subspaces along

which the corresponding branes are localized. All these results on boundary conditions

in asymmetric coset theories are based on our earlier work [8, 9]. In the final section we

illustrate the general theory through some important examples. These include the base

of the conifold and the Nappi-Witten type coset background.

Note added: While we were preparing this publication, G. Sarkissian issued a paper

that has partial overlap with section 4 below [10].

2



2 The bulk theory

In this first subsection we are going to describe the bulk geometry of asymmetric cosets.

We will start with a detailed formulation of the general setup and of the conditions that

conformal invariance imposes on the basic data. The origin of the latter can be explained

with the help of the classical actions which we shall briefly recall in the second subsection.

We then provide expressions for the bulk partition functions and establish their modular

invariance. Finally, we present some examples showing the wide applicability of asym-

metric cosets. In an appendix to this section we correct some earlier results of Guadagnini

et al. [1, 2].

2.1 The geometry of asymmetric cosets

Two groups G and H enter the construction of a coset G/H . Both of them are assumed

to be reductive so that they split into a product of simple groups and U(1) factors. Let

the number of these factors be n and r, respectively, i.e. we take G and H to be of the

form G = G1 × · · · × Gn and H = H1 × · · · ×Hr. Furthermore, to each factor Gi in the

decomposition of G we assign a level ki. It is convenient to combine the set of all these

levels into a vector k = (k1, · · · , kn).

Along with the two groups G and H we need to specify an action of H on G. We take

the latter to be of the form g 7→ ǫL(h)gǫR(h−1) where ǫL/R : H → G denote two group

homomorphisms which descend to embeddings of the corresponding Lie algebras. In the

usual coset theories ǫL and ǫR are the same. An asymmetry in the coset construction

arises when we drop this condition and allow for two different maps.

The coset space G/H consists of orbits under the action of H on G, i.e.

G/H = G/[ g ∼ ǫL(h)gǫR(h−1) ; h ∈ H ] .

To be precise, we should display the dependence on the choice of ǫL/R. But since we

consider these maps to be fixed once and for all, we decided to suppress them from our

symbol G/H for the coset space. Let us stress, however, that the geometry is very sensitive

to the choice of ǫL/R. We will see this in the examples later on.

The basic data we have introduced so far, i.e. the two groups G, H , the vector k of

levels and the maps ǫL, ǫR, will enter the construction of two-dimensional models with

target space G/H . To ensure conformal invariance, however, these data have to obey one

important constraint which we can formulate using the notion of an “embedding index”

xǫ ∈Mat(n× r) for the homomorphism ǫ : H → G. To define xǫ we split ǫ into a matrix

of homomorphisms ǫsi : Hs →֒ Gi where s = 1, . . . , r, and i = 1, . . . , n, run through the

factors of H and G, respectively. The embedding index xǫ = x = (xsi) is a matrix with
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elements of the form1

xsi =
Tri

{

ǫsi(X) ǫsi(Y )
}

Trs

{

X Y
} for X, Y ∈ hs\{0} . (1)

Observe that the number that is computed by the expression on the right hand side does

not depend on the choice of the elements X, Y . Let us also note that the map ǫsi is

allowed to map Hs onto the unit element in Gi for some choices of i and s. In this case,

the corresponding matrix element xsi vanishes.

Let us now consider the embedding indices xL and xR for the two homomorphisms

ǫL and ǫR. A conformal theory with target space G/H exists for our choice of levels k,

provided that the latter obey the following constraint2

xL k = xR k . (2)

In other words, the vector of levels must lie in the kernel of xL−xR. For symmetric cosets

this condition is trivially satisfied with any choice of k. Asymmetric cosets, however,

constrain the admissible levels.

2.2 The classical action

Using the basic data we have introduced in the previous subsection we can write down

the classical action of a gauged WZNW model. As usual, this consists of several pieces.

To begin with, there is the WZNW action for the numerator group G,

SG
WZNW

(

g|k
)

=
n

∑

i=1

SGi

WZNW(gi|ki) (3)

where g = g1 · · · · · gn. This action is a sum over the WZNW actions for the individual

groups Gi without any interaction terms. These building blocks are given by

SGi

WZNW(gi|ki) = − ki

4π

∫

Σ

d2z Tri

{

∂gig
−1
i ∂̄gig

−1
i

}

+ SGi

WZ(gi|ki) .

The Wess-Zumino terms are defined as usual in terms of the Wess-Zumino three-forms

ωWZ
i . Consistency of the associated quantum theories enforces quantization constraints on

the levels ki. For simply-connected simple constituents Gi the level ki has to be an integer.

For the U(1) part and non-simply-connected groups the constraints will be different.

The action functional (3) is invariant under the “global” transformations of the form

g(z, z̄) 7→ gL(z) g(z, z̄) g−1
R (z̄) where gL(z) and gR(z̄) are arbitrary (anti-) holomorphic

1We use a normalized trace Tr = 2 tr/I. Here, we denoted by tr the matrix trace and by I the Dynkin
index of the corresponding representation. We use the conventions of [11, pages 58 and 84].

2If there are two or more identical groups, this equation has to hold up to a possible relabeling of
these groups on one side.
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G-valued functions. Our subgroup H along with the two homomorphisms ǫL/R can be

used to gauge some part of this WZNW symmetry. To this end we consider the model

SG/H
(

g, A, Ā
∣

∣ k, ǫL/R

)

=
n

∑

i=1

SGi

WZNW(gi|ki) +
n

∑

i=1

r
∑

s=1

SGi/Hs

int

(

gi, As, Ās

∣

∣ ki, ǫ
si
L/R

)

. (4)

Here, the building blocks of the second term are given by [4]

SGi/Hs

int

(

gi, As, Ās

∣

∣ ki, ǫ
si
L/R

)

=
ki

4π

∫

Σ

d2z Tri

{

2 ǫL(Ās) ∂gig
−1
i − 2 ǫR(As) g

−1
i ∂̄gi

+ 2 ǫL(Ās) gi ǫR(As) g
−1
i − ǫL(Ās) ǫL(As) − ǫR(Ās) ǫR(As)

}

. (5)

In this formula we omitted the superscripts si on ǫL/R. The gauge fields As, Ās take

values in the Lie algebra hs. It is not difficult to check that the full action (4) is invariant

under the following set of infinitesimal gauge transformations

δAs = i ∂ωs + i [ωs, As] , δĀs = i ∂̄ωs + i [ωs, Ās] ,

δgi = i ǫL(ωs)gi − i giǫR(ωs) for ωs = ωs(z, z̄)

provided that the levels ki obey the constraint (2). In fact, under gauge transformations

the action behaves according to

δSG/H(g|k, ǫL/R) =
n

∑

i=1

r
∑

s=1

ki

4π

∫

Σ

d2z Tri

{

ǫsiL (Ās) ∂ǫ
si
L (ωs) − ǫsiR(Ās) ∂ǫ

si
R(ωs)

+ ǫsiR(As) ∂̄ǫ
si
R(ωs) − ∂̄ǫsiL (ωs) ǫ

si
L (As)

}

and so it vanishes whenever eq. (2) holds true. We have therefore shown that the data

introduced above indeed label different two-dimensional conformal field theories.

2.3 Exact solution: modular invariant partition function

Our aim now is to present a few elements of the exact solution. We shall begin with some

remarks on the relevant chiral algebras and then address the construction of the modular

invariant partition function for our asymmetric coset theories.

In the following let us denote the chiral algebra of the WZNW model for the group

G and levels ki by A(G). This algebra is generated by a sum of affine Lie algebras

with levels ki, one for each factor in the decomposition of the reductive group G. The

two maps ǫL/R give rise to two embeddings of the chiral algebra A(H) into A(G). Let

us note that A(H) is generated by a sum of affine algebras, one for each factor in the

product H = H1 × · · · ×Hr. The levels of these affine algebras form a vector (k′s)s=1,...,r

whose entries are related to the levels of A(G) by k′ = xL/R k (matrix notation). Our
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assumption (2) means that ǫL/R give rise to two (possibly different) embeddings of the

same chiral algebra A(H) into A(G). Given these embeddings, we employ the usual GKO

construction to obtain two coset algebras A = A(G/H, ǫL) and Ā = A(G/H, ǫR) which

form the left and right chiral algebras of the asymmetric coset model. Note that these

two chiral algebras can be different if the two maps ǫL and ǫR are not the same. In this

sense, asymmetric coset models of the kind that we consider in this note are heterotic

conformal field theories.

The state space of any conformal field theory decomposes into representations of the

chiral algebra. Our task here is to find a combination of these representations which

does not only reflect the geometry of the target space G/H but is at the same time also

consistent from a conformal field theory point of view. The second requirement means

that the vacuum must be unique and that the partition function is modular invariant.

