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Abstract

Quantum General Relativity (QGR), sometimes called Loop Quantum Gravity, has matured over
the past fifteen years to a mathematically rigorous candidate quantum field theory of the gravita-
tional field. The features that distinguish it from other quantum gravity theories are 1) background
independence and 2) minimality of structures.

Background independence means that this is a non-perturbative approach in which one does not
perturb around a given, distinguished, classical background metric, rather arbitrary fluctuations are
allowed, thus precisely encoding the quantum version of Einstein’s radical perception that gravity is
geometry.

Minimality here means that one explores the logical consequences of bringing together the two
fundamental principles of modern physics, namely general covariance and quantum theory, without
adding any experimentally unverified additional structures such as extra dimensions, extra symme-
tries or extra particle content beyond the standard model. While this is a very conservative approach
and thus maybe not very attractive to many researchers, it has the advantage that pushing the theory
to its logical frontiers will undoubtedly either result in a successful theory or derive exactly which
extra structures are required, if necessary. Or put even more radically, it may show which basic
principles of physics have to be given up and must be replaced by more fundamental ones.

QGR therefore is, by definition, not a unified theory of all interactions in the standard sense
since such a theory would require a new symmetry principle. However, it unifies all presently known
interactions in a new sense by quantum mechanically implementing their common symmetry group,
the four-dimensional diffeomorphism group, which is almost completely broken in perturbative ap-
proaches.
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This is the expanded version of a talk given by the author at the 271st WE Heraeus Seminar “Aspects
of Quantum Gravity: From Theory to Experimental Search”, Bad Honnef, Germany, February 25th
– March 1st 2002, http://www.uni-duesseldorf.de/QG-2002.

Basically, we summarize the present status of Canonical Quantum General Relativity (QGR),
also known as “Loop Quantum Gravity”. Our presentation tries to be precise and at the same time
technically not too complicated by skipping the proofs of all the statements made. These many
missing details, which are relevant to the serious reader, can be found in the notation used here in
this overview e.g. in the recent, close to exhaustive review [1] and references therein. Of course, in
order to be useful as a text for first reading we did not include all the relevant references here. We
apologize for that to the researchers in the field but we hope that a close to complete list of their
work can be found in [1]. Nice reports, treating complementary subjects of the field and more general
aspects of quantum gravity can be found in [2].

The text is supplemented by numerous exercises of varying degree of difficulty whose purpose is
to cut the length of the exposition and to arouse interest in further studies. Solving the problems
is not at all mandatory for an undertsanding of the material, however, the exercises contain further
information and thus should be looked at even on a first reading.

On the other hand, if one solves the problems then one should get a fairly good insight into the
techniques that are important in QGR and in principle could serve as a preparation for a diploma
thesis or a dissertation in this field. The problems sometimes involve mathematics that may be
unfamiliar to students, however, this should not scare off but rather encourage the serious reader to
learn the necessary mathematical background material. Here is a small list of mathematical texts,
from the author’s own favourites, geared at theoretical and mathematical physicists, that might be
helpful:

• General
A fairly good encyclopedia is
Y. Choquet-Bruhat, C. DeWitt-Morette, “Analysis, Manifolds and Physics”, North Holland,
Amsterdam, 1989

• General Topology
A nice text, adopting almost no prior knowledge is
J. R. Munkres, “Toplogy: A First Course”, Prentice Hall Inc., Englewood Cliffs (NJ), 1980

• Differential and Algebraic Geometry
A modern exposition of this classical material can be found in
M. Nakahara, “Geometry, Topology and Physics”, Institute of Physics Publishing, Bristol, 1998

• Functional Analysis
The number one, unbeatable and close to complete exposition is
M. Reed, B. Simon, “Methods of Modern Mathematical Physics”, vol. 1 – 4, Academic Press,
New York, 1978
especially volumes one and two.

• Measure Theory
An elementary introduction to measure theory can be found in the beautiful book
W. Rudin, “Real and Complex Analysis”, McGraw-Hill, New York, 1987
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• Operator Algebras
Although we do not really make use of C∗−algebras in this review, we hint at the importance
of the subject, so let us include
O. Bratteli, D. W. Robinson, “Operator Algebras and Quantum Statistical Mechanics”, vol.
1,2, Springer Verlag, Berlin, 1997

• Harmonic Analysis on Groups
Although a bit old, it still contains a nice collection of the material around the Peter & Weyl
theorem:
N. J. Vilenkin, “Special Functions and the Theory of Group Representations”, American Math-
ematical Society, Providence, Rhode Island, 1968

• Mathematical General Relativity
The two leading texts on this subject are
R. M. Wald, “General Relativity”, The University of Chicago Press, Chicago, 1989
S. Hawking, Ellis, “The Large Scale Structure of Spacetime”, Cambridge University Press,
Cambridge, 1989

• Mathematical and Physical Foundations of Ordinary QFT
The most popular books on axiomatic, algebraic and constructive quantum field theory are
R. F. Streater, A. S. Wightman, “PCT, Spin and Statistics, and all that”, Benjamin, New
York, 1964
R. Haag, “Local Quantum Physics”, 2nd ed., Springer Verlag, Berlin, 1996
J. Glimm, A. Jaffe, “Quantum Physics”, Springer-Verlag, New York, 1987

In the first part we motivate the particular approach to a quantum theory of gravity, called (Canon-
ical) Quantum General Relativity, and develop the classical foundations of the theory as well as the
goals of the quantization programme.

