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Abstract

We report on the existence and phenomenology of type II critical collapse

within the one-parameter family of SU(2) σ-models coupled to gravity. Nu-

merical investigations in spherical symmetry show discretely self-similar (DSS)

behavior at the threshold of black hole formation for values of the dimen-

sionless coupling constant η ranging from 0.2 to 100; at 0.18 we see small

deviations from DSS. While the echoing period ∆ of the critical solution rises

sharply towards the lower limit of this range, the characteristic mass scaling

has a critical exponent γ which is almost independent of η, asymptoting to

0.1185 ± 0.0005 at large η. We also find critical scaling of the scalar cur-

vature for near-critical initial data. Our numerical results are based on an

outgoing–null-cone formulation of the Einstein-matter equations, specialized

to spherical symmetry. Our numerically computed initial-data critical pa-

rameters p∗ show 2nd order convergence with the grid resolution, and after

compensating for this variation in p∗, our individual evolutions are uniformly

2nd order convergent even very close to criticality.
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I. INTRODUCTION

Since the numerical investigation of dynamical behavior of a massless scalar field under
the influence of its gravitational forces by Choptuik (Ref. [1]), critical behavior has been
observed in a number of different matter models coupled to gravity. In the context of
type II critical collapse, these models have in common that at the threshold of black hole
formation their dynamics show a universal characteristic approach to either a discretely
(DSS) or continuously (CSS) self-similar solution.

Nonlinear σ-fields provide particularly interesting models to study the dynamics of grav-
itating self-interacting matter in general relativity. Besides their applications in physics (see
e.g. Ref. [2]), they have a simple geometrical interpretation as harmonic maps, which have
been extensively studied in the mathematical literature (see e.g. Refs. [3,4]).

Recently Bizoń et al. (Refs. [5,6]) and also independently Liebling et al. (Ref. [7])
have observed critical (threshold) behavior for non-gravitating systems: The transition be-
tween globally regular time evolution and singularity formation for the SU(2) σ–model on
Minkowski background. It was shown by Bizoń (Ref. [5]) that this system admits a count-
ably infinite family of CSS solutions. The stable ground state is the endpoint of singular
evolution for supercritical initial data, while the first excitation, which has one unstable
mode, plays the role of the critical (CSS) solution.

The interesting question arises of what happens if gravity is added to this system. The
gravitating SU(2) σ-model is a family of theories with a dimensionless parameter η, which
acts as a coupling constant (for η = 0 gravity decouples from the field). It was argued in
Ref. [6] that the singularity formation in flat space might not be relevant for black hole
formation when gravity is active, since the CSS blowup excludes the concentration of energy
at the singularity. Since no asymptotically flat solitonic configurations exist (Ref. [8]), this
suggests that the only alternative to dispersion or collapse to a black hole is the formation
of a naked singularity. Here we focus on critical phenomena at the threshold of black hole
formation. As Bizoń et al. have pointed out (Ref. [9]), criticality is expected to depend on
the coupling constant η. If so, does the system show discrete or continuous self-similarity?
And in which way do critical phenomena depend on the coupling?

In this paper we present results from a numerical study of the dynamical evolution for
the SU(2) nonlinear σ-model coupled to gravity in spherical symmetry. Our code uses a
characteristic formulation, specialized to the spherical symmetry. Initial data are specified
on an outgoing null cone with vertex at the center of symmetry. The discretized field
equations are used to evolve the matter field and the geometry to future outgoing null
cones, using a nonuniformly spaced set of grid points which follow ingoing null geodesics.

We find critical behavior at the boundary between black hole formation and dispersion
for values of the coupling constant η in the range of 0.18–100. The critical solution is DSS,
with the echoing period ∆ strongly depending on η: As η tends to 0.18 from above, ∆ rises
sharply. Moreover we observe small deviations from exact DSS at this smallest η value. This
leads us to conjecture that DSS ceases to be a critical solution for still smaller values of the
coupling constant.

The organization of this paper is as follows: In section II we review the basic properties
of the SU(2) σ-model in spherical symmetry and discuss the system of field equations. We
present our main physical results in section III, and end the main body of the paper with
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some conclusions in section IV. In appendix A we discuss our numerical methods, which are
based on previous work of Goldwirth and Piran (Refs. [10,11]), Garfinkle (Ref. [12]), and
Gómez and Winicour (Refs. [13–16]). Finally, in appendix B we discuss the convergence of
our numerical evolutions to the continuum limit as the grid resolution is increased, includ-
ing both uniform convergence of accuracy diagnostics within a single evolution, and also
convergence of the numerically computed critical parameter p∗ itself.

Conventions are chosen as follows: spacetime indices are Greek letters, SU(2) indices are
uppercase Latin letters, the spacetime signature is (−,+,+,+), the Ricci tensor is defined
as Rµν = Rµλν

λ with the sign convention of Ref. [17], and the speed of light is set to unity,
c = 1.

II. THE SU(2) σ-MODEL IN SPHERICAL SYMMETRY

Nonlinear σ-models are special cases of harmonic maps from a spacetime (M, gµν) into
some target manifold (N, GAB) (see, e.g., Ref. [2]). Harmonic maps XA(xµ) are defined as
the extrema of the simple geometric action

S = − f2π
2

∫

M

d4x
√

|g| gµν∂µX
A∂νX

B GAB(X) . (2.1)

If the spacetime metric is dynamically coupled to the matter fields XA, then (2.1) must
be supplemented by the Einstein-Hilbert action.

