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Regularization parameters for the self-force in Schwarzschild spacetime.
II. Gravitational and electromagnetic cases
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We obtain all ‘‘regularization parameters’’~RPs! needed for calculating the gravitational and electromagnetic
self-forces for an arbitrary geodesic orbit around a Schwarzschild black hole. These RP values are required for
implementing the previously introduced mode-sum method, which allows a practical calculation of the self-
force by summing over contributions from individual multipole modes of the particle’s field. In the gravita-
tional case, we provide here full details of the analytic method and results briefly reported in a recent Letter
@Phys. Rev. Lett.88, 091101~2002!#. In the electromagnetic case, the RPs are obtained here for the first time.
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I. INTRODUCTION

This is the second in a series of papers aimed at estab
ing a practical calculation scheme for the self-force acting
a point particle in orbit around a black hole. This scheme
referred to as the ‘‘mode-sum method’’—stems from t
general regularization prescription of Mino, Sasaki, a
Tanaka~MST! @1# and Quinn and Wald~QW! @2#. In effect,
the mode-sum method reformulates the MST-QW gen
result in the language of multipole modes, thereby makin
accessible to standard numerical treatment. In practice,
application of this method involves two basic parts:~i! cal-
culation of the ‘‘full’’ modes of the force, through numerica
integration of the decoupled field equations, and~ii ! analyti-
cal derivation of certain parameters~whose values depend o
the orbit under consideration! called the ‘‘regularization pa-
rameters’’~RPs!. Previously, the explicit values of the RP
were derived analytically in a few special cases of orbits
Schwarzschild spacetime—specifically, for circular and
dial orbits in the scalar field case@3# and for radial trajecto-
ries in the gravitational case@4,5#. In these works, the RP
values where calculated through a rather cumbersome l
expansion of the (l -multipole! Green’s function. The appli-
cation of this technique to more general orbits appear
challenging task.

In a recent Letter@6#, the joint groups of Barack and Or
~BO! and Mino, Nakano, and Sasaki~MNS! devised an al-
ternative, more direct method for obtaining the RPs. The n
method is based on a multipole decomposition of the exp
‘‘direct’’ part of the force ~see below!. Using this method,
BO and MNS were able to calculate the explicit RPs valu
for both the scalar and gravitational self-forces, for any g
desic orbit in Schwarzschild spacetime. In a preceding pa
@7# ~hereafter referred to as ‘‘paper I’’! BO described the full
details of the new calculation technique, as applied to the
model of thescalarself-force acting on a scalar charge. T
current paper deals with the more interesting case of
gravitational self-force on a mass particle and provides f
details of the RPs derivation in this case. In addition,
0556-2821/2003/67~2!/024029~11!/$20.00 67 0240
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shall derive here the RPs values for theelectromagneticself-
force acting on an electrically charged particle orbiting
Schwarzschild black hole.~BO and MNS applied two
slightly different methods in obtaining the RPs; MNS d
scribe their calculation in@8#.!

The analysis presented in this paper relies greatly on
technique and results of paper I, to which we shall frequen
refer the reader. Though the basic idea of our calculatio
the same as in the scalar toy model of paper I, some unav
able technical complexities arise when coming to consi
the gravitational or electromagnetic cases. In particular,
then has to consider an extension of the particle’s fo
velocity ~which takes part in constructing the ‘‘direc
force’’—see below! off the world line and address the que
tion of the RPs dependence on the~nonunique! choice of
such extension. Another, more fundamental issue, is
gauge dependence of the gravitational self-force and its
plication to the mode-sum scheme~see Ref.@9#!.

Most of our paper will be concerned with the~most inter-
esting! gravitational case. Our analytical technique is eas
applicable to the~simpler! electromagnetic case, which w
shall later consider in a separate section. The structure of
paper is as follows: In the rest of this introductory section
set up the physical scenario of a pointlike mass particle
biting a Schwarzschild black hole, introduce the MST-Q
prescription for calculating the gravitational self-force o
this particle, and review the basics of the mode-sum meth
In Sec. II we present the MST expression for the direct p
of the gravitational self-force and analytically process t
expression to extract information relevant for deriving t
RPs. Section III contains the heart of our calculatio
namely, the derivation of all RPs for any geodesic orbit,
the gravitational case. Section IV deals with the electrom
netic case. In Sec. V we summarize the prescription for c
culating the gravitational and electromagnetic self-forces
the mode-sum method and give some concluding remark

Throughout this paper we use geometrized units~with G
5c51), metric signature2111, and the standard
Schwarzschild coordinatest,r ,u,w.
©2003 The American Physical Society29-1
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D67, 024029 ~2003!
A. Pointlike particle model

We consider a pointlike particle of massm, moving freely
in the vacuum exterior of a Schwarzschild black hole w
massM@m. ~QW @2# discuss the extent to which the co
cept of a pointlike particle makes sense in the context of
radiation reaction problem.! In the limit m→0, the particle
traces a geodesiczm(t) of the Schwarzschild background. A
a result of angular momentum conservation, the geod
orbit ~as well as the orbit under the self-force effect! is con-
fined to a plane, which, without loss of generality, we sh
take as the equatorial plane,u5p/2.

When the massm is finite, the particle no longer move
on a geodesic. In this case, it is useful to view the particle
being subject to a self-force induced by its own gravitatio
field ~treated as a perturbation over the backgrou
geometry!.1 The particle’s equation of motion thus takes t
form

mu;b
a ub5Fself

a , ~1!

whereua[dza/dt, a semicolon denotes covariant differe
tiation with respect to the background geometry, andFself

a

}O(m2) describes the leading-order self-force effect. In t
following we shall consider the self-force acting on the p
ticle at an arbitrary point along its world line, denoted byz
5z0[(t0 ,r 0 ,u0 ,w0) ~in our setupu05p/2). We shall use
the notationx[(t,r ,u,w) to represent a point in the neigh
borhood ofz0.

We will denote the metric of the perturbed spacetime
gab1hab , where gab is the ~Schwarzschild! background
metric andhab(}m) is the metric perturbation induced b
the particle. Following MST-QW, we consider the metr
perturbationhab specifically in the harmonic gauge. We sha
denote byh̄ab the trace-reversed perturbation:

h̄ab[hab2
1

2
gab . ~2!