In the second part we list the solid results that have been obtained so far within QGR. Thus, we
will apply step by step the quantization programme outlined at the end of section I.3 to the classical
theory that we defined in section I.2. Up to now, these steps have been completed approximately
until step vii) at least with respect to the Gauss – and the spatial diffeomorphism constraint. The
analysis of the Hamiltonian constraint has also reached level vii) already, however, its classical limit
is presently under little control which is why we discuss it in part three where current research topics
are listed.

In the third part we discuss a selected number of active research areas. The topics that we will
describe already have produced a large number of promising results, however, the analysis is in most
cases not even close to being complete and therefore the results are less robust than those that we
have obtained in the previous part.

Finally, in the fourth part we summarize and list the most important open problems that we
faced during the discussion in this report.
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Part I

Motivation and Introduction
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I.1 Motivation

I.1.1 Why Quantum Gravity in the 21’stCentury ?

Students that plan to get involved in quantum gravity research should be aware of the fact that in
our days, when financial resources for fundamental research are more and more cut and/or more and
more absorbed by research that leads to practical apllications on short time scales, one should have a
good justification for why tax payers should support any quantum gravity research at all. This seems
to be difficult at first due to the fact that even at CERN’s LHC we will be able to reach energies of
at most 104 GeV which is fifteen orders of magnitude below the Planck scale which is the
energy scale at which quantum gravity is believed to become important. Therefore one could argue
that quantum gravity research in the 21’st century is of purely academic interest only.

To be sure, it is a shame that one has to justify fundamental research at all, a situation unheard
of in the beginning of the 20’th century which probably was part of the reason for why so many
breakthroughs especially in fundamental physics have happened in that time. Fundamental research
can work only in absence of any pressure to produce (mainstream) results, otherwise new, radical and
independent thoughts are no longer produced. To see the time scale on which fundamental research
leads to practical results, one has to be aware that General Relativity (GR) and Quantum Theory
(QT) were discovered in the 20’s and 30’s already but it took some 70 years before quantum mechanics
through, e.g. computers, mobile phones, the internet, electronic devices or general relativity through
e.g. space travel or the global positioning system (GPS) became an integral part of life of a large
fraction of the human population. Where would we be today if the independent thinkers of those
times were forced to do practical physics due to lack of funding for analyzing their fundamental
questions ?

Of course, in the beginning of the 20’th century, one could say that physics had come to some
sort of crisis, so that there was urgent need for some revision of the fundamental concepts: Classical
Newtonian mechanics, classical electrodynamics and thermodynamics were so well understood that
Max Planck himself was advised not to study physics but engineering. However, although from a
practical point of view all seemed well, there were subtle inconsistencies among these theories if one
drove them to their logical frontiers. We mention only three of them:
1) Although the existence of atoms was by far not widely accepted at the end of the 19th century
(even Max Planck denied them), if they existed then there was a serious flaw, namely, how should
atoms be stable ? Acceralated charges radiate Bremsstrahlung according to Maxwell’s theory, thus
an electron should fall into the nucleus after a finite amount of time.
2) If Newton’s theory of absolute space and time was correct then the speed of light should depend on
the speed of the inertial observer. The fact that such velocity dependence was ruled out to quadratic
order in v/c in the famous Michelson-Morley experiment was explained by postulating an unknown
medium, called ether, with increasingly (as measurement precision was refined) bizarre properties in
order to conspire to a negative outcome of the interferometer experiment and to preserve Newton’s
notion of space and time.
3) The precession of mercury around the sun contradicted the ellipses that were predicted by Newton’s
theory of gravitation.

Today we easily resolve these problems by 1) quantum mechanics, 2) special relativity and 3)
general relativity. Quantum mechanics does not allow for continuous radiation but predicts a discrete
energy spectrum of the atom, special relativity removed the absolute notion of space and time and
general relativity generalizes the static Minkowski metric underlying special relativity to a dynamical
theory of a metric field which revolutionizes our understanding of gravity not as a force but as
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geometry. Geometry is curved at each point in a manifold proportional to the matter density at
that point and in turn curvature tells matter what are the straightest lines (geodesics) along which
to move. The ether became completely unnecessary by changing the foundation of physics and
beautifully demonstrates that driving a theory to its logical frontiers can make extra structures
redundant, what one had to change is the basic principles of physics.1

This historic digression brings us back to the motivation for studying quantum gravity in the
beginning of the 21st century. The question is whether fundamental physics also today is in a kind
of crisis. We will argue that indeed we are in a situation not unsimilar to that of the beginning of
the 20th century:
Today we have very successful theories of all interactions. Gravitation is described by general relativ-
ity, matter interactions by the standard model of elementary particle physics. As classical theories,
their dynamics is summarized in the classical Einstein equations. However, there are several problems
with these theories, some of which we list below:

i) Classical – Quantum Inconsistency
The fundamental principles collide in the classical Einstein equations

Rµν − 1

2
Rgµν

︸ ︷︷ ︸
Geometry (GR, gen. covariance)

= κ Tµν(g)︸ ︷︷ ︸
Matter (Stand.model, QT)

