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Regularization parameters for the self-force in Schwarzschild spacetime.
[I. Gravitational and electromagnetic cases
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We obtain all “regularization parametersRP9 needed for calculating the gravitational and electromagnetic
self-forces for an arbitrary geodesic orbit around a Schwarzschild black hole. These RP values are required for
implementing the previously introduced mode-sum method, which allows a practical calculation of the self-
force by summing over contributions from individual multipole modes of the particle’s field. In the gravita-
tional case, we provide here full details of the analytic method and results briefly reported in a recent Letter
[Phys. Rev. Lett88, 091101(2002]. In the electromagnetic case, the RPs are obtained here for the first time.
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[. INTRODUCTION shall derive here the RPs values for #lectromagneticelf-
force acting on an electrically charged particle orbiting a
This is the second in a series of papers aimed at establisi®chwarzschild black hole(BO and MNS applied two
ing a practical calculation scheme for the self-force acting orslightly different methods in obtaining the RPs; MNS de-
a point particle in orbit around a black hole. This scheme—scribe their calculation ifi8].)
referred to as the “mode-sum method”—stems from the The analysis presented in this paper relies greatly on the
general regularization prescription of Mino, Sasaki, andtechnique and results of paper I, to which we shall frequently
Tanaka(MST) [1] and Quinn and WaldQW) [2]. In effect,  refer the reader. Though the basic idea of our calculation is
the mode-sum method reformulates the MST-QW generaihe same as in the scalar toy model of paper |, some unavoid-
result in the language of multipole modes, thereby making iable technical complexities arise when coming to consider
accessible to standard numerical treatment. In practice, thHée gravitational or electromagnetic cases. In particular, one
application of this method involves two basic paifis:cal- then has to consider an extension of the particle’s four-
culation of the “full” modes of the force, through numerical velocity (which takes part in constructing the “direct
integration of the decoupled field equations, #@infanalyti-  force”—see below off the world line and address the ques-
cal derivation of certain parametgwhose values depend on tion of the RPs dependence on tfreonuniqué choice of
the orbit under consideratipralled the “regularization pa- such extension. Another, more fundamental issue, is the
rameters”(RP9. Previously, the explicit values of the RPs gauge dependence of the gravitational self-force and its im-
were derived analytically in a few special cases of orbits inplication to the mode-sum schengee Ref[9]).
Schwarzschild spacetime—specifically, for circular and ra- Most of our paper will be concerned with tiieost inter-
dial orbits in the scalar field ca$8] and for radial trajecto- esting gravitational case. Our analytical technique is easily
ries in the gravitational cage,5]. In these works, the RPs applicable to thgsimplep electromagnetic case, which we
values where calculated through a rather cumbersome locahall later consider in a separate section. The structure of this
expansion of thel¢multipole) Green’s function. The appli- paper is as follows: In the rest of this introductory section we
cation of this technique to more general orbits appears &aet up the physical scenario of a pointlike mass particle or-
challenging task. biting a Schwarzschild black hole, introduce the MST-QW
In a recent Lettef6], the joint groups of Barack and Ori prescription for calculating the gravitational self-force on
(BO) and Mino, Nakano, and SasaltyNS) devised an al- this particle, and review the basics of the mode-sum method.
ternative, more direct method for obtaining the RPs. The nevin Sec. Il we present the MST expression for the direct part
method is based on a multipole decomposition of the explicibf the gravitational self-force and analytically process this
“direct” part of the force (see below Using this method, expression to extract information relevant for deriving the
BO and MNS were able to calculate the explicit RPs valueRPs. Section Ill contains the heart of our calculation:
for both the scalar and gravitational self-forces, for any geohamely, the derivation of all RPs for any geodesic orbit, in
desic orbit in Schwarzschild spacetime. In a preceding papéghe gravitational case. Section IV deals with the electromag-
[7] (hereafter referred to as “paper)IBO described the full netic case. In Sec. V we summarize the prescription for cal-
details of the new calculation technique, as applied to the togulating the gravitational and electromagnetic self-forces via
model of thescalar self-force acting on a scalar charge. The the mode-sum method and give some concluding remarks.
current paper deals with the more interesting case of the Throughout this paper we use geometrized uitith G
gravitational self-force on a mass particle and provides full =c=1), metric signature—+++, and the standard
details of the RPs derivation in this case. In addition, weSchwarzschild coordinatesr, 6, ¢.
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A. Pointlike particle model Fé"(x):Mkaﬁyﬁ(x)ﬁtﬁai}[lﬁ(x). (%)
We consider a pointlike particle of mags moving freely ’

in the vacuum exterior of a Schwarzschild black hole withHere, the tensok*#7°(x) is any (sufficiently regular exten-
massM> u. (QW [2] discuss the extent to which the con- sion of the tensor
cept of a pointlike particle makes sense in the context of the 1 1
radiation reaction problemin the limit x—0, the particle  afvd=_qgaoyByr— g*Byryd— Zuyuluru’+ ~ughru®
traces a geodesit*(7) of the Schwarzschild background. As 2 2 4
a result of angular momentum conservation, the geodesic 1
orbit (as well as the orbit under the self-force effeist con- + —g*ogP7, (5)
fined to a plane, which, without loss of generality, we shall 4

tak\?vﬁ:nﬂlﬁeeﬂ:fston?sl glri?éé:trz 2.article N0 londer Moves defined atx= z,, whereu® andg®’ refer to the values of the
. # e p : g . four-velocity and the metric tensor at. [Later we shall
on a geodesic. In this case, it is useful to view the particle as

ifi i By6. i
being subject to a self-force induced by its own gravitationalemploy a s%emﬂc exten?flon bﬁh ’ EOt? thlat thI? fchmce of
field (treated as a perturbation over the backgroundXt€nsion does mot afiect the physical seli- OB,
geometry. The particle’s equation of motion thus takes the though, obviously, it does affect the fiel,(x) off the