B. Gravitational self-force according to MST-QW

MST and QW found that the gravitational self-force on
particle freely moving in a vacuum spacetime can be f
mally constructed as@10#

Fself
a 5 lim

x→z0

F tail
a ~x!, ~3!

whereF tail
a is the ‘‘tail’’ force, associated with the mere effec

of waves scatteredinside~rather than propagating along! the
particle’s past light cone. The tail force can be derived fro
the ‘‘tail’’ part of the metric perturbation, as defined by MS
@1#, through

1One might attempt an alternative point of view, which regards
particle as freely moving in a ‘‘perturbed spacetime.’’ This pictu
though, is somewhat problematic, as the perturbed spacetime is
gular at the point-particle limit and, hence, is not strictly defined
the particle’s location. See, however, Ref.@10#.
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F tail
a ~x!5mkabgd~x!h̄bg;d

tail ~x!. ~4!

Here, the tensorkabgd(x) is any~sufficiently regular! exten-
sion of the tensor

k0
abgd5

1

2
gadubug2gabugud2

1

2
uaubugud1

1

4
uagbgud

1
1

4
gadgbg, ~5!

defined atx5z0, whereua andgad refer to the values of the
four-velocity and the metric tensor atz0. @Later we shall
employ a specific extension ofk0

abgd ; note that the choice o
extension does not affect the physical self-forceFself

a ,
though, obviously, it does affect the fieldF tail

a (x) off the
world line.#

The ~singular! difference between the ‘‘full’’ perturbation
h̄ab(x) and the tail parth̄ab

tail(x) is associated with the instan
taneous effect of waves propagating directly along the pa
cle’s light cone. This part is referred to as the ‘‘direct’’ pe
turbation:

h̄ab
dir ~x![h̄ab~x!2h̄ab

tail~x!. ~6!

Correspondingly, we define the ‘‘direct’’ force as

Fdir
a ~x![mkabgd~x!h̄bg;d

dir ~x!. ~7!

Defining also the ‘‘full’’ force

F full
a ~x![mkabgd~x!h̄bg;d~x!, ~8!

we then have

F tail
a ~x!5F full

a ~x!2Fdir
a ~x!. ~9!

The explicit form of the direct perturbation has been deriv
by MST @1# ~see also@11,8#!. It is given below in Eq.~13!
and serves as the starting point for our analysis.

Note that both the direct force and full force, which we
defined above as vector fields in the neighborhood ofz0,
diverge asx→z0. However, their difference, yielding the ta
force, admits a perfectly regular limitx→z0, which, accord-
ing to MST-QW, represents the physical self-force. In th
respect, notice also the freedom one has in choosing the
tensionkabgd(x), as long as this extension is regular enou
and reduces tok0

abgd in the limit x→z0. One has to make
sure, though, thatthe same extension kabgd(x) is applied to
both the direct and full forces.

C. Mode-sum method

The mode-sum method was previously introduced@3,4# as
a practical method for calculating the MST-QW self-for
given in Eq.~3! @12,13#. The method is reviewed in paper
here, we merely describe the basic prescription~as applied to
the gravitational case! and introduce the relevant notation.

In the mode-sum scheme, one first formally expands
gravitational tail force, as well as the full and direct force

e
,
in-
t
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REGULARIZATION PARAMETERS . . . . II. . . . PHYSICAL REVIEW D 67, 024029 ~2003!
into multipole l modes, in the form

F tail,full,dir
a ~x!5(

l 50

`

F tail,full,dir
a l ~x!. ~10!

Here, precisely as in the scalar case, the modesF tail
a l , F full

a l ,
andFdir

a l are obtained by decomposing~each of the vectoria
components of! the corresponding quantitiesF tail

a , F full
a , and

Fdir
a into standard scalar spherical harmonics and then,

any given multipole numberl, summing over all azimutha
numbersm. It is important to emphasize here that the vario
l modes introduced in Eq.~10! are defined in our schem
through ascalarharmonic decomposition. In this regard, r
call that the ~full ! metric perturbation in Schwarzschil
spacetime is usually decomposed intotensor harmonic
modes in actual calculations. The construction of the fu
force scalar-harmonic modesF full

a l from the full perturbation
tensor-harmonic modes can be prescribed in a straigh
ward manner~as, e.g., in@5,14#!.

The basic prescription for constructing the gravitation
self-force via the mode-sum scheme is given by@3,4#

Fself
a 5(

l 50

`

@ lim
x→z0

F full
a l ~x!2AaL2Ba2Ca/L#2Da,

~11!

where L[ l 11/2 and the (l -independent! coefficientsAa,
Ba, Ca, andDa are theregularization parameters. The RPs
Aa, Ba, andCa may be defined by the demand that the s
in Eq. ~11! converge. Equivalently~and more practically!,
one may define these parameters by requiring convergen
the sum

(
l 50

`

@ lim
x→z0

Fdir
a l ~x!2AaL2Ba2Ca/L#[Da. ~12!

This sum then defines the fourth parameterDa. From the
above definitions it is clear that the RPs values may be
rived through analysis of the direct-force modesFdir

a l (x).
Equation~11! constitutes a practical prescription for co

structing the gravitational self-force, given~i! the values of
all necessary RPs, and~ii ! the full-force modesF full

a l . In this
paper we derive all RPs for any~equatorial! geodesic orbit in
Schwarzschild spacetime, hence setting an analytical b
for calculations of the gravitational self-force for all suc
orbits.

II. ANALYZING THE DIRECT GRAVITATIONAL FORCE

A. Direct part of the metric perturbation

The direct part of the trace-reversed metric perturbat
was obtained by MST—see Eq.~2.27! of Ref. @1#. In the
Appendix we process the expression obtained by MST
bring it to the form

h̄bg
dir ~x!54me21ûb

1 ûg
11e21Pbg

(2)~x,z0!. ~13!
02402
or

s

-

r-

l

of

e-

sis

n

d

Here,e is the spatial geodesic distance from the pointx to
the geodesicz(t) ~i.e., the length of the short geodesic co
nectingx to the world line and normal to it!, z1 denotes the
intersection of this short normal geodesic with the wo
line, and ûa

1 is the four-velocity parallelly propagated~PP!
from z1 to x. ~See Fig. 1 for an illustration of the geometr
setup described here.! The functionPbg

(2) is a regular function
of x, of order dx2 ~and higher orders!, where dxm[xm

2z0
m . The explicit form ofPbg

(2) will not be needed in our
analysis.

