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23.1 A NEW CHALLENGE FOR APPLICATION
DEVELOPERS

Scientific and engineering applications have driven the development of high-performance
computing (HPC) for several decades. Many new techniques have been developed over
the years to study increasingly complex phenomena using larger and more demanding jobs
with greater throughput, fidelity, and sophistication than ever before. Such techniques are
implemented as hardware, as software, and through algorithms, including now familiar
concepts such as vectorization, pipelining, parallel processing, locality exploitation with
memory hierarchies, cache use, and coherence.

As each innovation was introduced, at either the hardware, operating system or algo-
rithm level, new capabilities became available — but often at the price of rewriting appli-
cations. This often slowed the acceptance or widespread use of such techniques. Further,
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when some novel or especially disruptive technology was introduced (e.g. MPPs pro-
grammed using message passing) or when an important vendor disappeared (e.g. Thinking
Machines), entire codes had to be rewritten. often inducing huge overheads and painful
disruptions to users.

As application developers and users who have witnessed and experienced both the
promise and the pain of so many innovations in computer architecture. we now face
another revolution, the Grid, offering the possibility of aggregating the capabilities of
the multitude of computing resources available to us around the world. However, like all
revolutions that have preceded it, along with the fantastic promise ot this new technol-
ogy, we are also seeing our troubles multiply. While the Grid provides platform-neutral
protocols for fundamental services such as job launching and security. it lacks sufficient
abstraction at the application level to accommodate the continuing evolution of individual
machines. The application developer. already burdened with keeping abreast of evolution
in computer architectures, operating systems. parallel paradigms, and compilers, must
simultaneously consider how to assemble these rapidly evolving. heterogeneous pieces,
into a useful collective computing resource atop a dynamic and rapidly evolving Grid
infrastructure.

However, despite such warnings of the challenges involved in migrating to this poten-
tially hostile new frontier, we are very optimistic. We strongly believe that the Grid can
be tamed and will enable new avenues of exploration for science and engineering, which
would remain out of reach without this new technologv. With the ability to build and
deploy applications that can take advantage of the distributed resources of Grids, we will
see truly novel and very dynamic applications. Applications will use these new abilities to
acquire and release resources on demand and according to need. notify and interact with
users, acquire and interact with data. or find and interact with other Grid applications.
Such a world has the potential to fundamentally change the way scientists and engineers
think about their work. While the Grid offers the ability to attack much larger scale prob-
lems with phenomenal throughput, new algorithms will need to be developed to handle
the kinds of parallelism, memory hierarchies, processor and data distributions found on
the Grid. Although there are many new challenges in such an environment, many familiar
concepts in parallel and vector processing remain present in a Grid environment, albeit
under a new guise. Many decades-old strategies that played a role in the advancement of
HPC, will find a new life and importance when applied to the Grid.

23.2 APPLICATIONS MUST BE THE LIFEBLOOD!

Grids are being engineered and developed to be used; thus attention to application needs
is crucial if Grids are to evolve and be widely embraced by users and developers. What
must happen before this new Grid world is used effectively by the application commu-
nity? First, the underlying Grid infrastructure must mature and must be widely and stably
deployed and supported. Second, different virtual organizations must possess the apprd~
priate mechanisms for both co-operating and interoperating with one another. We are
still, however, missing a crucial link: applications need to be able to take advantage of
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this infrastructure. Such applications will not appear out of thin air; they must be devel-
oped, and developed on top of an increasingly complex fabric of heterogeneous resources,
which in the Grid world may take on different incarnations day-to-day and hour-to-hour.
Programming applications to exploit such an environment without burdening users with
the true Grid complexity is a challenge indeed!

Of many problems. three major challenges emerge: (1) Enabling application develop-
ers to incorporate the abilities to harness the Grid, so that new application classes, like
those described in this chapter, can be realized; (2) Abstracting the various Grid capabil-
ities sufficiently so that they may be accessed easily from within an application, without
requiring detailed knowledge about the underlying fabric that will be found at run time:
and (3) Posing these abstractions to match application-level needs and expectations. While
current Grid abstractions cover extremely low-level capabilities such as job launching,
information services, security, and file transfer (the ‘Grid assembly language’), applica-
tions require higher-level abstractions such as checkpointing, job migration, distributed
data indices, distributed event models for interactive applications, and collaborative inter-
faces (both on-line and off-line).

