Abstract

We discuss aspects of the light-cone quantisation of the eleven dimensional
open supermembrane. The vertex operators for the massless states which
couple to the open membrane boundaries are derived. Our results have
direct applications to Matrix theory by appropriate regularisations.
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1 = Introduction

More than five years after the advent of M-theory its micro-
scopic degrees of freedom remain elusive. To some extent the “nat-
ural” candidate to such a fundamental description is the eleven
dimensional supermembrane. The supermembrane is a 2 + 1 dimen-
sional object moving in 11 dimensional space, with a world volume
theory [1] which when quantised should give us a glimpse of the
fundamental degrees of freedom of M-theory. Attempts to quantise
the world volume theory in analogy to 10 dimensional world sheet
string theory have revealed many interesting features which distin-
guish it from the 10 dimensional string theory, and also make it
difficult to solve. The main source of difficulties lies in the fact that,
unlike the string, the 2+ 1 dimensional world volume theory is
interacting. Moreover it does not have conformal invariance. Certain
features of the supermembrane are understood, namely, it can be
regularized to yield a supersymmetric Matrix theory [2], and it’s
spectrum is continuous [3,4]. These lead to a multiparticle interpre-
tation of the spectrum [5], and the need for a second quantised
description of the membrane. We still do not have a complete under-
standing of this, nor is the existence of a normalisable ground state
confirmed. However, there is evidence from Matrix theory that such a
state indeed exists and it contains massless states corresponding to
the massless multiplet of 11 dimensional supergravity [6]. Reviews on
supermembranes discuss many of these issues in details {7].

The interactions of the massless sector is a interesting avenue
to explore. As we know, in the case of the superstring [8] as well as
the superparticle [9,10] scattering amplitudes are evaluated by deter-
mining the vertex operators and inserting them into path-integral
amplitudes. The vertex operators for the supermembrane derived
in [11], precisely seek to achieve the same for supermembrane
scattering amplitudes [12,13]. The operators are determined uniquely
and provide a step towards understanding massless interactions.

In this article we discuss the vertex operators for the open
membrane. Unlike the closed supermembrane, the open mem-
brane ends on 1,5 or 9 dimensional hypersurfaces inducing super
string theories on the boundary. For the 9 dimensional case, one
expects the heterotic string [14] though the membrane origins of
the £g x £g gauge fields remains obscure. For the 5 dimensional
case, little string theories with a world volume theory of the self dual
five brane is induced. In recent times, it has acquired importance
due to its relation to non-commutative theories in presence of a
background constant three form gauge field strength [15]. It shall be
interesting to investigate the string theory induced on the 1 dimen-
sional hypersurface.
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As in the case of the closed supermembrane discussed in
[11], the open supermembrane vertex operators are determined
from considerations of supersymmetry. The only difference is in
the presence of boundaries which reduces the number of super-
symmetries. However for consistency checks, when we perform a
double dimensional reduction [16] to get superstring vertex opera-
tors, there is a subtlety involved in the dimensional reduction of the
open supermembrane. Since the open membrane can end only on
different dimensional (9,5, or 1) hypersurfaces, we get different string
theories. Also, depending on which direction Neumann or Dirichlet
we choose to wrap the membrane, we get string theories in lower
dimensions which are dual to each other. In this article, we shall
discuss only the case where the open membrane ends on a 9dimen-
sional hypersurface to yield a heterotic string theory on the bound-
ary. On dimensionally reducing along one of the Dirichlet directions,
one gets purely heterotic string theory. However, wrapping one of the
Neumann directions, one gets a open string theory stretched
between hypersurfaces, which can be identified to give Type I’ string
theory, dual to the heterotic string theory.

The first section is an introduction to supermembrane basics,
mainly to fix notations. We also review the relation of supermem-
brane to Matrix theory, and then the multiparticle interpretation of
the supermembrane spectrum. In the second section we give the
vertex operators for the massless sector of the theory.