form world line.]
The (singulay difference between the “full” perturbation
puTgUP=F gy, (1) h,p(x) and the tail parh(x) is associated with the instan-

taneous effect of waves propagating directly along the parti-

whereu“=dz*/dr, a semicolon denotes covariant differen- cle’s light cone. This part is referred to as the “direct” per-
tiation with respect to the background geometry, &fd; turbation:
«O(u?) describes the leading-order self-force effect. In the o . o
following we shall consider the self-force acting on the par- h‘f;,’;(x)zhaﬁ(x)—hfg(x). (6)
ticle at an arbitrary point along its world line, denoted by ] ] )
=2o=(ty,r0,00,90) (in our setupfy=m/2). We shall use Correspondingly, we define the “direct” force as
the notationx=(t,r, #,¢) to represent a point in the neigh- .
borhood ofz,,. ( ) P P ’ Fain(X)=pk*BY2(x)h, 5(x). %

We will denote the metric of the perturbed spacetime a

9apthas, Whereg,g is the (Schwarzschilyl background ‘Defining also the “full” force

metric andh, (> u) is the metric perturbation induced by « LBy
the particle. Following MST-QW, we consider the metric Fiun(X) = k™75 (x)h gy, 5(X), (8)
perturbatiorh,, ; specifically in the harmonic gauge. We shall we then have
denote byh,; the trace-reversed perturbation:
Fiai(¥) = Fian(X) — Fgi(x). €)
Haﬁzhaﬁ_ Egaﬁ' (2)  The explicit form of the direct perturbation has been derived

by MST [1] (see alsd11,8)). It is given below in Eq(13)
o _ and serves as the starting point for our analysis.
B. Gravitational self-force according to MST-QW Note that both the direct force and full force, which were
MST and QW found that the gravitational self-force on adefined above as vector fields in the neighborhood:pf
particle freely moving in a vacuum spacetime can be fordiverge asx—z,. However, their difference, yielding the tail

mally constructed agL0] force, admits a perfectly regular limit—z,, which, accord-
ing to MST-QW, represents the physical self-force. In this
Fear= lIm FLy(x), (3 respect, notice also the freedom one has in choosing the ex-
X—2g tensionk®?7%(x), as long as this extension is regular enough

N and reduces t&3?? in the limit x—2z,. One has to make

whereF; is the “tail” force, associated with the mere effect g e, though, thathe same extensiorf&”°(x) is applied to
of waves scatterethside (rather than propagating alonthe  poth the direct and full forces.

particle’s past light cone. The tail force can be derived from
the “tail” part of the metric perturbation, as defined by MST

C. Mode- thod
[1], through ode-sum metho

The mode-sum method was previously introdu&d] as
a practical method for calculating the MST-QW self-force
10ne might attempt an alternative point of view, which regards thediven in Eq.(3) [12,13. The method is reviewed in paper I;
particle as freely moving in a “perturbed spacetime.” This picture, here, we merely describe the basic prescriptamapplied to
though, is somewhat problematic, as the perturbed spacetime is sithe gravitational cageand introduce the relevant notation.
gular at the point-particle limit and, hence, is not strictly defined at  In the mode-sum scheme, one first formally expands the
the particle’s location. See, however, REf0]. gravitational tail force, as well as the full and direct forces,
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into multipolel modes, in the form
@ _ al
Ftail,full,dir(x)_lzo F tait ful dir(X) - (10

Here, precisely as in the scalar case, the mdefis F; .
andF§ are obtained by decompositigach of the vectorial
components ofthe corresponding quantitiés;, Fr, ., and
Fgr into standard scalar spherical harmonics and then, for
any given multipole numbel, summing over all azimuthal
numberan. It is important to emphasize here that the various
I modes introduced in Eq10) are defined in our scheme
through ascalar harmonic decomposition. In this regard, re-
call that the (full) metric perturbation in Schwarzschild
spacetime is usually decomposed intensor harmonic
modes in actual calculations. The construction of the full-
force scalar-harmonic modés!}, from the full perturbation
tensor-harmonic modes can be prescribed in a straightfor-
ward mannefas, e.g., in5,14)).

The basic prescription for constructing the gravitational FIG. 1. Geometric setup and notation: The self-force is calcu-

self-force via the mode-sum scheme is given[Byl] lated at the poinz=z, on the geodesiz(7). x is an off-world-line
point in the neighborhood af,, and Sx=x—z,. e=S"? denotes

® the length of the short geodesic section connecxirig the world

2= 2 [ lim Ffoﬂln(x) —A°L—B®—C%/L]-D*?, !ine and normal to it,.anat1 is the point where this short. geodesic
= intersects the world linau® anduj’ denote the four-velocities ak

(11)  andz,, respectivelyu® andug (the former not shown in the sketch

are vectors ax, generated by parallelly propagating the vectats

where L=1+1/2 and the K-independent coefficientsA*,  anduf along the short geodesic section fragior z;, respectively,

B#, C#, andD* are theregularization parametersThe RPs 0 X

A%, B¢, andC® may be defined by the demand that the sum

in Eq. (11) converge. Equivalentlfand more practically ~ Here, € is the spatial geodesic distance from the poirto

one may define these parameters by requiring convergence tte geodesi(r) (i.e., the length of the short geodesic con-
the sum nectingx to the world line and normal to)itz; denotes the

intersection of this short normal geodesic with the world
* line, andﬁi is the four-velocity parallelly propagate®P
IZO [lim Fg(x)—A®L—B*—C%/L]=D® (120  from z, to x. (See Fig. 1 for an illustration of the geometric