The first condition, namely the relation of our exact solution to the space G/H , implies

that in the limit of large levels k the space of ground states has to reproduce the space of

functions on G/H . Actually, we can turn this around for a moment and use the harmonic

analysis of G/H to get some ideas about the structure of the state space. To this end, let

us recall that the algebra F(G) of functions on G may be considered as a G×G-module

under left and right regular action. The Peter-Weyl theorem states that this module

decomposes into irreducibles according to

F(G) =
⊕

Vµ ⊗ Vµ+ ,

where µ+ is the conjugate of µ. Since we want to divide G by the action of H it is

convenient to decompose the space of function on G into representations of H . The space

of function on G/H is then obtained as the H-invariant part of F(G). We easily find

F(G) ∼=
⊕

Vµ ⊗ Vµ+

∼=
⊕

(bL)µ
a (bR)µ+

c+ Va ⊗ Vc+

∼=
⊕

(bL)µ
a (bR)µ+

c+ Nac+
d Vd .

(6)

The symbols bL/R denote the branching coefficients of the inclusion ǫL/R(H) →֒ G. The

tensor product coefficients Nac+
d for the decomposition of the tensor product of represen-

tations of H enter when we restrict the action of H×H to its diagonal subgroup H = HD.

Taking the invariant part of (6) corresponds to putting d = 0 or, equivalently, a = c and

hence we have shown that

F(G/H) = InvHD

(

F(G)
) ∼=

⊕

(bL)µ
a (bR)µ+

a+

.

This is the space that we want to reproduce from the ground states of our exact solution

when we send the levels to infinity. With a bit of experience in coset chiral algebras and
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their representation theory it is not too difficult to come up with a good proposal for the

conformal field theory state space that meets this requirement.

The rough idea is to replace the branching coefficients bµ
a by coset sectors HG/H

(µ,a). But

this rule is a bit too simple and has to be refined in several directions. To build in all the

additional subtleties, we need a bit of preparation. For simplicity we consider the sector

of the left moving chiral algebra only.

In the following we label sectors of A(G) by µ, ν, . . . , and we use the letters a, b, . . . ,

for sectors of A(H). Let us recall that the two sets of sectors admit an action of the

group centers Z(G) and Z(H), respectively. This action may be diagonalized by the

corresponding modular S-matrices,

SG
Jµ ν = e2πi QJ(ν) SG

µν for J ∈ Z(G)

where QJ(ν) = hJ + hµ − hJµ are the so-called monodromy charges. An analogous

statement holds for the action of the center Z(H). In a coset sector (µ, a) the labels µ, a

form an entity and as such they have to transform identically under the common center

Gid(L) =
{

(J, J ′) ∈ Z(G) ×Z(H)
∣

∣J = ǫL(J ′)
}

.

Not all the labels (µ, a) fulfill this requirement. What remains is the set

All(G/H)L =
{

(µ, a)
∣

∣QJ (µ) = QJ ′(a) for all (J, J ′) ∈ Gid(L)
}

of allowed coset labels. It turns out that elements in the set All(G/H)L which are related

by the action of Gid correspond to the same coset sector. The set of sectors for the coset

chiral algebra is therefore given by Rep(G/H)L = All(G/H)L

/

Gid(L). This observation

motivates the term “field identification group” for the common center Gid(L). The same

constructions can be performed for the right chiral algebra. But note that in general the

resulting expressions will not coincide.

Having introduced all these notions from the representation theory of coset chiral

algebras we are finally able to spell out our proposal for the state space,

HG/H =
⊕

[µ,a]∈Rep(G/H)

H(G/H)L

(µ,a) ⊗ H̄(G/H)R

(µ,a)+ . (7)

where the set Rep(G/H) is defined by

Rep(G/H) = All(G/H)
/

Gid with

All(G/H) = All(G/H)L ∩ All(G/H)R , Gid = Gid(L) ∩ Gid(R) .

(8)

Note that the field identification group Gid admits a natural interpretation as the stabilizer

of the action g 7→ ǫL(h)gǫR(h)−1, i.e.

Gid =
{(

J, J ′) ∣

∣ J ′ ∈ Z(H), J = ǫL(J ′) = ǫR(J ′) ∈ Z(G)
}

.
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In writing our formula (7) we implicitly assumed that the action of the field identification

group Gid on All(G/H) possesses no fixed points, i.e. that all orbits [µ, a] have the same

length. It should be stressed that fixed points for the action of Gid(L/R) on All(G/H)L/R

are not ruled out by this assumption.

As we mentioned before, our proposal (7) for the state space has to pass a number

of tests before we can accept it as a candidate for the state space of our conformal field

theory. From our discussion above it is not difficult to see that at large level, the space

of ground states coincides with the space of functions on G/H . Moreover, taking the

quotient with respect to Gid in eq. (8) ensures that there is a unique vacuum in HG/H .

Hence, it only remains to demonstrate that our Ansatz also leads to a modular invariant

partition function. To this end it is convenient to write the partition function in the form

Z(q, q̄) =
1

|Gid|
∑

µ,a

P
G/H
L (µ, a) P

G/H
R (µ+, a+) χ

(G/H)L

(µ,a) (q)χ̄
(G/H)R

(µ,a)+ (q̄) .

The factor 1/|Gid| in front of this expression removes a common factor from the whole

expression in such a way that the vacuum characters possess a trivial prefactor. The

summation in the previous expression runs over all labels µ and a and we enforce the

restriction to the allowed coset labels by inserting the projectors

P
G/H
L/R (µ, a) =

1

|Gid(L/R)|
∑

(J,J ′)∈Gid(L/R)

e2πi(QJ (µ)−Q
J′ (a)) .

It is now rather straightforward to compute how this partition function behaves under

the modular transformation S that replaces q = exp(2πiτ) by q̃ = exp(−2πi/τ),

SZ(q, q̄) =
∑

µ,a,ν,λ,b,c

P
G/H
L (µ, a) P

G/H
R (µ+, a+)

|Gid|
SG

µνS̄
H
abS̄

G
µ+λ+SH

a+c+ χ
(G/H)L

(ν,b) (q)χ̄
(G/H)R

(λ,c)+ (q̄) .

We would like to use unitarity of the S-matrices to simplify this expression. But before

we can do so, we have to get rid of the projectors. To this end we insert the explicit

formulas for the projectors in terms of monodromy charges and then pull the latter into

the S-matrices by shifting their indices with the action of simple currents. This gives

SZ(q, q̄) =
1

|Gid| · |Gid(L)| · |Gid(R)|
∑

(J1,J ′

1
),(J2,J ′

2
)

∑

µ,a,ν,λ,b,c

SG
µJ1νS̄

H
aJ ′

1
bS̄

G
µ+J2λ+SH

a+J ′

2
c+ χ

(G/H)L

(ν,b) (q)χ̄
(G/H)R

(λ,c)+ (q̄) .

Now we are able to perform the sum over µ and a to obtain

SZ(q, q̄) =
1

|Gid| · |Gid(L)| · |Gid(R)|
∑

(J1,J ′

1
),(J2,J ′

2
)

∑

ν,λ,b,c

δ
J−1
2

λ
J1ν δ

J ′

1
b

J ′−1
2

c
χ

(G/H)L

(ν,b) (q)χ̄
(G/H)R

(λ,c)+ (q̄) .
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At this stage we may resum the label. Then we see that part of the prefactor cancels and

we are left with

SZ(q, q̄) =
1

|Gid|
∑

ν,b

χ
(G/H)L

(ν,b) (q)χ̄
(G/H)R

(ν,b)+ (q̄) .

This is exactly the behavior modular invariance requires from our partition function. Note

that the restriction to allowed coset labels is implicitly contained in the previous expression

since coset characters vanish if the relevant branching selection rule is not satisfied. It

is obvious that our partition function is also invariant under modular T -transformations

which send τ to τ + 1.

2.4 Special cases and examples

Our general construction includes a number of interesting special cases. The most familiar

examples are the Nappi-Witten background [5] and the T pq-spaces [3]. Both of them

belong to a distinguished class of asymmetric cosets for which we introduce the notion

of “generalized automorphism type”. In the last subsection we will briefly discuss one

example of an asymmetric coset that is not of this type.

2.4.1 Asymmetric cosets from automorphisms

The simplest setup for asymmetric cosets that one can imagine is one in which the left

and right embeddings are related by automorphisms. More precisely, we are thinking of

situations in which the left homomorphism ǫL = ǫ is related to ǫR = Ω−1
G ◦ ǫ ◦ ΩH by

composition with two automorphisms ΩG and ΩH of G and H , respectively. Let us notice

that the concatenation of an embedding with an automorphism gives another embedding

with the same embedding index.3 This observation guarantees the validity of the anomaly

cancellation condition (2).

For the explicit construction of the state space (7) we have to know the centers

Gid(L) and Gid(R) in detail. Note that every element
(

ǫ(J ′), J ′) ∈ Gid(L) is mapped

to an element
(

Ω−1
G ◦ ǫ(J ′),Ω−1

H (J ′)
)

=
(

Ω−1
G ◦ ǫ ◦ ΩH(Ω−1

H (J ′)),Ω−1
H (J ′)

)

∈ Gid(R) by

the action of the pair (Ω−1
G ,Ω−1

H ). The right center is thus the image of the left center,

Gid(R) = (Ω−1
G ,Ω−1

H )
(

Gid(L)
)

, and the common center is the intersection of these two sets.

