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Binary black hole initial data for numerical general relativity based on post-Newtonian data
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With the goal of taking a step toward the construction of astrophysically realistic initial data for numerical
simulations of black holes, we for the first time derive a family of fully general relativistic initial data based on
post-2-Newtonian expansions of the 3-metric and extrinsic curvature without spin. It is expected that such
initial data provide a direct connection with the early inspiral phase of the binary system. We discuss a
straightforward numerical implementation, which is based on a generalized puncture method. Furthermore, we
suggest a method to address some of the inherent ambiguity in mapping post-Newtonian data onto a solution
of the general relativistic constraints.
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I. INTRODUCTION

One of the most exciting scientific objectives of gravit
tional wave astronomy involves the search for and deta
study of signals from sources that contain binary black ho
Mergers of two black holes both with masses of;10
2100M ( will be observable by the ground based gravi
tional wave detectors, such as GEO600, Laser Interferom
ric Gravitational Wave Observatory~LIGO! and others@1#.
These systems are highly relativistic once they enter the
sitive frequency band (;502200 Hz) of the detector. Fo
the Laser Interferometer Space Antenna~LISA!, gravita-
tional waves from supermassive binary black hole merg
~e.g., black holes with mass greater than 106M () are very
strong, with high signal-to-noise ratios up to 104 @2#, making
these events observable from almost anywhere in the
verse. Astrophysically realistic models of binary black ho
coalescence are therefore required to study these pheno
in detail @3#.

To solve the full Einstein equations in the dynamic, no
linear phase at the end of the binary black hole inspiral
turn to numerical relativity. Numerical relativity has ad
vanced to the point where a time interval of up to 40M
~whereM is the total mass! of the merger phase of two blac
holes can be computed if the black holes start out clos
each other@4–6#. Recent simulations of head-on collision
of black holes last significantly longer and give reason
optimism for the orbiting case@7#. An approach to produce a
least moderately accurate models for the wave forms ge
ated in binary black hole mergers was recently develope
the so-called Lazarus project@8–12#, a technique that
bridges ‘‘close’’ and ‘‘far’’ limit approximations with full nu-
merical relativity. This approach has lead to the first appro
mate theoretical estimates for the gravitational radiat
wave forms and energy to be expected from the plunge
orbiting nonspinning binary black holes to coalescen
@8,12#.

Because of theoretical and numerical limitations, all c
rent numerical simulations must begin by specifying init
data when the black holes are already very close~separation
&7M ). There is a push to place the starting point of the
simulations at earlier times, say at a few orbits before a
0556-2821/2003/67~6!/064008~13!/$20.00 67 0640
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ducial innermost stable circular orbit~ISCO! which approxi-
mately marks the transition from the inspiral phase to
plunge and merger. But whatever the starting point, the sim
lation will only be astrophysically meaningful if it starts wit
astrophysically realistic initial data.

The question we want to address in this paper is there
how to obtain astrophysically realistic initial data for nume
cal simulations of binary black hole systems. In general re
tivity the initial data must satisfy constraint equations,
only part of the data are freely specifiable, and the res
determined by solving the constraint equations~for a review
see, e.g., Ref.@13#!. A lot of the work in constructing initial
data has focused on approaches that pick the freely spe
able part of the data with the aim of simplifying the co
straint equations, rather than using astrophysically reali
initial data. A standard assumption is that the 3-metric
conformally flat and the extrinsic curvature is derived from
purely longitudinal ansatz~see, e.g., Refs.@13–16#!. Cur-
rently, there are a number of new approaches@17–21# to
specify ‘‘improved,’’ including nonconformally flat, initial
data for binary black holes.

However, none of these approaches to construct in
data makes explicit use of information from an approxim
tion procedure such as the post-Newtonian~PN! method,
which is believed to accurately represent astrophysical s
tems in the limit of slow-moving/far-apart black holes. A
approximate binary black hole metric based on post
Newtonian~1PN! information in a corotating gauge has be
derived by Alvi @22#. However, at present this metric cann
be used in numerical simulations due to the presence of
continuities in the matching regions@23#. An interesting ap-
proach based on quasiequilibrium sequences of initial d
has been studied numerically, e.g., Ref.@24#, although some
aspects of the method appear to be based on Newtonia
1PN assumptions.

In this paper we describe a method to generate new f
general relativistic initial data for two inspiraling black hole
from PN expressions. The motivation for this method is th
even though PN theory may not be able to evolve two bla
holes when they get close, it can still provide initial data f
fully nonlinear numerical simulations when we start at
separation where PN theory is valid. In particular, we obt
©2003 The American Physical Society08-1
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an explicit far limit interface for the Lazarus approach. O
method allows us to incorporate information from the P
treatment and should eventually provide a direct connec
to the inspiral radiation.

As in other approaches, we start from expressions for
3-metric and extrinsic curvature in a convenient gauge.
use expressions for the 3-metric and its conjugate mom
tum up to PN order (v/c)5, computed in the canonical for
malism of Arnowitt-Deser-Misner~ADM ! by Jaranowski and
Schäfer @25#. This order corresponds to 2.5PN in th
3-metric and 2PN in the conjugate momentum, since the
ter contains a time derivative. Therefore, the PN data
accurate to 2PN.

The 3-metric and its conjugate momentum are deriv
together with a two-body Hamiltonian using coordinate co
ditions @26–28#, which correspond to the ADM transvers
traceless~ADMTT ! gauge. Note that there are several oth
formulations and gauges for PN theory, see, e.g., Ref.@29#
for a review. The ADMTT gauge has several advantages~i!
we can easily find expressions for 3-metric and extrinsic c
vature,~ii ! unlike in the harmonic gauge no logarithmic d
vergences appear,~iii ! for a single black hole the data simp
reduce to Schwarzschild in standard isotropic coordina
~iv! up to (v/c)3 the data look similar to the puncture a
proach@16#, which simplifies calculations, and~v! the trace
of the extrinsic curvature vanishes up to order (v/c)6, so that
we can set it to zero@if we go only up to order (v/c)5],
which can be used to decouple the Hamiltonian constr
equation from the momentum constraint equations. In
ADMTT gauge the 3-metric is conformally flat up to ord
(v/c)3, at order (v/c)4 deviations from conformal flatnes
enter. The extrinsic curvature up to order (v/c)3 is simply of
Bowen-York form @14#, with correction terms of orde
(v/c)5.