X—2Zy

X1 setup described hejeThe functionP) is a regular function
_ _ of x, of order 6x? (and higher ordejs where Sx*=x*
This sum then defines the fourth parameiet. From the — 2zl The explicit form ofP(ﬁz) will not be needed in our
. Y

above definitions it is clear that the RPs values may be deanalysis.
rived through analysis of the direct-force mod‘eﬁ,(x).
Equation(11) constitutes a practical prescription for con-
structing the gravitational self-force, givéi the values of
all necessary RPs, ariil) the full-force modes=¢!, . In this

For later convenience, we first reexpré_éé; in terms of
the four-velocity PP frong, to x (rather than frong; to x),

which we denote by, (or u®). Bothu, andu? are regular

paper we derive all RPs for arfgquatorial geodesic orbitin  functions szx’ and the difference between them is propor-
Schwarzschild spacetime, hence setting an analytical basi9na! to ox” (and to the Riemann tengorAbsorbing this

for calculations of the gravitational self-force for all such difference in the functiorPj 7, we may rewrite the direct
orbits. metric perturbation as

h' () =4uS V2,0, + S VPP (x,29),  (14)
II. ANALYZING THE DIRECT GRAVITATIONAL FORCE 'BY( G o EV( 0

A. Direct part of the metric perturbation where S=¢?, and the new functio®) has the same fea-

(2). P : 2
The direct part of the trace-reversed metric perturbatior%ure"S asPy;,; namely, it is a regular function, of ordei”.

was obtained by MST—see E.27) of Ref. [1]. In the

Appendix we process the expression obtained by MST and B. Extending the tensorkg#?? off the world line

bring it to the form Given the above expression for the direct perturbation, the
it n C1R1R1 L —10(2) direct force is constructed as a vector field through &4.
higy(X) =4ue "uguy+e "Pp5i(X,20). (13)  Inthis equation, recalk*#?%(x) is an extension off the point
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z, of the tensok&??° defined atz, in terms ofu“(z,) and
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and uPg,=k*#7°P() (the factor of 4 is introduced for

g%f(zo) [see Eq.(5)]. In our analysis we decompose the later conveniende Note that the quantityP(s,, which is

components of the fielB g, (x) in spherical harmonics. Since
this decomposition is nonlocdit involves an integration
over the two-sphere, t=const), it will generally depend
on the extension ok3?”’, which we now have to specify.

A natural extension ok3?7 was prescribed by MST1]
(also MNS[8]) by setting in the right-hand side of E(p),
u*—uf(x) and g*¥—g*¥(x)—namely, by PP the four-
velocity u® from z; to x and assigning to the metric function
its actual value ak. However, for our analysis, we found it
useful to apply a different extension: one in which @bn-
travarianj tensorial components df*?7%(x) are assigned
fixed values—the same values they have-atz,:

keBYd(x)=kgP7°. (15)

regular atx=z,, generally contains also terms of ord&x*

and higher. However, the contribution from such higher-
order terms toFg, vanishes at’x=0, and so these terms
may be ignored in our analysis. We shall indeed drop these
higher-order terms and tak#s, to be a polynomial insx of
homogeneousrder 6x°.

The coefficients of the tens#*® are not constant, as the
field GB is a PP field and not a field of constant components.
It will prove convenient to expani“® in 6x and express it
as

KP=K§+ K2+ Kgo+ - -, (20

where Kg’,‘&[:Kaﬁ(x—Jo)] is a field of constant compo-
nents,K¢° is proportional todx, and so on(Note that the

Note that this definition is coordinate dependent; here, weermsKk 22 —unlike K¢’—depend on the extensionCon-

refer to(contravariant components)ithe Schwarzschild co-
ordinates Throughout the rest of this papa&?7%(x) will
denote specifically the extension defined in Ef5), to

which we shall refer as the “fixed-components” extension.
This extension turns out to be most convenient for the nu

merical determination of the modes of the full for@ecall

that the same choice of extension must be made for both t

direct and full forces

C. Constructing the direct force

To analyze the direct forcﬁgir(x)=ﬂk“ﬁ75ﬁgi;; s We
first use Eq.(14) to obtain

di -~ A A 4o~ ~ A oA
h[;;;gz_ZMG 38’5UBU7+4,U,E l(Uﬁ;gu,y‘Fulgu,y;[s)

—e 35 PO+ e PYY

Byd: (16)

where P() =P{). Jis a regular function, of ordeéx (and

higher orders Sinceu,, is PP (from Zy to X), its covariant
derivatives are proportional téx. Therefore, the second

Hpay be absorbed in the tera *Pfy,

sidering now the first term in the expression for the direct
force, Eq.(18), and recallingS s<x, we observe that the
contribution from the terrrK§‘5 and higher-order terms of
K% to the direct force vanishes at—z,. We hence drop
these terms. In addition, we observe that the teffie °S ;

73y of the direct force,
which merely amounts to redefinirg,. Thus, the direct
force takes the form
EKg“se*'s,ﬁ%K;“se*s,ﬁ e3P(“3)) :

ngl’: /‘LZ 2

(21)

As in paper |, we now expan8l in powers oféx, in the
form

S=5+S+S,+- -, (22
where S, is the leading orderof 6x?) term of S S, is the
correction term of homogeneous ordi®, and so on. In this
work we will need only the explicit form 08,:

term in the above expression may be absorbed in the fourth
term: this merely amounts to modifying the explicit form of
P%ly)g. Considering next the third, theee 3 term in Eq.(16),
and recallingS ;<O(8x), we write this term in the form The factore 2 appearing in the last expression for the direct
e P85, whereP§); is a regular quantity 0©(5x%) (and  force, Eq.(21), is then expanded as

higher orders Absorbing then the terme *P{);

