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Abstra
tWe demonstrate the relation between the S
herk-S
hwarz me
hanism and �ipped gaugedbrane-bulk supergravities in �ve dimensions. We dis
uss the form of supersymmetry violatingS
herk-S
hwarz terms in pure supergravity and in supergravity 
oupled to matter. We point outthat brane-indu
ed supersymmetry breakdown in 5d Horava-Witten model is not of the S
herk-S
hwarz type. We dis
uss in detail �ipped super-bigravity, whi
h is the lo
ally supersymmetri
extension of the (++) bigravity.



1 Introdu
tionThe issue of hierar
hi
al supersymmetry breakdown in supersymmetri
 brane worlds is oneof the 
entral issues in the quest for a phenomenologi
ally viable extra-dimensional exten-sion of the Standard Model. Many attempts towards formulating s
enarios of supersym-metry breakdown that use new features o�ered by extra-dimensional setup have been made[1℄,[2℄,[3℄,[4℄,[5℄,[6℄,[7℄,[8℄,[9℄,[10℄,[11℄,[12℄,[13℄.One of them is supersymmetry breakdown trig-gered by imposing nontrivial boundary 
onditions on �eld 
on�gurations along the 
ompa
ttransverse dimensions usually referred to as the S
herk-S
hwarz me
hanism. In the work pub-lished so far the investigation 
on
entrated on �at Minkowski-type geometries of the branesand bulk, negle
ting the ba
krea
tion of the gauge se
tors on the gravitational ba
kground (inparti
ular assuming a �xed radii of the extra dimensions), and in general the intera
tions ofvarious �elds with (super)gravity (but see [14℄, [10℄). On the other hand, it is pre
isely partial`uni�
ation' of the Standard Model with gravity that makes the Brane World s
enarios so in-triguing and appealing. In this note we would like to 
larify the status of the S
herk-S
hwarzapproa
h to supersymmetry breaking in the nontrivial gravity ba
kgrounds using the 
lass ofsimple warped gauged supergravities with �ipped boundary 
onditions des
ribed in [15℄.In parti
ular, we �nd out that the simple �ipped supergravity forms the lo
ally supersym-metri
 extension of the (++) bigravity model of Kogan et. al. [16℄,[17℄,[18℄. In su
h a setupone 
ir
umvents the van Dam-Veltman-Zakharov observation about the nonde
oupling of theadditional polarization states of the massive graviton [19℄,[20℄,[21℄. The size of the residualfour-dimensional 
osmologi
al 
onstant 
an be tuned to arbitralily small values by taking thedistan
e between branes suitably large. We dis
uss the mass spe
trum of gravitons and gravitiniin the resulting super-bigravity.To begin with let us noti
e that the brane-world version of the S
herk-S
hwarz me
hanism
ontains a number of ingredients. Assuming for simpli
ity that the extra dimension is justa 
ir
le S1, and that the higher-dimensional theory has a group G of global symmetries, one
an impose on various �elds periodi
ity with a twist, that is instead of standard periodi
ity
onditions ψ(y + 2πρ) = ψ(y) it is 
onsistent to demand that after following the 
ir
le a
on�guration goes ba
k to itself up to a symmetry transformation Uβ : ψ(y + 2πρ) = Uβψ(y).In parti
ular, if the twist matrix is di�erent for bosons and fermions, su
h boundary 
onditionslead to supersymmetry breakdown. If the extra dimension is an orbifold, say S1/Γ where Γ isa dis
rete group, for instan
e Z2 or Z2 × Z ′
2, then Γ may be embedded nontrivially into thegroup of global and lo
al symmetries of the model, and its 
ombined geometri
al and internala
tion has to be taken into a

ount. Finally, the matter and gauge �elds lo
ated on the braneshave in general nontrivial intera
tion with bulk �elds, and bulk �elds must be allowed to havesel�ntera
tions. In the 
ontext of a lo
ally supersymmetri
 theory bulk sel�ntera
tions implythat one has a gauged supergravity in the bulk, with a number of hypermultiplets and ve
torand tensor multiplets. The 
oupling of gr avity and and bulk matter to branes implies thatbranes a
t as nontrivial sour
es for bulk 
on�gurations, and modify the behaviour of �elds atthe �xed points. We shall try to determine how the S
herk-S
hwarz me
hanism works in thepresen
e of all these ingredients and how does it a�e
t stability of the extra dimensions.2



2 Flipped and detuned supergravity in �ve dimensionsThe simple N=2 d=5 supergravity multiplet 
ontains metri
 tensor (represented by the vielbein
emα ), two gravitini ΨA

α and one ve
tor �eld Aα � the graviphoton. We shall 
onsider gauging ofa (U(1)) subgroup of the global SU(2)R symmetry of the 5d Lagrangian. In general, 
ouplingof bulk �elds to branes turns out to be related to the gauging, and the bulk-brane 
ouplingswill preserve only a subgroup of the SU(2)R. Purely gravitational 5d a
tion des
ribing su
h asetup reads S =
∫

M5

e5 Lgrav , where
Lgrav =

1

2
R− 3

4
FαβFαβ − 1

2
√

2
AαFβγFδǫǫ

αβγδǫ +

−1

2
Ψ̄A
αγ

αβγDβΨγA +
3i

8
√

2

(

Ψ̄A
γ γ

αβγδΨδA + 2Ψ̄αAΨβ
A

)

Fαβ +

− i√
2
PABΨ̄A

αγ
αβΨB

β − 8

3
Tr(P2) . (1)Covariant derivative 
ontains both gravitational and gauge 
onne
tions:

DαΨ
A
β = ∇αΨ

A
β + AαPA

BΨB
β , (2)where ∇α denotes 
ovariant derivative with respe
t to gravitational transformations and P =

Pi i σi is the gauge prepotential. The pair of gravitini satis�es symple
ti
 Majorana 
ondition
Ψ̄A ≡ Ψ†

Aγ0 = (ǫABΨB)TC where C is the 
harge 
onjugation matrix and ǫAB is antisymmetri

SU(2)R metri
 (we use ǫ12 = ǫ12 = 1 
onvention). Supersymmetry transformations are alsomodi�ed by the gauging

δemα =
1

2
ǭAγmΨαA, δAα =

i

2
√

2
ΨA
αǫA, (3)

δΨA
α = Dαǫ

A − i

6
√

2

(

γβγα − 4δβαγ
γ
)

Fβγǫ
A +

√
2i

3
PABγαǫB . (4)If one puts P = 0 and stays on the 
ir
le, then as the twist matrix one may take any

SU(2) matrix a
ting on the symple
ti
 indi
es a = 1, 2. On a 
ir
le the U(1) prepotentialtakes the form P = gSsa i σ
a and the twist matrix is Uβ = ei β saσa . However, in this 
ase theunbroken symmetry is a lo
al one, and the S
herk-S
hwarz 
ondition is equivalent to puttingin a nontrivial Wilson line, [13℄, we shall 
ome ba
k to this issue later in the paper.When one moves over to an orbifold S1/Γ, one needs to de�ne in addition to the gaugingthe a
tion of the spa
e group Γ on the �elds. Let us take Γ = Z2 �rst. Then we have two �xedpoints at y = 0, π, and we 
an de�ne the a
tion of Z2 in terms of two independent boundary
onditions (Ψ stands here for a doublet of symple
ti
-Majorana spinors or for a doublet ofs
alars, like two 
omplex s
alars from the hypermultiplet)

