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We propose a new rule for boundary renormalization group flows in fixed-point free coset models.
Our proposal generalizes the ’absorption of boundary spin’-principle formulated by Affleck and
Ludwig to a large class of perturbations in boundary conformal field theories. We illustrate the rule
in the case of unitary minimal models.

Renormalization group (RG) flows in models with
boundaries or defects are of interest in condensed mat-
ter theory, statistical physics, and in string theory where
they describe aspects of D-brane dynamics. There exist
various tools to investigate flows generated by boundary
fields including the Thermodynamic Bethe Ansatz, the
Truncated Conformal Space approach and perturbation
theory (for an overview see e.g. [1]). These techniques
have helped to accumulate a rather extensive knowledge
about boundary RG-flows in specific models. On the
other hand, with the exception of the ‘g-conjecture’ [2],
we lack model independent principles that could guide
us to predict possible boundary flows. Only in the case
of WZW models, Affleck and Ludwig found an easy to
formulate rule [3]. Here we shall present a generaliza-
tion of their ‘absorption of the boundary spin’-principle
which applies to all fixed-point free coset conformal field
theories.

Our presentation starts with a precise formulation of
the new principle. It is then argued that our proposal is
consistent with the perturbative results obtained in [5].
Finally, we apply the proposed rule to coset realizations
of unitary minimal models and compare our ‘predictions’
with known results.

Let G/H be a coset conformal theory with primaries
labeled by pairs (l, l′) of integrable highest-weight rep-
resentations l and l′ of the affine Lie algebras ĝk and
ĥk′ , respectively. Note that in many examples, branch-
ing selection rules restrict the admissible pairs and that
different pairs may describe the same coset sector. For
our purposes, however, there is no need to be more spe-
cific about such issues. Boundary conditions (L, L′) of
so-called Cardy type [4] can be labeled by elements from
the same set, i.e. by primaries of G/H . It is natural to
extend this correspondence between elementary Cardy
type boundary conditions and primaries (or their confor-
mal families) such that mixtures (or ‘superpositions’) of
boundary theories are associated with sums of conformal
families.

Let us now choose representations σ, L of ĝ and L′

of ĥ. Then our rule predicts the following flow between
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boundary conditions,

(L, σ|h ×̂ L′) −→ (L ×̂ σ, L′) . (1)

Here, ×̂ denotes the fusion product for representations of
the affine Lie algebras ĝ and ĥ, respectively. The defini-
tion of the restriction in σ|h is not entirely obvious. It is
based on restricting the corresponding representation σ0

of the finite dimensional Lie algebra g to its subalgebra h.
The existence of an embedding between the two affine al-
gebras guarantees that all the subrepresentations in σ0|h
give rise to integrable highest-weight representations of
ĥk′ . Their sum is then denoted by σ|h. Note furthermore
that in most cases, the boundary labels on both sides of
the flow (1) involve reducible representations. To iden-
tify the configurations as mixtures of elementary bound-
ary conditions, we have to decompose the representations
into irreducibles.

It is certainly of interest to specify which boundary
field is responsible for the flow (1). Even though this issue
can be analyzed in more detail, we shall content ourselves
with some simple statements. They involve the integrable
highest-weight representations θ and θ′ which are built
from the adjoint representations of the Lie algebras g and
h, respectively. Our main rule asserts that the flows (1)
are generated by fields from the coset sectors

H(0,l′) , where l′ ⊂ θ|h . (2)

Moreover, if the initial boundary theory before perturba-
tion contains the sector H(0,θ′) at most once, then l′ = θ′

can be omitted from the list (2).
Let us observe in passing that we recover the principle

found by Affleck and Ludwig when we specialize to the
example of WZW-models, i.e. to coset models with trivial
denominator. Indeed, in this case the flow (1) reduces to

dim(σ) (L) −→ (L ×̂ σ) =
⊕

J
NσL

J (J)

where dim(σ) is the dimension of the representation σ0 of
g and N denote the fusion rules of the affine Lie algebra
ĝ. The perturbing field is given by the product SσJ(x)
which describes the coupling of the current J(x) to some
boundary spin Sσ. Comparison with [3] shows that we
have reproduced the ’absorption of the boundary spin’-
principle.