=e 3(€*PY),) in the terme 2P{); (which amounts to re-

So=1(g,,+U,U,) SX* X", (23)

e 3=g32

defining P(Bsy)(s), we finally writeW[’j;. 5as 3 15 3
’ —3/2 —5/2 —712c2 —5/2
—ir . A _3p() SO 2 SO Sl 8 SO Sl 2 SO SZ
hﬁy;5=—2,ue Svgulgu,y"‘é' Pﬂ‘yﬁ' (17) 15 3
_ _—3 -5 -7 2 2
Consequently, the direct force takes the form =€ " 5€ Site | gSiT eS|t (24
Fex)=p? - EKaé‘E—SS e Pg |, (18) wh_ege €=Sg2. In this_zexpansion, the first term scales as
2 ' 6x~, the second aéx™ <, and so on. The terms included in
the ellipses scale a&° or higher powers obXx.
where Next we expand the direct force in powers &%, using
5 U the above expansions &ande 3. Based on Eq(21), this
K*o=4k*A7%u4u.,, (19 expansion takes the form
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Fa=u2(eg Pyt 6o Pyt eg TPy, (25)  where PS-s0=—3s, 5, P{I*0 — 35S, 5+ 28,5, and
P’ s a polynomial indx, of homogeneous orde#x’,

in which P, denote polynomials of homogeneous ordén  whose explicit value will not be needed here. We use the
Sx and where we have omitted higher-order terms that vankabel “sca” to distinguish quantities associated with the sca-
ish atx—z,. Notice that the termr‘3Pf“3) of Eq. (21) has lar case from their gravitational-case counterparts.
been absorbed here in the tergi’P{, (with higher-order Comparing Egs(25) and (27) and taking into account
corrections that vanish at—z, and are thus omittodAlso  also the explicit form of the coefficien®§**¥and P{"¥,
absorbed  in 667p217) are other terms like We now express the gravitational direct force as a sum of

KS‘se(}SSz,g, KS‘SeaSSlSl,a, Kf5€6351,5v etc. The func- three terms in the form

tions P,y and Py, are given explicitly b @ o, pa, ca
(v 8NP are given explcily by Fae=n2(F{+F5+FY), 9
1
?1): _ EKS(SSO,&, (268 where
zle K(o)zb":gir,sca,
1 3 1
Piy=— 5K5"SoS15+ 7Kg S1S05~ 5 K1 "SS5 L
(26b) FZE_Efo Kl SOSO(‘i
(the explicit form of Pf,, will not be needel Note that the 1

=3 ad
. . - =—c K ,
leading-order term of the direct forcg2e, 3P?1), emerges 2 M1 Sos

exclusively from the leading-order termK§® in Eq. (21),

whereas the next-order terafe; °P(;, is composed of con- Fi=e, (P~ K§oP{ ). (29
tributions coming from both termsK&? and «K{?. The
och‘S contributions(and thus the entire leading-order tgrm
are all analogous to ones that occur in the scalar micas
Eq. (23) of paper |, whereas the<K¢? contribution has no o
counterpart in the scalar case considered therein. We also A. Contribution to the RPs from the term F{

point out that, sinc&§® does not depend on the extension of  Consider first the terr 2 of the gravitational direct force.
k*A7° (unlike K&2,), one finds that the leading-order term of This term is just the scalar direct force, contracted with
Fgr is extension independent, whereas the explicit form ofK@°—an array of constant coefficientgrecall Kg°
the higher-order terms does depend, in general, on the choiceK *°(5x—0), whereK *’ is the tensor defined in E¢L9)].

We proceed by considering separately the contributions to
the RPs from each of the three terf§, 5.

of extension. Since the constant arra§;° does not interfere with the mul-
tipole decomposition, one may immediately conclude that

lIl. DERIVATION OF THE REGULARIZATION the contribution from the terrk ;' to any of the RPs, in the
PARAMETERS: GRAVITATIONAL CASE gravitational case, would be precisely the same as in the

scalar case—multiplied byKg®. Denoting by R (i
=1,2,3) the contribution of the terifA{* to any of the RPs,
we thus simply have

In principle, the derivation of the RPs will nhow involve
expanding the direct-force componeffit§;, in scalar spheri-
cal harmonics and then taking the linit>z, [just as in the
scalar case analysis—cf. EQ7) in paper |. This will yield R¥=KZORED), (30)
thel-mode contribution to the direct forcg), from which
one may deduce the values of all RPs. However, at this poinishere the scalar-case valu§ are those given explicitly
we may exploit the remarkable analogy between the expresn paper I.(We have made here the obvious replacenment
sion derived here for the gravitation direct force, E25), . ;) In particular, sinceC@=p=0, we find C¢
and the corresponding expression obtained in the scalar toy pe—q
model[see Eq(22) of paper |: these expressions differ only
in the explicit form of the three coefficien®; 4 7). Conve-
niently, this analogy will now allow us to base most of our

B. Contribution to the RPs from the term F5

analysis on results already obtained in paper |I. We next consider the terfa5 in Eq. (28). This term has
We begin by recalling the expression obtained for the dithe from oce(}SP&). As shown in paper I, in evaluating the
rect force in the scalar casksee Eq.(27) in paper I contribution of this kind of terms to themode of the direct