Similarly the allowed coset labels are related by All(G/H)R = (Ω−1
G ,Ω−1

H )
(

All(G/H)L

)

.

To prove this statement one employs the invariance property QΩG(J)

(

ΩG(µ)
)

= QJ(µ) of

the monodromy charges and the analogous statement for the subgroup H .

These observations enable us to find a rather explicit expression for the state space.

In our example the general formula (7) can be simplified due to the fact that left and

3In our terminology, automorphisms do not only have to respect the group multiplication but also the
Killing form (or an other invariant form in terms of which the model is defined).
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right moving chiral algebra are isomorphic. We will therefore express the state space in

terms of quantities of the left chiral algebra. All we need to do is to replace the coset

representations H(G/H)R

(µ,a) through H(G/H)L

(ΩG(µ),ΩH (a)). By construction, the latter is non-trivial

if and only if the first one was. We can also express the action of the common center on

these labels. If we combine these facts we finally arrive at

HG/H =
⊕

[µ,a]∈Rep(G/H)

H(G/H)L

(µ,a) ⊗ H̄(G/H)L

(ΩG(µ),ΩH(a))+ .

Let us emphasize once more that the coset sectors are both defined with respect to the

same embedding ǫ in this expression. The asymmetry enters in the explicit appearance

of the twists of labels and in an (implicit) reduction of labels over which we sum.

The most prominent example of asymmetric cosets of the type considered in this

subsection is provided by the Nappi-Witten background [5]. It is obtained as a coset

of the product group G = SL(2,R) × SU(2) with respect to some abelian subgroup

H = R × R. In this case, the automorphism ΩG is trivial while ΩH exchanges the two

factors of R. The model will be discussed in detail in section 4.

2.4.2 Examples of GMM-type

Let us now consider a slightly more complicated family of examples in which the numerator

group is a product G1 ×G2 of two groups G1 and G2 which possess a common subgroup

H . Our aim is to describe the coset G1×G2/H where the first homomorphism ǫL = e×ǫ2
embeds H into the group G2 and ǫR = ǫ1×e sends elements of H into G1. The Lagrangian

description of such models was developed by Guadagnini, Martellini and Mintchev (GMM)

more than fifteen years ago [1, 2]. In appendix A we show how their results can be

recovered from the more general expression (4). We also use the opportunity to correct

some statements of GMM concerning the current algebra relations and the validity of the

affine Sugawara / coset construction for this type of coset models.

The Lagrangian treatment of appendix A and algebraic intuition lets us suspect that

the coset model is manifestly heterotic with chiral algebras given by

A
(

(G1)k1
⊗

(

(G2)k2
/Hk

)

)

⊗A
(

(

(G1)k1
/Hk

)

⊗ (G2)k2

)

.

One can easily see that the field identification group for the coset G1 ×G2/H is given by

Gid =
{

(0, 0, J ′)
∣

∣ (0, J ′) ∈ Gid(G1/H) ∩ Gid(G2/H)
}

.

The allowed coset labels consist of triples (µ, α, a) such that (µ, a) and (α, a) are allowed

for the G1/H and G2/H cosets, respectively. Coset representations are then obtained by

dividing out the field identifications Gid. The resulting state space simply reads

H =
⊕

[µ,α,a]∈Rep(G/H)

HG1

µ ⊗HG2/H
(α,a) ⊗ H̄G1/H

(µ,a)+ ⊗ H̄G2

α+ .
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It reflects the fact that in both the left and the right moving algebra one still finds a

residual current symmetry.

For the physical applications we are particularly interested in a special choice of prod-

uct group and subgroup, G1 = G2 = SU(2) and H = U(1). Under these circumstances

the GMM-model describes five-dimensional non-Einstein T pq spaces [3]. The special case

p = q = 1 admits a direct interpretation as the base of the conifold (see, e.g., [12]). This

example will be discussed in detail in section 4.

2.4.3 Asymmetric cosets of non-automorphism type

In the last two subsections we discussed examples of asymmetric cosets which are of

rather special form. Recall that for the first case, the left and right embeddings were

simply related by automorphisms. An interesting generalization of this setup involves

choosing a chain of subgroups H = U1 ⊂ U2 ⊂ · · · ⊂ UN = G along with left and right

embeddings which are pairwise related through automorphisms. If an asymmetric coset

falls into this wider class, we will say that it is of “generalized automorphism type”. Note

that the GMM coset models belong to this family. To see how this works, let us introduce

a subgroup U2 = H × H which sits in between H and G = G1 × G2. Given such an

intermediate group we first embed H into either the second or first factor of H ×H and

then continue by embedding H×H into G. In this scenario, the left and right embeddings

from H to H × H are related by the permutation automorphism of H ×H and the left

and right embedding from H ×H to G are even identical.

Asymmetric coset models of generalized automorphism type are heterotic with respect

to their maximal chiral algebras, i.e. the algebra of holomorphic chiral fields is not isomor-

phic to the algebra of anti-holomorphic fields (unless the model is of automorphism type).

On the other hand, their chiral algebras possess a smaller common chiral subalgebra for

which the whole theory is still rational. This property will enable us in the next section

to write down a large number of boundary states for asymmetric cosets of generalized

automorphism type.

Before we proceed to the discussion of boundary conditions, however, we would like

to provide at least one example of an asymmetric coset that is not of generalized au-

tomorphism type. To this end we consider once again the product G = G1 × G2

of two simple Lie groups Gi which possess a common subgroup H . One can define

an action of H on G which is based on the embeddings of the following special form

ǫL(h) =
(

ǫ1(h), ǫ2(h)
)

and ǫR(h) =
(

ǫ′1(h), id
)

. The corresponding matrices of embedding

indices are denoted by (x1, x2) and (x′1, 0). If we can now find levels such that the condi-

tion k = x1k1 + x2k2 = x′1k1 is obeyed, then there exists an associated asymmetric coset

11



model with chiral algebra

A
(

(

(G1)k1
× (G2)k2

)

/Hk

)

⊗A
(

(

(G1)k1
/Hk

)

× (G2)k2

)

.

For models of this type we were not able to find a common chiral subalgebra for which the

theory stays rational. An very explicit example is obtained using the inclusion su(2)4k′ →֒
su(3)k′ ⊕ su(3)3k′. In fact, there are two embeddings of su(2) into su(3) at our disposal

with embedding indices 1 and 4, respectively. If we employ the embedding with index 1

for ǫi and choose ǫ′1 such that it has embedding index 4, then the anomaly cancellation

condition is satisfied.

3 The boundary theory

In this section we will construct boundary states for the asymmetric coset theories. The

heterotic nature of these models will force us to break part of the bulk symmetry. But for

a large class of asymmetric cosets we will be able to identify smaller chiral symmetries for

which the boundary theory remains rational. Our discussion starts with a short reminder

on maximally symmetric and symmetry breaking branes on group manifolds. We will then

argue that some of the symmetry breaking branes on G can descend to the asymmetric

coset and we will identify the localization of these branes in G/H . Formulas for the

boundary states and the partition functions of the boundary theories will be provided at

the end of the section.

3.1 Branes on group manifolds

Among the branes on group manifolds, maximally symmetric branes are distinguished

since they preserve the whole chiral current algebra symmetry. The construction of maxi-

mally symmetric boundary conditions in the WZNW model requires to choose some gluing

automorphism Ω of the chiral algebra A(G) so that we can glue holomorphic and anti-

holomorphic currents along the boundary. Before we describe a few results from boundary

conformal field theory of the corresponding branes, let us briefly look at the geometric

scenario these boundary conditions are associated with. It is by now well known that

branes constructed with Ω = id are localized along conjugacy classes [13]. The general

case has an equally simple and elegant interpretation [14]. Note that gluing automor-

phisms Ω for the current algebra A(G) are associated with automorphisms of the finite

dimensional Lie algebra g which, after exponentiation, give rise to an automorphism ΩG

of the group G. One can then show that maximally symmetric branes are localized along

the following twisted conjugacy classes in the group manifold,

CΩ
u :=

{

g uΩG(g−1)
∣

∣ g ∈ G
}

.

12



The subsets CΩ
u ⊂ G are parametrized through equivalence classes of group elements u

where the equivalence relation between two elements u, v ∈ G is given by: u ∼Ω v iff

v ∈ CΩ
u . One should think of u as a coordinate that describes the transverse position of

the brane on the group manifold. In the exact conformal field theory, these coordinates

are quantized.

The algebraic description of maximally symmetric D-branes was developed in [15] (see

also [16]). Their boundary states are labeled by representations of the twisted Kac-Moody

algebra which may be constructed from the Lie algebra g using the automorphism Ω. They

are specific linear combinations of certain generalized coherent (or Ishibashi) states,

|u〉 =
∑

Ω(µ)=µ

ψu
µ

√

S0µ

|µ〉〉 .