Before we move on to examples and applications of the
stated rule, we want to discuss its relation with the per-
turbative results obtained in [5]. There, we considered
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coset models in a limiting regime in which some of the
involved levels become large. Using a perturbative ap-
proach we identified RG fixed points Q in the vicinity of
a chosen boundary condition P . To formulate the main
result of [5], let us assign representations P0 and Q0 of
the finite dimensional Lie algebra g ⊕ h to the boundary
conditions P and Q (see above). With this notation, we
are able to state that Q appears in the vicinity of P if
the associated representations P0 and Q0 are equivalent
on the diagonally embedded hdiag ⊂ g ⊕ h,

P0|hdiag
∼ Q0|hdiag

. (3)

Here, we have to assume that P and Q coincide in the
directions in which the level is not sent to infinity (see
[5] for details). The boundary theories Q satisfying the
condition (3) provide candidates for the infrared fixed
points of an RG flow which initiates from P .

For comparison, let us now evaluate our rule (1) in
the limiting regime, assuming that the representation σ
is trivial in the directions belonging to small levels. Un-
der this condition, the fusion products in rel. (1) can be
replaced by the usual tensor products of Lie algebra rep-
resentations. Taking the configurations of both sides of
(1) and restricting the associated representations to the
diagonally embedded h, we obtain

L|h ⊗ σ|h ⊗ L′ −→ (L ⊗ σ)|h ⊗ L′ .

The two sides are equivalent because the decomposition
of representations commutes with taking tensor products.

As an application of our rule, let us consider the uni-
tary minimal models. They can be realized as diagonal
coset models of the form su(2)k ⊕ su(2)1/su(2)k+1. Cor-
respondingly, their sectors are labeled by three integers
(l, s, l′) in the range l = 0 . . . k, s = 0, 1, l′ = 0 . . . k + 1.
Branching selection rules restrict l+s+ l′ to be even, and
there is an identification (l, s, l′) ∼ (k− l, 1− s, k+1− l′)
between admissible labels. Our rule (1) predicts flows for
a large number of starting configurations. Many of them
are superpositions of boundary conditions, but here we
will concentrate on perturbations of a single boundary
condition (J, S, J ′). Let us assume that 1 ≤ J ′ ≤ k.
Then we choose the representation σ of the numerator
theory as σ = (J ′, 0) and fix L′ to be L′ = (0). With
these choices our rule becomes

(J, S, J ′) −→
⊕

L

NJ J′

L (L, S, 0) (4)

where N denote the fusion rules of su(2)k. On the other
hand, if we select σ to be (k +1−J ′, 0) and L′ = (k+1),
we find

(J, S, J ′) −→
⊕

L

NJ J′−1
L (L, 1 − S, 0) . (5)

The first of these flows can be seen in perturbation the-
ory for large level k [6, 7], whereas the second does not

become ’small’ in this limit. Nevertheless, both flows are
known to exist [8, 9, 10]. They are generated by the
(0, 0, 2) field (in standard Kac labels (1, 3)) and differ by
the sign of the perturbation. This is in agreement with
our general statements on the boundary fields generating
the flow (1).

In the simplest minimal model, the critical Ising model,
there are three possible elementary boundary conditions:
the free boundary condition (0, 1, 1), and boundary con-
ditions (0, 0, 0), (1, 1, 0) in which the boundary spin is
forced to be either up or down. Starting from the free
condition, the system can be driven into a theory with
fixed spin [11]. These are precisely the two flows (4), (5).

The second model in the unitary minimal series is the
tricritical Ising model with central charge c = 7/10. Once
more, the flows triggered by the φ13 field [8] are correctly
reproduced by (4) and (5). There are, however, more
flows known which correspond to a perturbation with
other fields [12]. As our rule depends on the specific
coset construction, it is possible to find additional flows
by choosing different coset realizations of the same the-
ory. For the tricritical Ising model, such an alternative
realization does exist. It is given by (E7)1⊕ (E7)1/(E7)2.
When we apply our rule to this coset construction, it re-
produces the two known flows caused by the φ33 field. In
Kac labels they read

(2, 2) −→ (3, 1) , (2, 2) −→ (1, 1) .

These two flows also appear in higher minimal models
[13] where we do not know a coset realization for the
φ33-perturbations. This may be related to the observa-
tion that the tricritical Ising model seems to be the only
theory in which the considered perturbations are inte-
grable [13]. Nevertheless, recovering flows from the ex-
ceptional E7 coset construction can be considered as an
important check of the conjectured rule.

These examples may help to illustrate the wide appli-
cability of our new rule. It is even possible to general-
ize the rule in a straightforward way beyond the Cardy

case when dealing with twisted boundary conditions or
with modular invariants not given by charge conjugation.
While further checks certainly remain to be done, we
hope that our proposal provides an elegant way to sum-
marize results obtained from RG computations and that
it will emerge as simple guide to predicting new flows.
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