We will use the York-Lichnerowicz conformal decomp
sition @30# and use the PN data as the freely specifiable d
We numerically solve for a new conformal factorC and the
usual correction to the extrinsic curvature, given by a vec
potentialWi . The new extrinsic curvature and the 3-met
multiplied by C4 are then guaranteed to satisfy the co
straints. The real problem in this approach is to find a
merical scheme which can deal with the divergences in
PN data at the center of each black hole. The most ser
divergence occurs in the PN conformal factorcPN of the
conformally flat part of the 3-metric. We therefore rescale
PN data by appropriate powers ofcPN to generate a wel
behaved 3-metric. If we then use the conformally resca
data as the freely specifiable data and make the ansatz
the new conformal factorC is the PN conformal factorcPN
plus a finite correctionu, we arrive at elliptical equations
which can be solved numerically. The splitting of the ne
conformal factor intoC5cPN1u is very similar to the
puncture approach@16#, except that in our case the mome
tum constraint has to be solved numerically as well.

Let us point out several issues that arise in the const
tion of solutions to the constraints of the full theory based
PN data. First of all, the accuracy of the PN approximat
increases with the separation of the binary, and the sam
therefore true for the numerical data. Second, PN the
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typically deals with point particles rather than black hole
One has to somehow introduce black holes into the the
which leads to a certain arbitrariness of the data near
black holes. We make the specific choice contained in R
@25#. Note that since we are solving elliptic equations, t
data near the black holes affect the solution everywhe
Third, some of the PN expressions that we use are near z
expansions which are invalid far from the particles. Th
means we have data only in a limited region of space.

Furthermore, the reader should be aware of the follow
basic feature of the York procedure to compute initial da
Given valid free data, which in our case is derived from t
PN data, the procedure projects the data onto the solu
space of the constraints. This projection maps the PN d
somewhere, but is the end point better than the star
point? We have to make sure that we do not loose the ad
tage of starting with PN data over, say, simply using P
orbital parameters in the conformally flat data approach.
ter describing and resolving several technical issues in
construction of our data set, we will therefore~i! quantify the
‘‘kick’’ from PN to fully relativistic data and~ii ! suggest a
concrete method for improving the results of our straightf
ward first implementation.

Finally, while the PN data for PN circular orbits constitu
a quasiequilibrium sequence of initial data in the PN setti
the PN data will not automatically be in quasiequilibriu
when considered in the general relativistic setting, with
without solving the constraints. The final goal is to obtain
fully general relativistic quasiequilibrium sequence based
PN data, but in this paper we solve the constraints with
systematic investigation into the equilibrium properties
our solution. In particular we postpone the issue whet
there exists a systematic way to obtain quasiequilibrium d
with our method~see, however, the comments on the app
ent horizon mass at the end of Sec. V!.

Notation and organization of the paper. We use units
whereG5c51. Lowercase Latin indices denote the spat
components of tensors. The coordinate locations of the
particles are denoted by (x1 ,y1 ,z1) and (x2 ,y2 ,z2). We de-
fine

r AªA~x2xA!21~y2yA!21~z2zA!2 ~1!

and

nA
i
ª~x2xA ,y2yA ,z2zA!/r A , ~2!

where the subscriptA labels the particles. Furthermore w
introduce

r 12ªA~x12x2!21~y12y2!21~z12z2!2 ~3!

to denote the separation between the particles. All terms
rying a superscriptTT are transverse traceless with respect
the flat 3-metricd i j .

The paper is organized as follows. Sections II and
describe the PN expressions used. In Sec. IV we derive
method we use to solve the constraint equations. Sectio
presents our results, which we discuss in Sec. VI.
8-2
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II. THE PN EXPRESSIONS FOR 3-METRIC
AND EXTRINSIC CURVATURE

Our starting point is the expressions for the PN 3-me
gi j

PN and the PN 3-momentumpPN
i j computed in the ADMTT

gauge@25#. The ADMTT gauge is specified by demandin
that the 3-metric has the form

gi j
PN5cPN

4 d i j 1hi j
TT ~4!

and that the conjugate momentum satisfies

pPN
i j d i j 50. ~5!

We explicitly include the formal PN expansion parametee
;v/c in all PN expressions, a subscript in round brack
will denote the order of each term. When a PN term is eva
ated numerically,e is set to 1.

We start with the PN expression for the 3-metric@25#

gi j
PN5cPN

4 d i j 1e4hi j (4)
TT 1e5hi j (5)

TT 1O~e6!, ~6!

where the conformal factor of PN theory is given by

cPN511
1

8
~e2f (2)1e4f (4)!1O~e6!. ~7!

Using the expressions forf (2) and f (4) given in Ref.@25#
we see that the conformal factorcPN can be written in the
simple form

cPN511 (
A51

2
EA

2r A
1O~e6!, ~8!

where the constantsE1 and E2 depend only on the masse
m1 , m2, the momentap1 , p2, and the separationr 12 of PN
theory. They are given by

EA5e2mA1e4S pA
2

2mA
2

m1m2

2r 12
D ~9!

and can be regarded as the energy of each particle.
Note that the PN 3-metric is singular at the location

each particle, sincef (2) , f (4) , andhi j (4)
TT all go as;1/r A as

particle A is approached, andhi j (5)
TT is regular. This means

that the strongest singularity is incPN
4 ;1/r A

4 and that thecPN
4

term dominates near each particle. Hence near each pa
the 3-metric can be approximated by

gi j
PN'S 11

EA

2r A
D 4

d i j 1O~1/r A
3 !, ~10!

which is just the Schwarzschild 3-metric in isotropic coor
nates. Forr A→0 we approach the coordinate singularity th
represents the inner asymptotically flat end of Schwarzsc
in isotropic coordinates, which is also called the punct
representation of Schwarzschild. This shows that if we w
the 3-metric as in Eq.~6!, we actually do have a black hol
centered on each particle. This is nontrivial since PN the
in principle only describes particles.
06400
c

s
-

f

cle

t
ld
e
e

y

On the other hand, if we expand the conformal factor
Eq. ~6!, the puncture singularity of Schwarzschild is n
longer present. If we insert Eq.~7! into Eq.~6! and expand in
e we obtain

gi j
PN5F11e2

1

2
f (2)1e4S 1

2
f (4)1

3

32
f (2)

2 D Gd i j 1e4hi j (4)
TT

1e5hi j (5)
TT 1O~e6!, ~11!

which goes as

gi j
PN'S const

r A
2 D d i j 1O~1/r A!, ~12!

near each particle. One necessary condition for a black h
is the presence of a marginally trapped surface, and while
Schwarzschild metric in isotropic coordinates has a minim
surface at radiusM /2, the term in 1/r A

2 in Eq. ~12! leads to a
minimum in area at radius zero~ignoring the extrinsic cur-
vature terms!. Therefore the particle is not necessarily su
rounded by a horizon.