A force atzy, one is allowed to take their limidt,sr —0 be-
Fldrscal ¢ 3p(lscaly ¢ Spliscal ¢ 7p(lsea) - (27)  fore applying the multipole decomposition. This is true re-
gardless of the explicit form of the polynomi&(,,. We
hence proceed by considerifg(st= r=0); we show that
2For later convenience, we use here a redefinitiorF (), this quantity actually vanishes, even before applying the
with the factorg? omitted (g is the scalar charge multipole decomposition.
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Examine the form ofF5, as defined in Eq(29): The whereﬁg)EPf? —K &P\ s*is once again a polynomial in
quantitnyﬁ, recall, is the first-order variation of the tensor §x, of order 6x”.
Ke0=4k*F7°u4u.,, with respect tosx. Recalling thatk*#?° The contribution of the terr¥§ to thel-mode direct force
is a tensor of constant components, we hals(éi“S is obtained by carrying out thi.egendre integration over a
=4k“37‘5(5u3u7+ ugdu,), where du, is the first-order two-spherer =t=const and then taking the limits$t, ér
variation in the PP four—velocityﬂﬁ(x) (namely, duy —0. As shown in paper |, in evaluating the contribujion of a
=I",u,8x?, with ')y being the connection coefficients at term of the form(34) (regardless of the explicit form 6#(7))

Zp). Thus, one may interchange the integration and the limits and set
o6t=6r=0 before integrating over the two-sphere—just as
Fg=—2¢, k*%(Sugu,+ugdu,)Sy ;. (31)  with the termF¢ considered above. To carry out the Leg-

endre integration, it proves especially convenient—as in pa-
Consider now the explicit form d€*#7, given in Eq.(5).  per |—to use a new set of spherical coordinateés ¢'), in
Three of the five terms ok*?”? are proportional tou®. which the particle is located at the polar axi=0.% The
These three terms will contribute nothing kg as contribution fromF3 to thel-mode direct force can then be
expressed as
U°Sp 5= 2u°(g,, 5+ U,U5) SX#=0.
L (.~ ..
Consider next the first and fifth terms kf#?°, propor- “2EJ €0 'P{7)Pi(cose’)d(coss")de’, (39
tional to uPu” andg?”, respectively. Both terms yield con-

t_ribu_tions toF5 vyhich are proporti_onal t@‘uﬁuﬁ. This quan-  where P, is the Legendre polynomial anBO,ﬁ’EVU are the
tity, in fact, vanishes for our orbital setup: To see that, f'rStreductions of 60’]5?7), respectively, tor=r, and t=to.

recallufu,=ufuz=—1, as the length of the four velocity is (Note that, conveniently, in the’,¢’ system the contribu-
preserved when PP. Then, observe that the linear variation @y to anyl mode atx—z, comes only from the axially
this equality with respect tox yields symmetric,m=0 mode) From Eq.(23), recalling e,= Sg/*
o L o andu,=0, we obtain, explicitly,
0= 38(UPug) = SuPuz+uPdug=28uzul+ 59*A(X)u,U,
(32 €0=[r3(56°+ 502 + U250 (36)

(to linear order insx), Wher_eégcfﬁ(x) = gaﬁyv(zo)axy_ is the To implement the integraB5), it proves convenient, as in
linear variation ing“?(x). Since in our setup the trajectory is paper |, to introduce Cartesian-like coordinateg on the
equatorial and sincg*? ,=g*# ,=0 at the equatorial plane, two-sphere, which we define here by

the linear variatiorﬁg“ﬁ’ vanishegrecall that in considering ’

F3 we reducedx to just 56, 5¢). Consequently, we obtain, x=6'cose’, y=6'"sing’. (37
from Eq. (32), suguf=0.

To conclude the above discussion, we fia§i=0 (in the  Notex=y=0 atz,, and hence we have simpbx*=x and
limit 6t=ér=0). Hence, obviously, this term yields no con- sxY=y. It is simple to show that a choice of transformation
tribution to any of the RPs: (6,0)—(6',¢") can be made such that the coordinates

would relate to the original coordinat@se through
R3=0. (33

X=38p+0(5x?), y=350+0(5%?). (38)
Note that this result may no longer be valid when using ) ] )
extensions other than the “fixed-components” extension emEXpressed in terms of the new coordinates, the polynomial
ployed here: Usually, there will arise additional terms in EqQ.P(%,(66,6¢) in Eq. (35 becomes PE’7)(y,x)+O(5x8),
(31), corresponding to first-order variations of the tensorwhere_(a7) is a polynomial of homogeneous order 7xy.
k*#7°(x). Also, notice that the resu(B3) will generally not  The contribution from theD(x®) corrections to the direct

hold when considering nonequatorial orbits, as the variatioforce vanishes at— z, and can therefore be omitted. From
59*# in Eq. (32) will generally fail to vanish. In both cases Eq. (36) we also get

(namely, a differenk extension and/or a nonequatorial oybit
our c_aICL_JIatloolj would lead, in general, to a nonvanishing Eoz:o(x,y)JrO(éxz), (39)
contributionR5 .

C. Contribution to the RPs from the term F§ 3We should emphasize here that we mtat regardé’,¢’ as new

. o . spacetime coordinates—namely, all vectorial and tensorial quanti-
We finally turn to the ternF; in Eq. (28). Recalling that ties are still taken with respect to the original coordinatgs. That

ad ia i . .
Kg” is just an array of constants, we may write this term ass 4 o' are merely used here as new variables for implementing

o -7 the Legendre integral. The same holds for the coordinatgsn-
F3=¢€ P(7): (34) troduced below.
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where?oz[rg(x2+y2)+uix2]1/2_ Again, only the leading- (with the obvious substitutiog— ). Unlike the situation
order term here contributes to the direct forcexatz,, and ~ With the parameteA®, the quantityu’B$*? does not vanish
we are allowed to drop th®(5x?) correction. Hence, as far [see Eq(85) in paper I, and we leave the expression Bf
as the calculation of the RPs is concerned, we may expredg the form

the contribution from the terrif§ to thel-mode direct force,

Eg. (35), as BY=Kg°B{e (45)

L

€ P i i — i (sca)_ y(sca)_
Mzgf €0 'P{n(x,y)P(cose’)dxdy. (a0 (@9ain. withg— u). Finally, asC,"=D*"=0, we shal

have, in the gravitational case alike,

Note that the Jacobian of the transformation (€0&’) C*=D“=0. (46)
—(x,y), which is actually given by + O(6x?), has been set
here to just 1: The higher-order corrections are once again
omitted, as they vanish at— z,.