FIGURE

1

Various limits of the supermembrane

model
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2 » Supermembranes

In analogy with the particle and the string, the action for the
membrane is given by the 2 + 1 dimensional world volume swept out
in the target space. The supermembrane is a extension obtained by
adding fermionic target space ‘coordinates’. A supersymmetric
action involving the bosonic and the fermionic coordinates can be
written down consistently only in special dimensions, of which

d = 11 is the maximal value. This action in flat spaceind = 11 takes
the form

S = - /dsf{\/ —g(X, 6) - eijkér‘}u/aia

2.1)
E O X" (0eX” + 0T 0k0) + -61- 0‘rﬂa,-9§r"ak9J }
The reparametrisation of the world volume can be used to fix the
bosonic degrees of freedom to eight. (E.g. one can go to static gauge
by identifying X% = ¢21:2 Jeaving § transverse degrees). The
symmetry of the action is then used to reduce the number of fermio-
nic degrees of freedom. The most efficient way of dealing with the
above action and its symmetries however is to go to the lightcone
gauge [1,2]. The light cone directions X* = —‘\/7 (X" £ X1 are singled
out, and X* is identified with the time direction of the world volume,
which we denote by 7 here (hereafter, we denote the spatial direc-
tions &' = ¢12). The & symmetry also allows to set 1/2 of the fer-
mionic degrees of freedom to zero. The gauge conditions thus read:

Xt =Xt (2.2)
It =0, (2.3)

where I = & (T%+1). One is left with 9 transverse degrees of free-

dom and the fermionic coordinate 6 is reduced to having 16 degrees
of freedom in this gauge. In addition one has to solve for X~ which
gives an extra constraint reducing the total number of bosonic
degrees of freedom to 8. The details of this derivation can be found
in [2,1].

The light cone Hamiltonian is still invariant under a class of

diffeomorphisms, called area-preserving diffeomorphisms (APD),
acting as [17,2]:

6XP = —EBX" 9= —£0,0 (2.4)

with § = €°0s¢, such that 8,¢ =0 (¢ is a scalar parameter), and
hence area of the two surface is preserved under this transformation.
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The area preserving diffeomorphisms as defined above can be attrib-
uted with the following Lie bracket structure:

$A = {¢, A} = €59,£0A. (2.5)

Thus {A, B} = ¢°9,A0.B defines a Lie bracket for any two functions
A, B. 1t shares all the requisite properties of Lie bracket, namely
antisymmetry, associativity and satisfies the Jacobi identity. The
Hamiltonian density can thus be rewritten as:

H= (PP xy sorixe, o)) (26)

In fact, with the above knowledge, one can start with a
lagrangian invariant under APD, to yield (2.6) as the Hamiltonian.
The APD invariant Lagrangian can be written in a compact form by
introducing an auxiliary field w, which transforms as a gauge field
under APD transformations:

bw = Opw + {&,w) @2.7)

By defining a covariant derivative,
DX = 0, X" — {w, X"}, (2.8)

the lagrangian becomes [2]:
L= % (DX)*— % (X9 xPY*~i0Df - i0y" (X", 6} (2.9)

The lagrangian is also invariant under the target space supersymme-
tries, 16 of which are linearly realised with parameter 7, and due to
the gauge fixing, another 16 of which are non-linearly realised with
parameter ¢, They are of the form:

6X9 = 270 bw = —2¢0
60 = iDX"30¢ = 5 {X*, X" }rase + (2.10)

Note that the action is invariant under the above transforma-
tions up to total derivatives, and for closed supermembranes the total
derivatives do not make any contribution (The fields are assumed to
vanish at 7 = too). However, for open supermembranes, where
there are boundaries at the end of spatial directions of the world
volume, Dirichlet or Neumann boundary conditions have to be
imposed to ensure that the boundary terms vanish. One finds that
to ensure invariance under supersymmetry, it is necessary that the

- 87 .
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supermembrane ends only on 1, 5 or 9—dimen.sional hypersurfaces.
This set of conditions have been derived eatlier in [19,18] and by
demanding invariance under x symmetry of the covariant action
[20].