Ψ(−y) = Q̂0Ψ(y) , Ψ(πrc − y) = Q̂πΨ(πrc + y) , (5)where Q̂0, Q̂π are some arbitrary matri
es, independent of the spa
e-time 
oordinates, su
hthat Q̂2
0 = Q̂2

π = 1 . Conditions (5) imply:
Ψ(y + 2πrc) = Q̂πQ̂0Ψ(y) . (6)3



Hen
e, if the boundary 
onditions at y = 0 and y = πrc are di�erent, one obtains twistedboundary 
onditions with Uβ = Q̂πQ̂0. It is easy to see that UβQ̂0,πUβ = Q̂0,π, whi
h is the
onsisten
y 
ondition 
onsidered in [12℄,[22℄,[23℄. This is immediately generalized to S1/(Z2 ×
Z ′

2) with two �xed points for ea
h of the Z2s, y = 0, 1
2
πrc, πrc,

3
2
πrc, and independent Q̂y atea
h of the �xed points.If one writes Q̂πQ̂0 = exp(iβaσ

a), the 
ondition (5) is solved by
Ψ = eiβaσaf(y)Ψ̂ , (7)where Ψ̂ is periodi
 on the 
ir
le and f(y) obeys the 
onditions

f(y + 2πrc) = f(y) + 1 , f(−y) = −f(y) . (8)When one expresses the initial �elds Ψ through Ψ̂, the kineti
 term in the Lagrangiangenerates mass terms for periodi
 �elds Ψ̂:
Ψ̄γM∂MΨ ⊃ if ′ ¯̂Ψγ5βaσ

aΨ̂ . (9)2.1 S
herk-S
hwarz me
hanism in the SU(2) R-symmetry of 5d gaugedsupergravityLet us now move on to the spe
i�
 
ase of a 5d supergravity with a gauged U(1) subgroup ofthe SU(2) R symmetry. The Z2 a
tion on the gravitino is de�ned as follows:
ΨA
µ (−y) = γ5(Q0)

A
BΨB

µ (y) , ΨA
5 (−y) = −γ5(Q0)

A
BΨB

5 (y) ,

ΨA
µ (πrc − y) = γ5(Qπ)

A
BΨB

µ (πrc + y) , ΨA
5 (πrc − y) = −γ5(Qπ)

A
BΨB

5 (πrc + y), (10)and the parameters ǫA of the supersymmetry transformations obey the same boundary 
ondi-tions as the 4d 
omponents of gravitini. Symple
ti
 Majorana 
ondition ((Q0,π)
C = σ2(Q0,π)

∗σ2 =
−Q0,π) and normalization (Q0,π)

2 = 1 imply Q0,π = (q0,π)aσ
a, where (q0,π)a are real parameters[24℄. We would like to gauge a U(1) subgroup of the global SU(2). In the general 
ase [15℄ we
an 
hoose the prepotential of the form

P = gRǫ(y)R+ gSS, (11)where R = raiσ
a and S = saiσ

a. On an orbifold S1/(Z2×Z ′
2) the expression ǫ(y)R gets repla
edby R̄(y) whi
h is a pi
e-wise 
onstant matrix with dis
ontinuities (jumps) at the positions ofthe four branes. The basi
 relation between the boundary 
onditions and the prepotential
omes from the requirement, that under supersymmetry variations the transformed gravitino

ΨA
α + δΨA

α should obey the same boundary 
onditions as ΨA
α . Taking into a

ount that thegauge �eld present in the supersymmetry transformation of the gravitini is that graviphoton,whose 4d part we 
hoose to take Z2-odd with respe
t to ea
h brane (we need only N = 1supersymmetry on the branes), and the �fth 
omponent is always even, we obtain the relationsvalid for any segment 
ontaining a pair of naighbouring �xed points

[Q0,π, R] = 0, {Q0,π, S} = 0 . (12)4



For nonzero R this implies Qy proportional to R, i.e. Qy = α (i
√
R2)−1R with α = ±1. Thesimplest 
ase of interest 
orresponds to Q0 = −Qπ. As shown in [15℄, in this 
ase the 
losure ofsupersymmetry transformations reqires putting on the branes equal tensions whose maginitudeis determined by R (we quote only the bosoni
 gravity part of the a
tion):

M−3S =

∫

d5x
√−g5(

1

2
R + 6k2) − 6

∫

d5x
√−g4kT (δ(x5) + δ(x5 − πrc)) (13)where

k =

√

8

9
(g2
RR

2 + g2
SS

2) and T =
g1

√

~R2

√

(g2
1R

2 + g2
2S

2)
. (14)This is easily generalized. If on a S1/(ΠZ2) one takes boundary 
onditions given by pairsof Q and −Q one after another, then this implies that all branes on S1/Z2, S1/(Z2 × Z ′

2),
S1/(ΠZ2) have the same brane tension. Assuming also S 6= 0 su
h a system gives a stati
va
uum with AdS4 foliation and �xed radius of the orbifold1. In the 
ase of Z2 the overall twistmatrix is given by Uβ = −1 and in the 
ase of Z2 × Z ′

2 there is no overall twist: Uβ = +1.This may be generalized again. From the analysis of [15℄ it follows that if in the boundary
onditions Q is followed by +Q (and not −Q) on the next brane, then the brane tensionon the se
ond brane must be equal in magnitude but of opposite sign to that on the �rstbrane. Together with the previous �ndings this leads to quasi-quiver diagrams where braneswith brane tensions ±λ and boundary 
onditions (±Q), (±Q)... follow ea
h other respe
ting
ΠZ2 symmetry. At �rst glan
e possible strings of boundary 
onditions 
ould be for instan
e
(Q), (Q), (−Q), (−Q) or (Q), (−Q), (−Q), (Q), (−Q), (−Q). However, the stret
hes between
(Q), (Q) branes 
ollapse to a point. This is easily seen from the fa
t, that to have a �nite-length distan
e between (−Q), (+Q) branes the brane tensions must be smaller than the 
riti
alvalue λ < λcr, equivalently T < 1, where the 
riti
al tension is that of the Randall�Sundrumbrane. This implies, that the branes at the ends of a (Q), (Q) segment have brane tensionsof opposite sign and of the same magnitude smaller than the 
riti
al value. Soving boundary
onditions on su
h a segment, with the maximally symmetri
 foliation ansatz, leads to the result
|yb1 − yb2| = 0, i.e. the branes 
oin
ide. Hen
e the possible stati
 quasi-quivers 
orrespond tothe 
hains (Q), (−Q), (Q), ..., (−Q), (Q), (−Q). These are lo
ally supersymmetri
 ba
kgrounds
orresponding to the models of the type dis
ussed in [11℄.Another extension of the pi
ture is possible. Instead of 
an
ellation of the supersymmetryvariation of the brane tension by means of a `jumping' prepotential in the bulk, one 
an 
onsider,[25℄,[26℄, adding 4d gravitino mass terms on branes, and modifying the variations of the �fth
omponent of the gravitino. Also in this 
ase one 
an impose di�erent boundary 
onditionson di�erent walls. The general 
ase of su
h an extension shall be dis
ussed elsewhere, here wequote a simple example with R = 0 for illustration. In this 
ase one has a brane a
tion of theform