Variation of the total action with respect to the σ field XA and the metric gµν yields the
coupled Einstein-σ field equations. The stress-energy tensor resulting from (2.1) obeys the
weak, strong and dominant energy conditions (Ref. [18]). The coupling constant f 2

π and the
gravitational constant G enter the equations only in the dimensionless product η ≡ 4πGf 2

π ,
thereby defining a one-parameter family of distinct gravitating matter models. The field
equations are scale invariant.

For the SU(2) σ-model, the target manifold is taken as S3 with GAB the “round” metric
of constant curvature. Note that the coupling η may be interpreted as the inverse of the
scalar curvature of the target manifold. In the limit η → ∞ our model thus corresponds to
the σ-model with 3-dimensional flat target manifold. (This is also easily checked by rescaling
the field φ → φ/

√
η and performing the limit η → ∞ in Eqs 2.10 and 2.12 – 2.14.) We

restrict ourselves to spherically symmetric harmonic maps coupled to gravity, which implies
that the base space (spacetime) must share this symmetry.

We introduce a Bondi coordinate system {u, r, θ, ϕ} on spacetime based upon outgoing
null hypersurfaces u = constant, with the line element

ds2 = −e2β(u,r)du

(

V (u, r)

r
du+ 2dr

)

+ r2(dθ2 + sin2 θdϕ2), (2.2)

and assume that spacetime admits a regular center r = 0 of spherical symmetry. This
requires the metric functions near the origin to behave at fixed retarded time u0 like

β(u0, r) = O(r2) , (2.3)

V (u0, r) = r +O(r3) . (2.4)
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where the guage has been fixed such that the family of outgoing null cones emanating from
the center is parametrized by the proper time u at the center. Radial ingoing null geodesics
are obtained by integrating the equation

d

du
r(u) = −V

(

u, r(u)
)

2r(u)
. (2.5)

In spherical symmetry the null expansions Θ± of inward and outward directed null rays
emanating from r = constant surfaces, can be defined as Θ± = 2(L±r)/r, where L± is the
Lie-derivative along the null directions l+ = e−2β∂r and l− = 2∂u − (V/r)∂r. Thus we have

Θ+ =
2

r
e−2β , Θ− = −2

r
(
V

r
) . (2.6)

Whenever Θ+ vanishes on some 2-sphere r = constant, this sphere is marginally outer
trapped. Since this means diverging β, the Bondi-like coordinate system (2.2) cannot pen-
etrate a marginally outer trapped surface – in particular an apparent horizon.

We introduce polar coordinates (φ,Θ,Φ) on the target manifold (S3, G) , and write the
SU(2) line element as

ds2 = dφ2 + sin2 φ (dΘ2 + sin2 Θ dΦ2) . (2.7)

We focus on a particular spherically symmetric harmonic map (a corotational equivariant
map) obtained via the well-known hedgehog ansatz:

φ(xµ) = φ(u, r), Θ(xµ) = θ , Φ(xµ) = ϕ . (2.8)

With this ansatz two of the three coupled fields are determined and only one field φ(u, r)
enters the equations. Regularity at the origin forces the σ–field φ to vanish at r = 0, so the
origin is always mapped to one of the poles of S3, defined by the choice of coordinates (2.7).
As φ represents the “areal coordinate” of the polar coordinate system (2.7) on the target
manifold, its regularity behavior near the origin is the same as that of the areal coordinate
r:

φ(u0, r) = O(r) . (2.9)

The matter field equations are then reduced to the single nonlinear wave equation

�φ =
sin(2φ)

r2
, (2.10)

where � is the wave operator gµν∇µ∇ν :

� = e−2β

((

2V

r2
+

(

V

r

)′)

∂r −
2

r
∂u − 2∂u∂r +

V

r
∂rr

)

. (2.11)

The nontrivial Einstein equations split up into the hypersurface equations (the {rr} and
{ur} − (V/2r){rr} components of Gµν = κTµν)
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β ′ =
η

2
r(φ′)2 , (2.12a)

V ′ = e2β(1 − 2η sin(φ)2) , (2.12b)

the subsidiary equation (r2({uu} − (V/r){ur}))

V̇ − 2V β̇ = 2η

[

(

rφ̇
)2 − V

r

(

rφ′
)(

rφ̇
)

]

, (2.13)

and the redundant equation ({θθ})

V (rβ ′′ − β ′) + rβ ′V ′ + 1
2
rV ′′ − 2r2∂urβ

= ηrφ′(−V φ′ + 2r∂uφ) . (2.14)

The combination of the hypersurface equations (2.12) and the matter field equation (2.10)
suffices to evolve all the dynamical fields V/r, β, and φ. Assuming these equations to
be satisfied, the redundant equation (2.14) then holds identically, and if the subsidiary
equation (2.13) is satisfied on some r = constant surface (this is assured for r = 0 by the
regularity conditions there), then it too must hold everywhere.