These equations relate matter density in form of the energy momentum tensor Tµν and geom-
etry in form of the Ricci curvature tensor Rµν . Notice that the metric tensor gµν enters also
the definition of the energy momentum tensor. However, while the left hand side is described
until today only by a classical theory, the right hand side is governed by a quantum field
theory (QFT). Since complex valued functions and operators on a Hilbert space are two com-
pletely different mathematical objects, the only way to make sense out of the above equations
while keeping the classical and quantum nature of geometry and matter respectively is to take
expectation values of the right hand side, that is,

Rµν −
1

2
Rgµν = κ < T̂µν(g0) >, κ = 8πGNewton/c

3

Here g0 is an arbitrary background metric, say the Minkowski metric η = diag(−1, 1, 1, 1).
However, even if the state with respect to which the expectation value is taken is the vacuum
state ψg0 with respect to g0 (the notion of vacuum depends on the background metric itself,
see below), the right hand side is generically non-vanishing due to the vacuum fluctuations,
enforcing g = g1 6= g0. Hence, in order to make this system of equations consistent, one
could iterate the procedure by computing the vacuum state ψg1 and reinserting g1 into T̂µν(.),
resulting in g2 6= g1 etc. hoping that the procedure converges. However, this is generically not
the case and results in “run – away solutions” [3].

Hence, we are enforced to quantize the metric itself, that is, we need a quantum theory of

1 Notice, that the stability of atoms is still not satisfactorily understood even today because the full problem also
treats the radiation field, the nucleus and the electron as quantum objects which ultimately results in a problem in
QED, QFD and QCD for which we have no entirely satisfactory description today, see below.
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gravity resulting in the

′′

R̂µν −

1

2
R̂ĝµν = κ T̂µν(ĝ)

Quantum - Einstein - Equations

′′

The inverted commas in this equation are to indicate that this equation is to be made rigorous
in a Hilbert space context. QGR is designed to exactly do that, see section III.1.

ii) General Relativity Inconsistencies
It is well-known that classical general relativity is an incomplete theory because it predicts
the existence of so-called spacetime singularities, regions in spacetime where the curvature or
equivalently the matter density becomes infinite [4]. The most prominent singularities of this
kind are black hole and big bang singularities and such singularities are generic as shown in
the singularity theorems due to Hawking and Penrose. When a singularity appears it means
that the theory has been pushed beyond its domain of validity, certainly when matter collapses
it reaches a state of extreme energy density at which quantum effects become important. A
quantum theory of gravity could be able to avoid these singularities in a similar way as quantum
mechanics explains the stability of atoms. We will see that QGR is able to achieve this, at
least in the simplified context of “Loop Quantum Cosmology”, see section III.2.

iii) Quantum Field Theory Inconsistencies
As is well-known, QFT is plagued by UV (or short distance) divergences. The fundamental
operators of the theory are actually not operators but rather operator valued distributions and
usually interesting objects of the theory are (integrals of) polynomials of those evaluated in the
same point. However, the product of distributions is, by definition, ill-defined. The appearance
of these divergences is therefore, on the one hand, not surprising, on the other hand it indicates
again that the theory is incomplete: In a complete theory there is no room for infinities. Thus,
either the appropriate mathematical framework has not been found yet, or they arise because
one neglected the interaction with the gravitational field. In fact, in renormalizable theories
one can deal with these infinities by renormalization, that is, one introduces a short distance
cut-off (e.g. by point splitting the operator valued distributions) and then redefines masses
and coupling constants of the theory in a cut-off dependent way such that they stay finite as
the cut-off is sent to zero. This redefinition is done in the framework of perturbation theory
(Feynman diagrammes) by subtracting counter terms from the original Lagrangean which are
formally infinite and a theory is said to be renormalizable if the number of algebraically different
such counter terms is finite.

The occurance of UV singularities is in deep conflict with general relativity due to the following
reason: In perturbation theory, the divergences have their origin in Feynman loop integrals
in momentum space where the inner loop 4-momentum k = (E, P ) can become arbitrarily
large, see figure 1 for an example from QED (mass renormalization). Now such virtual (off-
shell) particles with energy E and momentum P have a spatial extension of the order of the
Compton radius λ = ~/P and a mass of the order of E/c2. Classical general relativity predicts
that this lump of energy turns into a black hole once λ reaches the Schwarzschild radius of

8
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p − k

p k p

Figure 1: One loop correction to the electron propagator in QED

the order of r = GE/c4. In a Lorentz frame where E ≈ Pc this occurs at the Planck energy
E = EP =

√
~/κc ≈ 1019GeV or at the Planck length Compton radius ℓP =

√
~κ ≈ 10−33cm.

However, when a (virtual) particle turns into a black hole it completely changes its properties.
For instance, if the virtual particle is an electron then it is able to interact only electroweakly
and thus can radiate only particles of the electrowak theory. However, once a black hole has
formed, also Hawking processes are possible and now any kind of particles can be emitted, but at
a different production rate. Of course, this is again an energy regime at which quantum gravity
must be important and these qualitative pictures must be fundamnetally wrong, however, they
show that there is a problem with integrating virtual loops into the UV regime. In fact, these
qualitative thoughts suggest that gravity could serve as a natural cut-off because a black hole
of Planck mass size ℓP should decay within a Planck time unit tP = ℓP/c ≈ 10−43s so that
one has to integrate P only until EP/c. Moreover, it indicates that spacetime geometry itself
acquires possibly a discrete structure since arguments of this kind make it plausible that it
is impossible to resolve spacetime distances smaller than ℓP , basically because the spacetime
behind an event horizon is in some sense “invisible”. These are, of course, only hopes and must
be demonstrated within a concrete theory. We will see that QGR is able to precisely do that
and its fundamental discreteness is in particular responsible for why the Bekenstein Hawking
entropy of black holes is finite, see sections II.2.2, III.1.1 and III.4.