In the experience of communities developing applications to harness the power of com-
puting, frameworks are an effective tool to deal with the complexity and heterogeneity
of today’s computing environment, and an important insurance policy against disruptive
changes in future technologies. A properly designed framework allows the application
developer to make use of APIs that encode simplified abstractions for commonly-used
operations such as creation of data-parallel arrays and operations. ghostzone synchroniza-
tion, I/0, reductions, and interpolations. The framework communicates directly with the
appropriate machine-specific libraries underneath and this abstraction allows the devel-
oper to have easy access to complex libraries that can differ dramatically from machine to
machine, and also provides for the relatively seamless introduction of new technologies.
Although the framework itself will need to be extended to exploit the new technology,
a well-designed framework will maintain a constant, unchanged interface to the applica-
tion developer. If this is done, the application will still be able to run, and even to take
advantage of new capabilities with little, if any, change. As we describe below. one such
framework, called Cactus [1], has been particularly successful in providing such capa-
bilities to an active astrophysics and relativity community — enabling very sophisticated
calculations to be performed on a variety of changing computer architectures over the last
few years.

The same concepts that make Cactus and other frameworks so powerful on a great
variety of machines and software infrastructures will also make them an important and
powerful methodology for harnessing the capabilities of the Grid. A Grid application
framework can enable scientists and engineers to write their applications in a way that
frees them from many details of the underlying infrastructure, while still allowing them
the power to write fundamentally new types of applications, and to exploit still newer
technologies developed in the future without disruptive application rewrites. In particular,
we discuss later an important example of an abstracted Grid development toolkit with
precisely these goals. The Grid Application Toolkit, or GAT, is being developed to enable
generic applications to run in any environment, without change to the application code
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itself, to discover Grid and other services at runtier, and to enable scientists and engineers
themselves to develop their applications to fulfil this vision of the Grid of the future.

23.3 CASE STUDY: REAL-WORLD EXAMPLES WITH
THE CACTUS COMPUTATIONAL TOOLKIT

Several application domains are now exploring Grid possibilities (see. e.g. the GriPhyN,
DataGrid, and the National Virtual Observatory projects). Computational framework and
infrastructure projects such as Cactus, Triana, GrADs. NetSolve, Ninf, MetaChaos, and
others are developing the tools and programming environments to entice a wide range
of applications onto the Grid. It is crucial to learn from these early Grid experiences
with real applications. Here we discuss some concrete examples provided by one spe-
cific programming framework, Cactus, which are later generalized to more generic Grid
operations.

Cactus is a generic programming framework, particularly suited (by design) for devel-
oping and deploying large scale applications in diverse, dispersed collaborative environ-
ments. From the outset, Cactus has been developed with Grid computing very much
in mind; both the framework and the applications that run in it have been used and
extended by a number of Grid projects. Several basic tools for remote monitoring, visual-
ization, and interaction with simulations are commonly used in production simulations [2].
Successful prototype implementations of Grid scenarios, including job migration from
one Grid site to another (perhaps triggered by ‘contract violation’, meaning a process
run more slowly than contracted at one site, so another more suitable site was dis-
covered and used); task spawning, where parts of a simulation are ‘outsourced’ to a
remote resource; distributed computing with dynamic load balancing, in which multi-
ple machines are used for a large distributed simulation, while various parameters are
adjusted during execution to improve efficiency, depending on intrinsic and measured
network and machine characteristics [3, 4, 5], have all shown the potential benefits and
use of these new technologies. These specific examples are developed later into more
general concepts.

These experiments with Cactus and Grid computing are not being investigated out of
purely academic interest. Cactus users, in particular, those from one of its primary user
domains in the field of numerical relativity and astrophysics, urgently require for their
science more and larger computing resources, as well as easier and more efficient use of
these resources. To provide a concrete example of this need, numerical relativists currently
want to perform large-scale simulations of the spiraling coalescence of two black holes, a
problem of particular importance for interpreting the gravitational wave signatures that will
soon be seen by new laser interferometric detectors around the world. Although they have
access to the largest computing resources in the academic community, no single machine
can supply the resolution needed for the sort of high-accuracy simulations necessary
to gain insight into the physical systems. Further, with limited computing cycles from
several different sites, the physicists have to work daily in totally different environments,
working around the different queue limitations, and juggling their joint resources for best
effect.