To impose the boundary conditions on the ends of the super-
membrane, we define the normal and tangential derivatives on the
boundary:

X" = ' 9,X" (2.11)
X" = S, 0X" (2.12)

where n' is the unit normal on the boundary and ¢*n, the unit
tangential vector to the boundary. For the supermembrane ending
on a p dimensional hypersurface the following boundary conditions
are required:

XM =0 forM=2...,p (Neumann) (2.13)
X" =0 form=p+1,.,10 (Dirichlet) (2.14)

To check for invariance under supersymmetry transforma-
tions (2.10), we vary the action and find the following boundary
terms:

S - / dr / doy" 00X+
. ‘ JOG ) l (215)
y / dr / docy? (V.DX *57“”{)(",)(”})06,)(".
. .8

On imposing the (2.14), we find to get the terms to vanish along the
Neumann directions, additional conditions on @ must be imposed.
These translate as

Q
A

Y

Kopie bereitgestellt durch Nds. Staats- und Universitaetsbibliothek Goettingen



Supermembranes

"0 = M40 = My"yNg = 0. (2.16)

Defining P, = 1/2(1 £+ A7+ ... 4'9), which act as projection operators
for dimensions p = 1,2,5,6,9, we find that the following conditions:

PO=0 Pre=0 Pp=0 (2.17)

are required so that (2.16) is obeyed, which restrict p =1,5,9. It is
interesting to see that (2.17) results in the fermionic degrees of freedom
being reduced to 8 on the boundary. For p = 9, P_ coincides with the
chiral operator for the boundary theory. This is the first sign that the
boundary theory, which is essentially a string theory induced by the
membrane has a heterotic structure. In fact, by looking at the equations
of motion obeyed by the membrane on the boundary, we find that they
are ‘free’ equation of motion for a string. For simplicity, we discuss the
p =9 case, and its relation to heterotic Matrix theory [21]. The p =5
case also has many interesting applications [22], especially in the light
of non-commutative open membrane theories proposed and discussed
in [15]. The p =1 case is yet to be investigated.

Once we have ensured that the boundary terms vanish, the
bulk equation of motion for the fields are:

DX — {{X X"}, X"} - i{6,4°6} =0 (2.18)
DO+ {y-X,0} =0 (2.19)
{DX?, X% - i{0,0} =0 (2.20)

The last of these, the equation of motion for the auxiliary
gauge field w is same as the constraint. What is interesting is how
these equations reduce on the boundary. Taking @ = m in (2.18) on
the boundary and if we set 82X"|,; =0, (we can also set
XM = XM(r,0)) it follows that:

O X™ = constant (2.21)

Using this, we define ¥ = Z:Brl 8,X™~,, = constant matrix. The equa-
tions obtained by putting a = M in (2.18, 2.19) reduce to the follow-
ing linear wave equations on the boundary:

(@ -3Hx" =0 (2.22)
(0—-70)8 =0 (2.23)
(recall that 9, is the tangential derivative along the spatial boundary

of the membrane). In this way we see that the supermembrane
equations of motion with the above boundary conditions induce a

-89 .
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superstring theory on its boundary. The restrictions on the value pr
can then be easily understood, because only for these values is it
possible to match bosonic and fermionic degrees of freedom on the
houndary. In particular, for p = 9, we obtain the world sheet equa-
tions for the heterotic string, and 5 = v'° becomes a chirality matrix
on the (9 + 1)-dimensional brane. By (2.17), only one of the chiral-
ities of # survives on the boundary, leaving an appropriate equatiqn
of motion for the chiral coordinate. We had to put 9,6 = 0 to obtain
the free heterotic string equations of motion.

After we have obtained the gauge fixed lagrangian, with the
appropriate equation of motion for the world volume fields, what
remains is the quantisation of the theory. Some attempts in this
direction have been reviewed in [7]. Here we confine ourselves to
brief comments and show how Matrix regularisation of the membrane
leads to a interpretation of the spectrum. We describe the latter first.

2.1 = Relation to Matrix Theory

We now concentrate on the relation of the APD diffeomorph-
ism transformations to SU(N) or SO(N) for the open membrane
gauge transformations under suitable regularisations [2]. It was first
discussed in {2], and led to the supermembranes’ relation to Matrix
theory, and M theory [5]. In the case of open membranes, it leads to
the relation to heterotic Matrix theory for membranes ending on 9
branes [14].