So we see that there is indeed a fundamental inconsisteny within the current description of fun-
damental physics comparable to the time before the discovery of GR and QT and its resolution,
Quantum Gravity, will revolutionize not only our understanding of nature but will also drive new
kinds of technology that we do not even dare to dream of today.

I.1.2 The Role of Background Independence

Given the fact that both QT and GR were discovered already more than 70 years ago and that people
have certainly thought about quantizing GR since then and that matter interactions are more or less
succesfully described by ordinary quantum field theories (QFT), it is somewhat surprising that we
do not yet have a quantum gravity theory. Why is it so much harder to combine gravity with the
principles of quantum mechanics than for the other interactions ? The short answer is that

9
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supp(f’)

supp(f)

Figure 2: Spacelike separated regions in Minkowski space

Ordinary QFT only incorporates Special Relativity.

To see why, we just have to remember that ordinary QFT has an axiomatic definition, here for
a scalar field for simplicity:

WIGHTMAN AXIOMS (Scalar Fields on Minkowsk Space)

W1 Poincaré Group P:
∃ continuous, unitary representation Û of P on a Hilbert space H.

W2 Forward Lightcone Spektral Condition:
For the generators P̂ µ of the translation subgroup of P holds ηµνP̂

µP̂ ν ≤ 0, P̂ 0 ≥ 0.

W3 Existence and Uniqueness of a P−inariant Vacuum Ω:
Û(p)Ω = Ω ∀p ∈ P.

W4 P−Covariance:

φ̂(f) :=

∫
dD+1xf(x)φ̂(x), f ∈ S(RD+1)

φ̂(f1)..φ̂(fn)Ω dense in H and Û(p)φ̂(f)Û(p)−1 = φ̂(f ◦ p)

W5 Locality (Causality):
If supp(f), supp(f ′) spacelike separated (see figure 2), then [φ̂(f), φ̂(f ′)] = 0.

It is obvious that due to the presence of the Minkowski backgrounde metric η we have available a
large amount of structure which forms the fundament on which ordinary QFT is built. Roughly, we
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have the following scheme:

ηµν ⇒ P ⇒ Ĥ = P̂ 0

b.-metric symm.-group Ham.-operator

⇓ ⇓

(x− y)2 = 0 ⇒ commutation Ω
lightcone relations ground state

Notice that a generic background metric has no symmetry group at all so that it is not straightfor-
ward to generalize these axioms to QFT on general curved backgrounds, however, since any metric
is locally diffeomorphic to the Minkowski metric, a local generalization is possible and results in the
so-called microlocal analysis in which the role of vacuum states is played by Hadamard states, see
e.g. [5].

The fundamental, radically new feature of Einstein’s theory is that there
is no background metric at all: The theory is background independent.
The lightcones themselves are fluctuating, causality and locality become
empty notions. The dome of ordinary QFT completely collapses.

Of course, there must be a regime in any quantum gravity theory where the quantum fluctuations of
the metric operator are so tiny that we recover the well established theory of free ordinary quantum
fields on a given background metric, however, the large fluctuations of the metric operator can no
longer be ignored in extreme astrophysical or cosmological situations, such as near a black hole or
big bang singularity.

People have tried to rescue the framework of ordinary QFT by splitting the metric into a back-
ground piece and a fluctuation piece

gµν = ηµν + hµν

↑ ↑ ↑
full metric background (Minkowski) perturbation (graviton)

(I.1.2.1)

which results in a Lagrangean for the graviton field hµν and could in principle be the definition of a
graviton QFT on Minkowski space. However, there are serious drawbacks:

i) Non-Renormalizability
The resulting theory is perturbatively non-renormalizable [6] as could have been expected from
the fact that the coupling constant of the theory, the Planck area ℓ2P , has negative mass di-
mension (in Planck units). Even the supersymmetric extension of the theory, in any possible
dimension has this bad feature [7]. It could be that the theory is non-perturbatively renormal-
izable, meaning that it has a non-Gaussian fix point in the language of Wilson, a possibility
that has recently regained interest [8].

ii) Violation of Background Independence
The split of the metric performed above again distinguishes the Minkowski metric among all
others and reintroduces therefore a background dependence. This violates the key feature
of Einstein’s theory and thus somehow does not sound correct, we better keep background
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independence if we want to understand how quantum mechanics can possibly work together
with general covariance.

iii) Violation of Diffeomorphism Covariance
The split of the metric performed above is certainly not diffeomorphism covariant, it breaks
the diffeomorphism group down to Poincaré group. Violation of fundamental, local gauge
symmetries is usually considered as a bad feature in Yang-Mills theories on which all the other
interactions are based, thus already from this point of view perturbation theory looks dangerous.
As a side remark we see that background dependence and violation of general covariance are
synonymous.