From now on we will use the 3-metric of Ref.@25# as
written in Eq. ~6!, without expandingcPN

4 in e, in order to
make sure that we have black holes in our data. The punc
coordinate singularity has replaced the point particle sin
larity. This choice is somewhatad hoc, but since PN theory
is not valid near the particles anyway, we have to make so
choice, and putting in black holes as punctures seems n
ral.

The determinant ofgi j
PN is

gPN5cPN
12 1O~e6!, ~13!

sinced i j hi j
TT50.

The PN expansion for the conjugate momentum is@25#

pPN
i j 5e3p̃ (3)

i j 1e5p̃ (5)
i j 1e5p (5)

i jTT1O~e6!, ~14!

where

p̃ (5)
i j 52

1

2
f (2)p̃ (3)

i j 1
1

2
~f (2)p̃ (3)

i j !TT ~15!

and

p (5)
i jTT5

1

2
ḣi j (4)

TT 1
1

2
~f (2)p̃ (3)

i j !TT. ~16!

As in the case of the 3-metric it turns out thatpPN
i j in Eq. ~14!

is singular, sincep̃ (3)
i j , p̃ (5)

i j , and p (5)
i jTT all diverge at the

location of each particle. But all these singularities inpPN
i j up

to O(e5) can be removed by rewriting Eq.~14! as @31#

pPN
i j 5cPN

24Fe3p̃ (3)
i j 1e5

1

2
ḣi j (4)

TT 1e5~f (2)p̃ (3)
i j !TTG1O~e6!

~17!

which can be verified to agree with Eq.~14! by re-expanding
cPN as in Eq.~7! and keeping only terms up toO(e5). Hence
8-3
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all singularities can be absorbed by the conformal fac
which is the basis for the puncture method in general@7,16#.

Note that explicit expressions forf (2) , f (4) , and p̃ (3)
i j

can be found in, e.g., Ref.@25# or @27#. In addition Ohtaet al.
@27# also give an expression for the lapse up toO(e4) and
for the shift up toO(e5). The explicit expressions forhi j (4)

TT ,

ḣi j (4)
TT , and p (5)

i jTT , however, we obtained from Jaranows
and Scha¨fer in a MATHEMATICA file.

It should also be noted that the analytic expressions@25#

used for the PN termsf (2) , f (4) , andp̃ (3)
i j are valid every-

where, while the expressions used forhi j (4)
TT , ḣi j (4)

TT , and
hi j (5)

TT are near zone expansions.
The near zone expansion is valid only forr !l

;pAr 12
3 /(m11m2), wherer is the distance from the particl

sources andl is the wavelength. In principlehi j
TT should be

computed from a wave equation, but in the near zone
equation can be simplified by replacing the d’Alembertian
a Laplacian. This is exactly what Jaranowski and Scha¨fer
@25# do to arrive at the expression forhi j

TT we use. In particu-
lar, the near zone expansion forhi j (5)

TT is a spatially constan
tensor field that just varies in time. So for the purpose
finding initial data it suffices to choose the initial time su
that hi j (5)

TT vanishes. Thus in all our numerical computatio
we will set hi j (5)

TT 50.
Using the gauge condition~5! we obtain

pPN5gi j
PNpPN

i j 5O~e7!. ~18!

The next task is to compute the extrinsic curvature

KPN
i j 52

1

Ag
S pPN

i j 2
1

2
pPNgi j D ~19!

from the conjugate momentumpPN
i j . With the help of Eqs.

~13! and~18!, and using the expressions forpPN
i j in Eq. ~17!

we find that the extrinsic curvature can be written as

KPN
i j 52cPN

210Fe3p̃ (3)
i j 1e5

1

2
ḣi j (4)

TT 1e5~f (2)p̃ (3)
i j !TTG1O~e6!,

~20!

such that the conformal factorcPN is factored out. The lead
ing term in Eq.~20! is of Bowen-York form, i.e.,

2p̃ (3)
i j 5 (

A51

2
3

2r A
2 @pA

i nA
j 1pA

j nA
i 2pA

mnA
ndmn~d i j 2nA

i nA
j !#.

~21!

Using that] ip̃ (3)
i j 50 outside the singularities and the fa

that the last two terms inside the square bracket of Eq.~20!
are transverse~with respect tod i j ), we find

] i~cPN
10KPN

i j !5O~e6! ~22!

outside the singularities. Moreover from Eq.~18! we have
06400
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f

KPN5gi j
PNKPN

i j 5O~e7! ~23!

so thatKPN
i j can be considered traceless up toO(e6).

III. CIRCULAR ORBITS IN PN THEORY

The PN expressions given in Sec. II are valid for ge
eral orbits. Any particular orbit is specified by giving th
positions and momenta of the two particles. In this paper
want to consider quasicircular orbits, since they are belie
to be astrophysically most relevant. For a given separa
r 12 we therefore choose the momentapA

i such that we get a
circular orbit of post-2-Newtonian~2PN! theory. If we
choose the center of mass to be at rest the two momenta
be opposite in sign and equal in magnitude. Also, for reas
of symmetryp1

i and p2
i for circular orbits must be perpen

dicular to the line connecting the two particles. Next fro
the expressions for angular momentum and energy for ci
lar orbits given by Scha¨fer and Wex@32#, we find that the
momentum magnitudepPN

circ for circular orbits is given by

~pPN
circ!25m2

M

r 12
1e24m2

M2

r 12
2

1e4S 74243
m

M Dm2
M3

8r 12
3

1O~e5!, ~24!

where M5m11m2 and m5m1m2 /M . If this formula for
the momentum together with the separation is inserted
the expressions for 3-metric and extrinsic curvature in S
II, we obtain PN initial data for circular orbits. There ar
however, at least two ways how this can be done. One wa
to always insert the momentum~24! to the highest order
known, even in terms which are themselves say ofO(e4).
One might hope to thereby improve the PN trajectory inf
mation in the initial data. Another way is to consistently on
keep terms up to a specified order, say up toO(e5). As an
example let us look at the PN conformal factor given by E
~8! and ~9!. As one can see from Eq.~9!, the momentum
terms are alreadyO(e4), so that if we insert Eq.~24!, we
generate terms ofO(e6) and O(e8), which should be
dropped if we consistently want to keep terms only up
O(e5). We will see later that the ADM mass of the system
indeed sensitive to whether or not we drop such terms in
conformal factor.