Since this discussion appears in previous reviews [7], we just
briefly give the relation here, with an emphasis on the regularisation
of the open membrane. As stated earlier, the APD bracket has a Lie
bracket structure. It is also easy to check that the commutator of two
APDs leads to a third APD:

{&,6} =& (2.24)

Given a basis of orthogonal functions {Y*} on the spatial manifold,
we can expand the coordinates as X9(g) = X8+ 3, XY,(0). The
Lie bracket then assumes the following form:

{Ya.Yi} = gapc Y A=Yy e = 62 (2.25)

where
Lanc = / d* o Y0, Ypid Y Nap = / d*a¥aYy (2.26)

. Given the above, the basis which is infinite dimensional for a
continuum manifold, can be restricted to some finiteA = 1, .., A such
ey
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that
lim_oofi B¢ = g*5¢ (2.27)

with F#C the structure constant of some finite dimensional group
labeled by A. For closed membranes of arbitrary topology {2,23] this
finite dimensional group is SU(N), and the Hamiltonian of the regu-
lated membrane turns out to precisely coincide with the Hamiltonian
of dimensionally reduced SU(N) super Yang-Mill's theory. This can
easily be seen by substituting the regularized coordinates in (2.6),
and replacing the APDs by appropriate commutators. The same
Hamiltonian was used in [5] to describe N D0-branes in the infinite
momentum frame, with their momenta along the 11th direction of
d = 11 space. Hence supermembranes through Matrix theory are
intimately related to D-branes and M-theory.

For open supermembranes, the matrix regularisation yields
different finite dimensional groups, dependent on the topology of the
continuum membrane: for the disc D?, the cylinder, and the Mébius
strip, we get the groups SO(/V), whereas for the projective plane we
get USp(2N) [24]. Moreover, depending whether the X are Neu-
mann or Dirichlet, they either transform in the symmetric or adjoint
representation of the gauge group. We shall illustrate here with the
example of the disc, the regularisation of the open membrane. Con-
sider Y4 = Yjn(8,¢), or spherical harmonics, with m < |{]. The restric-
tion that / < N — 1 for the spherical membrane leads to a basis with

;v - (21 + 1) = N? — 1 independent components, and the X trans-
form in the adjoint of the SU(N) gauge group. However, when the
membrane is stuck on a hypersurface, it essentially corresponds to a
disc topology, with boundary conditions imposed on the X"
(m = p +1,..10), this would translate as Ky, = Yin — (=)™ Yiy
for /+m odd being the correct basis. This gives
SV=11 = N(N — 1)/2 as the number of generators of the finite group.
This as we know is the number of generators of SO(N). For the
Neumann directions (2.12), we get these directions to transform as
symmetric tensor representations of SO(N) [18,19]. In fact, the reg-
ularised action has the following form (in 11 dimensions):

S:/Tr DX? 4 DAyg + [Aro, XM]2 4+ [XM, XV
( 10 + [Av0, X"+ ] (2.28)

~i0*DOT — i0~DO~ + 20 TH[XY 07])

Where we have distinguished X0 = A9 as it transforms in the adjoint
of the SO(N) group. Also the fermions are broken up as ©+,©~ which
transform in the adjoint and symmetric representation of the gauge
group. The XM transform in the symmetric traceless representation of

291

Kopie bereitgestellt durch Nds. Staats- und Universitaetsbibliothek Goettingen



The Light Cone Open Supermembrane

FIGURE 3

-membrane correspondence

SO(N). The above matrix regularisation is the heterotic Matrix theory
[21], but without the twisted sector fields expected to yield the addi-
tional Eg @ Fg degrees of freedom [14]. These twisted fields appear at
the boundaries of the membranes, and live only on the 9-branes. A
proper membrane origin of these fields is yet to be determined. For the
case of the membrane ending on a five brane, there are many inter-
esting possibilities [22], but much remains to be done.

The resultant theory is yet to be quantised fully. However,
from the nature of the Hamiltonian, it can be seen that the super-
membrane spectrum is continuous and there is no mass gap. This
points towards a multiparticle interpretation of the spectrum, and )
hence a second quantised picture of the supermembrane.

The matrix regularisation of the supermembrane proves very
useful, as one can use matrix quantum mechanics and interpret the
N —» oo as the quantum supermembrane. However, the N — oo limit
is very subtle (for closed supermembranes with different topology
and hence different APD are approximated by the same SU(N)
regularisation). But the multiparticle interpretation of the supermem-
brane spectrum comes entirely from its relation to Matrix theory. It
was shown in [3] that the supermembrane spectrum is continuous
and there is no-mass gap. The continuous spectrum of the super-
membrane was interpreted initially as a signature of instability. How-
ever, now due to its relation to matrix theory, this is attributed to the
presence of multi-particle states. In the original conjecture of [5], the
diagonal elements of SU(N) matrices are positions of D0 branes, and
in the case of block diagonal matrices, each block corresponds to N;
coincident D0-branes, where N; is the dimension of the ith block.
Each of these can be thought as separate entities, and in the infinite
N limit, as separate membranes linked by thin tubes. This multi-
patticle interpretation of the supermembrane spectrum implies, that
we should essentially treat the supermembrane world volume as a
second quantised theory.