Sb =

∫

d5x e4δ(y − yb)(−λ0 +MABΨ̄A
µγ

µνΨB
ν ) (15)with gravitini 
omponents ΨB

ν satisfying lo
al boundary 
onditions given by a matrix Qyb
. Thene
essary modi�
ation of the transformation law is δΨA

5̂
= 2δ(y − yb)ǫ

ACM(CB)γ5ǫ
B where the1For two equal and negative brane tensions the maximally symmetri
 solution doesn't exist.5



hat denotes a �at spa
e index and (..) is the symmetrization with the weight 1/2. Can
ellationof susy variations requires that the brane tension and the matrix MAB satisfy the equation
λ0ǫAB + 4

√
2 i (M(AC)P

C
B + P(AC)ǫ

CDM(DB)) = 0 . (16)In the above suitable proje
tions are made with the help of the proje
tive operators Π± =
1/2(δAB±γ5Qyb

A
B), remembering that ΨA

5 and ΨB
µ have opposite parities, see (10). In parti
ular,the simple 
hoi
e λ0 = MAB = 0 is su�
ient to illustrate the way the twisting works. In this
ase the relevant 
ondition on the operators Qyb
is {Qyb

, P} = 0.Let us dis
uss the genaration of the S
herk-S
hwarz (nonsupersymmetri
) mass terms in thetwo limiting 
ases. First, let us take Γ = Z2 and Q0 and Qπ orthogonal to ea
h other. In this
ase one is free to take Q0 = σ3 and Qπ = σ1. Then QπQ0 = −iσ2. Hen
e, the only possibilityfor the prepotential is gP = igσ2, be
ause other dire
tions do not 
ommute or anti
ommutewith both Q0 and Qπ. In su
h 
ase the only unbroken U(1) subgroup is generated by the σ2dire
tion of the global SU(2) symmetry. Noti
e that we 
an write QπQ0 = −iσ2 = exp(iβ2σ
2),where β2 = 3

2
π + 2kπ and k ∈ Z. Then the solution whi
h satis�es the boundary 
onditions,expressed in terms of periodi
 �elds, is:

Ψ = eiβ2σ2f(y)Ψ̂ . (17)Hen
e in the a
tion expressed in terms of periodi
 �elds, one obtains supersymmetry violatingmass terms:
−e5

i

2
δABΨ̄A

µγ
µνγ5ΨB

ν β2 f
′(y). (18)Let us take as an example the fun
tion f = y/(2πrc). This fun
tion leads to the mass term

− i
2
δABΨ̄A

µγ
µνγ5ΨB

ν
β2

2πrc
. Already here one 
an 
on
lude that the bulk Lagrangian after redef-inition 
annot be put into the form 
ompatible with linearly realized supersymmetry. To seethis, one should note that the only mass terms 
ompatible with supersymmetry are given by aprepotential. Supersymmetry requires, that the same prepotential determines the bulk s
alarpotential. In our 
ase, we have rede�ned the gravitini only, hen
e the bulk potential term staysun
hanged, independent of β2. At the same time any prepotential that should des
ribe theS
herk-S
hwarz mass terms shall depend on β2, hen
e the supersymmetri
 relation betweenmass terms and the s
alar potential is ne
essarily violated. This is what we mean when we
all the S
herk-S
hwarz mass terms expli
itly non-supersymmetri
. On the other hand it isobvious, that the S
herk-S
hwarz pi
ture is equivalent indeed to a spontaneosly broken �ippedsupergravity.Let us now 
onsider again the 
ase where Q0 and Qπ are parallel. Let us take for simpli
ity

Q0 = σ3. Then Qπ = ασ3, where α = ±1, and the twisted boundary 
onditions take the form:
Ψ(y + 2πrc) = αΨ(y) . (19)For α = 1 we have usual 
ase with periodi
 �eld. For α = −1 we obtain `�ipped' supersymmetryof [15℄. Let us take a nonzero S-part of (11). Assume the prepotential of the form
P =

g√
2

(ǫ(y)σ3 + σ1) . (20)6



For α = −1 we 
an write:
QπQ0 = −1 = eiβ(ǫ(y)σ3+σ1) , (21)where β = π+ 2kπ and k ∈ Z. Similarly to the 
ase of the previous paragraph one obtains thefollowing solution

Ψ = eiβ(ǫ(y)σ3+σ1)f(y)Ψ̂ , (22)and supersymmetry violating mass terms
−e5

1

2
ǫABΨ̄A

µγ
µνγ5

(
∫ 1

0

dseisβ(ǫ(y)σ3+σ1)(iβ(ǫf)′σ3 + iβf ′σ1)e
i(1−s)β(ǫ(y)σ3+σ1)

)B

C

ΨC
ν . (23)Let us take again f = y/(2πrc). This gives

−e5 1
2
Ψ̄A
µγ

µνγ5 β
2πrc

(σ3
AB − ǫ(y)σ1

AB)ΨB
ν − e4δ(y − πrc)Ψ̄

A
µγ

µνγ 5̂ sin(β/2)σ1
ABΨB

ν

= −e5 1
2
Ψ̄A
µγ

µνγ5 1
2rc

(σ3
AB − ǫ(y)σ1

AB)ΨB
ν − e4δ(y − πrc)Ψ̄

A
µγ

µνγ 5̂σ1
ABΨB

ν . (24)This example is more involved, but the same 
omments as in the previous 
ase apply. Thegeneralization to a quasi-quiver setup is obvious. One may noti
e, that only the bulk terms areproportional to the naive KK s
ale 1/rc. The s
ale of boundary terms is set by the 5d Plan
ks
ale.Let us note already here, that even though the symmetry that we are using to implement theS
herk-S
hwarz me
hanism may be a lo
al one, the S
herk-S
hwarz masses 
annot be removed,as one may naively think, by means of a gauge transformation. Su
h a transformation wouldhave to be a `large' one, leading from a periodi
 to an antiperiodi
 
on�guration. However,the de�nition of the model involves not only 
ouplings in the Lagrangian but also the 
hoi
eof spe
i�
 boundary 
onditions. Hen
e su
h large gauge transformations 
onne
t two di�erent(although physi
ally equivalent) Hilbert spa
es, and do not belong to the group of internalsymmetries of our models.We would like to note, that in a 
urved gravitational ba
kground di�erent mass spe
trafor the `would be' superpartners, like graviton and gravitino, is not an unambigous sign ofbroken supersymmetry. In parti
ular, in �ipped supersymmetry models the ba
kground isof the AdS4-foliation form, and one knows [27℄,[28℄ that the AdS4 supermultiplets 
ontain ingeneral parti
les with di�erent mass terms. For instan
e, massive higher spin representations(E0 > s+ 1, s ≥ 1/2) are of the form
D(E0, s) ⊕D(E0 + 1/2, s+ 1/2) ⊕D(E0 + 1/2, s− 1/2) ⊕D(E0 + 1, s), (25)with the mass-squared operator m2 = E0(E0 − 3) − (s + 1)(s− 2). However, if one is able toobtain an approximate formula for a mass spe
trum as a fun
tion of the quantization parameter,then one 
an 
ompare its shape to the towers of supersymmetri
 masses. Sin
e in any 
ase themass terms are 
ertainly of phenomenologi
al interest, we shall 
ompute them and 
ome ba
kto the issue of seeing supersymmetry breaking through the spe
trum later in the paper. Theunambigous sign of supersymmetry breakdown are nonzero va
uum values of the variations offermions, or the absen
e of global Killing spinors, see [15℄.7