Examine now the integral in E§40): ¢, is an even func-
tion of bothx andy and so is the function ca®. However, In this section we consider thedectromagneticelf-force
each of the possible individual terms in the polynonigj, acting on an electri_cally_ charged particle: we prescr_ibe the
(such asxxy® or «x*y3, for instancg is necessarily aodd ~ Mode-sum scheme in this case and construct all required RPs
function of eitherx or y. Consequently, we observe that the for an arbitrary(equatorial geodesic orbit in Schwarzschild
entire integrand in Ec(40) is odd in eitheix or y. Therefore, Spacetime. The same analytic calculation used for deriving
obviously, the integration over the two-sphere would vanishthe gravitational-case RPs will prove directly applicable also
As a consequence, no contribution to the RPs will arise fron{© the electromagnetic case, with only minor adaptations re-

the termF35: quired. . . . .
We shall consider a particle carrying an electric charge

RZ=0. a1  (with le[<M) and assume the same orbital configuration as
in the gravitational casénamely, the particle is taken to

move along an equatorial orbit, which in the lineit=0 be-

comes a geodesicWe shall also maintain here the notation

for the various quantitiez,, X, €, S, l]a, and so on. We
shall denote by®,(x) the vector potential associated with
the “full” electromagnetic field induced by the particle. In
this section we ignore the gravitational self-force.

A formal expression for the electromagnetic self-force in

Let us now collect the above results: We have found thagurved spacetime was obtained long ago by DeWitt and Bre-
neither of the termd&4 and F§ contributes to thd-mode hme[15] (and was reproduced recently by Q\&] using a
direct force. The sole contribution to the RPs comes from thélifferent methodl For a geodesic in vacuum spacetime, the
term F{—this contribution is given in Eq30). The RPs in electromagnetic self-force is obtained from an electromag-

IV. DERIVATION OF THE REGULARIZATION
PARAMETERS: ELECTROMAGNETIC CASE

Notice that this last result is valid for ar{gufficiently regu-
lar) k extension. A modification of the extension would only

affect the explicit form of the ponnomiaIE_(“7), but would
not alter the odd-parity structure of the integrand in &q).

D. Summary: RPs values in the gravitational case

the gravitational case are therefore given by netic “tail” force, just as in the gravitational case:
Re=Kg’R), (42) FalE™ = lim Fa{™(x), (47)
X—2Zy

where, recallR® stands for any of the RPs and the scalar-
case valueR*® are those given explicitly in paper I. We where hereafter we use the label “EM” to signify quantities

now need only to provide the explicit form Ngﬁ; Recall- associated with the electromagnetic case. The formal con-
ing K20=K a9 ' struction of the vector fiel& 2(EM(x) is described if15,2].
ing Kg°=K*°(x—zp), one easily gets, from Eq$19) and tail '
(5), As in the gravitational case, the electromagnetic tail force
can be written as the difference between a “full” force and a
K§%=g*+uu®, (43  “direct” force—just as in Eq.(9). In the electromagnetic

case, these two vector fields are given[BY
where, recallu® andg®? denote the values of these quanti- _
ties atz,. Note thatk §° is just the spatial projection operator Frro=ek®¢, . FiFW=ek®7¢Sl (49
at z;—namely, ((35V§)ua=0 for any vectoV. _
Let us finally write Eq.(42) more explicitly: First, recall- where ¢?3"(x) is the “direct” part of the vector potential
ing (see paper)lthat the scalar paramet&f°® has no com-  (given explicitly below andk*#¥(x) is a (sufficiently regu-
ponent tangent ta® (i.e., u’A$°¥=0), we simply obtain lar) extension of the tensor

A= Alsca) (44) kg 7=g*7uf—g*fu, (49)
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defined atzy. As in the gravitational case, we shall adopt Egs.(20) and(22), and consequently write the direct force as
here the “fixed-components” extension, definedn a sum of three terms—in precise analogy with E@%) and
Schwarzschild coordinateghroughk*?”(x)= kg’” . (29):

The mode-sum prescription for the electromagnetic self-
force is completely analogous to the one prescribed in the  F3{™ =e%(e; *PE™ + €, *PIT™ + € 'PET™)
gravitational and scalar cases: Given tkealar harmonicl

modesF{|(E™ of the electromagnetic full force, the electro- =eX(F{EW+ F5EW+ F5EWD), (56)
magnetic self-force is constructed through ] _ _
whereF {53 are defined in Eq(29), with the replacements
- em K30 K &gy and P&, —PAEW . The only point at which
se(lf )_2 [ lim Fgy (EM(x) — Ac(EM)| — ga(EW) our current analysis differs from the gravitational case is in
=0 ez the explicit values taken by the various coefficielnfg (and
— CEM)/| |- pa(EM) (500  consequently in the explicit values of the terf,).