In view of this, we construct initial data on a u = constant slice by choosing φ as
free data on the slice, then integrating the hypersurface equations (2.12) to obtain the
metric coefficients V/r and β on the slice. To evolve this data to future u = constant
slices, we simultaneously integrate the hypersurface equations (2.12) and the matter field
equation (2.10). Throughout the initial data construction and the evolution, we use the
subsidiary equation (2.13) and the redundant equation (2.14) solely to check the accuracy
of our numerical computations. We discuss our numerical treatment of all these equations
in appendix A.

In our coordinates, the Misner-Sharp mass function (Refs. [19–21]) can be written directly
in terms of the metric,

m(u, r) ≡ mMS(u, r) =
r

2

(

1 − V

r
e−2β

)

. (2.15)

or by using the Einstein equations, rewritten as a radial integral within a single slice,

m(u, r) ≡ mρ(u, r) =

r
∫

0

m′(u, r̃) dr̃, (2.16a)

where

m′(u, r) =
η

2
r2

(

V

r
e−2β(φ′)2 + 2

sin2 φ

r2

)

. (2.16b)

Since our coordinates would be singular on an apparent horizon, we have designed our
numerical evolution scheme to slow down as an apparent horizon is approached, in such a
manner that the evolution only asymptotes to the apparent horizon (cf. appendix A1).

In other words, none of our numerically-computed slices ever actually contain an apparent
horizon. Thus strictly speaking we can never measure a black hole mass, but only estimate
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what the mass will be when (if) a black hole eventually forms. To do this, at each numerical
time step we compute the Misner-Sharp mass function mMS, and look for regions of the
numerical grid which are almost at the critical density for black hole formation, i.e. where
2mMS/r is almost 1. More precisely, if anywhere in the grid 2mMS/r exceeds a specified
threshold1, then we estimate that a black hole will form, with a final mass mBH given by the
mass function mMS at the outermost such grid point. In general this mass estimate changes
during the evolution; we use the last value before a numerical evolution terminates as our
overall estimate for the black hole mass.

It is also of interest to compute the total mass mtotal within the outer grid boundary.2

This gives an upper bound for our final estimate mBH.

III. RESULTS

For each value of the coupling constant η, we consider a 1-parameter family of initial
data φ = φp(u0, r), such that (say) for small values of p this initial data eventually disperses
without forming a black hole, while for large values of p it eventually forms a black hole.
By using a binary search in p, we can find (a numerical approximation to) the critical value
p = p∗ which defines the threshold of black hole formation.

We have studied the Einstein–σ-model system in this manner over the range of coupling
constants 0.18 ≤ η ≤ 100, using several different initial-data families. Here we present
results using the Gaussian-like initial data family

φ(u0, r) = Ar2 exp

[

−
(

r − r0
σ

)2
]

(3.1)

with the “amplitude” A as the parameter p (holding σ and r0 constant for a given critical
search), and also using the “derivative of 4th-power pseudo-Gaussian” family

φ(u0, r) = −4Ar2

(

r − r0
σ

)3

exp

[

−
(

r − r0
σ

)4
]

(3.2)

with the “width” σ as the parameter p (holding A and r0 constant for a given critical
search).3 All the results reported here used a “position” r0 = 5 and an initial-slice outer
boundary of router = 30. Table I shows some near-critical initial data parameters.

We have also carried out a number of convergence tests of our numerical scheme, both
for single evolutions and for entire critical searches. We discuss these in appendix B.

1 0.995 for all results reported here.

2To be precise, we usemρ at the outermost grid point, notmMS, sincemMS is numerically somewhat

ill-conditioned in the outer part of the grid, whereas mρ is well-conditioned everywhere.

3For this latter case the relative sign of p is reversed with respect to black hole formation, i.e. for

large p the initial data eventually disperses, while for small p it eventually forms a black hole.
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A. DSS Echoing

Discrete self-similarity is defined by the existence of a discrete diffeomorphism Φ∆ such
that for some fixed ∆ ∈ R,

(Φ∗

∆)n g = e2n∆g ∀n ∈ N . (3.3)

In adapted coordinates τ = − ln u∗−u
u∗

and ρ = r
u∗−u

, where u∗ is a real number which denotes
the accumulation time of DSS, we have

Z(τ + n∆, ρ) = Z(τ, ρ) ∀n ∈ N , (3.4)

where Z denotes β, V/r, φ, or any combination of these, e.g. 2m/r. In addition the σ-field
φ satisfies the stronger condition

(

Φ∗

∆/2

)n
φ = (−1)nφ , (3.5)

so that fields even in φ (e.g. β, V/r, and quantities constructed from them) are actually
periodic in τ with period ∆/2. As a DSS diagnostic, we typically look for (∆/2) periodicity
in the black hole formation diagnostic max 2m/r, where the maximum is taken over r within
each u = constant slice.

We have clear evidence for the existence of a type II critical collapse with a DSS critical
solution. Figure 1 shows examples of this for two values of the coupling constant. Since
max 2m/r periodicity is only a neccesary condition for DSS, we have also explicitly ver-
ified that the matter field φ at selected times u coincides with its image under the DSS
diffeomorphism Φ; figure 2 shows an example of this.