For later convenience, we first reexpressh̄bg
dir in terms of

the four-velocity PP fromz0 to x ~rather than fromz1 to x),
which we denote byûa ~or ûa). Both ûa and ûa

1 are regular
functions ofx, and the difference between them is propo
tional to dx2 ~and to the Riemann tensor!. Absorbing this
difference in the functionPbg

(2) , we may rewrite the direct
metric perturbation as

h̄bg
dir ~x!54mS21/2ûbûg1S21/2P̃bg

(2)~x,z0!, ~14!

whereS[e2, and the new functionP̃bg
(2) has the same fea

tures asPbg
(2) ; namely, it is a regular function, of orderdx2.

B. Extending the tensork0
abgd off the world line

Given the above expression for the direct perturbation,
direct force is constructed as a vector field through Eq.~7!.
In this equation, recall,kabgd(x) is an extension off the poin

FIG. 1. Geometric setup and notation: The self-force is cal
lated at the pointz5z0 on the geodesicz(t). x is an off-world-line
point in the neighborhood ofz0, anddx[x2z0 . e[S1/2 denotes
the length of the short geodesic section connectingx to the world
line and normal to it, andz1 is the point where this short geodes
intersects the world line.ua andu1

a denote the four-velocities atz0

andz1, respectively.ûa andû1
a ~the former not shown in the sketch!

are vectors atx, generated by parallelly propagating the vectorsua

andu1
a along the short geodesic section fromz0 or z1, respectively,

to x.
9-3
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LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D67, 024029 ~2003!
z0 of the tensork0
abgd defined atz0 in terms ofua(z0) and

gab(z0) @see Eq.~5!#. In our analysis we decompose th
components of the fieldFdir

a (x) in spherical harmonics. Sinc
this decomposition is nonlocal~it involves an integration
over the two-spherer , t5const), it will generally depend
on the extension ofk0

abgd , which we now have to specify.
A natural extension ofk0

abgd was prescribed by MST@1#
~also MNS@8#! by setting in the right-hand side of Eq.~5!,
ua→û1

a(x) and gab→gab(x)—namely, by PP the four-
velocity ua from z1 to x and assigning to the metric functio
its actual value atx. However, for our analysis, we found
useful to apply a different extension: one in which all~con-
travariant! tensorial components ofkabgd(x) are assigned
fixed values—the same values they have atx→z0:

kabgd~x![k0
abgd . ~15!

Note that this definition is coordinate dependent; here,
refer to~contravariant components in! theSchwarzschild co-
ordinates. Throughout the rest of this paper,kabgd(x) will
denote specifically the extension defined in Eq.~15!, to
which we shall refer as the ‘‘fixed-components’’ extensio
This extension turns out to be most convenient for the
merical determination of the modes of the full force~recall
that the same choice of extension must be made for both
direct and full forces!.

C. Constructing the direct force

To analyze the direct forceFdir
a (x)5mkabgdh̄bg;d

dir , we
first use Eq.~14! to obtain

h̄bg;d
dir 522me23S,dûbûg14me21~ ûb;dûg1ûbûg;d!

2e23S,dP̃bg
(2)/21e21Pbgd

(1) , ~16!

wherePbgd
(1) [ P̃bg;d

(2) is a regular function, of orderdx ~and

higher orders!. Sinceûa is PP~from z0 to x), its covariant
derivatives are proportional todx. Therefore, the secon
term in the above expression may be absorbed in the fo
term: this merely amounts to modifying the explicit form
Pbgd

(1) . Considering next the third, the}e23 term in Eq.~16!,
and recallingS,d}O(dx), we write this term in the form
e23Pbgd

(3) , wherePbgd
(3) is a regular quantity ofO(dx3) ~and

higher orders!. Absorbing then the term e21Pbgd
(1)

5e23(e2Pbgd
(1) ) in the terme23Pbgd

(3) ~which amounts to re-

definingPbgd
(3) ), we finally write h̄bg;d

dir as

h̄bg;d
dir 522me23S,dûbûg1e23Pbgd

(3) . ~17!

Consequently, the direct force takes the form

Fdir
a ~x!5m2S 2

1

2
Kade23S,d1e23P(3)

a D , ~18!

where

Kad[4kabgdûbûg ~19!
02402
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a [kabgdPbgd

(3) ~the factor of 4 is introduced for
later convenience!. Note that the quantityP(3)

a , which is
regular atx5z0, generally contains also terms of orderdx4

and higher. However, the contribution from such high
order terms toFdir

a vanishes atdx50, and so these term
may be ignored in our analysis. We shall indeed drop th
higher-order terms and takeP(3)

a to be a polynomial indx of
homogeneousorderdx3.

The coefficients of the tensorKad are not constant, as th
field ûb is a PP field and not a field of constant componen
It will prove convenient to expandKad in dx and express it
as

Kad5K0
ad1K1

ad1K2
ad1•••, ~20!

where K0
ad@5Kad(x→z0)# is a field of constant compo

nents,K1
ad is proportional todx, and so on.~Note that the

terms Kn.0
ad —unlike K0

ad—depend on the extension.! Con-
sidering now the first term in the expression for the dire
force, Eq.~18!, and recallingS,d}dx, we observe that the
contribution from the termK3

ad and higher-order terms o
Kad to the direct force vanishes atx→z0. We hence drop
these terms. In addition, we observe that the termK2

ade23S,d

may be absorbed in the terme23P(3)
a of the direct force,

which merely amounts to redefiningP(3)
a . Thus, the direct

force takes the form

Fdir
a 5m2S 1

2
K0

ade23S,d1
1

2
K1

ade23S,d1e23P(3)
a D .

~21!

As in paper I, we now expandS in powers ofdx, in the
form

S5S01S11S21•••, ~22!

whereS0 is the leading order (}dx2) term of S, S1 is the
correction term of homogeneous orderdx3, and so on. In this
work we will need only the explicit form ofS0:

S05~gmn1umun!dxmdxn. ~23!

The factore23 appearing in the last expression for the dire
force, Eq.~21!, is then expanded as

e235S23/2

5S0
23/22

3

2
S0

25/2S11S 15

8
S0

27/2S1
22

3

2
S0

25/2S2D1•••

5e0
232

3

2
e0

25S11e0
27S 15

8
S1

22
3

2
e0

2S2D1•••, ~24!

where e0[S0
1/2. In this expansion, the first term scales

dx23, the second asdx22, and so on. The terms included i
the ellipses scale asdx0 or higher powers ofdx.