(o] N,—>O<) o

L L]
Ny N, Ny
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However, one crucial question still remains: can one find a
normalisable ground state for the theory? And if so, does the spec-
trum have massless states? By just looking at the zero mode sector of
the theory, one can build states which transform as 44 ¢ 84 of SO(9)
in the bosonic sector and 128 of SO(9) in the fermionic sector. Since
the Hamiltonian and hence mass does not depend on the zero
modes, this should give the massless sector of the theory, provided
the groundstate corresponding to the non-zero modes transforms as a
SO(9) singlet. Attempts to prove this have not seen much success up
to now. However, in Matrix theory, considerable progress has been
made in efforts to prove the existence of normalisable ground states
[6] in the case of SU(2) or SU(3). Further information can be found
in the review [7] and we refrain from giving the details here. In the
next section, we discuss vertex operators for the supermembrane,
which is one of the directions which can shed more light on this side
of M-theory.

3 - Vertex Operators

Vertex operators by definition are of the following form:
Vi = / d3h - Oy| X, 6)e** (3.1

where h denotes the polarisation of the state, and O the local opera-

tor corresponding to that state which has a momentum k. Given the
fact that supermembrane world volume theory does not have con-
formal invariance we have to look elsewhere to determine O. How-
ever, the requirement that the vertex operators transform into one
another under supersymmetry transformation completely determines
their structure. In addition the technique of double dimensional
reduction to give the superstring in lower dimensions gives an addi-
tional check for the supermembrane vertex operators. The super-
particle vertex operators for d = 11 were determined in [9], and also
serve as a useful guide in our calculations.

Thus for the closed supermembrane the vertex operator for
the graviton should be of the form (3.1)

Vp = hgb/deQO'OZb[Xa(T, o), 0(r, J,')]e'k'x (3.2)

ha denotes the polarisation tensor of the graviton, and O”"m isa local
operator of the supermembrane light cone coordinates. R denqtes
the momentum of the graviton, and this operator in the superstring
case creates a graviton state when acting on the string ground state.

293 .

Kopie bereitgestellt durch Nds. Staats- und Universitaetsbibliothek Goettingen



The Light Cone Open Supermembrane

For the open supermembrane the string vertex operators shall
couple only at the boundary, and hence shall be of the following
form:

Vilog = hmw /0 . drdo' OMNe™ (33)

(recall o' denotes the tangential direction on the boundary, and M,N
run over Neumann directions.) Using the fact that under supersym-
metry transformations

Vi = Vg (3.4)

where 61y, is the transformed corresponding fermion polarisation
vector, we can solve for V. And V,, V¢ which have the following
transformations under supersymmetry:

Ve = Vbﬁl/)(h) OV = Vsn + Ve (3.5)

in the bulk. However on the boundary, as explained in the earlier
section, the fields are that of the Heterotic string, which are obtained
by projecting the bulk fields onto the boundary also (except for the
gauge fields). Hence, in principle we check for the supersymmetry of
the bulk operators and then take appropriate projections unto the
boundary after ensuring that the boundary terms which arise in the
supersymmetry transformations vanish.

The vertex operators, for closed membranes were derived in
[11]. We explicitly state them below: (R™* = Ly, R = 196),

Vi = hap [DX°DX® — {X9 X HX?, X} — i0v°{ X", 6}

~2DXR" ke — 6{X", X }R* Ry + 2R RYk kgle X (3.6)
Vi, = —2hq, (DX? — R®k,)e~*X (3.7)

Vi, = hy e ®% (3.8)
Ve = =CapeDXU{X®, X Ve ™ ¥ 4 Fpeq [(DX" — 2Rck,)Rbd
3 X XOPR — X, X Yoyl etk X (39)

Ve, = Cap e ({X9, X2} + 3RCR, ) o ikX (3.10)