As usual, the generalized coherent states only implement the gluing conditions for the

currents and there is one such state for each Ω-symmetric combination of irreducible ĝ-

representations in the charge conjugate state space of the WZNW theory. The coefficients

ψu
µ in the previous formula are directly related to the one-point functions of bulk fields in

the boundary theories and explicit expressions can be found in the literature [15]. From

the boundary states one can compute the partition function

Zuv =
∑

ν∈Rep(G)

(

nν

)

v

u
χν =

∑

ν∈Rep(G)

∑

µ=Ω(µ)

ψ̄u
µ
ψv

µ Sνµ

S0µ
χν

for each pair of labels u, v. The numbers
(

nν

)

v

u ∈ N0 are the twisted fusion rules of ĝ.

For details of the construction we refer the reader to the existing literature.

In addition to these maximally symmetric branes, a large class of symmetry breaking

branes has been obtained in [8]. Their geometry was identified later in [9]. The con-

struction of these branes requires to choose a chain of groups Us, s = 1, . . . , N, along

with homomorphisms ǫs : Us → Us+1 (we set UN = G). The latter are again assumed to

induce embeddings of the corresponding Lie algebras. Furthermore, one has to select an

automorphism Ωs on each group Us. Given these data, it is possible to construct a set

of branes which preserve an U1 group symmetry. These are localized along the following

sets

CΩ
ǫ;u = CN

uN
· CN−1

uN−1
· . . . · C1

u1
⊂ G where

Cs
us

= ΩN ◦ ǫN−1 ◦ · · · ◦ Ωs+1 ◦ ǫs(CΩs

us
) ⊂ G for us ∈ Us

(9)

and CN
uN

= CΩN

uN
for uN ∈ G. The · indicates that we consider the set of all points in G

which can be written as products (with group multiplication) of elements from the various

subsets. One should stress that branes may be folded onto the subsets (9) such that a
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given point is covered several times. This phenomenon has been observed for a special

case in [17]. For maximally symmetric branes on ordinary adjoint cosets the previous

geometry reduces to simpler expressions which have been found before [18, 19].

To illustrate this abstract construction, we show how to recover the symmetry breaking

branes on SU(2) that were found in [17]. In this case, we choose a chain of length

N = 2 and set U1 = U(1). Let us then fix the automorphism Ω1 on U(1) to be the

inversion Ω1(η) = η−1 for all η ∈ U(1). The automorphism Ω2 of SU(2) is assumed to

be trivial and ǫ1 can be any embedding of U(1) into SU(2). With these choices, the

twisted conjugacy classes CΩ1 fill the whole one-dimensional circle U1. When we multiply

points of the circle with elements in the spherical conjugacy classes CΩ2 = Cid of SU(2)

the resulting set sweeps out a three-dimensional subspace of SU(2) which can degenerate

to a 1-dimensional circle. Hence, for this very special example, we reproduce exactly the

findings of [17].

3.2 Branes in asymmetric cosets

Having constructed maximally symmetric and symmetry breaking branes in the group G,

our strategy now is to investigate which of these branes can pass down to the asymmetric

coset G/H . Geometrically, this is not too hard to understand. In fact, the natural idea

is to look at all the symmetry breaking branes which are obtained from chains starting

with U1 = H and end at UN = G and to impose an extra condition on the choice of the

automorphisms Ωs and the homomorphisms ǫs so as to reflect the action of H on G in

the coset construction. Explicitly, the conditions on Ωs and ǫs read

ǫL = ǫN−1 ◦ · · · ◦ ǫ1 , (10)

and

ǫR = ΩUN ◦ ǫN−1 ◦ ΩUN−1 ◦ · · · ◦ ΩU2 ◦ ǫ1 ◦ ΩU1 , (11)

Our claim is that the subsets (9) that are obtained from chains (Us,Ωs) with homomor-

phisms ǫs pass down to subsets on the asymmetric coset G/H , provided that the data of

the chain are related to the data ǫL/R of the asymmetric coset G/H by eqs. (10) and (11).

We believe that the branes that are obtained in this way are the only ones that possess a

rational boundary theory.

3.3 Boundary states and partition function

We now turn to the exact solution of the boundary conformal field theories which are

used to describe the branes we talked about in the previous subsection. Our assumptions

on the existence of a chain of embeddings and its properties guarantee that the resulting
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theories are rational with respect to a chiral symmetry

A = A(UN/UN−1) ⊗ · · · ⊗ A(U3/U2) ⊗A(U2/U1) .

Let us stress that the left and right chiral algebra are isomorphic after symmetry reduction

while this did not have to be the case before. For the rest of this section, let us restrict

to embedding chains of length N = 3. This does not only cover all the examples to be

discussed later on, but it also simplifies our notations. The extension to the general case

will be straightforward. We will also set Ω1 = id = Ω3 and write U2 = U .

To begin with, it is convenient to rewrite the bulk partition function of the asymmetric

coset model in terms of characters for the chiral algebra A that is left unbroken by the

boundary condition. With our simplifying assumptions, this partition function becomes

H =
⊕

[µ,a]∈Rep(G/H)

⊕

α,β∈Rep(U)

HG/U
(µ,α) ⊗HU/H

(α,a) ⊗ H̄G/U

(µ,β)+ ⊗ H̄U/H

(Ω(β),a)+ . (12)

We had to include the automorphisms Ω in one of the coset representations because in

the original formulation of the symmetry reduction left and right chiral algebra are just

isomorphic, not identical. By explicit insertion of Ω we are able to formulate the theory

in terms of one single chiral algebra A.

To construct boundary states we have to find the symmetric part of the Hilbert space

(12). From the G/U cosets we obtain the condition α ≡ β modulo field identification

of the form (e, J) ∈ Gid(G/U). From the U/H cosets one arrives at α = Ω(β). This is

due to the fact that elements of the field identification group Gid(U/H) can not have the

form (J, e). The first condition then translates into α = JΩ(α). We will assume that this

condition can only be fulfilled for Ω(α) = α.4 Generalized coherent states |µ, α, a〉〉 for

this setup are labeled by triples µ, α, a such that

(µ, α) ∈ All(G/U) , (α, a) ∈ All(U/H) ,

Ω(α) = α .

In addition we have to identify these generalized coherent states according to the identi-

fication rule

|Jµ, α, J ′a〉〉 ∼ |µ, α, a〉〉 for (J, J ′) ∈ Gid .

Let ψz
α be the structure constants of twisted D-branes in the target space U . When-

ever the tupel (ρ, z, r) satisfies the selection rule QJ(ρ) = QJ ′(r) for all elements (J, J ′) ∈
Gid we then may define boundary states for the asymmetric coset by

|ρ, z, r〉 =
∑

P(µ, α)P(α, a)
SG

ρµ
√

SG
0µ

ψz
α

SU
0α

S̄H
ra

√

SH
0a

|µ, α, a〉〉 .

4This condition can be non-trivial only if there exist elements in the center of H which are mapped
to the unit element by both ǫL and ǫR.
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We note that this is a consistent prescription since the formula does not depend on the

specific representative of the Ishibashi states. Also, we may implement the identification

of boundary states

|Jρ, z, J ′r〉 ∼ |ρ, z, r〉 for (J, J ′) ∈ Gid .

Using world-sheet duality it is not difficult to derive formulas for the boundary partition

functions. As usual we start from the following expression involving the coefficients of

boundary states

Z =
∑

P(µ, α) P(α, a)
S̄G

ρ1µS
G
ρ2µ

SG
0µ

ψ̄α
z1
ψz2

α

SU
0αS

U
0α

SH
r1aS̄

H
r2a

SH
0a

χ
G/U
(µ,α)χ

U/H
(α,a)(q̃)

and perform the modular S transformation to obtain

Z =
∑

P(µ, α) P(α, a)
S̄G

ρ1µS
G
ρ2µS

G
νµ

SG
0µ

ψ̄α
z1
ψz2

αS̄U
βαS

U
γα

SU
0αS

U
0α

SH
r1aS̄

H
r2aS̄

H
ba

SH
0a

χ
G/U
(ν,β)χ

U/H
(γ,b)(q) .

We now want to pass to an unrestricted sum over µ, α, a (α still has to be symmetric).

This can be achieved if we express the projectors in terms monodromy charges and pull

the corresponding simple currents into the S matrices. We are thus lead to

Z =
1

|GG/U
id | |GU/H

id |
∑ S̄G

ρ1µS
G
ρ2µS

G
J1νµ

SG
0µ

ψ̄α
z1
ψz2

αS̄U
J ′

1
βαS

U
J2γα

SU
0αS

U
0α

SH
r1aS̄

H
r2aS̄

H
J ′

2
ba

SH
0a

χ
G/U
(ν,β)χ

U/H
(γ,b)(q) .

The expression may be evaluated directly by means of the Verlinde formula. The final

result is

Z =
1

|GG/U
id | |GU/H

id |
∑

Nρ+
1

,ρ2,J1νN
δ
(J ′

1
β)+,J2γ

(

nδ

)

z1

z2N
J ′

2
b

r1r+
2

χ
G/U
(ν,β)χ

U/H
(γ,b)(q)

=
∑

Nρ+
1

,ρ2,νN
δ
β+γ

(

nδ

)

z1

z2N b
r1r+

2

χ
G/U
(ν,β)χ

U/H
(γ,b)(q) .