Next we expand the direct force in powers ofdx, using
the above expansions ofS ande23. Based on Eq.~21!, this
expansion takes the form
9-4
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Fdir
a 5m2~e0

23P(1)
a 1e0

25P(4)
a 1e0

27P(7)
a !, ~25!

in which P(n)
a denote polynomials of homogeneous ordern in

dx and where we have omitted higher-order terms that v
ish at x→z0. Notice that the terme23P(3)

a of Eq. ~21! has
been absorbed here in the terme0

27P(7)
a ~with higher-order

corrections that vanish atx→z0 and are thus omitted!. Also
absorbed in e0

27P(7)
a are other terms like

K0
ade0

23S2,d , K0
ade0

25S1S1,d , K1
ade0

23S1,d , etc. The func-
tions P(1)

a andP(4)
a are given explicitly by

P(1)
a 52

1

2
K0

adS0,d , ~26a!

P(4)
a 52

1

2
K0

adS0S1,d1
3

4
K0

adS1S0,d2
1

2
K1

adS0S0,d

~26b!

~the explicit form ofP(7)
a will not be needed!. Note that the

leading-order term of the direct force,m2e0
23P(1)

a , emerges
exclusively from the leading-order term}K0

ad in Eq. ~21!,
whereas the next-order termm2e0

25P(4)
a is composed of con-

tributions coming from both terms}K0
ad and }K1

ad . The
}K0

ad contributions~and thus the entire leading-order term!
are all analogous to ones that occur in the scalar model@see
Eq. ~23! of paper I#, whereas the}K1

ad contribution has no
counterpart in the scalar case considered therein. We
point out that, sinceK0

ad does not depend on the extension
kabgd ~unlike Kn.0

ad ), one finds that the leading-order term
Fdir

a is extension independent, whereas the explicit form
the higher-order terms does depend, in general, on the ch
of extension.

III. DERIVATION OF THE REGULARIZATION
PARAMETERS: GRAVITATIONAL CASE

In principle, the derivation of the RPs will now involv
expanding the direct-force componentsFdir

a in scalar spheri-
cal harmonics and then taking the limitx→z0 @just as in the
scalar case analysis—cf. Eq.~27! in paper I#. This will yield
the l-mode contribution to the direct force,Fdir

a l , from which
one may deduce the values of all RPs. However, at this p
we may exploit the remarkable analogy between the exp
sion derived here for the gravitation direct force, Eq.~25!,
and the corresponding expression obtained in the scalar
model@see Eq.~22! of paper I#: these expressions differ onl
in the explicit form of the three coefficientsP(1,4,7)

a . Conve-
niently, this analogy will now allow us to base most of o
analysis on results already obtained in paper I.

We begin by recalling the expression obtained for the
rect force in the scalar case2 @see Eq.~27! in paper I#:

Fd
(dir,sca)5e0

23Pd
(1,sca)1e0

25Pd
(4,sca)1e0

27Pd
(7,sca), ~27!

2For later convenience, we use here a redefinition ofFd
(dir,sca),

with the factorq2 omitted (q is the scalar charge!.
02402
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where Pd
(1,sca)52 1

2 S0,d , Pd
(4,sca)52 1

2 S0S1,d1 3
4 S1S0,d , and

Pd
(7,sca) is a polynomial indx, of homogeneous orderdx7,

whose explicit value will not be needed here. We use
label ‘‘sca’’ to distinguish quantities associated with the sc
lar case from their gravitational-case counterparts.

Comparing Eqs.~25! and ~27! and taking into accoun
also the explicit form of the coefficientsPd

(1,4,sca)andPd
(1,4) ,

we now express the gravitational direct force as a sum
three terms in the form

Fdir
a 5m2~F1

a1F2
a1F3

a!, ~28!

where

F1
a[K0

adFd
dir,sca,

F2
a[2

1

2
e0

25K1
adS0S0,d

52
1

2
e0

23K1
adS0,d ,

F3
a[e0

27~P(7)
a 2K0

adPd
(7,sca)!. ~29!

We proceed by considering separately the contributions
the RPs from each of the three termsF1,2,3

a .

A. Contribution to the RPs from the term F 1
a

Consider first the termF1
a of the gravitational direct force

This term is just the scalar direct force, contracted w
K0

ad—an array of constant coefficients@recall K0
ad

[Kad(dx→0), whereKad is the tensor defined in Eq.~19!#.
Since the constant arrayK0

ad does not interfere with the mul
tipole decomposition, one may immediately conclude t
the contribution from the termF1

a to any of the RPs, in the
gravitational case, would be precisely the same as in
scalar case—multiplied byK0

ad . Denoting by Ri
a ( i

51,2,3) the contribution of the termFi
a to any of the RPs,

we thus simply have

R1
a5K0

adRd
(sca), ~30!

where the scalar-case valuesRd
(sca) are those given explicitly

in paper I.~We have made here the obvious replacemenq
→m.! In particular, sinceCd

(sca)5Dd
(sca)50, we find C1

a

5D1
a50.

B. Contribution to the RPs from the term F 2
a

We next consider the termF2
a in Eq. ~28!. This term has

the from}e0
25P(4)

a . As shown in paper I, in evaluating th
contribution of this kind of terms to thel mode of the direct
force atz0, one is allowed to take their limitdt,dr→0 be-
fore applying the multipole decomposition. This is true r
gardless of the explicit form of the polynomialP(4)

a . We
hence proceed by consideringF2

a(dt5dr 50); we show that
this quantity actually vanishes, even before applying
multipole decomposition.
9-5
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Examine the form ofF2
a , as defined in Eq.~29!: The

quantityK1
ad , recall, is the first-order variation of the tens

Kad[4kabgdûbûg with respect todx. Recalling thatkabgd

is a tensor of constant components, we haveK1
ad

54kabgd(dubug1ubdug), where dub is the first-order
variation in the PP four-velocityûb(x) ~namely, dub

5Gbr
l uldxr, with Gbr

l being the connection coefficients
z0). Thus,

F2
a[22e0

23kabgd~dubug1ubdug!S0,d . ~31!