2.2 Another pi
ture of the S
herk-S
hwarz me
hanism in the presen
eof gauge symmetriesLet us 
onsider again the 5d supergravity with U(1) gauge symmetry and 
harged gravitno�elds (i.e. U(1) subgroup of SU(2)R). The 
ovariant derivative takes the form DMΨA
N =

∇MΨA
N + gAMP

A
BΨB

N . In the 
ase of unbroken supersymmetry all 
omponents of gauge �eldsshould have va
uum expe
tation values equal to zero. To see this, one may have a look at thegravitino supersymmetry transformation, δǫΨA
M ⊃ ∂M ǫ

A+gAMP
A
B ǫ

B. In the previous se
tion wehave assumed the expe
tation value of the gauge �eld to vanish, < AM >= 0, but the gravitini�elds were 
hoosen to satify twisted boundary 
onditions. On the other hand, one may tryto eliminate twisted boundary 
onditions by a non-periodi
 (large) gauge transformation. Letus take for the sake of de�niteness the �rst of the examples of the previous se
tion, equations(17),(18), P = igσ2. The ne
essary gauge transformation is given by
ΨM → Ψ′

M = e−iβ2σ2f(y)ΨM , (26)and obviously the primed gravitino �eld is periodi
. However in su
h a 
ase one has to transformthe gauge �eld as well
Ã5 → Ã′

5 = Ã5 + iβ2σ
2f ′(y), (27)where the tilde denotes matrix gauge �eld. This implies in turn a non-zero va
uum expe
tationvalue of the transformed U(1) gauge �eld < A′

5 >= 1/gf ′(y)β2. At present the bulk non-supersymmetri
 gravitino masses arises in the theory as a result of a non-zero expe
tationvalue of the gauge part of the 
ovariant derivative in the kineti
 term. This is the Wilson linebreaking, see [13℄. Let us note that if one takes our standard 
hoi
e f(y) = y/(2πrc), thenthe integrated Wilson line does not vanish, ∮

dx5 < A5 >= iβ2σ
2 6= 0, whi
h is a sign thatsupersymmetry is broken globally.3 The role of boundary 
ouplingsThe universal hipermultiplet {ζa, qi} 
onsists of a doublet of fermions and of four real s
alars

qi ∈ {V, σ, x, y} (we also use ξ = x + iy). S
alars parametrize a quaternioni
 manifold, whoseglobal symmetry group is Sp(2) × SU(2)R. The kineti
 term of the bosoni
 part reads:
Lkinetic = −hijDMq

iDMqj , hij = V Aa
i V Bb

j ǫABΩab , (28)where hij is a quaternioni
 metri
. We 
an write the quaternioni
 metri
 in the expli
it form:
hijdq

idqj =
1

4V 2
dV 2 +

1

4V 2

[

dσ + i(ξ̄dξ − ξdξ̄)
]2

+
1

V
dξdξ̄ . (29)As explained in [29℄,[30℄, when some of the global symmetries are gauged, supersymmetryrequires additional boundary terms involving bulk �elds to be present in the model. This is theway the �ve-dimensional version of the Horava-Witten model, and brane-bulk supergravitiesof [29℄,[24℄ work. For simpli
ity let us 
onsider again the Z2 orbifold (generalizations follow8



the same lines as in the previous 
hapters). In the 
ase of �ipped Horava-Witten and Randall-Sundrum models (with the hypermultiplet) the additional boundary terms in the a
tion are
Sb = −

∫

d5xe46k(θ −
α

V
− θ

|ξ|2
V

)(δ(y) + δ(y − πrc)) , (30)where θ = 0 gives the �ipped Horava-Witten model, and α = 0 
orresponds to the �ippedRandall-Sundrum 
ase. These terms, like the gauging in the bulk, preserve only a U(1) subgroupof the produ
t of the SU(2)R and the symmetry group of the quaternioni
 manifold. Moreover,these boundary terms break expli
itly the N = 2 bulk supersymmetry down to the lo
al N = 1.It has been shown in [5℄ that if one would have at ones disposal the exa
t SU(2)R symmetryand embed the twist of the boundary 
onditions into this group to break N = 2 supersymmetryby the S
herk-S
hwarz me
hanism in the Horava-Witten model, and in addition proje
t-out the
Z2-odd mode, then in four dimensions this breaking would be seen as a spontaneous breakingof the efe
tive N = 1 supergravity. However, the 
omplete model 
ontains also brane termsthat break N = 2 expli
itly. Se
ond, as we have seen having a net twist of the boundary
onditions requires opposite boundary 
onditions on ea
h wall, and the same sign of boundaryterms on both. This makes a physi
al di�eren
e with respe
t to the original Horava-Wittenmodel, where the boundary terms had to have opposite signs. These observations imply inparti
ular, that the �ve-dimensional pi
ture of the S
herk-S
hwarz supersymmetry breaking inHorava-Witten and Randall-Sundrum type models is physi
ally di�erent from the breaking bygaugino or superpotential (or �ux) 
ondensation in these models, see for instan
e [7℄,[29℄,[9℄.To illustrate how the S
herk-S
hwarz breaking would work in a model with a hypermultiplet,let us put θ = 0. One 
an 
he
k that in this 
ase the full a
tion (in
luding boundary terms) isinvariant under the following transformation:

ζa → e−iβσ3ζa , ΨA → e−iβσ3ΨA , ξ → ei2βξ , (31)where β is the transformation parameter and ζa is a hyperino. Now, one 
an impose asso
iatedboundary 
onditions:
ζa(y + 2πrc) = e−iβσ3ζa(y) , ΨA(y + 2πrc) = e−iβσ3ΨA(y) , ξ(y + 2πrc) = ei2βξ(y) . (32)It is obvious that �elds

ζa = e−iβσ3f(y)ζ̂a , ΨA = e−iβσ3f(y)Ψ̂A , ξ = ei2βf(y)ξ̂ (33)expressed in terms of new periodi
 (hatted) �elds satisfy the 
onditions (32). As the 
onsequen
ethe S
herk-S
hwarz non-supersymmetri
 mass terms are generated for hyperini
1

2
e4(iβ)ζ̄aγ 5̂σ1

abζ
bf ′(y), (34)gravitini, and for the 
omplex s
alars ξ. In fa
t, one generates also new quarti
 terms in thes
alar potential, in addition to the supersymmetri
 s
alar potential Vsusy = g28/3tr(P 2) +

g2/2hijk
ikj , where here kξ = 2iξ. Assuming vanishing expe
tation values of brane sour
es for9



the s
alar σ the terms in the non-supersymmetri
 part of the potential that do not 
ontain ∂5ξare
V (ξ̂) =