Let us remark that this spectrum is consistent with the proposed geometric interpretation.

The relevant computations are left to the reader (see [9] for a closely related analysis).

4 Examples

To illustrate the abstract formulas we presented in this work we will now study three

important examples. Our discussion starts with a short analysis of D-branes in the

parafermionic cosets SU(2)/U(1) and branes therein. We then proceed to the spaces T pq

generalizing the base of the conifold. The section concludes with a detailed investigation

of branes in the Nappi-Witten background.
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Figure 1: The group manifold SU(2) as a fibre over the unit intervall.

4.1 Branes in the parafermion background

Parafermion theories arise from cosets of the form SU(2)/U(1). There exist two choices

of how the U(1) subgroup can be gauged: adjoint (vectorial) and axial gauging. D-branes

for these models have been worked out in [17, 7] and we will not have anything new to

see in this example. Our purpose is merely to introduce some of the tools that help to

illustrate the bulk and brane geometries in specific examples. Recovering the geometry

of the so-called A and B branes in parafermion theories from our general theory will be

rather easy.

The first ingredient in our discussion is the SU(2) group manifold itself. It will be

useful for us to parametrize it in terms of two complex coordinates z1, z2,

g =

(

z1 z2
−z̄2 z̄1

)

with z1, z2 ∈ C and |z1|2 + |z2|2 = 1 .

To picture this space, we define the quantity r = |z1| which takes values in the interval

0 ≤ r ≤ 1. Over each point r ∈ [0, 1] the group manifold fibers into the direct product

S1
r × S1√

1−r2
of two circles with radii r and

√
1 − r2, respectively. Hence, we find

SU(2) =
{

(z1, z2)
∣

∣ |z1|2 + |z2|2 = 1
}

=
{(

r eiφ1 ,
√

1 − r2 eiφ2
)
∣

∣0 ≤ r ≤ 1
}

⊂ C
2 .

If we identify the complex numbers with euclidean 2-planes according to z1 = x0 + ix3

and z2 = x1 + ix2 we arrive at the figures 1 and 2.

Next we turn to the U(1) subgroup and its embeddings into SU(2). For the left

embedding ǫL we shall use the map

ǫL : eiτ 7→
(

eiτ , 0
)

.

The vector and axial gaugings arise from two different choices of the right homomorphism

ǫL which we choose to be

ǫ
v/a
R : eiτ 7→

(

e±iτ , 0
)

.
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Figure 2: A second illustration of the group manifold SU(2).

The associated actions of U(1) on SU(2) assume a rather simple form in the coordinates

(z1, z2),

(

z1, z2
)

7→
(

z1, e
2iτz2

)

(vector) and
(

z1, z2
)

7→
(

e2iτz1, z2
)

(axial) .

In descending to the coset geometry, it is convenient to fix the gauge such that either z1

or z2 is a positive real number. We thus arrive at the expressions

SU(2)/U(1)vector =
{(

r eiφ,
√

1 − r2
)
∣

∣ 0 ≤ r ≤ 1
} ∼= D2

SU(2)/U(1)axial =
{(

r,
√

1 − r2 eiφ
)
∣

∣ 0 ≤ r ≤ 1
} ∼= D2 .

In both cases the target space is topologically given by a disc D2. This can also easily be

inferred from the figures 1 and 2.

Let us now proceed to the geometry of branes in this geometry. Our general recipe

instructs us to search for embedding chains of some depth N and then to pick automor-

phisms Ωs for each of the groups in the chain. Here our chains will have length N = 2,

they consist of U1 = U(1) and U2 = SU(2) with some homomorphism ǫ : U1 → SU(2).

On U1 = U(1) there exist two different automorphisms Ω1, namely the identity id and the

inversion γ. The latter sends each η ∈ U(1) to its inverse γ(η) = η−1. Automorphisms

Ω2 of SU(2) are all inner so that they are parametrized by elements of SU(2). As we

discussed above, these data have to obey the two conditions (10, 11). In our situation this

means that ǫ = ǫL and Ω2 ◦ ǫ ◦Ω1 = ǫR. To describe solutions of the second condition we

introduce the following conjugation on SU(2),

γ

(

z1 z2
−z̄2 z̄1

)

=

(

z1 z2
−z̄2 z̄1

)

=

(

0 1
−1 0

) (

z1 z2
−z̄2 z̄1

) (

0 −1
1 0

)

. (13)

In the case of the vector gauging, ǫR = ǫL and hence we look for pairs of Ω1,Ω2 such that

Ω2 ◦ ǫ◦Ω1 = ǫ. This is satisfied for (Ω1,Ω2) = (id, id) and for (Ω1,Ω2) = (γ, γ). While the

first choice gives A-branes, the second is associated with B-branes in the terminology of
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[17]. The analysis of axial gauging is similar and leads to the two possibilities (Ω1,Ω2) =

(id, γ) and (Ω1,Ω2) = (γ, id).

To describe the D-branes in the parafermion theory we apply our general scheme

according to which we have to consider products of twisted conjugacy classes

CSU(2)
µ (Ω2) · Ω2 ◦ ǫ

(

CU(1)
a (Ω1)

)

=
{

ggµΩ2(g
−1) · Ω2 ◦ ǫ

(

hhaΩ1(h
−1)

)

}

.

Here, gµ ∈ SU(2) and ha ∈ U(1) are two fixed elements and g ∈ SU(2), h ∈ U(1) are

allowed to run over the whole groups. To make this more explicit let us restrict to the

case of vector gauging. For the A-branes one can easily see that the relevant conjugacy

classes have the form (with 2c = tr gµ)

CSU(2)
µ (id) =

{(

c± i
√
r2 − c2,

√
1 − r2 eiφ2

)
∣

∣ |c| ≤ r ≤ 1
}

ǫ
(

CU(1)
a (id)

)

=
{

(eia, 0)
}

.

The A-branes are then parametrized by

CSU(2)
µ · ǫ

(

CU(1)
a

)

=
{(

(c± i
√
r2 − c2)eia,

√
1 − r2 ei(φ2−a)

)
∣

∣ |c| ≤ r ≤ 1
}

.

It is now very easy to depict these branes in the figures 1 and 2. After vector gauging

we recover one-dimensional branes stretching between two points on the boundary of the

disc. For c = 1 they degenerate to a point-like object on the boundary.

In the case of B-branes, we use the following twisted conjugacy classes on SU(2) and

U(1) in our construction

CSU(2)
µ (γ) =

{(

r eiφ1 , c± i
√

1 − r2 − c2
)
∣

∣ 0 ≤ r ≤
√

1 − c2 ≤ 1
}

γ ◦ ǫ
(

CU(1)
a (γ)

)

=
{

(eiξ, 0)
∣

∣ 0 ≤ ξ ≤ 2π
}

.

If we take the product, the branes obviously fill the whole space in the figures 1 and 2 –

but only for values 0 ≤ r ≤
√

1 − c2 ≤ 1. After vector gauging we thus recover the usual

B-branes which are two-dimensional discs centered around the origin of the target space

disc. For c = 0 they degenerate to a truly space filling brane. It is not difficult to work

out the corresponding results for axial gauging.

4.2 T pq spaces and the conifold

The spaces T pq that we are about to analyze next are simple generalization of the space

T 11. The latter is a close relative of the base of the conifold in which the RR-fluxes of

the latter are replaced by a NSNS background field [3]. Our general theory provides a

large class of boundary theories for this background, including branes that wrap one of

the three-spheres in T 11. Related objects play an important role in the conifold geometry.
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The T pq spaces are defined to be quotients SU(2)k1
× SU(2)k2

/U(1)k where the U(1)

subgroup acts by twisted conjugation, i.e. according to (g1, g2) 7→
(

g1ǫp(h
−1), ǫq(h)g2

)

where ǫp(η) = ǫ(ηp) and ǫ is the usual embedding of U(1) into SU(2). We obtain this

action from the choice

ǫL = e× ǫq , ǫR = ǫp × e .

If we parametrize the first factor SU(2) by (z1, z2) as before and similarly use (z′1, z
′
2) for

the second factor, we realize that the action of η = exp(iτ) ∈ U(1) can be stated more

explicitly by the formula

(z1, z2, z
′
1, z

′
2) 7→ (e−ipτz1, e

ipτz2, e
iqτz′1, e

iqτz′2) . (14)

The corresponding gauged WZNW functional is free of anomalies provided that k =

k1p
2 = k2q

2 (see condition (2)). Note that the resulting coset still has a SU(2) × SU(2)

symmetry which is realized by (g1, g2) 7→
(

h1g1, g2h2

)

.

The geometry of the coset may be deduced from the action (14) by putting z1 to a

positive real number. This works fine except for z1 = 0 where we have to gauge z2 for

instance. The resulting geometry is based on a product of a two-sphere times a three-

sphere. Due to the non-trivial embeddings only part of the U(1) has to be used for the

gauging and a detailed analysis yields

SU(2) × SU(2)/U(1) = (S2 × S3)/Zp .