In order to compare with numerically computed ADM
masses, we will also need an expression for PN total ene
of the system. For circular orbits it is given by

EPN
circ5M2

mM

2r 12
S 11e2F m

M
27G M

4r 12

1e4F29120
m

M
1

m2

M2G M2

8r 12
2 D 1O~e6!. ~25!
8-4
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IV. SOLVING THE CONSTRAINTS

A. The York procedure

The PN expressions for the 3-metric and the extrinsic c
vature as given in Eqs.~6! and ~20! do not fulfill the con-
straint equations of general relativity. In order to find
3-metric and extrinsic curvature which do fulfill the co
straints, we now apply the York procedure to project the
3-metric and extrinsic curvature onto the solution manifo
of general relativity. In this procedure we freely specify
3-metricḡi j , a symmetric traceless tensorĀi j and a scalarK.
We then solve the constraint equations

05¹̄2C2
1

8
CR̄2

1

12
C5K21

1

8
C27~Āi j 1L̄Wi j !

3~Ākl1L̄Wkl!ḡikḡ j l ~26!

and

05D̄LWi2
2

3
C6¹̄ iK1¹̄j Ā

i j ~27!

for C andWi . Here¹̄ andR̄ are the covariant derivative an
Ricci scalar associated with the 3-metricḡi j , L̄Wi j 5¹̄ iWj

1¹̄ jWi2 2
3 ḡi j ¹̄kW

k, andD̄LWi5¹̄j L̄Wi j . Then

gi j 5C4ḡi j ~28!

and

Ki j 5C210~Āi j 1L̄Wi j !1
1

3
gi j K ~29!

with gi j being the inverse ofgi j will satisfy the constraints of
general relativity.

B. Application of the York procedure to the PN data

The idea is to base the freely specifiable quantitiesḡi j ,
Āi j , andK on the PN 3-metric, the traceless part of the P
extrinsic curvature, and the trace of the PN extrinsic cur
ture. The specific PN expressions we use are

gi j
5 5c5

4d i j 1~hi j (4)
TT 1hi j (5)

TT ! ~30!

and

K5
i j 52c5

210F p̃ (3)
i j 1

1

2
ḣi j (4)

TT 1~f (2)p̃ (3)
i j !TTG , ~31!

with

c5511
1

2r 1
S m11

p1
2

2m1
2

m1m2

2r 12
D

1
1

2r 2
S m21

p2
2

2m2
2

m1m2

2r 12
D . ~32!
06400
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-

Here g5
i j , K5

i j and c5 are the PN expressions~6!, ~20!, and
~8! with all terms ofO(e6) or higher dropped.

For ḡi j we choose the conformally rescaled metric

ḡi j 5c5
24gi j

5 5d i j 1c5
24~hi j (4)

TT 1hi j (5)
TT !, ~33!

which has the advantage of being regular near the bl
holes. We also conformally rescale the extrinsic curvat
and pick

Āi j 5c5
10S K5

i j 2
1

3
g5

i j K5D
52p̃ (3)

i j 2F1

2
ḣi j (4)

TT 1~f (2)p̃ (3)
i j !TTG2

c5
10

3
g5

i j K5 ,

~34!

whereK55gi j
5 K5

i j . Finally, since we only consider terms u
to ordere5 and becauseKPN5O(e7) we choose

K50. ~35!

The metricḡi j is regular near the black holes. Ifr A de-
notes the distance to the singularity, we have

c5;O~1/r A! ~36!

andhi j (4)
TT 1hi j (5)

TT ;1/r A so that

ḡi j ;d i j 1O~r A
3 !. ~37!

This means that Christoffel symbols and Ricci scalar co
puted from the 3-metricḡi j go as

Ḡ i j
k ;O~r A

2 ! ~38!

and

R̄;O~r A!. ~39!

We also have

K5
i j ;O~r A

8 !1O~r A
7 ! ~40!

and thus

K5;O~r A
7 !1O~r A

6 ! ~41!

and

Āi j ;O~1/r A
2 !1O~1/r A

3 !. ~42!

So except forĀi j andc5 all quantities are well behaved nea
the black holes.

The remaining problem is to solve Eqs.~26! and ~27!
numerically. Since the PN metric is an approximate solut
it is clear thatC'c5 and hence thatC will diverge near the
black hole, which of course is problematic when¹̄2C
8-5
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;O(1/r 3) is calculated by finite differencing in numeri
computations. In order to overcome this problem we ma
the ansatz

C5c51u, ~43!

which in the case of the original puncture data suffices
regularize the constraint equations@16#. With this ansatz Eq.
~26! becomes

05¹̄2u1~ ḡi j 2d i j !] i] jc52ḡi j Ḡ i j
k ]kc52

1

8
CR̄

1
1

8
C27~Āi j 1L̄Wi j !~Ākl1L̄Wkl!ḡikḡ j l , ~44!

where the term

d i j ] i] jc550 ~45!

has been subtracted. This term vanishes analytically a
from the punctures and it is numerically advantageous to
it to cancel the corresponding term inḡi j . Using Eqs.~36!,
~38!, ~39!, and~42! one can check that all terms in Eq.~44!

are finite. Furthermore we splitĀi j into the two parts

ĀS
i j 52p̃ (3)

i j 2
1

2
ḣi j (4)

TT 2~f (2)p̃ (3)
i j !TT ~46!

and

ĀR
i j 5Āi j 2ĀS

i j ~47!

so thatĀi j 5ĀS
i j 1ĀR

i j . The advantage of splittingĀi j in this
way is that, analytically,

] j ĀS
i j 50 ~48!

away from the punctures. Using Eq.~48! the constraint equa
tion ~27! simplifies to

D̄LWi1Ḡ jk
i ĀS

k j1Ḡ jk
j ĀS

ik1¹̄j ĀR
i j 50. ~49!

Equations~44! and~49! now can be solved numerically foru
and Wi given the boundary conditions thatu→0 and Wi

→0 for r→`. There are no additional boundary conditio
at the punctures, rather we assume that there exists a un
solution for whichu andWi areC2 at the punctures, which
has been proven to be the case for the simpler example
sidered in Ref.@16#.