iv) Gravitons and Geometry
Somehow the whole idea of the gravitational interaction as a result of graviton exchange on a
background metric contradicts Einstein’s original and fundamental idea that gravity is geometry
and not a force in the usual sense. Therefore such a perturbative description of the theory is
very unnatural from the outset and can have at most a semi-classical meaning when the metric
fluctuations are very tiny.

v) Gravitons and Dynamics
All that classical general relativity is about is how a metric evolves in time in an interplay
with the matter present. It is clear that an initially (almost) Minkowskian metric can evolve to
something that is far from Minkowskian at other times, an example being cosmological big bang
situations or the collapse of initially dilluted matter (evolved backwards). In such situations
the assumption being made in (I.1.2.1), namely that h is “small” as compared to η is just not
dynamically stable. In some sense it is like trying to use Cartesian coordinates for a sphere
which can work at most locally.

All these points just naturally ask for a non-perturbative approach to quantum gravity. This, in
turn, could also cure another unpleasant feature about ordinary QFT: Today we do not have a single
example of a rigorously defined interacting ordinary QFT in four dimensions, in other words, the
renormalizable theories that we have are only defined order by order in perturbation theory but the
perturbation series diverges. A non-perturbative definition, to which we seem to be forced when
coupling gravity anyway, might change this unsatisfactory situation.

It should be noted here that there is in fact a consistent perturbative description of a candidate
quantum gravity theory, called string theory (or M – Theory nowadays) [9].2 However, in order
to achieve this celebrated rather non-trivial result, expectedly one must introduce extra structure:
The theory lives in 10 (or 11) rather than 4 dimensions, it is necessarily supersymmetric and it has
an infinite number of extra particles besides those that are needed to make the theory compatible
with the standard model. Moreover, at least as presently understood, again the fundamental new
ingredient of Einstein’s theory, background independence, is violated in string theory. This current
background dependence of string theory is supposed to be overcome once M – Theory has been
rigorously defined.

At present only string theory has a chance to explain the matter content of our universe. The
unification of symmetries is a strong guiding principle in physics as well and has been pushed also

2String theory is an ordinary QFT but not in the usual sense: It is an ordinary scalar QFT on a 2d Minkowski
space, however, the scalar fields themselves are coordinates of the ambient target Minkowski space which in this case
is 10 dimensional. Thus, it is similar to a first quantized theory of point particles. The theory is renormalizable and
presumably even finite order by order in perturbation theory but the perturbation series does not converge.
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Figure 3: QFT on Background Spacetime (M, g0): Actor: Matter, Stage: Geometry + Manifold
M .

by Einstein in his programme of geometrization of physics attemting to unify electromagnetism and
gravity in a five-dimensional Kaluza – Klein theory. The unification of the electromagnetic and the
weak force in the electroweak theory is a prime example for the success of such ideas. However,
unification of forces is an additional principle completely independent of background independence
and is not necessarily what a quantum theory of gravity must achieve: Unification of forces can be
analyzed at the purely classical level3. Thus, the only question is whether the theory can be quan-
tized before unification or not (should unification of geometry and matter be realized in nature at all).

We are therefore again in a situation, similar to that before the discovery of special relativity, where
we have the choice between a) preserving an old principle, here renormalizability of perturbative
QFT on background spacetimes (M, η), at the price of introducing extra structure (extra unifica-
tion symmetry), or b) replacing the old principle by a new principle, here non-perturbative QFT
on a differentiable manifold M , without new hypothetical structure. At this point it unclear which
methodology has more chances for success, historically there is evidence for either of them (e.g. the
unification of electromagnetism and the massive Fermi model is evidence for the former, the replace-
ment of Newton’s notion of spactime by special relativity is evidence for the latter) and it is quite
possible that we actually need both ideas. In QGR we take the latter point of view to begin with
since there maybe zillions of ways to unify forces and it is hard to judge whether there is a “natural
one”, therefore the approach is purposely conservative because we actually may be able to derive a
natural way of unification, if necessary, if we drive the theory to its logical frontiers. Among the
various non-perturbative approaches available we will choose the canonical one.

Pictorially, one could illustrate the deep difference between a background dependent QFT and
background independent QFT as follows: In figure 3 we see matter in the form of QCD (notice the
quark (Q) propagators, the quark-gluon vertices and the three – and four point gluon (G) vertices)
displayed as an actor in green. Matter propagates on a fixed background spacetime g0 according
to well-defined rules, particles know exactly what timelike geodesics are etc. This fixed background

3In fact, e.g. the unified electroweak SU(2)L×U(1) theory with its massless gauge bosons can be perfectly described
by a classical Lagrangean. The symmetry broken, massive U(1) theory can be derived from it, also classically, by
introducing a constant background Higgs field (Higgs mechanism) and expanding the symmetric Lagrangean around
it. It is true that the search for a massless, symmetric theory was inspired by the fact that a theory with massive gauge
bosons is not renormalizable (so the motivation comes from quantum theory) and, given the non-renormalizability of
general relativity, many take this as an indication that one must unify gravity with matter, one incarnation of which
is string theory. However, the argument obviously fails should it be possible to quantize gravity non-perturbatively.
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Figure 4: QGR on Differential Manifold M : Actor: Matter + Geometry, Stage: Manifold M

spacetime g0 is displayed as a firm stage in blue. This is the situation of a QFT on a Background
Spacetime.