Consider now the explicit form ofkabgd, given in Eq.~5!.
Three of the five terms ofkabgd are proportional toud.
These three terms will contribute nothing toF2

a as

udS0,d52ud~gmd1umud!dxm50.

Consider next the first and fifth terms ofkabgd, propor-
tional to ubug andgbg, respectively. Both terms yield con
tributions toF2

a which are proportional todubub. This quan-
tity, in fact, vanishes for our orbital setup: To see that, fi
recall ûbûb5ubub521, as the length of the four velocity i
preserved when PP. Then, observe that the linear variatio
this equality with respect todx yields

05d~ ûbûb!5dubûb1ûbdub52dubub1dgab~x!ûaûb
~32!

~to linear order indx), wheredgab(x)5gab
,g(z0)dxg is the

linear variation ingab(x). Since in our setup the trajectory
equatorial and sincegab

,u5gab
,w50 at the equatorial plane

the linear variationdgab vanishes~recall that in considering
F2

a we reducedx to just du,dw). Consequently, we obtain
from Eq. ~32!, dubub50.

To conclude the above discussion, we findF2
a50 ~in the

limit dt5dr 50). Hence, obviously, this term yields no co
tribution to any of the RPs:

R2
a50. ~33!

Note that this result may no longer be valid when usingk
extensions other than the ‘‘fixed-components’’ extension e
ployed here: Usually, there will arise additional terms in E
~31!, corresponding to first-order variations of the tens
kabgd(x). Also, notice that the result~33! will generally not
hold when considering nonequatorial orbits, as the varia
dgab in Eq. ~32! will generally fail to vanish. In both case
~namely, a differentk extension and/or a nonequatorial orbi!,
our calculation would lead, in general, to a nonvanish
contributionR2

a .

C. Contribution to the RPs from the term F 3
a

We finally turn to the termF3
a in Eq. ~28!. Recalling that

K0
ad is just an array of constants, we may write this term

F3
a5e0

27P̃(7)
a , ~34!
02402
t

of

-
.
r

n

g

s

whereP̃(7)
a [P(7)

a 2K0
adPd

(7,sca) is once again a polynomial in
dx, of orderdx7.

The contribution of the termF3
a to thel-mode direct force

is obtained by carrying out the~Legendre! integration over a
two-spherer 5t5const and then taking the limitsdt,dr
→0. As shown in paper I, in evaluating the contribution o
term of the form~34! ~regardless of the explicit form ofP̃(7)

a )
one may interchange the integration and the limits and
dt5dr 50 before integrating over the two-sphere—just
with the termF2

a considered above. To carry out the Le
endre integration, it proves especially convenient—as in
per I—to use a new set of spherical coordinates (u8,w8), in
which the particle is located at the polar axis,u850.3 The
contribution fromF3

a to the l-mode direct force can then b
expressed as

m2
L

2pE ê0
27P̂(7)

a Pl~cosu8!d~cosu8!dw8, ~35!

where Pl is the Legendre polynomial andê0 ,P̂(7)
a are the

reductions of e0 ,P̃(7)
a , respectively, tor 5r 0 and t5t0.

~Note that, conveniently, in theu8,w8 system the contribu-
tion to any l mode atx→z0 comes only from the axially
symmetric,m50 mode.! From Eq.~23!, recalling e05S0

1/2

anduu50, we obtain, explicitly,

ê05@r 0
2~du21dw2!1uw

2dw2#1/2. ~36!

To implement the integral~35!, it proves convenient, as in
paper I, to introduce Cartesian-like coordinatesx,y on the
two-sphere, which we define here by

x[u8 cosw8, y[u8 sinw8. ~37!

Note x5y50 at z0, and hence we have simplydxx5x and
dxy5y. It is simple to show that a choice of transformatio
(u,w)→(u8,w8) can be made such that the coordinatesx,y
would relate to the original coordinatesu,w through

x5dw1O~dx2!, y5du1O~dx2!. ~38!

Expressed in terms of the new coordinates, the polynom
P̂(7)

a (du,dw) in Eq. ~35! becomes P̄(7)
a (y,x)1O(dx8),

whereP̄(7)
a is a polynomial of homogeneous order 7 inx,y.

The contribution from theO(dx8) corrections to the direc
force vanishes atx→z0 and can therefore be omitted. Fro
Eq. ~36! we also get

ê05 ē0~x,y!1O~dx2!, ~39!

3We should emphasize here that we donot regardu8,w8 as new
spacetime coordinates—namely, all vectorial and tensorial qua
ties are still taken with respect to the original coordinatesu,w. That
is, u8,w8 are merely used here as new variables for implemen
the Legendre integral. The same holds for the coordinatesx,y in-
troduced below.
9-6
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where ē0[@r 0
2(x21y2)1uw

2x2#1/2. Again, only the leading-
order term here contributes to the direct force atx→z0, and
we are allowed to drop theO(dx2) correction. Hence, as fa
as the calculation of the RPs is concerned, we may exp
the contribution from the termF3

a to thel-mode direct force,
Eq. ~35!, as

m2
L

2pE ē0
27P̄(7)

a ~x,y!Pl~cosu8!dxdy. ~40!

Note that the Jacobian of the transformation (cosu8,w8)
→(x,y), which is actually given by 11O(dx2), has been se
here to just 1: The higher-order corrections are once ag
omitted, as they vanish atx→z0.

Examine now the integral in Eq.~40!: ē0 is an even func-
tion of bothx andy and so is the function cosu8. However,
each of the possible individual terms in the polynomialP̄(7)

a

~such as}xy6 or }x4y3, for instance! is necessarily anodd
function of eitherx or y. Consequently, we observe that th
entire integrand in Eq.~40! is odd in eitherx or y. Therefore,
obviously, the integration over the two-sphere would vani
As a consequence, no contribution to the RPs will arise fr
the termF3

a :

R3
a50. ~41!

Notice that this last result is valid for any~sufficiently regu-
lar! k extension. A modification of the extension would on
affect the explicit form of the polynomialsP̄(7)

a , but would
not alter the odd-parity structure of the integrand in Eq.~40!.