C. Ambiguities in the application of the York procedure

Note that the York procedure explained above was app
to the conformally rescaled quantitiesḡi j andĀi j . There isa

priori no reason for usingḡi j andĀi j . In principle we could
have also started directly withgi j

PN andKPN
i j or with gi j

PN and
KPN

i j scaled by any functionV, i.e., with

g̃i j
PN5V4gi j

PN, ~50!
06400
e

o

ay
se
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d

K̃PN
i j 5V210KPN

i j ~51!

and the York procedure would still yield a solution to th
constraints. Each of these different starting points will
general yield different results forgi j and Ki j depending on
V. The solution forgi j andKi j becomes independent ofV
only if K5

i j already fulfills the momentum constraint, which
not the case for the PN expressions. As an example of
freedom we expandV in e and choose

V511e4Q1O~e6!. ~52!

Because of the absence ofO(e2) terms inV we obtain the
simple result

g̃i j
PN5@11e4Q1O~e6!#4gi j

PN

5~cPN1e4Q!4d i j 1e4h(4)i j
TT 1e5h(5)i j

TT

1O~e6! ~53!

and

K̃PN
i j 5@11e4Q1O~e6!#210KPN

i j

52~cPN1e4Q!210Fe3p̃ (3)
i j 1e5

1

2
ḣi j (4)

TT

1e5~f (2)p̃ (3)
i j !TTG1O~e6!. ~54!

We see thatgi j
PN andKPN

i j differ from g̃i j
PN andK̃PN

i j only in the
factor

c̃PN5cPN1e4Q. ~55!

This shows that an overall conformal rescaling byV51
1e4Q can be understood as a shift~by e4Q) in the PN
conformal factor.

Furthermore note that any 3-metricgi j and extrinsic cur-
vatureKi j constructed by the method explained above are
general different from the PN expressions for 3-metric a
extrinsic curvature. If one assumes that the PN express
are valid and thus astrophysically realistic~at least in a cer-
tain regime!, one can aim to minimize the difference betwe
gi j and Ki j and the PN expressions in this regime. We w
later show that the scaling in Eq.~52! can be used to improve
gi j such that the ADM mass of the system after the Yo
procedure is close to what is predicted by pure PN theory
the regime where PN theory is valid.

V. NUMERICS

We now demonstrate that our method for solving the c
straints in Eqs.~44! and ~49! leads to convergent numerica
solutions. We use second order finite differencing toget
with a multigrid elliptic solver~BAM_Elliptic in CACTUS

@33#!. All grids have uniform resolution. The two black ho
punctures are always staggered between grid points on
finest grid in the multigrid scheme. Since we absorb all
8-6
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verging terms in the conformal factor the solutionsu andWi

of Eqs. ~44! and ~49! are regular everywhere, so that n
black hole excision or inner boundary conditions are need
As outer boundary conditions we use Robin conditions, i
we assume thatu}1/r andWi}1/r , wherer is the distance
to the center of mass. In the case of the vector potential
is a simplifying assumption that works reasonably well
practice.

For the numerical work in this paper we consider no
spinning equal mass binaries with their center of mass at
at the origin. The binaries are in quasicircular orbits in t
sense that we use Eq.~24! to set the momentum of the tw
black holes before solving the constraints. The two bla
holes are on they axis, such that their momenta point in th
positive and negativex directions, resulting in an angula
momentum along thez direction. Figure 1 shows the Hami
tonian constraint violation of pure PN data~dashed line!, i.e.,
before solving the constraints, as well as the Hamilton
constraint after solving at three different resolutionsh. After
the elliptic solve the constraint equations~44! and ~49! are
satisfied to within a given tolerance of 10210 in the l2-norm,
but to study convergence we show the ADM constrai
computed fromgi j and Ki j . The two black holes are aty
564. One can see that the constraint violation after
York procedure is much smaller than the constraint violat
of pure PN data. The inset in Fig. 1 is a blowup of the cen
and shows second order convergence to zero in the Ha
tonian constraint after solving. We also observe second o
convergence to zero in the momentum constraint. As an
ample we show they component of the momentum con
straint in Fig. 2. We see that pure PN data violates the c
straints. In Fig. 3 we plot the solutionsu andWx along they
axis, which contains the black holes. As expected they

FIG. 1. Hamiltonian constraint violation for a black hole sep
ration of r 1258M . The Hamiltonian constraint of pure PN data
much larger than the Hamiltonian constraint after solving~i.e., ap-
plying the York procedure!. We numerically solve for three differen
resolutionsh. The inset is a blow up of the central region, whic
shows that our numerical scheme is second order converge
expected.
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regular, unlikecPN which diverges at the black hole loca
tions of y564.

As expected, after applying the York proceduregi j and
Ki j are different from the pure PN expressionsgi j

PN andKPN
i j .

Figure 4 shows a comparison of several components of
3-metricscPN

24gi j andcPN
24gi j

PN. As one can see, the compo
nents ofgi j exhibit an increase on the order of;1% when
compared togi j

PN. The same conclusion is reached by loo
ing at Table I, which shows the 3-metric and extrinsic c
vature before and after applying the York procedure. Furth
more Table I shows that the increase in the 3-metric due
applying the York procedure has about the same orde

-

as

FIG. 2. The momentum constraint for a separation ofr 12

58M . We observe second order convergence in the resolutioh
after solving. The momentum constraint violation of pure PN dat
larger than after solving.

FIG. 3. The solutions ofu andWx along they axis for a black
hole separation ofr 1258M . For comparison we also showcPN ,
which diverges aty564.
8-7
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FIG. 4. Components of the 3-metric and e
trinsic curvature for a black hole separation
r 1258M . The data are shown before~dashed
lines! and after applying the York procedur
~solid lines!. The components of the 3-metri
change on the order of;1%.
o
th
r-
s

ca
sy

ce
ii.

ed

ure

a

in

h

r
-
om-

PN
fter

M
h is

DM
con-
s.
magnitude as the PN corrections atO(e4). Since this hap-
pens in a region far enough from the particles that PN the
can actually be trusted to give realistic values, it means
solving the elliptic equations introduces significant diffe
ences betweengi j andgi j

PN in the outer region due to change
in the inner region. Before we suggest how this problem
be addressed, let us also consider the ADM mass of the
tem, which is a coordinate invariant quantity.

We compute the ADM mass along PN inspiral sequen
constructed from PN circular orbits with different rad
Along such a sequence the bare massesm1 andm2 are kept
constant and the momenta are computed from Eq.~24! for

TABLE I. Selected components of the 3-metric, extrinsic curv
ture, andhi j (4)

TT at the pointx50, y512.2M , z50 for two black
holes located on they axis at y565.2M . The change in the
3-metric induced by solving the constraints without first rescal
cPN has about the same magnitude as the PN corrections atO(e4).
The data here are computed by inconsistently keeping all hig
order momentum terms incPN.

