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ABSTRACT

In this Letter, we investigate uniformly rotating, homogeneous, and axisymmetric relativistic fluid bodies with
a toroidal shape. The corresponding field equations are solved by means of a multidomain spectral method, which
yields highly accurate numerical solutions. For a prescribed, sufficiently large ratio of inner to outer coordinate
radius, the toroids exhibit a continuous transition to the extreme Kerr black hole. Otherwise, the most relativistic
configuration rotates at the mass-shedding limit. For a given mass density, there seems to be no bound to the
gravitational mass as one approaches the black hole limit and a radius ratio of unity.

Subject headings: black hole physics — gravitation — methods: numerical — relativity — stars: neutron —
stars: rotation

1. INTRODUCTION

Self-gravitating toroidal fluid configurations (without a cen-
tral body) in Newtonian gravity were the subject of analytic
investigations by Poincare´ (1885a, 1885b, 1885c), Dyson
(1892, 1893), Kowalewsky (1895), and Lichtenstein (1933). In
particular, Dyson was able to give a fourth-order expansion of
uniformly rotating, homogeneous, and axisymmetric rings,
which turned out to be an extremely good approximation for
thin rings (see Ansorg, Kleinwa¨chter, & Meinel 2003). Nu-
merical evidence for the existence of these rings was given by
Wong (1974) and later by Eriguchi & Sugimoto (1981), who,
in addition, confirmed a conjecture by Bardeen (1971), stating
that there is a continuous connection between the Maclaurin
spheroids and the sequence of “Dyson rings” (see also Ansorg
et al. 2003).

In this Letter, we extend the above Dyson rings to Einsteinian
gravity. As one moves away from the Newtonian configura-
tions, one observes typical relativistic effects, such as the for-
mation of ergoregions. In particular, we found an interesting
continuous transition to an extreme Kerr black hole. If a fixed
ratio of inner to outer coordinate radius is pre-r /r 1 0.56131 2

scribed and one gradually increases the gravitational mass (for
fixed mass density), the configurations eventually form an ex-
treme Kerr black hole, as described by Meinel (2002). If on
the other hand is fixed, the ultimate configu-r /r ! 0.56131 2

ration, as one increases the gravitational mass, rotates at the
mass-shedding limit. It is furthermore interesting to note that
the maximum gravitational mass seems to become infinite as

.r /r r 11 2

For computing the “relativistic Dyson rings,” we extended
our multidomain spectral method (Ansorg, Kleinwa¨chter, &
Meinel 2002) to toroidal topology. Again we obtain an accuracy
of up to 12 digits for configurations sufficiently far away from
limiting cases.

Relativistic Dyson rings and their possible generalizations
(rings with realistic equations of state, configurations with a
central object) might be relevant in two different astrophysical
situations: (1) they could form as a result of stellar core collapse
in the case of high angular momentum (see Thorne 1998), and
(2) they could be present in central regions of galaxies. Of
course, for a final evaluation of the astronomical relevance of
relativistic toroids their stability must be analyzed. It is to be
expected that they are stable with respect to axisymmetric per-

turbations, but they may be unstable to (nonaxisymmetric) frag-
mentation. In this case, the toroids could nevertheless play an
interesting role as intermediate configurations in various astro-
physical collapse scenarios.

In what follows, units are used in which the speed of light
as well as Newton’s constant of gravitation are equal to 1.

2. METRIC TENSOR, FIELD EQUATIONS,
AND BOUNDARY CONDITIONS

For an axisymmetric and stationary spacetime describing the
gravitational field of a uniformly rotating perfect fluid body,
the line element can be cast into the following form:1

2 2a 2 2 2 �2n 2 2n 2ds p e (dr � dz ) � W e (dJ � q dt) � e dt .

We define the corresponding Lewis-Papapetrou coordinates (r,
z, J, t) uniquely by the requirement that the metric coefficients
and their first derivatives be continuous at the surface of the
body.

A particular consequence of the interior field equations for
a perfect fluid body revolving with the uniform angular velocity
Q is the boundary condition

2n 2 2 �2n �2e � W (q � Q) e p constp (1 � Z ) ,0

which holds along the surface of the fluid. The constant is
related as shown to the relative redshift , measured at infinity,Z0

of photons that are emitted from the body’s surface and do not
carry angular momentum.

Interior and exterior field equations together with the above
boundary and transition conditions at the body’s surface, as-
ymptotic behavior at infinity, and regularity conditions along
the rotation axis ( ) form a complete set of equations tor p 0
be solved (see, for example, Butterworth & Ipser 1976).