Let us now have a look for the D-branes in this geometry. According to the general

procedure we are instructed to select a chain of groups. Here we will work with a chain

of length N = 3 consisting of U1 = U(1), U2 = U(1) × U(1) and U3 = SU(2) × SU(2).

We also pick embedding maps ǫ1 : U(1) → U(1) × U(1) defined by ǫ1(η) = e × η and

ǫ2 : U(1) × U(1) → SU(2) × SU(2) given through ǫ2 = ǫp × ǫq. Furthermore, we shall

assume that the automorphism Ω1 is the identity map. The other two automorphisms

Ω2 = Ω′ and Ω3 = Ω are allowed to be non-trivial. D-branes obtained from these data

wrap the following product of twisted conjugacy classes,

CSU(2)×SU(2)(Ω) · Ω ◦ ǫL
(

CU(1)×U(1)(Ω′)
)

.

In writing this formula, we omitted the factor associated with a conjugacy class in U1 =

U(1). Conjugacy classes of U(1) consist of a single point which we can choose to be the

unit element. The sets above descend to the coset space T pq if Ω ◦ ǫL ◦ Ω′ = ǫR (note

that the condition ǫ2 ◦ ǫ1 = ǫL holds by construction). One solution to this condition is

Ω = id × id and Ω′ = σ the permutation of the two U(1) factors.
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Given these gluing automorphisms, the relevant conjugacy classes in SU(2) × SU(2)

are given by

CSU(2)
µ × CSU(2)

ν

=
{(

re±iθ(r),
√

1 − r2eiφ2 , r′e±iθ′(r′),
√

1 − r′2eiφ′

2

)
∣

∣ |c| ≤ r ≤ 1 , |c′| ≤ r′ ≤ 1
}

where the signs ± may be chosen independently and r cos θ(r) = cµ = tr gµ/2 as well as

r′ cos θ′(r′) = cν = tr gν/2. These equations may only be solved for r ≥ |cµ| and r′ ≥ |cν |.
The twisted conjugacy classes in U(1) × U(1) are of the form

CU(1)×U(1)
a (Ω = σ) = {

(

ei(a+ξ), ei(a−ξ)
)

} ǫL7→ {
(

ei(a+ξ), 0, ei(a−ξ), 0
)

} .

Combining these two results we find the following expression for the product

CSU(2)
µ × CSU(2)

ν · ǫ
(

CU(1)×U(1)
a (Ω = σ)

)

=
{(

re±iθ(r)+ip(a+ξ),
√

1 − r2ei(φ2−p(a+ξ)), r′e±iθ′(r′)+iq(a−ξ),
√

1 − r′2ei(φ′

2
−q(a−ξ))

)}

We may use the gauge freedom to put the first entry to r. This is equivalent to setting

pτ = ±θ(r) + p(a + ξ) in eq. (14). The resulting terms in the second and fourth entry

may be compensated by a redefinition of φ2 and φ′
2. We are thus left with

CSU(2)
µ × CSU(2)

ν · ǫ
(

CU(1)×U(1)
a (Ω = σ)

)

/U(1)

=
{(

r,
√

1 − r2eiφ2 , r′e±iθ′(r′)±iq/pθ(r)+2iqa,
√

1 − r′2eiφ′

2

)}

.

Let us point out that after gauging we eliminated the variable ξ that parametrized the

twisted conjugacy classes in U(1) × U(1). Hence, these branes in T pq have the same

dimensionality as conjugacy classes in SU(2)×SU(2), i.e. they are 0, 2 or 4−dimensional.

We can also construct odd dimensional branes in T pq but this requires to change some

of the data we have been using. We stay with the same groups Us and embeddings as

above but choose a different collection of automorphisms. For the group SU(2) × SU(2)

we use the non-trivial inner automorphism Ω3 = (γ, γ) whose constituents have been

defined in eq. (13). The condition (11) may then be fulfilled if the automorphism Ω2 of

U(1) × U(1) is given by the exchange of group factors and Ω1 by the inversion γ.

Under these circumstances, the twisted conjugacy classes in the group SU(2)×SU(2)

are typically four-dimensional submanifolds of the form S2×S2 while those of U(1)×U(1)

and U(1) are both one-dimensional. One may easily see that the product of them inside

SU(2) × SU(2) is a submanifold of dimension 2, 4 or 6. After gauging the U(1) we are

thus left with all kinds of odd-dimensional branes. When the levels are even, it is possible

to find three-dimensional branes which fill one of the three-spheres of T pq. Related objects

play an important role for string theory on the conifold.
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Figure 3: The group manifold SL(2,R).

4.3 The big-bang big-crunch scenario

Recently, there has been renewed interest [6] in the Nappi-Witten background [5] which

describes a closed universe between a big-bang and a big-crunch singularity. It was shown

that the dynamics couples the closed universe to regions in space-time which formerly were

believed to be unphysical. The full geometry is given by the coset SL(2,R)×SU(2)/R×R

where the groups in the numerator act asymmetrically on both factors in the denominator.

Here we shall apply our general framework to the discussion of brane geometries in these

asymmetric cosets. We believe that the construction of the corresponding boundary states

in these non-compact backgrounds is possible using results from [20, 21].

Let us review the geometry of the target space first. For our purposes it is convenient

to parametrize the group manifold SL(2,R) according to

(

X0 +X3 X1 +X2

X1 −X2 X0 −X3

)

with X2
0 −X2

1 +X2
2 −X2

3 = 1, Xi ∈ R . (15)

In close analogy to the case of SU(2), this set can be depicted as a product of hyperbolas

X2
1 − X2

2 = r and X2
0 − X2

3 = 1 + r in the (X1, X2)-plane and the (X0, X3)-plane,

respectively. These hyperbolas are fibered over the real coordinate r and they degenerate

in one of the two planes for r = −1, 0. We thus have to distinguish the regions r > 0,

0 > r > −1 and −1 > r. The resulting geometry is pictured in figure 3 as a fibre over

r ∈ R. The parametrization of SU(2) has already been given in section 4.1 (see figures 1

and 2).

In the next step we have to specify the action of the subgroup R × R on SL(2,R) ×
SU(2). To make contact with the general setting of section 2 let us introduce the notation

G = G1×G2 = SL(2,R)×SU(2) andH = R×R. The coset we want to consider is defined

by using the identification g ∼ ǫL(h)gǫR(h−1) where the left and right homomorphisms of
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Figure 4: The group manifold SL(2,R) after gauging.

the subgroup H are defined by [5]

ǫL(ρ, τ) =

(

eρ 0
0 e−ρ

)

×
(

eiτ 0
0 e−iτ

)

ǫR(ρ, τ) =

(

e−τ 0
0 eτ

)

×
(

e−iρ 0
0 eiρ

)

.

Using these expressions it is not difficult to see that the action of H leaves the quantities

X2
0 −X2

3 , X2
1 − X2

2 , |z1| and |z2| invariant. In fact, these transformations correspond to

boosts on the hyperbolas and rotations on the circles. Deviating from the analysis in

[6] we will perform the gauge fixing completely in the SL(2,R) part of the target space.

As can easily be seen, the gauge transformations allow to gauge the SL(2,R) hyperbolas

down to two disconnected points. This procedure completely removes the gauge freedom

except for singular points at r = −1, 0. These points correspond to the big-bang and big-

crunch singularities and we will not be concerned too much with details of the geometry

at these special points. The findings of these considerations are illustrated in the figures

4 and 5.

It is now only a short step to recover the results of [6]. Let us introduce the notation

L,R, T,B which are shorthand for left, right, top and bottom and specify the location

of points in figure 4. The regions of SL(2,R) which appear in the fibre over r ∈ R can

be described by pairs of symbols L,R, T,B. A short look at figure 4 reveals that only

twelve different combinations are allowed. Working out the connectivity properties of

these different regions we arrive at figure 6 which has also been obtained in [6]. In order

to simplify the comparison with [6] we have adopted their notation. The translation can

be performed by means of table 1 (see also figure 7). From figure 6 we observe that

there are four closed compact universes I–IV which are connected at the big-bang and

big-crunch singularities. At each instant of time they have the topology of a three-sphere

S3 if one takes the SU(2) factor into account. The periodicity of time may be resolved

by going to the infinite cover AdS3 of SL(2,R). In addition to the closed universes there
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Figure 5: An alternative representation of the group manifold SL(2,R) after gauging.

are eight whiskers which are also connected to the singularities. Over each point in the

whisker one has a S3.

Let us now begin to place branes into this geometry. Once more we shall work with

chains of length N = 2 and the homomorphism ǫ = ǫL : U1 = R × R → U2 = SL(2,R) ×
SU(2). If we define an automorphism Ω of R×R by Ω(τ, ρ) = (−ρ,−τ) then our condition

(11) is satisfied whenever

Ω2 ◦ ǫ ◦ Ω1 = ǫ ◦ Ω .