D. Summary: RPs values in the gravitational case

Let us now collect the above results: We have found t
neither of the termsF2

a and F3
a contributes to thel-mode

direct force. The sole contribution to the RPs comes from
term F1

a—this contribution is given in Eq.~30!. The RPs in
the gravitational case are therefore given by

Ra5K0
adRd

(sca), ~42!

where, recall,Ra stands for any of the RPs and the scal
case valuesRd

(sca) are those given explicitly in paper I. W
now need only to provide the explicit form ofK0

ad : Recall-
ing K0

ad5Kad(x→z0), one easily gets, from Eqs.~19! and
~5!,

K0
ad5gad1uaud, ~43!

where, recall,ua andgad denote the values of these quan
ties atz0. Note thatK0

ad is just the spatial projection operato
at z0—namely, (K0

adVd)ua50 for any vectorVd .
Let us finally write Eq.~42! more explicitly: First, recall-

ing ~see paper I! that the scalar parameterAd
(sca) has no com-

ponent tangent toua ~i.e., udAd
(sca)50), we simply obtain

Aa5A(sca)
a ~44!
02402
ss
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~with the obvious substitutionq→m). Unlike the situation
with the parameterAa, the quantityudBd

(sca) does not vanish
@see Eq.~85! in paper I#, and we leave the expression forBa

in the form

Ba5K0
adBd

(sca) ~45!

~again, withq→m). Finally, asCd
(sca)5Dd

(sca)50, we shall
have, in the gravitational case alike,

Ca5Da50. ~46!

IV. DERIVATION OF THE REGULARIZATION
PARAMETERS: ELECTROMAGNETIC CASE

In this section we consider theelectromagneticself-force
acting on an electrically charged particle: we prescribe
mode-sum scheme in this case and construct all required
for an arbitrary~equatorial! geodesic orbit in Schwarzschil
spacetime. The same analytic calculation used for deriv
the gravitational-case RPs will prove directly applicable a
to the electromagnetic case, with only minor adaptations
quired.

We shall consider a particle carrying an electric charge
~with ueu!M ) and assume the same orbital configuration
in the gravitational case~namely, the particle is taken to
move along an equatorial orbit, which in the limite→0 be-
comes a geodesic!. We shall also maintain here the notatio
for the various quantitiesz0 , x, e, S, ûa , and so on. We
shall denote byfa(x) the vector potential associated wit
the ‘‘full’’ electromagnetic field induced by the particle. I
this section we ignore the gravitational self-force.

A formal expression for the electromagnetic self-force
curved spacetime was obtained long ago by DeWitt and B
hme @15# ~and was reproduced recently by QW@2# using a
different method!. For a geodesic in vacuum spacetime, t
electromagnetic self-force is obtained from an electrom
netic ‘‘tail’’ force, just as in the gravitational case:

Fself
a(EM)5 lim

x→z0

F tail
a(EM)~x!, ~47!

where hereafter we use the label ‘‘EM’’ to signify quantitie
associated with the electromagnetic case. The formal c
struction of the vector fieldF tail

a(EM)(x) is described in@15,2#.
As in the gravitational case, the electromagnetic tail fo
can be written as the difference between a ‘‘full’’ force and
‘‘direct’’ force—just as in Eq. ~9!. In the electromagnetic
case, these two vector fields are given by@8#

F full
a(EM)~x!5ekabgfb;g , Fdir

a(EM)5ekabgfb;g
dir , ~48!

where fb
dir(x) is the ‘‘direct’’ part of the vector potentia

~given explicitly below! andkabg(x) is a ~sufficiently regu-
lar! extension of the tensor

k0
abg[gagub2gabug, ~49!
9-7
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defined atz0. As in the gravitational case, we shall ado
here the ‘‘fixed-components’’ extension, defined~in
Schwarzschild coordinates! throughkabg(x)[k0

abg .
The mode-sum prescription for the electromagnetic s

force is completely analogous to the one prescribed in
gravitational and scalar cases: Given the~scalar harmonic! l
modesF full

a l (EM) of the electromagnetic full force, the electro
magnetic self-force is constructed through

Fself
a(EM)5(

l 50

`

@ lim
x→z0

F full
a l (EM)~x!2Aa(EM)L2Ba(EM)

2Ca(EM)/L#2Da(EM), ~50!

where the various electromagnetic-case RPs are to be
tained, again, by analyzing the multipole modes of the dir
force. The rest of this section is devoted to calculating th
electromagnetic RPs.

As in the gravitational case, our starting point would
the expression for the direct part of the particle’s field—t
time the direct part of the vector potential—as obtained
MNS @see Eq.~B3! of Ref. @8##. In precisely the same man
ner as in the gravitational case, this expression can
brought to the form

fb
dir~x!5eS21/2ûb1S21/2Pb

(2)~x! ~51!

@in analogy with Eq.~14!#, wherePb
(2) is a ~regular! function

of O(dx2). The derivatives of the direct vector potential th
take the form

fb;g
dir 52~e/2!S23/2S,gûb1eS21/2ûb;g2S23/2S,gPb

(2)/2

1S21/2Pb;g
(2) , ~52!

which @as in obtaining Eq.~17!# can be put into the form

fb;g
dir 52

1

2
ee23S,gûb1e23Pbg

(3) , ~53!

with Pbg
(3) being a~regular! function of orderdx3 ~and higher

orders!. Consequently, the direct electromagnetic force ta
precisely the same form as in Eq.~18!,

Fdir
a(EM)~x!5e2S 2

1

2
KEM

ad e23S,d1e23P(3)
a D , ~54!

where, this time,

K (EM)
ad [kabdûb ~55!

andeP(3)
a [kabgPbg

(3) . Again, we may drop all terms ofP(3)
a

which are of orderdx4 and higher~as they do not contribute
to the direct force atx→z0) and takeP(3)

a to be of homoge-
neous orderdx3.

Thanks to the complete analogy between the forms of
electromagnetic and gravitational direct forces@compare
Eqs. ~54! and ~18!#, our analysis now proceeds precisely
in the gravitational case: We expandK (EM)

ad andS in dx, as in
02402
f-
e

b-
t
e
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s
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Eqs.~20! and~22!, and consequently write the direct force
a sum of three terms—in precise analogy with Eqs.~25! and
~28!:

Fdir
a(EM)5e2~e0

23P(1)
a(EM)1e0

25P(4)
a(EM)1e0

27P(7)
a(EM)!