We find that the self-similarity echoing period ∆/2 varies strongly with the coupling
constant η. Table I gives some numerical data showing this, and figure 3 shows this same
data graphically. At large η, ∆/2 asymptotes to 0.2300±0.0003. As η decreases towards the
lower limit of the data in table I, η = 0.18, ∆/2 rises sharply. At the very smallest coupling
constant η= 0.18, but not at η= 0.20 or any larger value, the critical solution shows small
deviations from exact DSS: the periods and shapes of the individual max 2m/r oscillations
deviate by 5–10% from the best-fitting DSS prediction. The physical significance of this is
not yet clear.

B. Scaling and Universality

In the presence of DSS, the black hole mass mBH of slightly-supercritical evolutions shows
a universal scaling law (Refs. [22–25])

lnmBH = γ ln(p− p∗) + Ψ
(

ln(p− p∗)
)

+ constant (3.6)

where γ sets the overall slope of the scaling law, and the function Ψ is periodic with period
1
2
∆/γ in ln(p − p∗). For slightly-subcritical evolutions, the maximum (taken over u within

each evolution) of the 4-Ricci scalar evaluated at the origin, Rmax, also shows a similar
scaling law, but with slope −2γ (Ref. [26]). This is also true for supercritical evolutions,
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with Rmax now defined by taking the maximum in u within each evolution only until a
(null) slice reaches the apparent horizon. (Our actual evolutions terminate slightly before
the apparent horizon, but Rmax doesn’t change significantly in this interval.)

We have investigated these scaling laws using a sequence of supercritical evolutions with
varying ln(p − p∗). We extract γ by least-squares fitting lnmBH as a linear function of
ln(p− p∗); after subtracting this fit from lnmBH, we are left with the periodic fine structure.
Figure 4 shows a typical supercritical scaling law and figure 5 its fine structure.

Since the numerical resolution of our code is limited by the use of IEEE double precision
floating point numbers, we expect the errors to blow up for p−p∗ . 10−16 which corresponds
to ln(p − p∗) . 35. This can be seen in figures 4 and 5, and also in figure 8(b) (discussed
in the next section). For p − p∗ & −10 deviations from the scaling laws are also apparent,
demarcating the range of validity of linear perturbation theory.

We find that the mass scaling exponent γ varies by at most 5% over the range of η we
have studied, asymptoting to γ = 0.1185 ± 0.0005 at large η. (The error is estimated from
the dispersion in γ values between fits to critical searches with different initial-data families
and/or finite difference grid resolutions.)

The periodicity present in the fine structure of the scaling law (figures 4 and 5) can
be measured directly. Figure 6 shows a comparison of the measured periods with the
perturbation-theory prediction 1

2
∆/γ in ln(p− p∗). The agreement is excellent.

Comparing results for different one-parameter families of initial data, we find that the
critical behavior is universal at all coupling constants η: The critical exponent γ and the
echoing period ∆/2 are the same for all critical searches at a given coupling constant,
regardless of which initial data family is used. For example, table I shows that γ and ∆/2
are the same (to within numerical errors) for even the very different initial data families (3.1)
and (3.2).

IV. CONCLUSIONS

In this paper we have presented a detailed numerical analysis of SU(2) σ-models coupled
to gravity in spherical symmetry for a wide range of the coupling constant η. For 0.18 ≤ η ≤
100 we have evidence of universal critical type II collapse behavior. The critical solution is
DSS. We have observed both the typical mass scaling at the threshold of black hole formation
of supercritical initial data, and the corresponding scaling of the scalar curvature for both
sub- and supercritical evolutions.

Our numerical results are based on an outgoing–null-cone formulation of the Einstein-
matter equations, specialized to spherical symmetry (our numerical methods are discussed in
detail in appendix A). we have carried out thorough convergence tests to ensure the validity
of our results (see appendix B). Notably, we have demonstrated second order uniform-in-r
convergence of the error diagnostic δm (measuring finite differencing errors in the Misner-
Sharp mass function) for even very-nearly-critical spacetimes. We have also demonstrated
second order convergence for the initial data’s critical parameter p∗. To our knowledge this
is the first time the latter has been reported.

In the limit of large couplings our model corresponds to the σ-model with 3-dimensional
flat target manifold. This model has already been studied by Liebling [27], where he consid-

8



ered an additional potential. As this potential does not play a role for criticality we should
observe the same critical solution for large couplings. In fact our results for both the echoing
period ∆ = 0.4604 and the scaling exponent γ = 0.1187 are in good agreement with the
results reported in [27].

While we observe at most a small variation of the critical exponent γ over the range of
coupling constants studied, the period ∆ of the DSS depends strongly on the value of the
coupling constant: as η tends to 0.18 from above the period increases by more than a factor
of 2 in the narrow range of 0.18 ≤ η ≤ 0.3. Also, close to the lower limit we observe small
deviations from exact self-similarity.

These observations seem to signal a transition region around the value of η = 0.18. From
results of the work on the σ-model in flat space (Refs. [5–7]) it is known that there exists a
critical (threshold) CSS solution. In a recent paper, Bizoń and Wasserman (Ref. [28]) have
shown numerically that this solution persists when gravity is turned on, at least up to a
certain value of the coupling constant. Whether or not the CSS solution plays a role at the
threshold of black hole formation for small couplings is under current investigation.
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APPENDIX A: NUMERICAL METHODS

1. Overview

We discretize the coupled Einstein-matter equations using second order finite differencing
in r within each u = constant slice, and in u along ingoing null geodesics. Our grid points are
generically distributed non-uniformly within each slice: On the initial slice we place them
equidistantly in r between the origin and some finite maximum radius router, but thereafter
they free-fall in towards the origin along ingoing null geodesics. We always maintain a grid
point at the origin r = 0; when another grid point reaches the origin we drop the point
previously at the origin from the grid.