D-branes in our background should be localized along the following product of twisted

conjugacy classes,
[

CSL(2,R)
µ (ω1) × CSU(2)

ν (ω′
1)

]

· (ω1 × ω′
1) ◦ ǫ

(

CR×R

a (Ω2)
)

, (16)

before projecting to the coset. Here, we split Ω1 = ω1 × ω′
1 into the product of automor-

phisms for SL(2,R) and SU(2), respectively. There are several choices of automorphisms

Ω2, ω1, ω
′
1 which satisfy our condition and we will discuss all of them in the following.

Let us start with the discussion of the twisted conjugacy class CR×R

a (Ω2). The most

general automorphism of the additive group R × R is implemented by a non-singular

2 × 2-matrix. In our situation, however, not all choices are allowed. The only choices

which have the chance to be consistent with condition (11) are Ω2(ρ, τ) = (ητ, ξρ) where

η, ξ = ±1. The resulting geometry is given by

CR×R

a (Ω2) =

{

R × R , for ξ = −η
{

(f1 + λ, f2 − ηλ)
∣

∣λ ∈ R
}

, for ξ = η .
(17)

The embedding of these sets into SL(2,R)×SU(2) via the map (ω1 ×ω′
1) ◦ ǫ leads to the

same result in both cases after gauge fixing.

When investigating the geometry of the D-branes (16) in the big-bang big-crunch

target space it is convenient to focus on the SL(2,R) part as all interesting features arise
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Figure 6: The big-bang/big-crunch scenario.

from this factor. We thus only have to distinguish two different cases, corresponding to

the two types of twisted conjugacy classes of SL(2,R). As most of the group SL(2,R)

will be gauged away, it suffices to address the following two questions:

1. Which ranges of r are covered by the twisted conjugacy classes?

2. Does the twisted conjugacy class extend along one or even both branches of the

hyperbolas, i.e. does the D-brane cover one or two points for fixed value of r after

gauging?

The twisted conjugacy classes of SL(2,R) are easily described. For untwisted conju-

gacy classes one has two types. There are two point-like conjugacy classes which corre-

spond to the center of SL(2,R) while all others are two-dimensional. The exact shape

has been worked out in [22, 23] but we will not need these details. The point-like branes

are specified by X0 = ±1 and X1 = X2 = X3 = 0, i.e. they are localized at r = 0.

After gauging they sit at the singularities between the closed universes I–II and III–IV,

respectively. The two-dimensional conjugacy classes are of the form X0 = C = const.

with arbitrary values of the remaining coordinates. According to the constraint (15) we

obtain r = C2 − 1 − X2
3 ≤ C2 − 1. This means that the conjugacy class after gauging

covers at least all four whiskers 2, 2′, 4, 4′. For C 6= 0 the conjugacy class grows into two

of the four closed universes starting from the singularity which joins them. Depending

on the sign of C these are the regions I–II (for C > 0) and III–IV (for C < 0). If |C|
reaches the value 1 (from below) the conjugacy class stretches completely through both

of the closed universes. Increasing |C| further, the conjugacy classes start to reach into

two of the remaining whiskers – 1, 1′ for C > 1 and 3, 3′ for C < −1. Note, that the

multiplication with the twisted conjugacy class of R ×R has no influence on the possible

values of r as it simply corresponds to some boost on the hyperbolas which will be gauged

away in any case.
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Figure 7: Different regions of SL(2,R) and where they appear in our picture. The matrix
elements indicate the sign of X0 ±X3 and X1 ±X2, respectively.

(R,B) (R,T) (L,T) (L,B) (R,R) (R,L) (B,T) (T,T) (L,L) (L,R) (T,B) (B,B)
I II III IV 1 1′ 2 2′ 3 3′ 4 4′

Table 1: Translation table for the twelve different regions.

The twisted conjugacy classes arise from the automorphism which reverses the sign

of X2 and X3. It may be described by conjugation with the element M = ( 0 1
1 0 ). The

corresponding twisted conjugacy classes are given by tr(Mg) = 2X1 = 2C = const.

According to the constraint (15) we obtain r = C2 −X2
2 ≤ C2. The discussion is similar

as in the untwisted case. For all values of C the twisted conjugacy classes pass through

all four closed universes I–IV and the four whiskers 2, 2′, 4, 4′. For C 6= 0 the conjugacy

classes also cover part of the whiskers 1, 3′ (C > 0) or 1′, 3 (C < 0). The results of the

last two paragraphs are illustrated in figure 8.

So far we have only considered the SL(2,R) part of the target space. To obtain the

complete picture we have also to take the SU(2) part into account as well as the product

with the twisted conjugacy class CR×R

a (ω). We already argued that the latter has no effect

on the SL(2,R) part as it does not affect the value of r and may thus be gauged away.

This statement also implies that the resulting D-branes factorize (in the same sense as the

gauge fixing factorized). If we try to solve condition (11) with ω1 = id, i.e. if we want to

take the ordinary conjugacy classes in the SL(2,R) part, we have to use an automorphism

Ω2 of R × R with η = 1. Depending on the choice of ξ we are still able to obtain both

expressions for twisted conjugacy classes that appear in eq. (17). The same statement

holds true for η = −1, i.e. for the case of a twisted conjugacy class in the SL(2,R) part.

It is now very simple to describe the geometry of the D-branes in the SU(2) part. We

simply have to multiply the (shifted) conjugacy class of SU(2) with elements of the form

diag(eiλ, e−iλ) for all values of λ. As was observed in [17, 24] and more in the spirit of our

approach in [9], this corresponds to a smearing of the original conjugacy class.

Let us conclude with a short summary of our results. All essential information about
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Figure 8: D-branes in the big-bang big-crunch scenario. The branes on the left hand side
have been constructed with an ordinary conjugacy class of SL(2,R) while for the right
ones a twisted conjugacy class was employed.

the target space and about its D-branes are contained in the figure 8. While the D-branes

cover the high-lightened regions in the SL(2,R) part, we also have a three-sphere over

each of these points which is partly covered by the D-brane. The geometry of the latter

is either given by a circle around some equator or by a smeared two-sphere which covers

a three-dimensional subset of S3.

5 Conclusions

In this work we presented a comprehensive description of asymmetric coset models G/H

for which the action of H on G is not necessarily given by the adjoint. A bulk partition

function was proposed based on a semi-classical analysis in the large volume limit and the

modular invariance of this partition function was shown to be equivalent to the anomaly

cancellation that is known from the Lagrangian description of the coset.

We then provided a general prescription of constructing branes in asymmetric cosets.

Due to the heterotic nature of the models, one is naturally lead to boundary states which

break part of the symmetry of the bulk theory. The geometry of the branes may be

deduced from those of symmetry breaking branes on group manifolds [9]. Branes which

possess a symmetry compatible with the gauge action were argued to descend naturally

to the coset.

Our general findings have been used to construct D-branes in the cosmological Nappi-

Witten background (big-bang big-crunch space-time) and in the base S2 × S3 of the

conifold. Among the branes in the big-bang big-crunch space-time there are examples

which cross the singularities and run through all the universes. In the base of the conifold

we found branes of all dimensions. For even values of the level one may construct branes

which fill one of the three-spheres.

Before we conclude let us mention a few open problems which remain to be solved.
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Our algebraic construction of branes in asymmetric cosets was designed for the case that

left and right action of the gauge group can be related by automorphisms in a chain

of intermediate groups (asymmetric cosets of generalized automorphism type). If this

condition is not fulfilled, one could be tempted to follow [7] (see also [9]) and to propose

generalized conjugacy classes for the geometry of the corresponding branes. While this

procedure works fine on the Lagrangian level, we have not been able to implement it in

an algebraic approach.

Another issue is the discussion of the stability and the dynamics of our branes. In the

geometric regime the question of stability should be accessible from a Born-Infeld analysis

[17]. One may even hope to go one step beyond such an analysis and to construct the non-

commutative gauge theory which governs the dynamics of branes in asymmetric cosets

[25]. It may also well be that the results of [26] generalize to asymmetric cosets.
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A The GMM cosets revisited

Models of the type which have been discussed in section 2.4.2 first appeared in [1, 2].

These authors presented a Lagrangian formulation of these theories and considered the

associated current algebra. In our opinion their discussion of the algebraic properties is

not completely accurate. In particular they argued that the energy momentum tensor is

not obtained by the standard affine Sugawara [27, 28, 29] and coset constructions [29, 30]

which seems to be incorrect. We take this as an opportunity to review the Lagrangian

description and to clarify some statements.

The gauged WZNW functional (4) is quadratic in the gauge fields. It may thus be

simplified – in principle – by integrating out the gauge fields. The resulting expressions

will, however, remain quite formal in the general case (see however [31, 32, 33, 34, 35, 36,

37]). The reason for these difficulties is the third term in the interaction functional (5)

which does not only contain the gauge fields A and Ā but also the group element g. For

the Gaussian path integral to be performed one would need to diagonalize the quadratic

form matrix which depends explicitly on g.

For our particular choice of embeddings the corresponding term vanishes and the path

28



integral may easily be evaluated. The interaction functional (5) reduces to

S
G1×G2/H
int (g1, g2, A, Ā|k, ǫL/R) =

k1

4π

∫

Σ

d2z Tr1

{

−2ǫ1(A)g−1
1 ∂̄g1 − ǫ1(Ā)ǫ1(A)

}

+
k2

4π

∫

Σ

d2z Tr2

{

2ǫ2(Ā)∂g2g
−1
2 − ǫ2(Ā)ǫ2(A)

}

.