As long as we do not consider the transition to the extreme
Kerr black hole, the regularity condition at infinity is asymp-
totic flatness. If we, however, follow the “physical route” to
the extreme Kerr black hole studied by Meinel (2002), we learn

1 This form of the line element of an axisymmetric and stationary spacetime
also applies in more general situations, e.g., for differentially rotating perfect
fluids or if the stress-energy tensor is that of a stationary, axisymmetric elec-
tromagnetic field (Carter 1969).
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Fig. 1.—Parameter region of the relativistic Dyson rings in the -r /r1 2

plane. Rings with fixed radius ratio are depicted inZ /(1 � Z ) r /r p 0.70 0 1 2

Fig. 3 (see also Fig. 4 and Table 1). The boundary configurations indicated
by filled circles can be found in Fig. 5.

Fig. 2.—Normalized gravitational mass , normalized rest mass ,1/2 1/2Mm M m0

relative binding energy , and compactness parameter for(M � M)/M M/R0 0 circ

at the black hole limit ( ).0.5613≤ r /r ≤ 0.85 Z r �1 2 0

that in this limiting process the fluid body shrinks until it co-
incides with the coordinate origin. The geometry of the exterior
spacetime assumes that of the extreme Kerr solution outside
the horizon. On the other hand, a completely different space-
time, which is not asymptotically flat, forms if we rescale the
coordinates such that the fluid body retains its finite extension.
The asymptotic behavior of the corresponding gravitational po-
tentials in this limit is given by the “extreme Kerr throat ge-
ometry” (see Bardeen & Horowitz 1999 and Meinel 2002). In
order to determine the physical parameters of the rings in the
black hole limit precisely, it is necessary to calculate this inner
solution with its nonflat asymptotic behavior.

3. THE MULTIDOMAIN SPECTRAL METHOD

In the case of spheroidal figures of equilibrium, a two-domain
spectral method was used to yield highly accurate numerical
solutions (Ansorg et al. 2002). In this method, we separately
mapped the interior and exterior of the star onto a square. The
field quantities as well as the unknown shape of the fluid body
were written in terms of Chebyshev expansions, and the cor-
responding coefficients resulted from a high-dimensional non-
linear set of equations that incorporated both field equations
and transition conditions. This system was solved by a Newton-
Raphson method, and an initial guess for the solution was taken
from the analytically known Newtonian Maclaurin spheroids.

The idea of mapping several subregions separately onto
squares can also be applied to the case of toroidal figures. In
a first step, we map the interior of the ring onto a square
( , ) by0 ≤ s ≤ 1 0 ≤ t ≤ 1

2 2 2 2r p r � (r � r )s,1 2 1

2z p (1 � t)y (s),B

where stands for the inner and outer coordinate radius ofr1/2

the ring, respectively, and the nonnegative function , whichyB

describes the unknown shape of the ring’s surface, satisfies

y (0) p 0, y (1) p 0.B B

(We assume reflectional symmetry with respect to the plane

.) Next we introduce toroidal coordinates in order˜˜z p 0 (r, z)
to obtain a compact coordinate region for the entire space ex-
terior to the ring:

˜z p ir cot (z/2),m

with

˜˜ ˜z p r � iz, z p r � iz.

The value must be chosen such that . Since inr r ! r ! rm 1 m 2

these coordinates the metric potentials are not analytic at
, it is necessary to divide the corresponding compactz̃ p 0

coordinate region of values into further subregions, each˜˜(r, z)
one of which is again to be mapped onto a square.

The solution is represented and determined in a completely
analogous manner as described above for the spheroidal bodies.
Note that the initial guess for the Newton-Raphson method
now comes from the numerically known Dyson rings in New-
tonian gravity.

Again, we obtain very accurate solutions2 yielding up to 12

2 The accuracy can be tested in several independent ways (see Ansorg et
al. 2002).
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Fig. 3.—Cross sections of relativistic Dyson rings with fixed coordinate
radius ratio and varying redshift . The normalizedz-coordinater /r p 0.7 Z1 2 0

is plotted against the normalizedr-coordinate (with the axes scaledQz Qr
identically). In the Newtonian limit ( ) as well as in the black hole limitZ r 00

( ), the ring shrinks down to the normalized coordinate origin. DashedZ r �0

lines represent the boundary of the toroidal ergoregion. In the limit ,Z r �0

the ergoregion is that of the extreme Kerr black hole (see Meinel 2002).

Fig. 4.—The dimensionless quantities , , and for the2M /J QM (M � M)/M0 0

relativistic Dyson ring sequence with from the Newtonian limitr /r p 0.71 2

( ) to the black hole limit ( ).Z r 0 Z r �0 0

Fig. 5.—Cross sections of relativistic Dyson rings at (a–c) the mass-shedding
limit and (c–e) the black hole limit (see Fig. 1). Here the normalizedz-
coordinate is plotted against the normalizedr-coordinate (with thez/r r/r2 2

axes scaled identically). The dashed cross section in (b) again represents the
ergoregion. Note that in the black hole limit (see Fig. 3). Hence, inQr r 02

contrast to (b), the ergoregion would become infinitely large with the scaling
of this figure. It is interesting to observe a more and more circular shape of
the ring’s cross section as one approaches , a property known fromr /r p 11 2

the Dyson rings in Newtonian gravity.