The choice of freely-falling grid points provides some degree of adaptive grid refinement by
the focusing of geodesics towards regions of strong curvature. Following Garfinkle (Ref. [12]),
we also gain additional resolution at late times by explicitly refining our grid by a factor of
two everywhere in the slice, each time we have lost half of the remaining grid points. Again
following Ref. [12], for some runs we also manually fine-tune the position of the outermost
grid point on the initial slice (router), so that this grid point will eventually almost hit the
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strongest-field region of spacetime. This greatly improves the effectiveness of the factor-of-
two grid refinements, but this method was not required for the results presented here.4

By moving our grid points along null geodesics, the physical domain of dependence
is automatically contained in the numerical domain of dependence, so our time step is
not restricted by the usual Courant-Friedrichs-Lewy (CFL) stability limit (Refs. [29,30]).
However, in order to control time resolution we require (following Refs. [10,11]), that

(V/r) ∆u ≤ C∆r (A1)

everywhere in the grid, where C is a constant which we typically take to be on the order
of unity. The time step ∆u is thus limited such that grid points fall inwards by no more
than C/2 grid point spacings per time step. Most of our results reported here were obtained
with C = 1.5. [Note that for a null-cone evolution similar to ours, but with grid points at
constant r (Ref. [15]), there is a CFL stability limit, which is in fact just (A1) with C = 2.]

For rΘ+ sufficiently small, a large value of V/r decreases the time step ∆u as follows:
From (2.6) it is clear that for small rΘ+ the function β – which is monotonically increasing
with r – becomes large (it blows up at an apparent horizon). Furthermore, by (2.15) we
get V/r = e2β (1 − 2m/r). Outside of the outermost local maximum of 2m/r both e2β and
1− 2m/r are monotonically increasing with r, and thus so is V/r. If the outer boundary of
the grid is taken sufficiently far out, this is therefore the location of the maximum of V/r,
and thus of the most stringent slowdown condition. If ∆u < 10−15 (i.e. close to machine
precision) the evolution is terminated.

For the remainder of this appendix, we adopt the usual notation where superscripts
denote “temporal” (u) levels. Figure 7 shows the typical organization of our grid. All
discretizations in time (u) and space (r) use nonuniform grid spacings to allow for the free
fall of the gridpoints and the adaptive time stepping (A1). Our numerical scheme uses the
geometry fields β, V/r and (V/r)′, and the rescaled matter field ψ ≡ rφ.

Assuming that these fields are known at all grid points on the u = uk and u = uk−1

slices, we determine the fields on the u = uk+1 slice as follows:

• For the innermost 3 non-origin grid points in the u = uk+1 slice, we use a Taylor series
expansion as described in section A2.

• We then sweep outwards over the remaining spatial grids of the u = uk+1 slice as
discussed in section A3.

4By fine-tuning router in this way, we have also observed DSS in the massless scalar (Klein-Gordon)

field, with up to 5 echoes visible (in the sense of figure 1). This provides a strong additional test

of our numerical scheme, since the dynamic range of the DSS is much larger in the Klein-Gordon

case: ∆/2 ≈ 1.73 there (as defined by (3.3)), much larger than the values we find for the σ-field.
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2. Taylor Expansions near the Symmetry Axis

The coupled Einstein-matter equations and regularity determine the generic behavior of
ψ near the origin as

ψ(u+ ∆u, r) = c1r
2 + c2r

3 + c2r
2 ∆u+O

(

∆u4 + r4
)

. (A2)

Substitution of this series expansion into the hypersurface equations (2.12) yields corre-
sponding series expansions for the geometry fields β and V/r.

To determine the geometry and matter fields near the origin on the u = uk+1 slice, we
first least-squares fit the functional form (A2) to the numerically computed ψ values at the
5 innermost non-origin points of the u = uk and u = uk−1 time levels (these points are
marked by large solid circles in figure 7). This determines the coefficients c1 and c2.

For each of the 3 innermost non-origin grid points on the u = uk+1 slice (these points are
marked by open circles in figure 7), we first integrate the ingoing null geodesic equation (2.5)
from u = uk to u = uk+1, as described below. Then, using the coefficients c1 and c2, we
determine ψ at this grid point from the series expansion (A2). Finally, we compute β, V/r,
and (V/r)′ from their corresponding series expansions.

3. Integration Schemes

In order to integrate out from the Taylor series region to the outer boundary, our general
strategy at each grid point is as follows:

• We first determine the grid point’s r coordinate on the u = uk+1 slice by integrating
the ingoing null geodesic equation (2.5) from u = uk to u = uk+1.

• We then determine ψ at this grid point using a “diamond integral” scheme of Gómez
and Winicour (Refs. [15,16,14]).

• We compute the geometry fields by integrating the hypersurface equations one grid
point outwards on the u = uk+1 slice.