Consider first the contribution to tHemode direct force
where the various electromagnetic-case RPs are to be obeming from the teij“(E""): In a complete analogy with
tained, again, by analyzing the multipole modes of the direcEq. (30), we obtain
force. The rest of this section is devoted to calculating these
electromagnetic RPs. R em=K§emRS ™ a—e), (57)

As in the gravitational case, our starting point would be
the expression for the direct part of the particle’s field—thisyyhere RéEM) (i=1,2,3) stands for the contribution of the
time the direct part of the vector potential—as obtained byq Fe®EW o any of the RPs, and the array of constant

MNS [see Eq(B3) of Ref.[8]]. In precisely the same man- Z
ner as in the gravitational case, this expression can bcoeffIC|entSK0(EM) K{ew(x—20) is now given by

brought to the form
g K& tem = —(9*+uu?). (58

dir _ 1/20, —1/2p(2)
X)=eS "Uy+S “PL(x 51
5 (X) A ) 6D Noticing K ey = — K§° [compare Eq(58) to Eq.(43)] and

[in analogy with Eq(14)], whereP{?) is a(regulaj function ~ recalling Eqs(30) and(42), we then conclude
of O(6x?). The derivatives of the dlrect vector potential then

take the form Riem= —Ri(gray(#—€)= —Rgay(r—€), (59
¢d" = —(el2)S 3% yl];;+ egl/2a3_7—5*3/25 yP,(ez)/Z where hereafter we use the label “grav” to signify the
(@) ' ' ' gravitational-case values.
+S VPR, (52) Next, consider the termF5®™™=—3e K % Sos-

. : - . Here, the coeff|C|entK1(EM) (the first-order correction in

which [as in obtaining Eq(17)] can be put into the form K(EM)) is given by
1 R

b5, =~ 5ee S g+ e *PE), (53 K e =k*P26u,. (60)

with P§) being a(regulaj function of ordersx® (and higher ~AS in the gravitational case, it is easy to show thgt="
orders. Consequently, the direct electromagnetic force takeéevaluated att=6r=0) actually vanishes, even before tak-

precisely the same form as in EG.8), ing its multipole decomposition: From E@9) we observe
that k4% is composed of two terms, one proportionalutd

a(EM) w5 3 Cara and the other proportional to’. Theocuﬁ term contributes
Far — (X) =€ —5Kgwe “Sste Py, (549 nothing toK$ gy, sinceu’sug=0 (as explamed when dis-
cussing the gravitational cgseThe «<u? term will yield a
where, this time, zero contribution as well, by virtue chO,,;u =0. We thus
find that in the electromagnetic case—just as in the gravita-
K= k8%, (55) tional case—the ternF5™" contributes nothing to the
RPs—namelyRj3 gy =0.
andeP(3 —k“ﬁyPg) Again, we may drop all terms d?3, As to the last term in the electromagnetic direct force,
which are of ordesx? and higher(as they do not contribute F$®", using the same parity considerations as in the gravi-
to the direct force ak—z,) and takeP(,) to be of homoge- tational case, one shows that the contribution from this term
neous ordewx®. to any of the RPs will vanish—namelRg g, =0. This van-
Thanks to the complete analogy between the forms of théshing is irrespective of the explicit form of the polynomial
electromagnetic and gravitational direct forceksompare P(‘;()EM) in Eq. (56).
Egs. (54) and(18)], our analysis now proceeds precisely as In conclusion, thus, we find that the sole contribution to
in the gravitational case: We expaquM) andSin 8x, asin  the RPs in the electromagnetic case comes from the term
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Fj’(EM)a Eqg. (59). We hence obtain extension as the one used in calculating the RPs. It is thus
essential to recall here that the RPs values summarized above

R{em)= — R{gray(#—€). (61)  are those referring to the “fixed-components” extension of

the tensork®47? or k*#” (expressed in Schwarzschild coor-

V. SUMMARY AND CONCLUDING REMARKS dinateg. This extension is most easily applicable in the nu-

merical computation of the full-force modgs,14).

Let. us summarize our mode-sum prescnpnon for con- Based on our above analysis, we may phrase the follow-
structing the gravitational and electromagnetic self-forces,

We start with the gravitational case ing general statements concerning the extension dependence
(1) For a given trajectory, compute the tensor—harmonic_?_Lteh;FF\:SPAS‘am Ctge;rllzgrf:riggsggs?[?\?a%r?xetaetgg?Lii)is)?)?:
i iap()l’m b P g
mode_s of thF." metric perturbatloh, (r,t)., y numer k*#7® (provided it is regular enough(ii) The value ofB®
cally mtggratmg the separable field equatidesg., in the doesdepend, in general, on the choice of extension; how-
harmon!c ga_u(%%ﬂ). ol ever, all sufficiently regular extensions which differ from the
(2) Givenh™""(r,t), construct the full modeBy,, atthe -y o4 components” extensiok®#”® by an amount of only
particle’s I_O(_:a/tlon. This is done by applying the operator 'nO(éxz) will admit the same value oB—the one given in
Eq.(8) to h_(')l "(r,t), using the “fixed-components” exten- Eq_(62h). It is interesting to refer here to the MNS analysis
sion described above and then expanding the resultant f|e[q;], in which a different extension has been employed: MNS
into_ scalar spherical harmqnit_(:and summing overl 'mfor  oytended the tensa®?”® by PP the four-velocity fronz, to
a givenl). This procedure is implemented in Refs,14]. x and just assigning tg“ the actual value it has at Inter-
(3) Use Egs.(62) below[along with Eqs(83) of paper | estingly, within this extensiondiffering from the “fixed-

to obtam_the RPs values corresponding to the trajectory unéomponents” extension already @(ox)], all RPs attain
der consideration.