β2(f ′)2

V 2
|ξ̂|2(4V + 3|ξ̂|2), (35)hen
e the mass-squared parameter for the normalized s
alar is 4β2(f ′)2. One 
an see thatperforming the S
herk-S
hwarz rede�nition of s
alar �elds, whi
h my be identi�ed for instan
ewith the higgs-like �eld in the observable se
tor, one 
an 
reate a 
ompli
ated s
alar potential.However, it will always 
ontain the same physi
s as the lo
ally supersymmetri
 lagrangian inthe spontaneously broken phase, whi
h is usually mu
h simpler to analyse. The same 
omment
on
erns the fermioni
 se
tor. The S
herk-S
hwarz masses for matter fermions super�
iallylook like terms breaking supersymmetry in a hard way (like quarti
 terms in the potential),but the equivalen
e to the spontaneously broken phase guarantees 
an
ellation of dangerousdivergen
ies. The fa
t that the S
herk-S
hwarz masses for 
hiral fermions do not belong toa linearly realized 5d supersymmetry may be seen from the observation, that supersymmetri
masses are de�ned by the geometry of the quaternioni
 manifold and by the Killing ve
tors

ki, none of whi
h had 
hanged under the S
herk-S
hwarz rede�nition. To summarize, therede�nitions have broken linear supersymmetry both in hipermultiplet and in gravity se
tors.Another issue 
on
erning boundary 
ouplings of bulk �elds is a statement, that they maylead to dangerous singular terms in the equations of motion of the bulk �elds, and therefore oneshould use various rede�nitions of �elds to rede�ne them away. In fa
t, in 
onsistent theoriessu
h as bulk�branes supergravities these singularities are harmless, see [9℄,[31℄. To see howthe 
an
ellation works, let us take the example of a Z2-odd bulk �eld 
oupled derivatively tobrane operators, whi
h is of parti
ular importan
e in Horava-Witten and Randall�Sundrumtype models. In this 
ase the Lagrangian in
ludes a 
oupling to sour
es on the hidden wall andto operators 
onsisting of observable �elds on the visible wall
S(Φ) =

∫

d5x

(

1

2
∂Φ∂Φ + ∂5ΦSδ(x5 − πρ) + ∂5ΦOδ(x5)

) (36)The bulk equation of motion is
�4Φ + ∂2

5Φ = S(x)∂5δ(x
5 − πρ) + O(x)∂5δ(x

5) (37)The equation of motion for the non-zero mode ψ(x; x5) 
oin
ides then with the full equation ofmotion, the proper boundary 
onditions on the half-
ir
le being
lim
x5→πρ

ψ =
1

2
S

lim
x5→0

ψ = −1

2
O (38)One easily �nds the solution in the form

ψ =
S + O
2πρ

x5 − O
2

+ ψ1 + ψ2 + . . . (39)where the higher terms in the series are vanishing on the branes and 
an be 
omputed from there
ursive relation �4ψn−1 + ∂2
5ψn = 0. One 
an 
he
k, that the sigular terms 
an
el out from10



the equations of motion of all �elds ψn, n = 1, 2, .... For instan
e, the equation of motion for
ψ1 is

�4ψ1 + ∂2
5ψ1 =

−�4(O + S)

2πrc
y +

�4O
2

. (40)Hen
e the �eld ψ1 has no dis
ontinuities, and no singularities in the equation of motion. It isinteresting to noti
e, that derivatives of boundary operators a
t e�e
tively as bulk sour
es for
ψ1.4 Wave fun
tions and mass quantization in �ipped super-gravityIn this 
hapter we would like to have a 
loser look at the lo
alization of wave fun
tions andmass quantization in simple models with twisted supersymmetry, and 
ompare this to the wellknown Randall-Sundrum 
ase with supersymmetry and to the same model with supersymmetryexpli
itly broken through the `wrong' sign of the brane tension on one of the walls. The spe
i�
twisted model we shall dis
uss here is the lo
ally supersymmetri
 generalization of the (++)bigravity model of [17℄.4.1 Naive RS model with �ipped boundary 
onditionsLet us fo
us on the supergravity a
tion with the prepotential of the form P = gǫ(y)iσ3R. Wede�ne Z2 a
tion on the gravitino se
tor as:

ΨA
µ (−y) = γ5(σ3)

A
BΨB

µ (y) , ΨA
5 (−y) = −γ5(σ3)

A
BΨB

5 (y) ,

ΨA
µ (πrc − y) = −γ5(σ3)

A
BΨB

µ (πrc + y) , ΨA
5 (πrc − y) = γ5(σ3)

A
BΨB

5 (πrc + y) , (41)whi
h implies �ipped (ΨA
α (y + 2πrc) = −ΨA

α (y)) boundary 
onditions. Cosmologi
al 
onstantthat arises from the prepotential is given by Λ5 = −16
3
g2R2. To obtain the Randall-Sundrumexponential warp-fa
tor, we assume the following brane a
tion:

Sbrane = −6

∫

d5x
√
−e4k(δ(y) − δ(y − πrc)), (42)where we have de�ned k = 2

√
2

3
g|R|. Noti
e, that in this 
ase we have broken supersymmetryon the se
ond brane [32℄,[15℄.Let us investigate the spe
trum of the e�e
tive theory. Consider small �u
tuations of the4d 
omponents of the metri
 tensor around RS va
uum solution: gµν(x

ρ, y) = e−2k|y|ηµν +
φh(y)hµν(x

ρ), where hµν(xρ) is a 4d wave fun
tion (∂ρ∂ρhµν = m2hµν) in the gauge ∂µhµν =
hµµ = 0. Linearized Einstein equations redu
e to:

1

2
φ′′
h − 2k2φh + 2k(δ(y) − δ(y − πrc))φh +

1

2
e2k|y|m2φh = 0. (43)11



Massless and massive solution are φh = A0e
−2k|y| and φh = AmJ2(

m
k
ek|y|) + BmY2(

m
k
ek|y|) re-spe
tively. J2 and Y2 are Bessel and Newman fun
tion of the se
ond kind. Mat
hing deltafun
tion at the �xed points determines quantization mass 
ondition:

J1(
m

k
)Y1(

m

k
ekπrc) − Y1(

m

k
)J1(

m

k
ekπrc) = 0 . (44)To 
ompare KK masses in bosoni
 and fermioni
 se
tors, let us fo
us on the gravitinoequation of motion:

γαβγDβΨ
A
γ + i

√
2gPA

B γ
αγΨB

γ = 0, (45)where DβΨ
A
γ = (∂β+

1
4
(ωβ)mnγ

mn)ΨA
γ are 
ovariant derivative and (ωβ)mn is a spinor 
onne
tion.In the �at ba
kground and in gauge Ψ5 = 0 we 
an write:

γµρν∂ρΨ
A
ν − γµνγ5∂5Ψ

A
ν + kǫγµνγ 5̂ΨA

ν −
√

2gRǫ(σ3)
A
Bγ

µνΨB
ν = 0, (46)where a hat denotes a �at spa
e Dira
 matrix. In the next step we fa
torize the gravitino wavefun
tion as follows:

(Ψ1
µ)R = φ+

ψ (y)(ψ+
µ )R(xρ) , (Ψ1

µ)L = φ−
ψ (y)(ψ+

µ )L(x
ρ) ,

(Ψ2
µ)L = −φ+

ψ (y)(ψ−
µ )L(x

ρ) , (Ψ2
µ)R = φ−

ψ (y)(ψ−
µ )R(xρ) , (47)where 4d gravitini satisfy the Rarita-S
hwinger equations with the mass parameter m