digits for configurations that are sufficiently far away from the
mass-shedding limit and from the limits , .r /r r 0 r /r r 11 2 1 2

4. RESULTS

For a particular (constant) energy densitym, the relativistic
Dyson rings are characterized by two parameters, say, the red-
shift and the radius ratio . The region in which theseZ r /r0 1 2

parameters may vary is depicted in Figure 1. Here vanishing
represents the Dyson rings in Newtonian gravity. The fluidZ0

bodies with are transition configurations from to-r /r p 01 2

roidal to spheroidal topology. Starting from the Newtonian
body, these configurations reach a mass-shedding limit at

. If we now follow the mass-shedding curve, in-Z ≈ 0.26 Z0 0

creases and reaches infinity at , which corre-r /r p 0.56131 2

sponds to a transition to the extreme Kerr black hole. For a
rigidly rotating disk of dust, such a transition was conjectured
by Bardeen & Wagoner (1969, 1971) and analytically proven
by Neugebauer & Meinel (1993, 1995). Also, for differentially
rotating disks of dust a transition of this kind has been found
(Ansorg & Meinel 2000; Ansorg 2001). In this limit, the co-
ordinate extension of the gravitational source (here the relativ-
istic Dyson ring) shrinks until the object coincides with the

coordinate origin. The metric tensor assumes the form of the
extreme Kerr solution outside the horizon3 with , andW { r
the angular momentumJ, the gravitational massM, and the
angular velocityQ approach the relation

2 �2J p M p (2Q) . (1)

This extreme Kerr black hole limit emerges for radius ratios

3 In our coordinates, the horizon (and the “throat” of the extreme Kerr metric)
is given by (see Meinel 2002).r p z p 0
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TABLE 1
Physical Quantities for the Configurations with the

Radius Ratio Displayed in Figure 3r /r p 0.71 2

Z0 Q̄ M̄ M̄0 J̄ R̄circ

0.05 . . . . . . 4.9108E�1 7.9661E�3 8.0842E�3 2.3168E�4 2.8483E�1
0.50 . . . . . . 5.5491E�1 1.4018E�1 1.5659E�1 2.8624E�2 7.4643E�1
1.22 . . . . . . 6.0702E�1 2.8798E�1 3.5082E�1 9.8186E�2 9.7512E�1
1.60 . . . . . . 6.2320E�1 3.3896E�1 4.2564E�1 1.3035E�1 1.0441
2.50 . . . . . . 6.4726E�1 4.2094E�1 5.5610E�1 1.9083E�1 1.1543
6.00 . . . . . . 6.7932E�1 5.5338E�1 7.9987E�1 3.1294E�1 1.3466
13.0 . . . . . . 6.9211E�1 6.2871E�1 9.6211E�1 3.9769E�1 1.4734
� . . . . . . . . . 6.9980E�1 7.1449E�1 1.1742 5.1050E�1 1.6427

Note.—Here , , , , and1/2 1/2 1/2¯ ¯ ¯ ¯ ¯Q p Q/m M p Mm M p M m J p Jm R p0 0 circ

are normalized values of the angular velocityQ, gravitational massM,1/2R mcirc

rest mass , angular momentumJ, and circumferential radiusM R p0 circ

. Note that , , , and tend to zero in the Newtonian�n ¯ ¯ ¯ ¯We (r p r , z p 0) M M J R2 0 circ

limit , whereas , for , approaches the value .¯ ¯Z r 0 Q r /r p 0.7 Q p 0.481090 1 2 N

. If we move from here along this boundary curver /r 1 0.56131 2

toward , we note that the normalized gravitationalmassr /r p 11 2

, the normalized rest mass4 , and the1/2 1/2¯ ¯M p Mm M p M m0 0

4 For the calculation of , we assume that the total energy densitym isM0

equal to the rest-mass density (see Bardeen 1971).

relative binding energy increase (see Fig. 2). In(M � M)/M0 0

the Newtonian limit ( ), the normalized angular velocityZ r 00

tends to zero as . Our numerical results1/2Q̄ p Q/m r /r r 11 2

support the plausible assumption that the same is valid for all
values of . In the black hole limit ( ), this would implyZ Z r �0 0

as (see eq. [1]). Therefore, we believe thatM̄ r � r /r r 11 2

there is no bound to the gravitational mass of relativistic Dyson
rings of a given mass density as one approaches the black hole
limit and a radius ratio of unity.

The evolution of a typical relativistic Dyson ring sequence
with fixed radius ratio from the Newtonian to ther /r p 0.71 2

black hole limit can be seen in Figures 3 and 4. Corresponding
values of various physical quantities are given in Table 1. Fi-
nally, in Figure 5 we provide selected examples of configu-
rations at the mass-shedding and the black hole limit. More
details of our methods and results including the discussion of
realistic equations of state, configurations with a central object
(black hole or neutron star), stability, and astrophysical rele-
vance will be published elsewhere.

This work was supported by the Deutsche Forschungsge-
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