PN value Value after relative
~up to O(e5)) solving (q50) difference

gxx
PN51.21866 gxx51.22285

gxx2gxx
PN

gxx
PN

50.0034

Kxy
PN520.0022341 Kxy520.0022617

Kxy2Kxy
PN

Kxy
PN

520.012

PN metric TT term in metric relative size of
@up to O(e5)] of O(e4) O(e4) correction

gxx
PN51.21866 hxx(4)

TT 50.00443
hxx(4)

TT

gxx
PN

50.0036
06400
ry
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circular orbits. Figure 5 shows the numerically comput
ADM mass of pure PN initial data~dashed line!, the ADM
mass of the data obtained after applying the York proced

-

g

er

FIG. 5. PN energy of Eq.~25! and ADM masses before and afte
solving ~i.e., applying the York procedure! versus coordinate sepa
ration r 12 along the PN inspiral sequence. The data here were c
puted by keeping all momentum terms incPN, without consistently
dropping higher order terms. In this case the ADM mass of pure
data does not agree well with the PN energy. The ADM mass a
solving ~with q50.0) increases on the order of;1%, when com-
pared to the ADM mass of pure PN data. Furthermore the AD
mass after solving increases with decreasing separation, whic
physically not acceptable. For comparison we also show the A
mass of two puncture black holes along the PN sequence with
stant bare masses, which show a similar increase in ADM mas
8-8
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~long dashed line!, as well as the PN total energy~dotted
line! of Eq. ~25!. In Fig. 5 and the following figures we plo
data forr 12 between 1 and 20M . But note that it has to be
expected that the PN data becomes inaccurate for smallr 12,
for example forr 12'4M where the black holes are close
the fiducial ISCO of the PN data.

In Fig. 5, we again observe an increase of;1% in the
ADM mass after applying the York procedure. A furth
problem is that none of the numerically determined AD
masses in Fig. 5 agrees very well with the PN energy~25!.
This problem stems from the fact that the PN initial data
Fig. 5 have been obtained by inserting the momentum~24! as
it is into the expressions for 3-metric and extrinsic curvat
of Sec. II without consistently dropping terms ofO(e6) or
higher. Since all PN corrections to the momentum are p
tive, the main effect of this inconsistency is to increasecPN
given by Eqs.~8! and ~9!. The result is that the numericall
computed ADM masses before and after applying the Y
procedure show physically unacceptable behavior:~i! the
ADM mass of pure PN data approaches the PN energy~25!
only very slowly at large separations and~ii ! the ADM mass
of the data after applying the York procedure monotonica
increases with decreasing separation. This is physically
reasonable because the system is supposed to loose e
due to the emission of gravitational radiation. For referen
the ADM mass~dot dashed line! for a sequence of two blac
hole punctures with constant bare masses and with the s
PN momentum~24! is also shown in Fig. 5. Along this se
quence the ADM mass of the punctures also unphysic
rises with decreasing separation, which is not surpris
since the assumption of constant bare masses for punc
ignores the growing contribution ofu to the conformal factor
with decreasing separation of the punctures. In all cases s
ied by us the solutionu of Eq. ~44! is indeed positive, which
translates directly into an increase in the mass.

Of course, the question is how we can improve our d
so that its behavior is physically more realistic. One c
argue that part of the additional energy is tied to an increa
local mass of the individual black holes. In fact, for consta
bare masses there is a strong growth in the apparent ho
masses. A standard approach is therefore to rescale the
masses to keep the apparent horizon mass fixed and to d
a binding energy by subtracting the apparent horizon ma
from the total mass, e.g., Ref.@15#. However, in general it is
not possible to unambiguously define a local mass for g
eral relativistic data, and the accuracy and validity of t
estimate for the binding energy therefore depends on,
example, how close the black holes are.

As an alternative we have experimented here with a m
correction that is tied to properties of the PN approximati
As a first step let us keep momentum terms of Eq.~24! in the
PN conformal factorcPN @see Eqs.~8! and~9!# only up to the
appropriate order and to consistently drop all terms ofO(e6)
and higher. This amounts to just using the first Newton
term of the momentum~24! in cPN. The results are shown in
Fig. 6. The ADM mass of pure PN data~dashed line! now
much better approaches the PN energy for large separat
Yet, the ADM mass after simply applying the York procedu
~long dashed line! still shows an increase of order;1%
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when compared to pure PN data. If we want more phys
mass curves we have to prevent this increase by preven
the increase in the conformal factor. We will take advanta
of the freedom in the York procedure mentioned in Sec. IV
and use the conformal rescaling of Eq.~52! before applying
the York procedure. From Eq.~55! we see that then the over
all conformal factor becomes

C5c̃PN1u5cPN1e4Q1u. ~56!

Hence, if we choose an appropriateQ, we have a chance o
compensatingu such thatC'cPN at least in the region far
from the black holes where PN theory is valid.

Now, in the limit of r 12→` the pure PN data we use as
starting point represent two Schwarzschild black holes at
~in isotropic coordinates!. Thusu is zero for infinite separa-
tion and we therefore expect thatu goes likeu}1/r 12

n ~with
n.0) for large r 12. On the other hand we also haveu
}1/r due to the Robin boundary conditions used, so that
expect thatu is well approximated by

u'
N

r 12
n r

~57!

FIG. 6. PN energy of Eq.~25! and ADM masses versus coord
nate separationr 12 along the PN inspiral sequence. Shown are
ADM masses before and after applying the York procedure w
bothq50 andq50.65. Here all data are computed by consisten
keeping momentum terms incPN only up to Newtonian order. The
ADM mass of pure PN data now agrees better with the PN ene
The York procedure withq50.0 again increases the ADM mass o
the order of;1%, when compared to the ADM mass of pure P
data. The ADM mass after solving withq50.65, however, does no
change very much and it also closely follows the PN energy do
to r 12'6M . Furthermore untilr 12'5.6M it is physically reason-
able since it decreases with decreasing separation. For compa
we also show the ADM mass curve of rescaled PN data~with q
50.65). These data, however, have no direct physical significa
8-9
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for larger, whereN is some numerical constant. Numerical
we find that the exponentn51. So formallyu seems to be of
ordere4. Yet u is the solution of Eq.~44!, which according to
thee ordering scheme of PN theory is already satisfied up
e5. Hence from a purely formal PN standpoint we wou
expect thatu should be of ordere6. This apparent paradox i
resolved by the observation that PN theory breaks do
close to the black holes, sincee2;M /r A diverges there. So
that when we solve the elliptic equation~44!, errors in the
PN data close the black holes propagate out and chang
result everywhere by an amount, which cannot be descr
by the PN power series expansion ine.