CLASSIFYING AND ENABLING GRID APPLICATIONS 605

Just considering the execution of a single one of their large-scale simulations shows that
a functioning Grid environment implementing robust versions of our prototypes would
provide large benefits: appropriate initial parameters for the black hole simulations arc
usually determined from a large number of smaller scale test runs, which could be automat-
ically staged to appropriate resources (tusk farming for parameter surveys). An intelligent
module could then interpret the collected results to determine the optimal parameters
for the real simulation. This high-resolution simulation could be automatically staged
across suitable multiple machines (resource brokering and distributed computing). As it
runs, independent, yet computationally expensive, tasks could be separated and moved to
cheaper machines (task spawning). During the big simulation, additional lower resolution
parameter surveys could be farmed to determine the necessary changes to parameters gov-
erning the simulation, parameter steering, providing the mechanism for communicating
these changes back to the main simulation. Since these long-running simulations usually
require run times longer than queue times, the entire simulation could be automatically
moved to new resources when needed, or when more appropriate machines are located
(job migration). Throughout, the physicists would monitor, interact with, and visualize
the simulation.

Implementing such composite scenarios involves many different underlying Grid oper-
ations, each of which must function robustly, interoperating to good eftect with many
other components. The potential complexity of such systems motivates us to step back and
consider more general ways to describe and deliver these requirements and capabilities.

23.4 STEPPING BACK: A SIMPLE
MOTIVATION-BASED TAXONOMY
FOR GRID APPLICATIONS

The Grid is becoming progressively better defined [6]. Bodies such as the Global Grid
Forum are working to refine the terminology and standards required to understand and
communicate the infrastructure and services being developed. For Grid developers to be
able to ensure that their new technologies satisfy general application needs, we need to
apply the same diligence in classifying applications; what type of applications will be
using the Grid and how will they be implemented; what kinds of Grid operations will
they require, and how will they be accessed; what limitations will be placed by security
and privacy concerns or by today’s working environments; how do application developers
and users want to use the Grid, and what new possibilities do they see.

In the following sections we make a first pass at categorizing the kinds of applications
we envisage wanting to run on Grids and the kinds of operations we will need to be
available to enable our scenarios.

23.4.1 Generic types of Grid applications

There are many ways to classify Grid applications. Our taxonomy divides them here
into categories based on their primary driving reasons for using the Grid. Current Grid
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applications can be quite easily placed in one or another of these categories, but in the
future it is clear that they will become intricately intertwined, and such a classification
scheme will need to be extended and refined.

1. Communirv-centric: These are applications that attempt to bring people or communi-
ties together for collaborations of various types. Examples range from the Access Grid,
allowing interactive video presentation and conferencing from many sites simultane-
ously, to distributed musical concerts, and to supporting collaborations of dozens of
scientists, engineers, and mathematicians around the world, needed to perform com-
plex simulations of cosmic events such as supernova explosions, on demand, as data
from the events are pouring into detectors of various kinds. Workflow management is
also a strong component of this paradigm in which the flow straddles many fields of
expertise, organizational boundaries, and widely separated resources.

2. Data-centric: Data is the primary driving force behind the Grid at present, and will
become even more so in the future. Not limited to particle and astrophysics experi-
ments, which themselves will be generating multiterabyte data sets each day, sensors
for everything from precise maps of the earth’s crust to highly localized weather data
will be feeding the Grid with large quantities of data from sources around the world.
Storing, transferring, managing, and mining these data for content quickly becomes
impossible without rapidly improving Grid technology.