For the hypersurface equations (2.12) and the geodesic equation (2.5) we use a second
order iterated Runge-Kutta scheme (adapted from section 5.2.1, equation (5.6), of Ref. [31]).
For a generic ODE system dy/dx = f(x, y) the scheme is as follows:

yk+1
pred = yk + ∆x f(xk, yk) (A3a)

yk+1 = yk + 1
2
∆x

(

f(xk, yk) + f(xk+1, yk+1
pred)

)

(A3b)

While this allows straightforward integration of the hypersurface equations (2.12), the
geodesic equation (2.5) needs special care: The corrector (A3b) requires evaluating the
right-hand-side function f at the xk+1 time level. For the geodesic equation this requires
knowing the field V/r on the u = uk+1 slice, which is not yet computed at the time the
geodesic integration is done. We thus linearly extrapolate the needed V/r value from V/r
and (V/r)′ values one spatial grid point inwards on the same (u = un+1) slice.
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The matter field equation is integrated using a “diamond integral” scheme of Gómez and
Winicour (Refs. [15,16,14]). The basic idea is to integrate the nonlinear wave equation (2.10)
over the null parallelogram Σ spanned by the 4 grid points N , S, W , and E in figure 7. This
allows the nonlinear wave equation (2.10) to be written as

ψ(N) = ψ(W ) + ψ(E) − ψ(S)

−1

2

∫

Σ

((

V

r

)′
Ψ

r
+ e2β sin

(

2
ψ

r

))

du dr . (A4)

We evaluate the integral numerically by approximating the integrand as constant over the
null parallelogram Σ, with a value which is the average of its values at the grid points W
and E. This gives second order overall accuracy for ψ.

4. Diagnostics

Within a single evolution, we use several diagnostics to assess the accuracy of our numer-
ical computations. We numerically check the satisfaction of the subsidiary and redundant
Einstein equations (2.13) and (2.14). We also compare the two “different” forms of the mass
function mMS and mρ: These are in fact identical by virtue of the Einstein equations, but
they are computed in very different ways (via (2.15) and (2.16) respectively), and numer-
ically they will generally differ by a small amount due to finite differencing errors. This
difference is a useful diagnostic of the code’s accuracy. To this end, we define

δm(u, r) =
mMS −mρ

mtotal, init
(A5)

where mtotal, init ≡ mMS(u=0, rmax) is the total mass of our initial slice. δm is then a dimen-
sionless diagnostic of how well our field variables approximate the Einstein equations; we
must have |δm| ≪ 1 everywhere in the grid at all times for our results to be trustworthy.

APPENDIX B: CONVERGENCE TESTS

We use convergence tests of the type popularized by Choptuik (Refs. [32–34]) both to
better understand the performance of our numerical algorithms, and to quantitatively assess
the accuracy of our numerical results. In particular, it is only through such convergence tests
that we can be confident our conclusions reflect properties of the continuum Einstein-matter
equations, rather than numerical artifacts.

As an example of the convergence properties of our computational scheme, we discuss
a series of near-critical η = 0.5 evolutions. We begin by considering the effects of varying
grid resolutions (specified by the number of grid points N) on the critical parameter p∗.
Figure 8(a) shows these effects for the supercritical mass-scaling law. Notice that the dom-
inant effect is to simply shift each entire critical curve to a slightly different p∗[N ]. Table II
shows these p∗[N ] values, and their convergence to a continuum limit (which we denote by
p∗[∞]) as the grid resolution is increased. Notice that the ratios of the successive differences
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(p∗[2N ]−p∗[N ])
/

(p∗[4N ]−p∗[2N ]) are very nearly equal to 4, i.e. the p∗ values show second
order convergence to p∗[∞].

Besides shifting the effective p∗, what other effects does varying the grid resolution have
on the critical behavior? Figure 8(b) shows the same data as figure 8(a), but plotted using
the usual logarithmic mass-scaling-law coordinates, and with each grid resolution’s data
plotted using that resolution’s own p∗[N ] value. It is clear that the different resolutions all
yield the same mass scaling law.

[In order to get the same mass scaling law at different resolutions, it is essential here to
use each resolution’s own p∗[N ] value, since figure 8(b) shows the mass scaling law continuing
down to p− p∗[N ] values some 10 orders of magnitude smaller than the typical p∗[N ] shifts
from one resolution to another. Equivalently, if we did not use each resolution’s own p∗[N ]
value in figure 8(b), then the mass scaling law would fail to hold below p − p∗[N ] ∼ 10−5

(the typical p∗[N ] shifts seen in figure 8(a)), whereas by using each resolution’s own p∗[N ]
value, it actually continues down to p− p∗[N ] ∼ 10−15.]

We now consider convergence behavior within a single evolution, or more precisely be-
tween the 3 evolutions whose max 2m/r time developments are shown in figure 9(a):

(1) The first evolution uses 8000 grid points, with p = p∗[8000]+10−12, so this evolution is
just slightly supercritical, by about 1 part in 1010. This can be seen in the max 2m/r
plot: max 2m/r first oscillates a number of times, then eventually rises to 1.

(2) The second evolution uses 16 000 grid points, with the same p as evolution (1). Due to
the shift in the effective p∗ with N , this evolution is now subcritical, in fact subcritical
by a relatively large amount: max 2m/r oscillates only about half as many times as
in evolution (1), then eventually decays to zero.