Since we wantQ to cancelu, we have to choose aQ such
that it has the same falloff inr and r 12 as u. The particular
choice we make is

Q52q
m1m2

2r 12
S 1

2r 1
1

1

2r 2
D , ~58!

whereq is a free parameter, which has to be chosen such
Q1u'0 for large separations. The choice ofQ in Eq. ~58!
is not unique. Rather it is motivated by the fact thatcPN
given by Eqs.~8! and ~9! already contains such a term, s
that addingQ to cPN merely changes the coefficient of
term, but does not introduce new types of terms.

We fix the value ofq by demanding that for large blac
hole separations, the ADM mass curve of the data obtai
by applying the York procedure to the rescaled PN da
should coincide with the ADM mass curve of pure PN da
Numerically we find that the two mass curves coincide
q50.65 at large separations. It turns out that forq50.65 we
also get physically more reasonable mass curves in the
gime where PN theory is expected to be valid. The solid l
in Fig. 6 shows the ADM mass obtained for different sep
rations if we apply the following extended York procedur
~i! start with the pure PN initial data,~ii ! rescalecPN using
Eqs.~55! and~58! with q50.65, and~iii ! apply the standard
York procedure to the rescaled quantities. As we can see
ADM mass~solid line! closely follows the PN energy~dotted
line! in the region where we expect PN theory to be val
Furthermore for separations greater thanr 12'5.6M the
ADM mass decreases with decreasing separation a
should. For smaller separations the ADM mass again
creases. In the literature this minimum has often been in
preted as the location of the innermost stable circular o
~ISCO!. Note, however, that the PN expressions which
used up toO(e5) are probably close to breaking dow
aroundM /r 1251/5.6'0.2, so that the ISCO location ma
not be very accurate. Also the location of the minimum c
be shifted if we use higher order terms in the rescaling
cPN, i.e., if we use

c̃PN5cPN1e4Q1e6Q8. ~59!

The extraQ8 term will have no influence in the limit of large
distances, but it will influence the mass curves at small se
ration and thus we can move the minimum. Again one co
introduce a one-parameter family ofQ8 terms and fit the
parameter such that the ADM mass curve has the minim
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at the same place where the PN energy~25! has a minimum.
We decided not to do this since the PN energy itself may
be very reliable near its minimum. For comparison, Fig
also shows the ADM mass curve~dot dashed line! for the PN
data rescaled byQ with q50.65, but without applying the
York procedure. This curve has no direct physical meani
but we can see that it can be obtained from the curve for p
PN data~dashed line! by a downwards shift. Figure 7 show
the PN conformal factor before and after rescaling withq
50.65. We see that the change incPN is rather small.

All the masses so far are plotted versus the coordin
separationr 12. Figure 8 shows the PN energy~dotted line!,
the ADM mass of pure PN data~dashed line!, and the ADM
mass of data obtained after rescaling withq50.65 and ap-
plying the York procedure~solid line!, versus the PN angula
velocity vPN, computed for circular orbits from

~MvPN!25
64~r 12/M !3

~112r 12/M !6
1

m

M S M

r 12
D 4

1S 2
5

8

m

M
1

m2

M2D S M

r 12
D 5

. ~60!

Note thatvPN in Eq. ~60! is written such thatvPN is exact up
to all PN orders in the limit ofm/M→0. For m/M.0 Eq.
~60! is accurate up to 2PN order. It should be kept in min
however, thatvPN probably is not exactly equal to the tru
angular velocity after applying the York procedure. Yet o
numerical approach does not immediately yield an angu
velocity which could be used in place ofvPN.

From Fig. 8 we see that the approximate ISCO of P
theory computed from the 2PN energy is nearMvPN50.1,
while the ISCO minimum of our data~after applying the
extended York procedure withq50.65) is near MvPN
50.06, which is very close to the ISCO of test particles

FIG. 7. The conformal factorscPN andc̃PN5cPN1e4Q, before
and after rescaling withq50.65 for r 1258M . The difference be-

tweencPN and c̃PN is small.
8-10
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Schwarzschild. Also note that the ADM mass of pure P
data~dashed line! does not have a minimum at all.

In Table II we compare some components of the 3-me

FIG. 8. PN energy of Eq.~25!, ADM mass of pure PN data, an
ADM mass after solving~with q50.65) versus the PN angula
velocity ~60!. The PN energy has a minimum nearMvPN'0.1,
which is often interpreted as the ISCO. We see that the ADM m
after solving~with q50.65) closely follows the PN energy unt
MvPN'0.05. Then nearMvPN'0.06 it has a minimum which
could be regarded as the ISCO. One has to keep in mind, how
that the ambiguities in the York procedure in principle allow us
shift the location of this minimum.

TABLE II. Selected components of the 3-metric, extrinsic cu
vature andhi j (4)

TT at the pointx50, y512.2M , z50 for two black
holes located on they axis at y565.2M . The change in the
3-metric induced by solving the constraints after first rescalingcPN

~with q50.65) is much smaller than the PN corrections atO(e4).
The change in the extrinsic curvature due to solving, however, d
not depend much onq and is about the same whether or not we u
the rescaling withq50.65. Here we have included only Newtonia
momentum terms incPN, in order to have a consistent expansion
e.

PN value Value after relative
~up to O(e5)) solving (q50.65) difference

gxx
PN51.21738 gxx51.21783

gxx2gxx
PN

gxx
PN

50.00037

Kxy
PN520.0022353 Kxy520.0022673

Kxy2Kxy
PN

Kxy
PN

520.014

PN metric TT term in metric relative size of
~up to O(e5)) of O(e4) O(e4) correction

gxx
PN51.21738 hxx(4)

TT 50.00443
hxx(4)

TT

gxx
PN

50.00364
06400
c

and extrinsic curvature of pure PN data with the correspo
ing quantities obtained after rescaling withq50.65 and ap-
plying the York procedure. The change in the 3-metric
duced by solving the constraints after first correctingcPN
~with q50.65) now is much smaller than the PN correctio
at O(e4). The change in the extrinsic curvature due to so
ing, however, is nearly the same whether or not we use
rescaling withq50.65.