[e2~F1
a(EM)1F2

a(EM)1F3
a(EM)!, ~56!

whereF1,2,3
a(EM) are defined in Eq.~29!, with the replacements

Kn
ad→Kn(EM)

ad and P(7)
a →P(7)

a(EM) . The only point at which
our current analysis differs from the gravitational case is
the explicit values taken by the various coefficientsKn

ad ~and
consequently in the explicit values of the termsP(n)

a ).
Consider first the contribution to thel-mode direct force

coming from the termF1
a(EM) : In a complete analogy with

Eq. ~30!, we obtain

R1(EM)
a 5K0(EM)

ad Rd
(sca)~q→e!, ~57!

where Ri (EM)
a ( i 51,2,3) stands for the contribution of th

term Fi
a(EM) to any of the RPs, and the array of consta

coefficientsK0(EM)
ad [K (EM)

ad (x→z0) is now given by

K0(EM)
ad 52~gad1uaud!. ~58!

Noticing K0(EM)
ad 52K0

ad @compare Eq.~58! to Eq. ~43!# and
recalling Eqs.~30! and ~42!, we then conclude

R1(EM)
a 52R1(grav)

a ~m→e!52R(grav)
a ~m→e!, ~59!

where hereafter we use the label ‘‘grav’’ to signify th
gravitational-case values.

Next, consider the termF2
a(EM)[2 1

2 e0
23K1(EM)

ad S0,d .
Here, the coefficientK1(EM)

ad ~the first-order correction in
K (EM)

ad ) is given by

K1(EM)
ad 5kabddub . ~60!

As in the gravitational case, it is easy to show thatF2
a(EM)

~evaluated atdt5dr 50) actually vanishes, even before ta
ing its multipole decomposition: From Eq.~49! we observe
that kabd is composed of two terms, one proportional toub

and the other proportional toud. The }ub term contributes
nothing toK1(EM)

ad , sinceubdub50 ~as explained when dis
cussing the gravitational case!. The }ud term will yield a
zero contribution as well, by virtue ofS0,dud50. We thus
find that in the electromagnetic case—just as in the grav
tional case—the termF2

a(EM) contributes nothing to the
RPs—namely,R2(EM)

a 50.
As to the last term in the electromagnetic direct forc

F3
a(EM) , using the same parity considerations as in the gra

tational case, one shows that the contribution from this te
to any of the RPs will vanish—namely,R3(EM)

a 50. This van-
ishing is irrespective of the explicit form of the polynomi
P(7)

a(EM) in Eq. ~56!.
In conclusion, thus, we find that the sole contribution

the RPs in the electromagnetic case comes from the t
9-8
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F1
a(EM) , Eq. ~59!. We hence obtain

R(EM)
a 52R(grav)

a ~m→e!. ~61!

V. SUMMARY AND CONCLUDING REMARKS

Let us summarize our mode-sum prescription for co
structing the gravitational and electromagnetic self-forc
We start with the gravitational case.

~1! For a given trajectory, compute the tensor-harmo
modes of the metric perturbation,h̄( i ) l 8m(r ,t), by numeri-
cally integrating the separable field equations~e.g., in the
harmonic gauge@4#!.

~2! Given h̄( i ) l 8m(r ,t), construct the full modesF full
a l at the

particle’s location. This is done by applying the operator
Eq. ~8! to h̄( i ) l 8m(r ,t), using the ‘‘fixed-components’’ exten
sion described above and then expanding the resultant
into scalar spherical harmonics~and summing overi l 8m for
a givenl ). This procedure is implemented in Refs.@5,14#.

~3! Use Eqs.~62! below @along with Eqs.~83! of paper I#
to obtain the RPs values corresponding to the trajectory
der consideration.

~4! Finally, apply the mode-sum formula, Eq.~11!.
This prescription is now being implemented by Bara

and Lousto for radial @5# and circular @14# orbits in
Schwarzschild spacetime.

The prescription for constructing the electromagnetic s
force is similar: First, one has to compute the vect
harmonic modes of the~full-field! vector potential for the
given orbital configuration. Then, one constructs the fu
force modesF full

a l (EM)—this construction is carried out by ap
plying Eq. ~48! to each of the full-field vector-harmoni
modes and then decomposing each of these modes in s
spherical harmonics. Finally, one applies the mode-sum
mula~50!, with the electromagnetic RPs values given in E
~62! below.

The values of the RPs in the gravitational and electrom
netic cases are summarized as follows:

Aa
(grav)52Aa

(EM)5Aa
(sca), ~62a!

Ba
(grav)52Ba

(EM)5~da
b1uaub!Bb

(sca), ~62b!

Ca
(grav,EM)5Da

(grav,EM)50 ~62c!

~with the obvious replacementsq→m or q→e), where the
quantities labeled ‘‘sca’’ are the scalar-field parameters gi
explicitly in Eqs.~83! of paper I. The gravitational RPs wer
calculated previously in a different method, using thel-mode
Green’s function expansion technique@4,5#, in the special
case of radial orbits. The results agree with the values~62!.

As we discussed above, there is a certain ambiguity in
values of the RPs, which arises from the freedom in choos
the extension of the tensork off the evaluation pointz0 ~the
choice of this extension affects, of course, the multipole
composition of the force!. However, our mode-sum schem
produces no ambiguity in the eventual value of the s
force—one only has to make sure that the full-force mo
F full

a l in Eq. ~11! @or in Eq.~50!# are calculated using the sam
02402
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extension as the one used in calculating the RPs. It is t
essential to recall here that the RPs values summarized a
are those referring to the ‘‘fixed-components’’ extension
the tensorskabgd or kabg ~expressed in Schwarzschild coo
dinates!. This extension is most easily applicable in the n
merical computation of the full-force modes@5,14#.

Based on our above analysis, we may phrase the foll
ing general statements concerning the extension depend
of the RPs in the electromagnetic and gravitational cases~i!
The RPsAa, Ca, andDa are insensitiveto the extension of
kabgd ~provided it is regular enough!. ~ii ! The value ofBa

doesdepend, in general, on the choice of extension; ho
ever, all sufficiently regular extensions which differ from th
‘‘fixed-components’’ extensionkabgd by an amount of only
O(dx2) will admit the same value ofBa—the one given in
Eq. ~62b!. It is interesting to refer here to the MNS analys
@8#, in which a different extension has been employed: MN
extended the tensorkabgd by PP the four-velocity fromz0 to
x and just assigning togab the actual value it has atx. Inter-
estingly, within this extension@differing from the ‘‘fixed-
components’’ extension already atO(dx)], all RPs attain
precisely the same values as in the scalar case@6# ~except
that in the electromagnetic case all RPs are to be multip
by 21).