3. Computation-centric: These are the traditional HPC applications, common in astro-
physics (e.g. simulations of a supernova explosion or black-hole collision), automo-
tive/aerospace industry (e.g. simulations of a car crash or a rocket engine), climate
modeling (e.g. simulations of a tornado or prediction of the earth’s climate for the
next century), economics (e.g. modeling the world economy), and so on. Typically,
the models are simplified to the extent that they can be computed on presently avail-
able machines; usually many important effects are left out because the computational
power is not adequate to include them. Capturing the true complexity of nature (or
mankind!) is simply beyond reach at present. Just as such applications turned to par-
allel computing to overcome the limitations of a single processor, many of them will
turn to Grid computing to overcome the limitations of parallel computers!

4. Interaction-centric: Finally, there are applications that require, or are enhanced by,
real-time user interaction. This interaction can be of many forms, ranging from
decision-making to visualization. The requirements for responsiveness are often in
direct contradiction to the high average throughput and load-balancing needs of typical
batch-oriented HPC systems. Furthermore, the existing Grid lacks standards for event
management that could possibly support the sort of real-time interaction required for
effective real-time data analysis.

23.4.2 Grid operations for applications

What kinds of Grid operations and processes will developers want to use in their current
and future applications? Two extremes of Grid use that have been commonly discussed
in recent years are: (1) task farming of many (hundreds, thousands, millions) indepen-
dent jobs, across workstations or PCs around the world (e.g. Monte Carlo techniques or
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Table 23.1 Tabulation of the Grid operations described in this section

Basic Information & interaction Compound
Resource selection Application monitoring Migration
Job initialization Notification Spawning
Data transfer Interaction Task farming

SETI@Home), where only small amounts of data need to be retrieved from cach job
and (2) coupled simulations, in which multiple supercomputers are harnessed to carry out
tightly coupled, distributed simulations that cannot be easily done on a single resource
(e.g. the collision of two neutron stars or the simulation of the earth’s ocean and atmo-
sphere). Both types of scenarios have proven effective for a limited class of problems,
and we consider them below. But we expect that future Grid applications will go far
beyond such ‘simple’ present-day examples, which are merely building blocks for much
more sophisticated scenarios, as we sketch them in Table 23.1.

We begin with some simple scenarios involving operations that can immediately aid
users in present-day tasks without necessarily modifying applications. These could be used
individually to good effect, making use of new technologies as they emerge, archiving
output data for the simulations of a whole collaboration consistently in one location
or the remote monitoring of a simulation to isolate performance bottlenecks. We then
illustrate, how with appropriate Grid services in place, these can in principle be extended
and combined to create extremely complex, and even autonomous hierarchies of Grid
processes for future applications.

Here we only have room to describe a small subset of envisaged operations, and cven
these operations must now be more rigorously defined in terms of inputs, outputs, and
functionality. Such an endeavor, as is now ongoing in, for example, the GridLab project,
will require input and standardization across the whole community, but will result in the

formal definition of the set of operations which any Grid-enabling technology should
provide.

23.4.2.1 Basic operations

First we consider basic Grid operations, such as resource selection, job initiation, and
data transfer. Properly implemented, transparent, and automated services to handle these
operations could provide huge benefits to the simplest of Grid applications. Many research
groups, organizations, and companies have access to large numbers of computational
resources scattered across the world, usually with different characteristics, loads, and
user accounts. Selection of the most appropriate resource for a given job taking into
account factors such as cost, CPU speed, and availability is a difficult issue. Tools to
automatically find remote machines, and start jobs, would provide a consistent and easy
to use interface to facilitate a currently tedious and prone-to-error task. Data transfer tools

could automatically stage the required executables and input files to the correct location
on a machine, and archive the resulting output files.
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Even this type of Grid computing, although imminent. is yet to be very widely used,
because the necessary infrastructure to support it at the various sites. is not fully developed
or deployed. Furthermore, user interfaces. such as portals to facilitate user interaction
with the various resources, are still in their infancy. For examples of the more advanced
portal development efforts. providing Web-based interfaces to computing resources, see
References {7, 8].

Such basic operations are, however. just the start. Advanced versions of these
operations could include many more features: resource selection could include both
application-specific (performance on a given machine, data transfer overheads) and
community-specific (balancing of cost and resource usage for a whole group of users)
factors; job initiation could be extended to include staging simulations across multiple
machines for increased resources or quicker turnaround time; data transfer could include
replication and searching.