The question arises if the solutionsgi j and Ki j with q
50.65 are astrophysically more realistic then the pure
solutionsgi j

PN andKPN
i j . We argue that this is indeed the ca

sincegi j andKi j with q50.65 are close togi j
PN andKPN

i j in
the far region where PN is accurate, but in addition do ful
the constraint equations of general relativity. Furthermore
ADM mass curve forgi j and Ki j with q50.65 is closer to
the PN energy~25! than the ADM mass curve of the pure P
solutionsgi j

PN andKPN
i j .

Finally, in Fig. 9 we also include a plot of the appare
horizon mass@mAH5AAAH /(16p)# of one of the black
holes versus the PN angular velocityvPN. For the determi-
nation of the apparent horizon we used a grid spacing oh
5M /15 with the outer boundary at 12.8M , which leads to an
estimated accuracy of about 2% in the apparent hori
mass. For the bare PN data, we note a certain increase i
apparent horizon mass with angular velocity. If we sol
with q50 the increase is even stronger, since as descr
earlier the conformal factor is larger after solving the co
straints and thus raises the apparent horizon mass. How
if we solve withq50.65 the apparent horizon mass is clo

s

er,

es
e

FIG. 9. Apparent horizon mass of one of the black holes ver
the PN angular velocityvPN of Eq. ~60!. The apparent horizon mas
of pure PN data is increasing by about 2% betweenMvPN50.01
andMvPN50.06. The apparent horizon mass after solving withq
50 increases even more strongly. Yet if we solve withq50.65 the
apparent horizon mass does not vary much, which is one of
requirements for data that is close to quasiequilibrium. Note, h
ever, that the apparent horizon masses shown are only accura
to errors on the order of 2% due to computational limitations.
8-11



r
th
ta
e

k
N
th
an
n
N
PN
.
tin
ac
g
fo

ur
th
a
ll

ic
ac
P

al
ea
e

ru
a

en
ex
s
e
u
in
n
in

ira
lu
er
ex

ac

u
f

ru
on
b
c
th

ns

ole
en

he

-
f.
ce-
the

des

the

We

the

ch
ny-
n,
tic
his
lly
u-

c-
al
re
in

by
as

f-
lts
bit

-
m-
ve

in a
y
d to
ho
as

-
the
-

x-

TICHY et al. PHYSICAL REVIEW D 67, 064008 ~2003!
to being constant up toMvPN50.06, which is the angula
velocity corresponding to an approximate ISCO. Hence
change introduced byq50.65 appears to move the da
closer to quasiequilibrium, for which one typically assum
that the apparent horizon mass is constant.

VI. DISCUSSION

For the first time, we have derived fully relativistic blac
hole initial data for numerical relativity, starting from 2P
expressions of the 3-metric and extrinsic curvature in
ADMTT gauge. We have used the York procedure, and
procedure for projecting the PN data onto the solution ma
fold of general relativity will introduce changes to the P
data. The larger the violation of the constraints by the
data, the larger the change in the solution process will be
principle one may loose the PN characteristics that dis
guished the PN data from other approaches in the first pl

As we have seen in Sec. V, the size of these chan
depends on how exactly we employ the York procedure
the projection. We find that the extended York proced
~with q50.65) yields acceptably small changes, so that if
PN data we started with are astrophysically realistic, the d
after solving the constraints should still be astrophysica
relevant. In particular, our new PN initial data have the n
property that the 3-metric and extrinsic curvature appro
the corresponding 2PN expressions in the region where
theory is valid, providing a natural link to the early inspir
phase of the binary system. Furthermore, our approach l
to an easy numerical implementation with a generaliz
puncture method.

We consider this work as a first step towards the const
tion of astrophysical initial data based on the PN approxim
tion. Although we are able to remove some of the inher
ambiguity of the method, several directions should be
plored. Since the PN formalism is unable to unambiguou
provide the full information in the black hole region, on
should examine different ways to introduce black holes. F
thermore it would seem natural to follow the conformal th
sandwich approach in order to obtain data that correspo
more closely to a quasiequilibrium configuration, although
principle we rather want data for the appropriate PN insp
rate than for exactly circular orbits. Note that after the so
tion process it is not known how well the orbital paramet
correspond to quasicircular orbits. One could use, for
ample, the effective potential method@15# with the new PN
based data to determine quasicircular orbits of the two bl
holes.

Another direction of research is to improve the PN inp
to our method. Even though we can solve the constraints
rather small separations of the black holes, we cannot t
the numerical data for arbitrarily small coordinate separati
because this is where the PN data we start with is proba
unreliable. We have started with a traditional PN approa
@25#, but there has been significant progress in extending
validity of the PN approximation to smaller separatio
through resummation techniques@34–36#. It is an important
06400
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issue to study how large an intermediate binary black h
regime might be, where the PN approximation has brok
down but the separation is still significantly larger than t
separation for an approximate ISCO@37#.

In addition, we want to work with higher order PN ap
proximations. The explicit regularization for 3PN of Re
@26# could be used as a starting point. However, our pro
dure may have to be modified because of changes in
conformal factorcPN. Finally, Jaranowski and Scha¨fer @38#
have recently provided us with an expression which inclu
spin terms at order (v/c)3 in the PN extrinsic curvature. In
future work we intend to use these terms to add spin to
black holes.

Recall that we have concentrated on the near zone.
plan to replace the near zone expansion ofhi j (4)

TT with a glo-
bally valid expression. This could be achieved by solving
wave equation determininghi j (4)

TT ~see, e.g., Ref.@39#! nu-
merically, without any near zone approximations, whi
would be natural in a method that resorts to numerics a
way. If the PN inspiral trajectory is used in this calculatio
the initial slice of our spacetime will already contain realis
gravitational waves, with the correct PN phasing. When t
spacetime is then evolved numerically we might eventua
be able to compute numerical wave forms which contin
ously match PN wave forms.

This brings us to the final goal of our initial data constru
tion, namely to use it as the starting point for numeric
evolutions. As we pointed out in the Introduction, there a
now numerical evolution methods with which we can beg
to explore the physical content of any initial data set
evolution and by extraction of physical quantities such
detailed wave forms or total radiated energies@6–8#. As
mentioned in Ref.@8#, the Lazarus approach provides an e
fective method for cross-checking the validity of the resu
by choosing different transition times along the binary or
in the region where a far limit approximation~such as the PN
method! and full numerical relativity overlap. Only by ex
tending the ability of full numerical codes to accurately co
pute several orbits, will we be able to arrive at a definiti
conclusion about the merit of different initial data sets.
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