94
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Vo = tha[(DX? = 2RRy + (X, X})0]e ¥ (3.11)
4y DX (DX = 2Rk, +7c{X°, X°})0
- L {X0, XY (DX — (X7, X938+ 81,8 {X?, X R Rg
+ e B{X?, XIRY Ry + 4 ypcf({X XP YR + { X, XT}R® kg
2i(0{X?, 0110 — 0{X, 0}0) + 3+/6R* R¥k kg | e

Vq/‘ - {1/1+9 + 72’+ (,YODXG + %wb{xa’xb})e] e—ik-X (3.12)

The above operators were derived by checking for consis-
tency under supersymmetries, and we see how the linear supersym-
metry is realised. We implement the following transformation in the
graviton vertex (3.6): 6X? = 6w = 0, 86 = 7. In otherwords only the
terms proportional to # shall contribute to the variation, which is
written thus:

Vi, = kypheamry [DX — 2R kg — y¢adfle™**

— hap [{X%, k- X 3P0 + iy { X, 0} ] (3.13)
The terms in the first line can be grouped together to yield the
gravitino polarisation. The terms in the second line have to vanish
clearly, and by a partial integration cancel each other. Note that, in
the case of boundaries, we have to be careful in order to ensure the
vanishing of the above. In fact, we find that the additional condition
of dw|,; = 0, hmm| ,; = 0 has to be imposed to ensure the vanishing
of the boundary terms. The condition can be understood easily as the
residual symmetry of the string worldsheet is just a constant shift in
the coordinates and there is no analogous APD gauge transforma-
tion. The second one implies that there are no R ® R one forms on
the boundary string theory. In case of the membrane ending on
9-branes this is easy to understand as the boundary string theory is
heterotic string theory.

Thus taking the vertex operator induced by the above on the
boundary should give us the open membrane vertex operator we are
looking for. To determine the operator induced on the boundary, we
take help of the following: The SO(9) spinors also decompose into
two SO(8) spinors (S,,Ss). Thus (M,N =2,...,9 and '™ are SO(8)
matrices):

RMV = 1STMNg 4 LSPMVS  RMIO — 15TMg (3.14)
RMNP _ 1 GPMNPS  RMNI0 — L gTMNg _ LSTMNG (3 15)
6 12 12 .
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On the boundary, due to the projection operator
(1-4"%8 =0, (3.16)

one finds that only S, or S, are retained. Imposing the Neumann and
Dirichlet conditions on the boundary gives the boundary vertex
operator as:

(Vidag = Paan | Do XM XY — 9 XM XN — L goXM (STPS)Rp
G 9
+L0XM(STVS)kp| e

= o (95X — LSTH Skp ) (0_X") e X (3.17)

The same can be repeated for the three form vertex operator
and the gravitino vertex operators to get the heterotic N = 1 super-
gravity multiplet on the boundary. Thus, we have the complete
supermembrane vertex operators both for closed as well as open
supermembranes. It should be mentioned that in the case of open
membranes ending on 9-branes, heterotic string, the additional mass-
less states of the Eg x Eg gauge fields are not there. One has to be
careful about the dimensional reduction to get the superstring vertex
operators. Wrapping the supermembrane along one of the Neumann
directions, which is subsequently taken to zero, one gets the Type I
vertex operators.

3.1 « Matrix Theory Vertex Operators

Since the Matrixregularisation of the supermembrane is a
straightforward procedure described in section 2.2 the vertex opera-
tors can be easily applied to Matrix theory. The coordinates X, g+
transform in the symmetric representation of SO(N), while the Dirich-
let direction transforms in the adjoint and is denoted by Ag. The
coordinates are matrices, and the continuum integral is replaced by
a Trace operation. Hence the graviton vertex (written in configura-
tion space) shall be of the form:

Vi = Tr[{XMXN ~ (XM XN — (XM, Ao][XY, Ayo] — ©TM [XN, 0]

: - a MPQ A - 0]
—2XMRMP L RMP) 46X XPlotM e
( )(’)X” [ ] ox°
)

M +NO __ p—NQ
+ 20, Al (R R o

g 0
+(RMP 4 R-MP) (RN +R“Mo)5i75i5}hMN(X)} (3.18}
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(with R*MV = 1*TMNe*). Note that our vertex operators are known to

all orders in 8 and unlike as expected (i.e. terms up to 6°2), they contain
terms only up to O(6°). It remains now to implement the above in a
scattering amplitude calculation.
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