In contrast, in figure 4 the stage has evaporated, it has become itself an actor (notice the arbitrarily
high valent graviton (g) vertices) displayed in blue as well. Both matter and geometry are now
dynamical entities and interact as displayed by the red vertex. There are no light cones any longer,
rather the causal structure is a semiclassical concept only. This is the situation of a QFT on a
Differential Manifold and this is precisely what QGR aims to rigorously define.

It is clear from these figures that the passage from a QFT on a background spacetime to a QFT
on a differential manifold is a very radical one: It is like removing the chair on which you sit and
trying to find a new, yet unknown, mechanism that keeps you from falling down. We should mention
here that for many researchers in quantum gravity even that picture is not yet radical enough, some
proposals require not only to get rid of the background metric g0 but also of the differential manifold,
allowing for topology change. This is also very desired in QGR but considered as a second step. In
3d QGR also this step could be completed and the final picture is completely combinatorial.

Let us finish this section by stating once more what we mean by Quantum General Relativity (QGR).
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DEFINITION

(Canonical) Quantum General Relativity (QGR) is an attempt to
construct a mathematically rigorous, non – perturbative, back-
ground independent Quantum Field Theory of four – dimensional,
Lorentzian General Relativity and all known matter in the contin-
uum.

No additional, experimentally unverified structures are intro-
duced. The fundamental principles of General Covariance and
Quantum Theory are brought together and driven to their logical
frontiers guided by mathematical consistency.

QGR is not a unified theory of all interactions in the stan-
dard sense since unification of gauge symmetry groups is not
necessarily required in a non-perturbative approach. However,
Geometry and Matter are unified in a non – standard sense by
making them both transform covariantly under the Diffeomorphism
Group at the quantum level.

I.2 Introduction: Classical Canonical Formulation of Gen-

eral Relativity

In this section we sketch the classical Hamiltonian formulation of general relativity in terms of
Ashtekar’s new variables. There are many ways to arrive at this new formulation and we will choose
the one that is the most convenient one for our purposes.

The Hamiltonian formulation by definition requires some kind of split ot the spacetime variables
into time and spatial variables. This seems to contradict the whole idea of general covariance,
however, quantum meachanics as presently formulated requires a notion of time because we interpret
expection values of operators as instantaneous measurement values averaged over a large number
of measurements. In order to avoid this one has to “covariantize” the interpretation of quantum
mechanics, in particular the measurement process, see e.g. [10] for a discussion. There are a number
of proposals to make the canonical formulation more covariant, e.g.4: Multisymplectic Ansätze [13] in
which there are multimomenta, one for each spacetime dimension, rather than just one for the time
coordinate; Covariant phase space formulations [14] where one works on the space of solutions to the
field equations rather than on the intial value instantaneous phase space; Peierl’s bracket formulations
[15] which covariantize the notion of the usual Poisson bracket; history bracket formulations [16],
which grew out of the consistent history formulation of quantum mechanics [17], and which extends

4Path integrals [11] use the Lagrangean rather than the Hamiltonian and therefore seem to be better suited
to a covariant formulation than the canonical one, however, usually the path integral is interpreted as some sort of
propagator which makes use of instantaneous time Hilbert spaces again which therefore cannot be completely discarded
with. At present, this connection with the canonical formulation is not very transparent, part of the reason being that
the path integral is usually only defined in its Euclidean formulation, however the very notion of analytic continuation
in time is not very meaningful in a theory where there is no distinguished choice of time, see however [12] for recent
progress in this direction.
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the usual spatial Poisson bracket to spacetime.
At the classical level all these formulations are equivalent. However, at the quantum level, one

presently gets farthest within the the standard canonical formulation: The quantization of the mul-
tisymplectic approach is still in its beginning, see [18] for the most advanced results in this respect;
The covariant phase space formulation is not only very implicit because one usually does not know
the space of solutions to the classical field equations, but even if one manages to base a quantum
theory on it, it will be too close to the classical theory since certainly the singularities of the classical
theory are also built into the quantum theory; The Peierl’s bracket also needs the explicit space of
solutions to the classical field equations; Also the quantization of the history bracket formulation
just has started, see [19] for first steps in that direction.

Given this present status of affairs, we will therefore proceed with the standard canonical quanti-
zation and see how far we get. Notice that there is no obvious problem with general covariance: For
instance, standard Maxwell theory can be quantized canonically without any problem and one can
show that the theory is Lorentz covariant although the spacetime split into space and time seems
to break the Lorentz group down to the rotation group. This is not at all the case ! It is just that
Lorentz covariance is not manifest, one has to do some work in order to establish Lorentz covariance.
Indeed, as we will see, at least at the classical level we will explicitly recover the four-dimensional
diffeomorphism group in the formalism, although it is admittedly deeply hiddeen in the canonical
formalism.