Finally, it is important to recall that the gravitational sel
force is agauge-dependentnotion, as discussed in Ref.@9#.
The prescription described in this paper applies to the s
force associated with theharmonic gauge~in which the
original MST-QW scheme has been formulated!. It also ap-
plies, with the same RPs values, to any other gauge relate
the harmonic gauge through a regular gauge transforma
@9#. However, for other, nonregular gauges, the mode-s
scheme is not guaranteed to be valid in its present form
method for overcoming this gauge problem has be
sketched in@9# and is currently being implemented for ci
cular orbits in Schwarzschild spacetime@14#. A different
strategy~applicable in the Schwarzschild case! would be to
calculate the self-force directly in the harmonic gauge@16#.
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APPENDIX: DIRECT METRIC PERTURBATION

In this appendix we obtain Eq.~13! for the direct metric
perturbation by processing the expression given by MST
Ref. @1#.

By considering the Hadamard expansion of the~full ! met-
ric perturbation, MST obtained the following expression f
the ~retarded! trace-reversed perturbation@see Eq.~2.27! of
Ref. @1##:
9-9



in
n

lo
n

e

nl
it
e

a

io

ar

a

d
e

e

s

d

n

r
e
d

ith

-

ce
n.

on

ic

LEOR BARACK AND AMOS ORI PHYSICAL REVIEW D67, 024029 ~2003!
h̄bg~x!52mF2b~x,z0!

e
ûb

1 ûg
12u1

sS;lu1
rRslr(b̂

1
ûg)

1

12eRb̂lĝs
1

u1
lu1

sG 1tail term1O~e2!. ~A1!

Here we use the notation of our Sec. II~see Fig. 1!: namely,
x is a point in the neighborhood of the force evaluation po
z0 , e[S1/2 is the length of the short geodesic section co
nectingx to the world line and normal to it,z1 denotes the
intersection of this geodesic with the world line,ua andu1

a

~or ua
1) denote the four-velocities atz0 andz1, respectively,

and ûa and û1
a ~or ûa

1) are their PP tox. In addition, indices
in parentheses denote symmetrization andRabgd

1 represents
the Riemann tensor PP fromz1 to x with respect to any of its
indices carrying a caret. The ‘‘tail term’’ represents a non
cal contribution to the full perturbation, with its form give
explicitly in @1#. The functionb ~denotedk21 in @1#! is a
regular function satisfyingb511O(dx2) @see Eq.~A14!
therein#. Note that the correction term proportional to th
four-acceleration in Eq.~2.27! of Ref. @1# can be omitted,
since, for geodesic orbits, it contributes to the self-force o
at order higher thanO(m2). For the same reason, we om
here theO(t r

21e) term indicated therein. Finally, notice th
notational changes→S/2.

The direct part of the metric perturbation is now taken
the difference between the full perturbation given in Eq.~A1!
and the tail term. The terms included inO(e2) do not con-
tribute to the direct perturbation at the limitx→z0 (e→0);
nor do they contribute to the direct force, whose construct
involves only first-order derivatives ofh̄ab(x). We thus re-
define the direct perturbation by ignoring theseO(e2) terms,
which leaves us with only the three terms in the squ
brackets, scaling ase21, e1, ande1, respectively.

Consider now the second and third terms in the squ
brackets: First, note that the~coordinate components of the!
two vectorsu1

a andua differ only at O(dx). Hence@recall-
ing e,S;l}O(dx)], this difference contributes only to
O(dx2) in Eq. ~A1!. We may thus ignore this correction an
just replaceu1

a with ua in the second and third terms in th

square brackets. Likewise, we replaceû1
a with ûa in the sec-

ond term. Similarly, we may ignore theO(dx) difference
betweenRabgd

1 andRabgd ~the latter denoting the coordinat
value of the Riemann tensor atz0) as it contributes only to
O(dx2) in Eq. ~A1!. The direct metric perturbation thu
takes the form
02402
t
-

-

y

s

n

e

re

h̄bg
dir ~x!52mF2b~x,z0!

e
ûb

1 ûg
12usS;lurRslr(b̂ûg)

12eRb̂lĝsulusG . ~A2!

Examine now more closely the second term in Eq.~A2!:
SinceS;l}O(dx), the only contribution to the direct force
which does not vanish atx→z0 arises from differentiating
S;l. Recalling Eq.~23!, we have

S;d
;l52~dd

l1ulud!1O~dx!.

Note thatS;d
;lud50 ~at x→z0). Note also that the secon

term in Eq. ~A2! ~unlike the other two terms! is perfectly
regular atx5z0. This allows us to evaluate its contributio
directly at z0, which we do by just ‘‘removing’’ the carets
from Rslrb̂ andûg . Recalling Eq.~7!, the contribution from
this term to the direct force atz0 then reads

22m2kabgdusS ;d
;l urRslr(bug)

~evaluates atx5z0). Examining the form of the tenso
kabgd, given in Eq. ~5!, we observe that three of its fiv
terms are proportional toud and thus vanish when contracte
with S;d

;l . The first term ofkabgd is proportional toubug and
thus yields a vanishing contribution when contracted w
either urRslrb or urRslrg . Likewise, the last term of
kabgd, proportional toggb, is found to vanish when con
tracted with eitherurRslrbug or urRslrgub . We conclude
that the contribution of this regular term to the self-for
vanishes—even before taking the harmonic decompositio

Finally, consider the third term in Eq.~A2!. Noticing that
this term has the forme3 ~a regular function ofx), we may
write it as

e21Pbg
(2)~x,z0!, ~A3!

wherePbg
(2) is a certain regular function, of orderdx2. ~This

form will be convenient for our analysis in Sec. II.! We fur-
ther notice that the terms ofO(dx2) included in the function
b contribute toh̄bg an amount of precisely the form~A3!.
We may thus absorb this contribution in the contributi
~A3! coming from the third term and replace the functionb
with just 1. The explicit form of the regular functionPbg

2 (x)
will not be needed in our analysis.

In conclusion, we find that the direct part of the metr
perturbation is effectively given by Eq.~13!. This expression
is used as a starting point for the analysis in this paper.
s.
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