(3) The third evolution also uses 16 000 grid points, but this time p is adjusted to com-
pensate for the shift in the effective p∗ with N : we take p = p∗[16 000] + 10−12. By
construction, this evolution is supercritical again, by the same amount as evolution (1);
in fact its max 2m/r plot is almost identical to that of evolution (1).

We use δm as a diagnostic of our code’s numerical accuracy for these evolutions. Fig-
ure 9(b) shows the convergence of δm to zero for evolutions (1) and (2). These evolutions
eventually yield very different spacetimes (one forming a black hole, the other not), but
here we consider u = constant slices at an early enough time, u = 13.08 (shown by the left
vertical dashed line in figure 9(a)) that the evolutions have not drifted very far apart yet.
From figure 9(b) it is clear that δm is almost precisely a factor of 4 smaller at the higher
resolution than at the lower one, i.e. δm shows second order convergence to zero, as expected
from the construction of our finite differencing schemes. Notice also that this convergence
is uniform, which is a considerably stronger numerical-fidelity requirement than requiring
only pointwise or gridwise-norm convergence.

Now consider a convergence test between evolutions (1) and (3). Because evolution (3)
adjusts p to compensate for the shift in the effective p∗ with N , these two evolutions have
very similar behavior, so we can consider much later u = constant slices and still obtain
good convergence. For example, figure 9(c) shows the convergence of δm at the relatively
late time u = 18.59 (shown by the right vertical dashed line in figure 9(a)). The convergence
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is (again) very accurately second order. In other words, once we compensate for the shift
in the effective p∗ with N , we have excellent – and uniformly pointwise – convergence even
for evolutions that are very close to critical (p− p∗[N ] here is about 5 orders of magnitude
smaller than the p∗[N ] shifts between the two resolutions), and hence very sensitive to small
perturbations.

14



REFERENCES

[1] M. W. Choptuik, Physical Review Letters 70, 9 (1993).
[2] C. W. Misner, Physical Review D 18, 4510 (1978).
[3] E. Eells and L. Lemaire, Bulletin of the London Mathematical Society 10, 1 (1978).
[4] E. Eells and L. Lemaire, Bulletin of the London Mathematical Society 20, 385 (1988).
[5] P. Bizoń, Technical Report No. math-ph/9910026, Jagellonian University, Kraków,

Poland (unpublished).
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TABLES

Initial Data Family (3.1) Initial Data Family (3.2)

Parameter is A Parameter is σ

η A∗ ∆/2 γ A σ∗ ∆/2 γ

0.18

0.2

0.225

0.25

0.3

0.4

0.5

1

2

5

10

100

0.019 523 015

0.018 942 512

0.018 241 056

0.017 578 042

0.016 392 639

0.014 534 866

0.013 167 548

0.009 528 975 1

0.006 809 778 3

0.004 333 205 6

0.003 070 144 2

0.000 972 589 54

0.5522

0.4367

0.3464

0.3043

0.2668

0.2452

0.2386

0.2314

0.2295

0.2304

0.2293

0.2302

0.1063

0.1091

0.1207

0.1173

0.1152

0.1132

0.1152

0.1163

0.1179

0.1183

0.1186

0.1187

0.003

0.002

0.002

0.002

0.002

0.002

0.0015

0.0015

0.0010

0.0005

0.0005

0.0001

1.083 153 54

0.615 317 49

0.651 519 42

0.688 851 73

0.766 003 44

0.929 746 89

0.707 335 37

1.210 138 07

1.064 744 72

0.734 344 76

1.318 800 46

0.631 472 58

0.5478

0.4327

0.3472

0.3046

0.2675

0.2445

0.2386

0.2313

0.2305

0.2308

0.2312

0.2311

0.1028

0.1150

0.1169

0.1173

0.1146

0.1139

0.1130

0.1155

0.1167

0.1178

0.1182

0.1182

TABLE I. This table shows two families of near-critical initial data parameters for various

coupling constants η. For the Gaussian-like initial data family (3.1), we use the “amplitude” A

as the parameter p (at a fixed “width” σ = 1), with a numerical grid of 16 000 grid points. For

the “derivative of 4th-power pseudo-Gaussian” initial data family (3.2), we use the “width” σ as

the parameter p (with different “amplitudes” A for different coupling constants), with 8000 grid

points. For each coupling constant and each family, the table also shows the max 2m/r echoing

period ∆/2 of the near-critical evolution, and the mass-scaling-law critical exponent γ determined

for the entire critical search.

N p∗[N ] δp∗ ratio
1000
2000
4000
8000

16 000

0.013 156 008
0.013 164 618
0.013 166 841
0.013 167 405
0.013 167 548

〉
〉
〉
〉

8.61 × 10−6

2.22 × 10−6

5.64 × 10−7

1.42 × 10−7

〉
〉
〉

3.87
3.94
3.97

TABLE II. This table shows the convergence of p∗ with the finite difference grid resolution N ,

for the Gaussian-like data plotted in figure 8. These evolutions used the same initial data param-

eters as given in table I. The first two columns give the p∗ values for the various resolutions N .