γµνρ∂νψ
+
ρ = mγµρψ+

ρ

γµνρ∂νψ
−
ρ = −mγµρψ−

ρ . (48)Gravitino equation of motion yields
φ+′
ψ + 1

2
kǫφ+

ψ −mek|y|φ−
ψ = 0

φ−′
ψ − 5

2
kǫφ−

ψ +mek|y|φ+
ψ = 0 . (49)For m = 0 the solutions are φ+

ψ = A+
0 ǫπe

− k

2
|y| and φ−

ψ = A−
0 ǫ0e

5k

2
|y|, where the `�ipped' stepfun
tions ǫ0(y) = ǫ(y

2
) and ǫπ(y) = ǫ(y+πrc

2
) are needed to satisfy 
onditions (41). In this 
aseboth ∂5φ

+
ψ and ∂5φ

−
ψ 
ontain delta fun
tions at points y = πrc and y = 0 respe
tively, and those
annot be 
an
elled in the equation of motion (49). Hen
e, the massless modes do not exist inthe model. Solutions for nonzero modes are

φ+
ψ = e

3

2
k|y|ǫπ

(

AmJ2(
m
k
ek|y|) +BmY2(

m
k
ek|y|)

)

φ−
ψ = e

3

2
k|y|ǫ0

(

AmJ1(
m
k
ek|y|) +BmY1(

m
k
ek|y|)

)

. (50)Mat
hing 
onditions imply vanishing of the fun
tions φ+
ψ and φ−

ψ at the points y = πrc and
y = 0 respe
tively. Asso
iated mass quantization 
ondition reads:

J1(
m

k
)Y2(

m

k
ekπrc) − Y1(

m

k
)J2(

m

k
ekπrc) = 0 . (51)The quantization of the mass parameters for gravitons and gravitini 
an be read from the �gures1 and 2. The spe
tra, together with the absen
e of the zero modes for gravitini imply brokensupersymmetry (the ba
kground is �at here). 12
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Figure 1: LHS of the equation (44) as a fun
tion of the mass parameter m. Zeros denote massspe
trum of the graviton (kπrc = 1).
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Figure 2: LHS of the equation (51) as a fun
tion of the mass parameter m. Zeros denote massspe
trum of the gravitino (kπrc = 1).4.2 AdS4 
ompa
ti�
ation of the pure supergravity with �ipped bound-ary 
onditions (super-bigravity)In se
tion 4.1 we saw, that in the Randall-Sundrum model with �ipped boundary 
onditions,supersymmetry is broken in the e�e
tive 4d theory. The reason for this fa
t is twofold: �ippedboundary 
onditions and expli
itly broken supersymmetry at the point y = πrc. To pro
ede letus go on to the lo
ally supersymmetri
 model with a �ip along the �fth dimension. The pri
efor lo
al supersymmetry and the trouble one en
ounters is the nonzero 
urvature in 4d se
tions.Let us take the supergravity a
tion with the prepotential of the form: P = gRǫ(y)iσ3R+gSiσ1S,and the brane a
tion required by supersymmetry:
Sbrane = −6

∫

d5x
√
−e4kT (δ(y) + δ(y − πrc)), (52)where k = 2

√
2

3

√

g2
RR

2 + g2
SS

2, and T = gR|R|/
√

g2
RR

2 + g2
SS

2. One should noti
e that branetensions have the same sign. As a 
onsequen
e gravitational ba
kground has no �at 4d13



Minkowski foliation, and the 
onsistent solution is that of AdS4 branes:
ds2 = a2(y)ḡµνdx

µdxν + dy2 , (53)where
a(y) =

√
−Λ̄

k
cosh

(

k|y| − kπrc
2

)

, (54)and ḡµνdxµdxν = exp(−2
√
−Λ̄x3)(−dt2 + dx2

1 + dx2
2) + dx2

3 is the four dimensional AdS metri
.The radius of the �fth dimension is determined by brane tensions:
kπrc = ln

(

1 + T

1 − T

)

. (55)Normalization a(0) = 1 leads to the �ne tuning relation Λ̄ = (T 2 − 1)k2 < 0. As in theprevious paragraph we look at small �u
tuations around va
uum metri
: gµν(xρ, y) = a2(y)ḡµν+
φh(y)hµν(x

ρ), where hµν(xρ) is a 4d wave fun
tion inAdS4 ba
kground ((�AdS+2Λ̄)hµν = m2hµν[14℄,[33℄). The analog of the equation (43) reads:
1

2
φ′′
h − 2k2φh + 2k tanh

(

kπrc
2

)

(δ(y) + δ(y − πrc))φh +
1

2
a2(y)(m2 − 2Λ̄)φh = 0. (56)It is easy to 
he
k, that the massless mode φh = A0 cosh2(k|y| − kπrc/2) satis�es the equationof motion in the bulk and the boundary 
onditions. Massive modes 
an be written as

φh = AmLP
(

1
2

(

−1 +
√

1 + 4m̄2
)

, 2, tanh
(

k|y| − kπrc
2

))

+

+BmLQ
(

1
2

(

−1 +
√

1 + 4m̄2
)

, 2, tanh
(

k|y| − kπrc
2

))

, (57)where LP(m,n, x) and LQ(m,n, x) are asso
iated Legendre fun
tions of the �rst and se
ondkind respe
tively. We have introdu
ed the new symbol m̄ =
√

−m2/Λ̄ + 2. Mat
hing deltafun
tions at �xed points leads to the following mass quantization 
ondition
0 = (2tLQ(, ,−t) + cLQ′(, ,−t)) (−2tLP(, , t) + cLP′(, , t))+

− (2tLP(, ,−t) + cLP′(, ,−t)) (−2tLQ(, , t) + cLQ′(, , t)) , (58)where we have introdu
ed notation t = tanh(kπrc/2) and c = cosh−2(kπrc/2).The gravitino equation of motion in the AdS ba
kground reads
γµρν∇ρΨ

A
ν − γµνγ5∂5Ψ

A
ν + kǫγµνγ 5̂ΨA

ν −
√

2
(

gRRǫ(σ3)
A
B + gSS(σ1)

A
B

)

γµνΨB
ν = 0 , (59)where ∇µ denotes AdS4 
ovariant derivative. Noti
e that the prepotential mixes Ψ1

µ and Ψ2
µ�elds. To eliminate this mixing, let us de�ne the following fun
tions

Ψ+
µ = gS|S|Ψ1

µ + ǫ(
√

g2
RR

2 + g2
SS

2 − gR|R|)Ψ2
µ ,

Ψ−
µ = gS|S|Ψ2

µ − ǫ(
√

g2
RR

2 + g2
SS

2 − gR|R|)Ψ1
µ . (60)14



The fa
torization
(Ψ+

µ )R = φ+
ψ (y)(ψ+

µ )R(xρ) , (Ψ+
µ )L = φ−

ψ (y)(ψ+
µ )L(x

ρ) ,

(Ψ−
µ )L = −φ+

ψ (y)(ψ−
µ )L(x

ρ) , (Ψ−
µ )R = φ−

ψ (y)(ψ−
µ )R(xρ) , (61)where 4d gravitini satisfy the Rarita-S
hwinger equations in AdS4:

γµνρ∇νψ
+
ρ = (m−

√
−Λ̄)γµρψ+

ρ ,

γµνρ∇νψ
−
ρ = −(m−

√
−Λ̄)γµρψ−

ρ , (62)leads to the equation
φ+′
ψ + kǫ

(

tanh
(

k|y| − kπrc
2

)

+ 3
2

)

φ+
ψ − a−1(y)(m−

√
−Λ̄)φ−

ψ = 0

φ−′
ψ + kǫ

(

tanh
(

k|y| − kπrc
2

)

− 3
2

)

φ−
ψ + a−1(y)(m−

√
−Λ̄)φ+

ψ = 0 . (63)The boundary 
onditions are imposed by the a
tion of the Z2 in the fermioni
 se
tor (41). Oneneeds to demand that the �elds (Ψ2
µ)R and (Ψ1

µ)R vanish at the points y = 0 and y = πrcrespe
tively. This implies
φ+
ψ (0) = −ekπrc

2 φ−
ψ (0) , φ−

ψ (πrc) = e
kπrc

2 φ+
ψ (πrc) . (64)This 
ondition removes the mode m = 0 from the spe
trum. Solutions of the equation (63)with a nonzero mass 
an be written down as follows

φ+
ψ = e−

k

2
(|y|−πrc

2
) (

Am(1 − z) 2F1[−M,M, 2, 1−z
2

] +Bm
M
4

(1 + z)2
2F1[1 −M, 1 +M, 3, 1+z

2
]
)

φ−
ψ = e

k

2
(|y|−πrc

2
) (

Am
M
4

(1 − z)2
2F1[1 −M, 1 +M, 3, 1−z

2
] +Bm(1 + z) 2F1[−M,M, 2, 1+z

2
]
)

,(65)where we have introdu
ed z = tanh
(

k|y| − kπrc
2

) and M = (m/
√
−Λ̄) − 1. The symbol

2F1[a, b, c, x] denotes a hypergeometri
 fun
tion. The 
ondition (64) takes on the followingform
(

M
4

(1 + t)2F [3, 1+t
2

] + (1 + t)F [2, 1+t
2

]
) (

(1 + t)F [2, 1+t
2

] − M
4

(1 + t)2F [3, 1+t
2

]
)

+

+
(

(1 − t)F [2, 1−t
2

] − M
4

(1 − t)2F [3, 1−t
2

]
) (

(1 − t)F [2, 1−t
2

] + M
4

(1 − t)2F [3, 1−t
2

]
)

=

= 0, (66)where for simpli
ity we have introdu
ed the notation F [2, 1±t
2

] = 2F1[−M,M, 2, 1±t
2

] and
F [3, 1±t

2
] = 2F1[1 − M, 1 + M, 3, 1±t

2
]. In the �gures we have shown the mass quantizationthat follows from the 
onditions (58) and (66). The spe
trum of the gravitino mass parameter

m is shifted by approximately half a distan
e between 
onse
utive zeros with respe
t to themass spe
trum of the graviton. It turns out that one 
an 
ompute analyti
ally the gravitonand gravitini mass spe
tra in the limiting 
ases of a large extra dimension (krc ≫ 1) and in the
ase of a small extra dimension (krc ≪ 1) (see Appendix). In the regime krc ≫ 1 we obtainthe ultra-light graviton mode
m2
light ≈ 12k2e−kπrc cosh−2(kπrc/2) , (67)15
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Figure 3: The zeros 
orresponds to the mass spe
trum of the graviton, the quantization 
ondi-tion is plotted as the fun
tion of the variable m cosh(πrc/2) (krc = 0.1).
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Figure 4: The zeros 
orrespond to the mass spe
trum of the gravitino (
ondition(66)), thequantization 
ondition is plotted as the fun
tion of the variable M (krc = 0.1).and heavy modes
m2
h ≈ k2(−2 + n+ n2) cosh−2(kπrc/2) = (−2 + n + n2)|Λ̄| , (68)for n > 1. For gravitini we obtain:

m2
f ≈ k2(n+ 1)2 cosh−2(kπrc/2) = (n + 1)2|Λ̄| . (69)For large n we 
an write for gravitons: m ≈ k(1/2 + n) cosh−1(kπrc/2).In the limit krc ≪ 1, the equations (56) and (63) together with the assumptions krc ≪ 1,

m̄ ≈
√

m2/k2 + 2 ≫ 1 and M ≈ m/k ≫ 1 give the following mass quantization
m2
h =

n2

r2
c

, (70)and
m2
ψ =

1

r2
c

(
1

2
+ n)2. (71)16



The approximate spe
tra for the gravitini masses that we have just obtained 
an be 
omparedto the spe
tra of the massive spin-2 states belonging to the AdS4 supermultiplets dis
ussedearlier given the AdS4 mass formula m2 = C2(E0, s)−C2(s+1, s) = E0(E0 −3)− (s+1)(s−2)for representations D(E0, s). In the limit of dimensional redu
tion [33℄ this implies the spin-2and spin-3/2 spe
tram2
2,n = (E0+1/2+n)(E0−5/2+n) andm2

3/2,n = (E0+n)(E0+n−3)+5/4,
m′2

3/2,n = (E0 + n + 1)(E0 + n − 2) + 5/4, for some E0 and n = 0, 1, 2, ... (in units of √−Λ̄).The above mass formula �ts the limiting (krc ≫ 1) spe
tra of graviton (ex
ept the �rst massivemode) and gravitino masses (68) and (69) if E0 = 3/2, but this value does not 
orrespond to aunitary supermultiplet, sin
e the ne
essary 
ondition E0 > s+1 [27℄ is not ful�lled for s = 3/2and E0 = 3/2. The natural value for dimensional redu
tion 5d → 4d would be E0 = 3. Thisgives m2
2,n = n2 + 4n + 7/4, m2

3/2,n = (n + 3/2)2 − 1 and m′2
3/2,n = (n + 5/2)2 − 5, again in
lear mismat
h with (68) and (69). It is also 
lear that the graviton mass spe
trum for a �nite

krc di�ers from the supersymmetri
 one. In the 
ase where the rc is mu
h smaller than the
urvature radius, the spe
trum of gravitons and gravitini approa
hes the usual, �at spa
e, KKform with gravitini masses shifted with respe
t to these of the gravitons. Also in this limitthe spe
trum is 
learly nonsupersymmetri
, and the shift is due solely to the twisted boundary
onditions.
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Figure 5: The third and the fourth graviton modes (kπrc = 10, m = 3.16k and m = 4.24k).
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Figure 6: The fourth modes of the gravitini φ+
ψ and φ−

ψ (kπrc = 10, m = 4k).One 
an see that even in the limit rc ≫ 1/k supersymmetry is not restored, and the branesdo not de
ouple like in the supersymmetri
 Randall-Sundrum 
ase. The nonde
oupling mayalso be seen from the shape of the wave fun
tions of the massive modes (�gure 5 and 6).17



However, when krc goes to in�nity, mlight → 0. In su
h a regime we 
an take the followinglinear 
ombinations of the ultra-light mode and the zero modes:
φleft(y) =

1

2

(

φ0(y)