23.4.2.2 Information and interaction operations

The collection, organization, and distribution of information is fundamental to fully func-
tioning Grids. Information about resources, software, people, jobs, data, and running
applications, are just a few potential sources. Flexible operations for information retrieval
will be needed by all applications.

A further set of operations providing application monitoring can be divided into two
cases: (1) information about running applications can be archived, eventually providing a
database of characteristics such as performance on different machines, typical run times,
and resource usage (CPU, memory, file space) and (2) monitoring information can be
made available interactively, and accessible, for example, by an entire collaboration,
while an application is running.

Related to application monitoring is notification and interaction. Applications could
have the ability to notify users (or whole collaborations) of important events, both resource
related ‘You will fill the current hard disk in half an hour!" and concerning the application
itself ‘Found new phenomenon — contact the news agencies!’. Notification could use a
variety of media, from now traditional email to the latest mobile devices and protocols
(WAP, SMS, MMS, imode), and include where relevant attachments such as images and
recordings. Interaction with running applications provides users with more control over the
use of resources, and provides new insights into their results. Interacting with applications
includes remote steering and visualization.

23.4.2.3 Compound operations

The most exciting Grid operations would occur when all these pieces are put together, and
applications are able to make dynamic use of their resources, either self-deterministically
or controlled by remote services. Here we have room to discuss only a couple of important
possibilities, but clearly there are many more potential uses of Grids for applications.

Migration: Let us first consider a combination of three basic Grid operations: resource
selection, information retrieval/publication, and data transfer. These can be combined into
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a new operation that we call migration, in which a running process is transferred from
one resource to another for some reason. Migration can have many uses. For example.
when a job is initiated, a resource selector may find that the most appropriate resource
is busy, and will not be available for several hours, but that a second choice, although
not optimal, is available immediately. The job could then be started on the second choice
and then migrated when the better resource becomes available. The migration could be
triggered when the primary resource becomes available by writing a platform-independent
checkpoint file, transferring it to the remote resource, staging the executable to. or building
it on, the same resource and continuing the job there.

But there are more interesting and more dynamic possibilities: a simulation running
somewhere may find that its resource needs a change dramatically. Perhaps it needs an
order of magnitude more memory, or less, or it requires interaction with a farge dataset
located on a distant machine or set of machines. Such needs may not be known at the
compile time, but are only discovered sometime during the execution of the job. Given
appropriate access to resources, information services to determine availability, network
capabilities, and so on, there is no reason Grid processes cannot migrate themselves from
one collection of resources to another, triggered by a set of users who have been notitied
of the need, by an external master process, or by the process itself. The migration may
involve processes that are distributed across multiple resources. Once a migration has
occurred, the old process must be shut down (if it was not already), and the new process
must register its new location(s) and status in an information server that users or other
processes use to track it.

Spawning: Related to migration is another operation that we call spawning. Rather than
migrating an entire process from one set of resources to another, particular subprocesses
may be ‘outsourced’ as needed. For example, a parallel simulation of a black hole collision
may involve analysis of the data for the gravitational waves emitted. or locating the
horizon surfaces of the holes. These operations can be very time consuming. do not
necessarily feed back into the main evolution loop, or may not even be done with parallel
algorithms. In such cases, in the Grid world it would be sensible to seck out other
resources, during the execution, to which these tasks could be spawned. Typically, a basic
spawning operation would involve a request for and acquisition of resources, transfer of
data from the main process to the remote resource(s), initiation of the remote process
(which may be very different from the main process), and return of a result, possibly to
the main process. If a spawning request cannot be met, the task can simply be carried out
inline with the main process (as it usually is now), but at the cost of holding it up while
the unspawned task is completed.