The third column gives the differences δp∗ ≡ p∗[2N ] − p∗[N ] between consecutive p∗ values as the

resolution is doubled, and the last column gives the ratios of consecutive differences. The values

in the last column are very nearly equal to 4, showing second order convergence of p∗.
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FIG. 1. This figure shows DSS echoing behavior in the black hole formation diagnostic

max 2m/r in near-critical (in this case slightly supercritical) evolutions for coupling constants

η = 0.5 (part (a)) and 0.18 (part (b)). Notice the much longer period ∆/2 of the echoes at

η = 0.18. Although it’s not apparent to the eye at the scale of this figure, the 0.18 echoes aren’t

exactly identical: they vary in period and shape by 5–10%.

τ = 1.154 τ = 1.212 τ = 1.270 τ = 1.327

τ = 1.385 τ = 1.443 τ = 1.501 τ = 1.558

τ = 1.616 τ = 1.674 τ = 1.731 τ = 1.789

τ = 1.847 τ = 1.905 τ = 1.962 τ = 2.020

FIG. 2. Snapshots of a near-critical evolution of the SU(2) σ-field φ as a function of ln r for

η = 1.0. The frames are evenly spaced in τ = − ln u∗
−u

u∗
(this increases towards the accumulation

time u∗). τ increases to the right within each row, then downwards between successive rows.

Observe that φ is the same in frames in the same column but 2 rows apart; this indicates that φ

is periodic in τ with period ∆ = 0.46. Also notice that φ is negated between frames in the same

column of adjacent rows, i.e. it satisfies the half-period self-similarity condition (3.5).
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FIG. 3. This figure shows the variation of the near-critical max 2m/r echoing period ∆/2 with

the coupling constant η, for the Gaussian-like initial data family given in table I. Notice the rapid

rise in ∆/2 at small η. The error bar for the η = 0.18 point is estimated from the dispersion in ∆/2

values when fitting different subsets of echoes in figure 1(b); for larger values of η this dispersion

is negligible.
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FIG. 4. Supercritical scaling of the black hole mass mBH, and of Rmax, the maximum (over

retarded time u within a single evolution) of the scalar curvature at the origin. The slopes of the

masses and Rmax are +γ and −2γ respectively. The scaling fine-structure is clearly visible for

Rmax. Its period is found to be 2.099 which is very close to the value 1
2∆/γ = 2.097 predicted

by perturbation theory and computed from known values of the critical exponents. This series of

evolutions was done for η = 0.5 using a resolution of 2000 gridpoints.
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FIG. 5. This figure shows the fine-scale structure in mBH (shown in figure 4) after subtracting

a linear fit. For these evolutions we disabled the “2mMS/r > 0.995 detected for N time steps”

stopping criterion in our code (cf. section A4), running each evolution until ∆u < 10−15; in this

case our final slices’ outer grid boundaries almost touched the apparent horizon, so mBH and mtotal

were essentially identical (within . 10−10 of each other).

0 1 2 3 4 5
1.9
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2.5

2.6

∆/2γ = theoretically predicted periods
periods measured from fine−structure

η

1 2
∆
/γ

FIG. 6. This figure compares the quantity 1
2∆/γ, as computed from the echoing in max 2m/r

and the mass-scaling law, to the period of the oscillations present in the fine-structure of the

mass-scaling law, which is predicted by perturbation theory to be 1
2∆/γ. This has been carried out

for coupling constants ranging from 0.25 up to 5. All evolutions were done with 2000 gridpoints

radial resolution.
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u = uk�1u = ukS Eu = uk+1W N

FIG. 7. This figure shows our finite differencing grid. Individual grid points are labelled with

integers 0 to 6, and their ingoing-null-geodesic trajectories are shown as dotted lines. Grid points

at the origin are marked with small points. Grid points used in the least-squares fitting procedure

(cf. section A2) are marked with large solid circles, while the grid points where the field variables

are calculated from the Taylor series are marked with large open circles. Grid points where ψ

is already known in the diamond-integral scheme (cf. section A3) are marked with solid squares,

while the grid point where ψ is computed in this scheme is marked with an open square.
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FIG. 8. This figure shows the convergence of the supercritical mass-scaling law with increasing

finite difference grid resolution, for η = 0.5 evolutions. Part (a) shows the mass scaling behavior for

5 different grid resolutions, plotted on linear scales in both p (here the “amplitude” A) and mBH.

Notice how the main effect of changes in the grid resolution is to simply shift the entire critical

curve to a slightly different p∗. The actual p∗ values are given in table II, and all these evolutions

used the same initial data parameters as given in table I. Part (b) shows the same data plotted

on logarithmic scales, with each resolution’s p values being taken relative to that resolution’s own

p∗ value. Notice that all the resolutions satisfy the same scaling law, even down to p − p∗[N ] far

smaller than the resolution shifts shown in part (a); this is discussed further in the text.
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FIG. 9. This figure shows the convergence of δm to zero with increasing grid resolution, for

near-critical η = 0.5 evolutions. Part (a) shows the time development of max 2m/r for each of

3 evolutions described in the text. Part (b) shows the convergence of δm between evolutions (1)

and (2), at a relatively early time. Part (c) shows the convergence of δm between evolutions (1)

and (3), at a relatively late time. (Note that in all cases, the marked points are spaced for ease of

reading, and represent only a small subset of the time steps or spatial grid points.)
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