(4) Finally, apply the mode-sum formula, EGL.1) precisely the same values as in the scalar ¢&$dexcept
This presé:ription is now being impleménted by Barackthat in the electromagnetic case all RPs are to be multiplied

and Lousto for radial[5] and circular [14] orbits in by _,1)' . _
Schwarzschild spacetime. Finally, it is important to recall that the gravitational self-

The prescription for constructing the electromagnetic selfforce is agauge-dependentotion, as discussed in RgB].
force is similar: First, one has to compute the vector-1he prescription described in this paper applies to the self-
harmonic modes of théfull-field) vector potential for the force associated with théarmonic gauge(in which the
given orbital configuration. Then, one constructs the full-original MST-QW scheme has been formulateld also ap-
force modestf,'leM)—this construction is carried out by ap- plies, with the same RPs values, to any other gauge related to
plying Eq. (48) to each of the full-field vector-harmonic the harmonic gauge through a regular gauge transformation
modes and then decomposing each of these modes in scal&. However, for other, nonregular gauges, the mode-sum
spherical harmonics. Finally, one applies the mode-sum forscheme is not guaranteed to be valid in its present form. A
mula(50), with the electromagnetic RPs values given in Eqs.method for overcoming this gauge problem has been

(62) below. sketched i 9] and is currently being implemented for cir-
The values of the RPs in the gravitational and electromageular orbits in Schwarzschild spacetini@4]. A different
netic cases are summarized as follows: strategy(applicable in the Schwarzschild caseould be to
AT _ A(EM)_ p(sd) 629 calculate the self-force directly in the harmonic gaiie].
Bl9)= — BEW = (584 u,uP)BL (62b)
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case of radial orbits. The results agree with the val6es.

As we discussed above, there is a certain ambiguity in the
values of the RPs, which arises from the freedom in choosing In this appendix we obtain Eq13) for the direct metric
the extension of the tenséroff the evaluation poing, (the  perturbation by processing the expression given by MST in
choice of this extension affects, of course, the multipole deRef. [1].
composition of the forge However, our mode-sum scheme By considering the Hadamard expansion of thal) met-
produces no ambiguity in the eventual value of the selfric perturbation, MST obtained the following expression for
force—one only has to make sure that the full-force modeshe (retarded trace-reversed perturbatijpee Eq.(2.27) of
Ff"(,'” in Eq. (12) [or in Eqg.(50)] are calculated using the same Ref. [1]]:

APPENDIX: DIRECT METRIC PERTURBATION
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(A2)
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Examine now more closely the second term in E&R):

xis a point in the neighborhood of the force evaluation pointSince S*=0(8x), the only contribution to the direct force
2o, €=S"2is the length of the short geodesic section con-Which does not vanish at— z, arises from differentiating

nectingx to the world line and normal to iz, denotes the
intersection of this geodesic with the world ling; anduf
(or ui) denote the four-velocities at andz,, respectively,

andu® andug (or ul) are their PP tox. In addition, indices

in parentheses denote symmetrization ﬁﬁ%g represents
the Riemann tensor PP from to x with respect to any of its
indices carrying a caret. The “tail term” represents a nonlo-
cal contribution to the full perturbation, with its form given
explicitly in [1]. The functiong (denotedx ! in [1]) is a
regular function satisfyingd=1+0O(5x?) [see Eq.(Al4)
therein. Note that the correction term proportional to the
four-acceleration in Eq(2.27) of Ref. [1] can be omitted,

S*. Recalling Eq.(23), we have
Sh=2(85+utus) +O(x).

Note thatS§§u5=0 (at x—2y). Note also that the second
term in Eqg.(A2) (unlike the other two term)sis perfectly

regular atx=z,. This allows us to evaluate its contribution
directly atz,, which we do by just “removing” the carets

from R, 5 andﬂy. Recalling Eq(7), the contribution from
this term to the direct force &, then reads

—2u2k*BYUTS N JUPR, ) (sU)

(evaluates atx=2zp). Examining the form of the tensor

since, for geodesic orbits, it contributes to the self-force onlyk*#7°, given in Eq.(5), we observe that three of its five

at order higher tha®(u?). For the same reason, we omit
here theO(Tr_lf) term indicated therein. Finally, notice the
notational change— S/2.

The direct part of the metric perturbation is now taken aseither u’R,,,z or u’R,,

the difference between the full perturbation given in &il)
and the tail term. The terms included @(e2) do not con-
tribute to the direct perturbation at the limit-z, (e—0);

terms are proportional to° and thus vanish when contracted
with S§. The first term ok*#?? is proportional tauu” and
thus yields a vanishing contribution when contracted with
- Likewise, the last term of
k*£7%  proportional tog”?, is found to vanish when con-
tracted with ei_ther_uPRﬂpBu_y or u’R,, ,,ug. We conclude
that the contribution of this regular term to the self-force

nor do they contribute to the direct force, whose constructiorvanishes—even before taking the harmonic decomposition.

involves only first-order derivatives d?aﬁ(x). We thus re-
define the direct perturbation by ignoring the3ge?) terms,

Finally, consider the third term in E§A2). Noticing that
this term has the fornax (a regular function ok), we may

which leaves us with only the three terms in the squarenrite it as

brackets, scaling as !, €', ande?, respectively.

Consider now the second and third terms in the squar
brackets: First, note that tHeoordinate components of the
two vectorsuy andu® differ only at O(8x). Hence[recall-
ing €,S*<0O(dx)], this difference contributes only to
O(6x?) in Eq. (A1). We may thus ignore this correction and
just replaceu] with u® in the second and third terms in the

square brackets. Likewise, we replacgwith U in the sec-
ond term. Similarly, we may ignore th@(6x) difference
betweerRiﬁws andR,,s (the latter denoting the coordinate
value of the Riemann tensor &) as it contributes only to
O(6x?) in Eq. (Al). The direct metric perturbation thus
takes the form

e 'PE)(x,29), (A3)

e
whereP®) is a certain regular function, of ordéx?. (This
form will be convenient for our analysis in Sec.)We fur-
ther notice that the terms @(8x?) included in the function

B contribute tohg, an amount of precisely the forA3).
We may thus absorb this contribution in the contribution
(A3) coming from the third term and replace the functj@n
with just 1. The explicit form of the regular functid?%y(x)
will not be needed in our analysis.

In conclusion, we find that the direct part of the metric
perturbation is effectively given by E¢l3). This expression
is used as a starting point for the analysis in this paper.
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