With these cautionary remarks out of the way, we will thus assume that the four dimensional
spacetime manifold has the topology R × σ, where σ is a three dimensional manifold of arbitrary
topology, in order to perform the 3 + 1 split. This assumption about the topology of M may
seem rather restrictive, however, it is not due to the following reasons: (1) According to a theorem
due to Geroch any globally hyperbolic manifold (roughly those that admit a smooth metric with
everywhere Lorentzian signature) are necessarily of that topology. Since Lorentzian metrics are what
we are interested in, at least classically the assumption about the topology of M is forced on us.
(2) Any four manifold M has the topology of a countable disjoint union ∪αIα × σα where either Iα
are open intervals and σα is a three manifold or Iα is a one point set and σα is a two manifold (the
latter are the intersections of the closures of the former). In this most generic situation we thus allow
topology change between different three manifolds and it is even classically an open question how to
make this compatible with the action principle. We take here a practical point of view and try to
understand the quantum theory first for a single copy of the form R × σ and later on worry how we
glue the theories for different σ′s together.

I.2.1 The ADM Formulation

In this nice situation the 3+1 split is well known as the Arnowitt – Deser – Misner (ADM) formulation
of general relativity, see e.g. [4] and we briefly sketch how this works. Since M is diffeomorphic
to R × σ we know that M foliates into hypersurfaces Σt, t ∈ R as in figure 5, where t labels
the hypersurface and will play the role of our time coordinate. If we denote the four dimensional
coordinates by Xµ, µ = 0, 1, 2, 3 and the three dimensional coordinates by xa, a = 1, 2, 3 then we
know that there is a diffeomorphism ϕ : R × σ → M ; (t, x) 7→ X = ϕ(t, x) where Σt = ϕ(t, σ). We
stress that the four diffeomorphism ϕ is completely arbitrary until this point and thus the foliation
of M is not at all fixed, in other words, the set of foliations is in one to one correspondence with
Diff(M), the four dimensional diffeomorphism group. Consider the tangential vector fields to Σt

given by
Sa(X) := (∂a)ϕ(t,x)=X = (ϕµ,a(t, x))ϕ(t,x)=X ∂µ (I.2.1.1)
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Figure 5: Foliation of M

Denoting the four metric by gµν we define a normal vector field nµ(X) by gµνn
µSνa = 0, gµνn

µnν = −1.
Thus, while the tangential vector fields depend only on the foliation, the normal vector field depends
also on the metric. Let us introduce the foliation vector field

T (X) := (∂t)ϕ(t,x)=X = (ϕµ,t(t, x))ϕ(t,x)=X ∂µ (I.2.1.2)

and let us decompose it into the basis n, Sa. This results in

T = Nn + UaSa (I.2.1.3)

where N is called the lapse function while UaSa is called the shift vector field. The arbitrariness of the
foliation is expressed in the arbitrariness of the fields N,Ua. We can now introduce two symmetric
spacetime tensor fields (∇ is the unique, torsion free covariant differential compatible with gµν)

qµν = gµν + nµnν , Kµν = qµρqνσ∇ρnν (I.2.1.4)

called the intrinsic metric and the extrinsic curvature respectively which are spatial, that is, their
contraction with n vanishes. Thus, their full information is contained in their components with
respect to the spatial fields Sa, e.g. qab(t, x) = [qµνS

µ
aS

ν
b ](X(t, x)). In particular,

Kab(t, x) =
1

2N
[q̇ab − LUqab] (I.2.1.5)

contains information about the velocity of qab. Here L the Lie derivative. The metric gµν is completely
specified in terms of qab, N, U

a as one easily sees by expressing the line element ds2 = gµνdX
µ dXν

in terms of dt, dxa.

Exercise I.2.1.
Recall the definition of the Lie derivative and verify that Kµν is indeed symmetric and that formula
(I.2.1.5) holds.
Hint:
A hypersurface Σt can be defined by the solution of an equation of the form τ(X) = t. Conclude that
nµ ∝ ∇µτ and use torsion – freness of ∇.

The Legendre transformation of the Einstein-Hilbert action

S =
1

κ

∫

M

d4X
√

| det(g)|R(4) (I.2.1.6)
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with qab, N, U
a considered as configuration coordinates in an infinite dimensional phase space is

standard and we will not repeat the analysis here, which uses the so - called Gauss - Codacci
equations.

Here we are considering for simplicity only the case that σ is compact, otherwise (I.2.1.6) would
contain boundary terms. The end result is

S =
1

κ

∫

R

dt

∫

σ

d3x{q̇abP ab + ṄP + ṄaPa − [λP + λaPa + UaVa +NC]} (I.2.1.7)

where

P ab =
κδS

δqab
=

√
det(q)[qacqbd − qabqcd]Kcd (I.2.1.8)

and P, Pa are the momentua conjugate to qab, N, U
a respectively. Thus, we have for instance the

equal time Poisson brackets

{P ab(t, x), P cd(t, y)} = {qab(t, x), qcd(t, y)} = 0, {P ab(t, x), qcd(t, y)} = κδa(cδ
b
d)δ(x, y) (I.2.1.9)

where (.)(ab) := [(.)ab + (.)ba]/2 denotes symmetrization. The functions C, Va which depend only on
qab, P

ab are called the Hamiltonian and Spatial Diffeomorphism constraint respectively for reasons
that will become obvious in a moment. Their explicit form is given by

Va = −2qacDbP
bc

C =
1√

det(q)
[qacqbd −

1

2
qabqcd]P

abP cd −
√

det(q)R (I.2.1.10)

where D is the unique, torsion – free covariant differential compatible with qab and R is the curvature
scalar associated with qab.