It is fairly simple to read off the quadratic form matrix from this expression and integrate

out the gauge fields in full generality. We only have to be a bit careful about our notations.

We may decompose the h-valued gauge fields A and Ā according to A = AαT
α and Ā =

ĀαT
α. The abstract Lie algebra generators satisfy the commutation relations [T α, T β] =

ifαβ
γT

γ. Indices are raised and lowered using the Killing form5

2 καβ = Tr
{

T αT β
}

and its inverse. We may choose generators T i ∈ {ǫ1(T α), T I} of g1 and generators T a ∈
{ǫ2(T α), TA} of g2. These satisfy [T i, T j] = if ij

kT
k and [T a, T b] = ifab

cT
c. If all three

indices take values in the subalgebra h, the structure constants by construction just reduce

to the structure constants of h in the given basis. This is only true as long as the index

structure is as indicated because one would have to use different Killing forms to lower

the indices. From (1) it follows that they satisfy

καβ = καβ
1 /x1 = καβ

2 /x2 .

We see the embedding indices xi entering this expression.

The last relations imply

Tr1

{

ǫ1(Ā) ǫ1(A)
}

= 2 x1 ĀαA
α Tr2

{

ǫ2(Ā) ǫ2(A)
}

= 2 x2 ĀαA
α .

The formula
∫

dny e−
1

2
yT Ay+bT y =

(2π)n/2

√
det A

e
1

2
bT A−1b .

for the Gaussian path integral may thus be applied with

y =

(

Aα

Āβ

)

A =

(

0 x1k1

π
καβ

x2k2

π
καβ 0

)

b =

(

− k1

2π
Tr1

{

ǫ1(T
α)g−1

1 ∂̄g1

}

k2

2π
Tr2

{

ǫ2(T
α)∂g2g

−1
2

}

)

.

The matrix A is symmetric as by assumption k = x1k1 = x2k2. It may easily be inverted.

After performing the Gaussian path integral the interaction term reads

S
G1×G2/H
int (g1, g2| k, ǫL/R) = −καβ k1k2

4π k

∫

Σ

d2z Tr1

{

ǫ1(T
α) g−1

1 ∂̄g1

}

Tr2

{

ǫ2(T
β) ∂g2g

−1
2

}

(18)

5We remind the reader that Tr is a normalized trace and that we work in the conventions of [11].
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This is exactly the action functional which was constructed in [1, 2].

The action functional (18) possesses a number of very interesting and useful sym-

metries. By construction it is invariant under the infinitesimal gauge transformations

(g1, g2) 7→
(

g1(1−i ǫ1(Ω)), (1+i ǫ2(Ω))g2

)

with Ω = Ω(z, z̄) ∈ h. In addition, the model ad-

mits the symmetry GL
1 (z)×GR

2 (z̄), i.e. it is invariant under (g1, g2) 7→
(

g′1(z)g1, g2g
′−1
2 (z̄)

)

.

The last symmetry is generated by the currents

J(z) = J1 −
k2 καβ

2 x1

g1ǫ1(T
α)g−1

1 Tr2

{

ǫ2(T
β) ∂g2g

−1
2

}

J̄(z̄) = J̄2 +
k1 καβ

2 x2

g−1
2 ǫ2(T

β)g2 Tr1

{

ǫ1(T
α) g−1

1 ∂̄g1

}

.

They satisfy ∂̄J(z) = ∂J̄(z̄) = 0 by the equations of motion. During the derivation we

used the relation x1k1 = x2k2. Note that J takes values in the Lie algebra g1, while J̄ is

from g2. This means that the index structure is J i, J̄a which makes explicit the heterotic

nature of our coset. Both currents are gauge invariant.

In the algebraic description of our asymmetric coset model we already assumed some

properties which would have been expected from a straightforward generalization of the

GKO construction. We are now able to justify this procedure more rigorously by working

out the energy momentum tensor and the commutation relations of the currents. Let us

start with the latter. It is convenient to introduce the fields

J1 = −k1 ∂g1g
−1
1 J̄1 = k1 g

−1
1 ∂̄g1

J2 = −k2 ∂g2g
−1
2 J̄2 = k2 g

−1
2 ∂̄g2

which correspond to the (former) G1 and G2 currents, respectively. In terms of these

quantities one obtains

J(z) = J1 +
καβ

2 x1
g1ǫ1(T

α)g−1
1 Tr2

{

ǫ2(T
β)J2

}

J̄(z̄) = J̄2 +
καβ

2 x2

g−1
2 ǫ2(T

β)g2 Tr1

{

ǫ1(T
α)J̄1

}

.

The symmetry GL
1 (z) ×GR

2 (z̄) implies the Ward identities [38, (15.40)]

δ
(1)
L 〈X(w, w̄)〉 = −

∮

dz

2πi
Ωi〈J i(z)X(w, w̄)〉

δ
(2)
R 〈X(w, w̄)〉 =

∮

dz̄

2πi
Ωa〈J̄a(z̄)X(w, w̄)〉 ,

which are related to the transformations δ
(1)
L g1 = iΩiT

i g1 and δ
(2)
R g2 = −i g2 ΩaT

a. From
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the previous equations we may derive the non-trivial OPEs

J i(z)J j(w) =
if ij

k

z − w
Jk(w) +

k1 κ
ij
1

(z − w)2

J i(z)g1(w, w̄) = − T ig1(w, w̄)

z − w

J i(z)J j
1(w, w̄) =

if ij
k

z − w
Jk

1 (w, w̄) +
k1 κ

ij
1

(z − w)2
.

and

J̄a(z̄)J̄ b(w̄) =
ifab

c

z̄ − w̄
J̄c(w̄) +

k2 κ
ab
2

(z̄ − w̄)2

J̄a(z̄)g2(w, w̄) =
g2(w, w̄)T a

z̄ − w̄

J̄a(z̄)J̄ b
2(w, w̄) =

ifab
c

z̄ − w̄
J̄c

2(w, w̄) +
k2 κ

ab
2

(z̄ − w̄)2
.

All the other OPEs vanish:

J i(z)J̄a(w̄) = J i(z)g2(w, w̄) = J i(z)J̄ j
1 (w, w̄) = J i(z)Ja

2 (w, w̄) = J i(z)J̄a
2 (w, w̄) = 0

J̄a(z̄)g1(w, w̄) = J̄a(z̄)J i
1(w, w̄) = J̄a(z̄)J̄ i

1(w, w̄) = J̄a(z̄)J b
2(w, w̄) = 0 .

Let us emphasize the asymmetry in the OPEs which already showed up in the algebraic

construction.

Now, that the current symmetry is under control we can focus our attention to the

conformal symmetry, i.e. to the energy momentum tensor. Our treatment will reveal the

central charge to be given by a combination of affine Sugawara and coset construction.

Both left and right moving central charge agree. Due to the structure of the action

functional for the asymmetric coset the classical chiral energy momentum tensors are

given by

T = T1 + T2 + Tint and T̄ = T̄1 + T̄2 + T̄int .

The first two summands are the standard WZNW energy momentum tensors

T1 =
1

4 k1
Tr1

{

J1J1

}

T̄1 =
1

4 k1
Tr1

{

J̄1J̄1

}

T2 =
1

4 k2
Tr2

{

J2J2

}

T̄2 =
1

4 k2
Tr2

{

J̄2J̄2

}

.

The extra summands are given by

Tint =
k1 καβ

4 x2
Tr1

{

ǫ1(T
α) g−1

1 ∂g1

}

Tr2

{

ǫ2(T
β) ∂g2g

−1
2

}

T̄int =
k1 καβ

4 x2
Tr1

{

ǫ1(T
α) g−1

1 ∂̄g1

}

Tr2

{

ǫ2(T
β) ∂̄g2g

−1
2

}

.
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It is very instructive to evaluate the expressions TrR1
JJ and TrR2

J̄ J̄ . One is then naturally

lead to

T =
1

2k1
JiJ

i +
1

2k2
(J2)a(J2)

a − 1

2x2k2
(J2)α(J2)

α = TG1

k1
+ TG2

k2
− TH

x2k2

T̄ =
1

2k2
J̄aJ̄

a +
1

2k1
(J1)i(J1)

i − 1

2x1k1
(J1)α(J1)

α = T̄G1

k1
+ T̄G2

k2
− T̄H

x1k1
.

The additional factors x1 and x2 arise due to the usage of the natural Killing form for

h-quantities. After quantizing the theory the levels get shifted by the respective dual

Coxeter numbers. Let us emphasize the following remarkable fact: Due to the condition

x1k1 = x2k2 left and right moving Virasoro algebra possess the same central charge.

This result also has been noted in [1, 2] but the algebraic reasons remained unclear. In

particular in the last reference due to usage of intransparent notation it was not realized

that the energy momentum tensor is actually defined by the standard affine Sugawara

construction combined with the coset construction.
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