φ0(0)
+
φlight(y)

φlight(0)

)

, φright(y) =
1

2

(

φ0(y)

φ0(0)
− φlight(y)

φlight(0)

)

. (72)Then φleft (φright) is lo
alized on the brane at y = 0 (y = πrc) and vanishes on the branelo
ated at y = πrc (y = 0). Hen
e, e�e
tively we have only one zero mode on ea
h brane (�gure7).
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Figure 7: �Left� and �right� light graviton modes (kπrc = 10).To summarize the dis
ussion of the supersymmetry breakdown in the 
ase of the �ippedsupergravity let us inspe
t the equation for the Killing spinors:
(

a′

a
+ 2

√
2

3
g1ǫ(y)|R|

)

ǫA+ + 2
√

2
3
γ5g2|S|(σ1)ABǫ

B
− = 0

(

a′

a
− 2

√
2

3
g1ǫ(y)|R|

)

ǫA− + 2
√

2
3
γ5g2|S|(σ1)ABǫ

B
+ = 0 , (73)where ǫA± = 1/2(δAB ± γ5Q

A
B)ǫB. These equations result in the 
ondition

((

a′2

a2
− 8

9
g2
1R

2

)

− 8

9
g2
2S

2

)

ǫA± = 0 , (74)and together with Einstein equations this implies that for non-vanishing S there are no non-trivial solutions of the Killing equation.5 Summary and 
on
lusionsWe have shown that �ipped and gauged �ve-dimensional supergravity is 
losely related to theS
herk-S
hwarz me
hanism of symmetry breakdown. In this 
ase the S
herk-S
hwarz rede�-nition of �elds 
onne
ts two phases of the model. One phase is su
h that supersymmetry isbroken spontaneously, in the sense that there do not exist va
ua preserving some of the super-
harges. In fa
t, one 
annot undo this breakdown in a 
ontinous way, sin
e the 
hoi
e of theproje
tors on both branes is a dis
rete one - one 
annot deform 
ontinously Q into −Q within18



the model. In parti
ular, in the limit rc → 0 all gravitini (and all super
harges) get proje
tedaway. In the se
ond, S
herk-S
hwarz phase, linear supersymmetry is not realized expli
itly inthe Lagrangian, hen
e one �nds susy breaking masses and potential terms in the bulk and/oron the branes. However, the physi
s of the two phases has to be the same, as they are relatedby a mere rede�nition of variables.We have found that the simple �ipped 5d supergravity is a supersymmetrization of the (++)bigravity with two positive tension branes. In the limit of the large interbrane separation thereexists a ultra-light massive graviton mode in addition to the exa
tly massless mode (but thereis no a nearly degenerate superpartner).As an example the S
herk-S
hwarz terms for gauged supergravity 
oupled to bulk matterhave been worked out. In addition it has been shown that the �ve-dimensional Horava-Wittenmodel is not of the S
herk-S
hwarz type, sin
e �ipping of supersymmetry requires `wrong'boundary terms on the branes.In the 
lass of models dis
ussed here it is the AdS4 ba
kground that appears naturally as astati
 solution of the equations of motion. However, �rstly, there exist nearby time-dependentsolutions leading to Robertson-Walker type 
osmology on branes, and se
ondly, in more realisti
models the gravitational ba
kground we have des
ribed shall be further perturbed by nontrivialgauge and matter se
tors living on the branes.A
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AppendixIn the regime krc ≫ 1 we have used the following approximations:
LP(, ,−t) ≈ 1

π
cos

(

1

2

√
1 + 4m̄2π

)

(

ekπrc + m̄2 − 1
)

+O(e−kπrc) ,

cLP′(, ,−t) ≈ −2

π
cos

(

1

2

√
1 + 4m̄2π

)

ekπrc +O(e−kπrc) ,

LP(, , t) ≈ 1

2
m̄2(m̄2 − 2)e−kπrc +O(e−2kπrc) ,

cLP′(, , t) ≈ −m̄2(m̄2 − 2)e−kπrc +O(e−2kπrc) ,

LQ(, ,−t) ≈ −1

2
sin

(

1

2

√
1 + 4m̄2π

)

(

ekπrc + m̄2 − 1
)

+O(e−kπrc) ,

cLQ′(, ,−t) ≈ sin

(

1

2

√
1 + 4m̄2π

)

ekπrc +O(e−kπrc) ,

LQ(, , t) ≈ 1

2

(

ekπrc + m̄2 − 1
)

+O(e−kπrc) ,

cLQ′(, , t) ≈ ekπrc +O(e−kπrc) ,

t ≈ 1 − 2e−kπrc +O(e−2kπrc) , (A.1)and
(1 + t)F [2,

1 + t

2
] ≈ − 2

(M2 − 1)Mπ
sin(Mπ) +O(e−kπrc) ,

M

4
(1 + t)2F [3,

1 + t

2
] ≈ − 2

(M2 − 1)π
sin(Mπ) +O(e−kπrc) ,

(1 − t)F [2,
1 − t

2
] ≈ 2e−kπrc +O(e−2kπrc) ,

M

4
(1 − t)2F [3,

1 − t

2
] ≈ Me−2kπrc +O(e−3kπrc) . (A.2)Then the 
onditions (58) and (66) redu
e down to

cot

(

1

2

√
9 + 4m2π

)

= πm2m
2 + 2

1 −m2
e−kπrc ≈ 0 , (A.3)and

sin2(Mπ) = π2M2(M2 − 1)e−2kπrc ≈ 0 (A.4)respe
tively. Hen
e, we obtain the mass quantization for gravitons:
m2
h ≈ k2(−2 + n + n2) cosh−2(kπrc/2), (A.5)and for gravitini:
m2
f ≈ k2(n + 1)2 cosh−2(kπrc/2). (A.6)20



One 
an also obtain the analyti
 form of the spe
trum in the limit krc ≪ 1. In this regimethe equations (56) and (63) together with the assumptions krc ≪ 1, m̄ ≈
√

m2/k2 + 2 ≫ 1and M ≈ m/k ≫ 1 give
φ′′
h + (m2 − 2k2)φh = 0 , (A.7)and

φ+′
ψ + 3

2
kǫφ+

ψ −mφ−
ψ = 0 ,

φ−′
ψ − 3

2
kǫφ−

ψ +mφ+
ψ = 0 (A.8)respe
tively. The solutions are very simple and take the form

φh = Am cos
[

√

(m2 − 2k2)
(

|y| − πrc
2

)]

+Bm sin
[

√

(m2 − 2k2)
(

|y| − πrc
2

)]

, (A.9)for gravitons, and
φ+
ψ = Am cos

[

µ
(

|y| − πrc
2

)]

+Bm sin
[

µ
(

|y| − πrc
2

)]

,

φ−
ψ =

(

3k

2m
Am +

µ

m
Bm

)

cos
[

µ
(

|y| − πrc
2

)]

+

(

3k

2m
Bm − µ

m
Am

)

sin
[

µ
(

|y| − πrc
2

)]

,(A.10)for gravitini. We have introdu
ed above the notation µ =
√

m2 − 9
4
k2. Boundary 
onditionslead to the following mass quantizations

m2
h =

n2

r2
c

, (A.11)and
m2
ψ =

1

r2
c

(
1

2
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