Spawned tasks may themselves spawn other tasks, or request migrations, as their needs
change, or as their environment changes (e.g. network, file system, or computational
capacities and loads change). Such operations could be combined to create complex
Grid pipeline, workflow, and vector type operations. Each process in these potentially
very complex hierarchies should be able to publish its state to an information server, SO
that its status can be monitored. Furthermore, each process will have the need for data
management, archiving, and so on.
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Task farming: Another related operation, task furming. builds upon other operations such
as spawning and resource finding. In task farming. a master process spawns off multiple
slave processes, which do some jobs on its behalf. When these processes are completed,
the master process creates more processes until the master has finished its task. A typical
use of this is for a parameter search. In this scenario the master process is tasked with
exploring one or more parameter ranges. and spawns a slave process for each distinct
parameter combination. Obviously, the real operation is more complex than this, as the
number of parameter combinations may be extremely large. but the master process would
only be able to spawn a small number of slave processes at any one time, and so would
start a new process only when one finishes. This scenario could also be hierarchical in
nature whereby the master delegates sets of parameter ranges to secondary masters that
then perform the task farming, and so on.

This scenario requires resource management to find the hosts to spawn jobs to, and a
spawning facility as described above.

These application-level capabilities that are being built on top of basic Grid infras-
tructure go way beyond existing Grid protocol and service standards. but are needed in
a similar form by a wide variety of emerging applications. And yet these services are
immensely complicated to implement and need to be re-implemented by each different
application team in much the same way as basic Grid services that were re-implemented
prior to the emergence of toolkits like Globus and standards bodies like the Global Grid
Forum. Furthermore, such services remain extremely fragile when implemented in this
manner, as they cannot withstand even minor revisions or nonuniformity in the Grid
infrastructure.

Even assuming that basic Grid services needed to support these kinds of operations
are fully deployed, the question is how to prepare and develop applications for the Grid
so that they may take advantage of these technologies? The basic services are likely to
differ in their implementation and version from site to site, or multiple services may exist
that provide the same basic capability, but with different performance characteristics.
and further, they may come and go and resources may fail or come on-line at any time.
Further, the applications must be able to run in many different environments, from laptops
to supercomputers, and yet the application programmer cannot develop and maintain
different versions of routines for each of these environments. Creating an environment
that enables the application developer and user to take advantage of such new Grid
capabilities, through abstraction and discovery of various services, which may or may not
be available, without having to change the application code for the different possibilities,
is the subject of the following sections.

23.5 THE WAY FORWARD: GRID PROGRAMMING
ENVIRONMENTS AND THEIR EFFECTIVE USE

To enable applications to take advantage of the potential of Grid computing, it will be
imperative that the new capabilities it offers be both easy to use and robust. Further-
more, by its construction the Grid is extremely heterogeneous, with different networks,
machines, operating systems, file systems, and just as importantly, different versions of
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the underlying Grid infrastructure. Applications will need to work seamlessly in a variety
of different environments. Even worse, although many services may be deployed, there
is no guarantee that they will be operational at run time! Application developers and
users must be able to operate in an environment in which they cannot be sure of what
services will exist in advance, and applications must fail gracefully by falling back on
alternative service implementations or strategies when the intended service is unavailable.
For this reason, it is not only convenient, but rather it is imperative, that applications can
be written and developed free from the details of where specific Grid services are located
and the individual mechanisms and protocols used for accessing them.

We have, in the first section of this chapter, already discussed how the technigues that
have been successfully implemented in HPC programming frameworks should be now
used to build frameworks for programming on the Grid. Frameworks and environments
for Grid applications are currently being discussed and developed in several projects
and more broadly in the different groups of the Global Grid Forum (in particular, the
Advanced Programming Models and Applications Research Groups). See Reference 9]
for a detailed review of current Grid-programming tools and the issucs associated with
them.

Previous work has shown repeatedly that it is essential to develop a fiexible API for
Grid operations, which insulates application developers and users from the details of the
underlying Grid infrastructure and its deployment. Such an API will allow developers to
write and utilize software today, which will then seamlessly make use of more advanced
infrastructure as it matures. The GridLab project aims to develop such an APl and its
accompanying infrastructure.

The authors of this paper are among the instigators and researchers of the European
GridLab project — A Grid Application Toolkit and Testbed. The GridLab project brings
together Grid infrastructure and service developers with those experienced in developing
successful frameworks and toolkits for HPC.

The basic architecture of the GridLab project splits the system into two basic sets of
components: user space components, which the developer is aware of and are deployed
locally, and components that provide some functionality, which may be deployed remotely
or locally, We refer to these functionality components as ‘capability providers™ (we avoid
the much-overloaded word “service’ as these capability providers may be local libraries).

The user-space components consist of the application itself, linked to a library that
provides the Grid Application Toolkit API (GAT-API). When a user requests a Grid
operation through the GAT-API, the library checks a database or uses some discovery
mechanism to find an appropriate capability provider, and dispatches the operation to it.
Thus, to develop an application the programmer merely needs to make GAT-API calls for
required Grid operations. These then make use of whatever Grid infrastructure is actually
deployed to perform these operations. Note that since the Grid infrastructure is highly
dynamic the set of capability providers may vary even within one run of an application.

This architecture is very flexible, and allows the capability providers to be a simple
library call, a CORBA application, or an OGSA service. or anything else. which may be
developed in the future. Thus, we may leverage off the huge investment that has been
made in the business community in developing Web services and related technologies,
while not being tied to any specific technology.
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There are still many issues to be claritied. such as security. discovery mechanisms, and
so on; however, these have no impact on the code that an application developer needs to
write to use the GAT-API, and thus the developer is insulated from changes in how Grid
services are deployed, or which technologies are used to contact them.

The effectiveness of a particular application on a Grid is determined both by the nature
of the application itself and the functionality of the code that implements it. For example,
Monte Carlo type schemes are embarrassing parallel. highly conducive to task farming
scenarios, whereas tightly coupled tinite difference applications require new algorithms
and techniques to run efficiently across loosely coupled machines.

Improvements in technology may enable compilers or automated tools to analyze appli-
cations and determine the best way to utilize the Grid. in the same way that compiler
technology has allowed automatic parallelization of certain programs. However, just as
with automatic parallelization technology. automatic Grid-enabling technologies will take
years to develop, and will almost certainly require the user to embed some form of direc-
tives in the source code to give hints to the process. in the same way that parallelizing
compilers require today. It is possible that an equivalent of the OpenMP standard could
be developed to allow compatibility between different compiler or too! vendors; such a
standard would be essential for truly heterogeneous environments.

Even if such enabling technologies become available. there are things that application
developers will always need to be aware of and functionality that their codes must provide.
For example, to make full use of an operation such as migration. an application must be
able to checkpoint its current state in a manner independent of machine architecture and
the number of processors it is running on. One advantage of programming frameworks
such as Cactus is that a lot of this required functionality is automatically and transparently
available.

One of the dangers of middleware development is that it cannot be used effectively by
applications until the development is nearly completed. Otherwise the applications must
suffer extreme disruptions while the API is reorganized during the course of development
or while the fundamental bugs are uncovered. However. we want to use the Grid now,
before such technologies are fully developed, both to exploit the parts that are complete
and also to begin building our applications to incorporate the appropriate scenarios and
operations. Currently, application developers must either Grid-enable their applications by
hand, or use an enabling framework, such as Cactus, to do so. Grid application framework
solutions like the GAT offer a way to break this cycle of dependence.

23.6 IN CONCLUSION

This chapter barely scratches the surface in addressing how applications can interact with
and benefit from, the new emerging Grid world. We have shown how real-world example;
of computational needs can lead to new and very different ways of carrying out com.
putatior_lal tasks in the new environment provided by the Grid. Much more than merely
convenient access to remote resources, we expect that very dynamic Grid-enabled pro-
cesses, such as on-demand task farming, job migration, and spawning, will be automated
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and intermixed, leading to complex Grid processes matching the particular needs of indi-
vidual applications. These applications will be able to interact with cach other, with data,
and with users and developers across the Grid.

However, in order to enable these future Grid applications, in the face of myriad,
increasingly complex technologies and software infrastructure, higher-level services must
be abstracted and provided to application developers in such a way that they can be
understood and used without a knowledge of the details of Grid technologies.

We have focused on computation-centric requirements for applications in the HPC
world, and although such applications are likely to be among the first real benefactors of
these new technologies, a mature Grid environment will impact «!l classes of applications
each with their own special needs. Much further work is now needed, in fully classifying
and abstracting applications and their required operations, and in developing a usable
API to encode these abstractions. Such a program is under way, in particular, within
the GridLab project, whose mission is to deliver a GAT that can be used by generic
applications to access the fully available functionality of the dynamic Grid.
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