The reason for the occurence of the Lagrange multipliers λ, λa is that the Lagrangean (I.2.1.6)
is singular, that is, one cannot solve all the velocities in terms of momenta and therefore one must
use Dirac’s procedure [20] for the Legendre transform of singular Lagrangeans. In this case the
singularity structure is such that the momenta conjugate to N,Ua vanish identically, whence the
Lagrange multipliers which when varied give the equations of motion P = Pa = 0. The equations
of motion with respect to the Hamiltonian (i.e. Ḟ := {H,F} for any functional F of the canonical
coordinates)

H =

∫
d3x[λP + λaPa + UaVa +NC] (I.2.1.11)

for N,Ua reveal that N,Ua are themselves Lagrange multipliers, i.e. completely unspecified functions
(proportional to λ, λa) while the equations of motion for P, Pa give Ṗ = −C, Ṗa = −Va. Since P, Pa
are supposed to vanish, this requires C = Va = 0 as well. Thus we see that the Hamiltonian is
constrained to vanish in GR ! We will see that this is a direct consequence of the four dimensional
diffeomorphism invariance of the theory.

Now the equations of motion for qab, P
ab imply the so-called Dirac (or hypersurface deformation)

algebra

{V (U), V (U ′)} = κV (LUU ′)

{V (U), C(N)} = κC(LUN)

{C(N), C(N ′)} = κV (q−1(NdN ′ −N ′dN)) (I.2.1.12)
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where e.g. C(N) =
∫
d3xNC. These equations tell us that the condition H = Va = 0 is preserved

under evolution, in other words, the evolution is consistent ! This is a non-trivial result. One says,
the Hamiltonian and vector constraint form a first class constraint algebra. This algebra is much more
complicated than the more familiar Kac-Moody algebras due to the fact that it is not an (infinite)
dimensional Lie algebra in the true sense of the word because the “structure constants” on the right
hand side of the last line in (I.2.1.12) are not really constants, they depend on the phase space. Such
algebras are open in the the terminology of BRST [21] and about their representation theory only
very little is known.

Exercise I.2.2.
Derive (I.2.1.12) from (I.2.1.9).
Hint:
Show first that the Poisson bracket between local functions which contain spatial derivatives is simply
the spatial derivatives applied to the Poisson bracket. Since the Poisson bracket of local functions is
distributional recall that derivatives of distributions are defined through an integration by parts.

Since the variables P, Pa drop out completely from the analysis and N,Ua are Lagrange multipli-
ers, we may replace (I.2.1.7) by

S =
1

κ

∫

R

dt

∫

σ

d3x{q̇abP ab − [UaVa +NH ]} (I.2.1.13)

with the understanding that N,Ua are now completely arbitrary functions which parameterize the
freedom in choosing the foliation. Since the Hamiltonian of GR depends on the completely unspeci-
fied functions N,Ua, the motions that it generates in the phase space M coordinatized by (P ab, qab)
subject to the Poisson brackets (I.2.1.9) are to be considered as pure gauge transformations. The in-
finitesimal flow (or motion) of the canonical coordinates generated by the corresponding Hamiltonian
vector fields on M has the following form for an arbitrary tensor tab built from qab, P

ab

{V (U), tab}EOM = κ(LU tab)
{C(N), tab}EOM = κ(LNntab) (I.2.1.14)

where the subscript EOM means that these relations hold for generic functions on M only when
the vacuum equations of motion (EOM) R

(4)
µν − R(4)gµν/2 = 0 hold. Equation (I.2.1.14) reveals that

Diff(M) is implemented also in the canonical formalism, however, in a rather non-trivial way: The
gauge motions generated by the constraints can be interpreted as four-dimensional diffeomorphisms
only when the EOM hold. This was to be expected because a diffemorphism orthogonal to the
hypersurface means evolution in the time parameter, what is surprising though is that this evolution
is considered as a gauge transformation in GR. Off the solutions, the constraints generate different
motions, in other words, the set of gauge symmetries is not Diff(M) everywhere in the phase space.
This is not unexpected: The action (I.2.1.6) is obviously Diff(M) invariant, but so would be any action
that is an integral over a four-dimensional scalar density of weight one formed from polynomials in the
curvature tensor and its covariant derivatives. This symmetry is completely insensitive to the specific
Lagrangean in question, it is kinematical. The dynamics generated by a specific Lagrangean must
depend on that Lagrangean, otherwise all Lagrangeans underlying four dimensionally diffeomorphism
invariant actions would equal each other up to a diffeomorphism which is certainly not the case
(consider for instance higher derivative theories). In particular, that dynamics is, a priori, completely
independent of Diff(M). As a consequence, Dirac observables, that is, functions on M which are
gauge invariant (have vanishing Poisson brackets with the constraints), are not simply functionals of
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Figure 6: Constraint hypersurface M and gauge orbit [m] of m ∈ M in M
.

the four metric invariant under four diffeomorphisms because they must depend on the Lagrangean.
The set of these dynamics dependent gauge transformations does not obviously form a group as
has been investigated by Bergmann and Komar [22]. The geometrical origin of the hypersurface
deformation algebra has been investigated in [23]. Torre and Anderson have shown that for compact
σ there are no Dirac observables which depend on only a finite number of spatial derivatives of the
canonical coordinates [24] which means that Dirac observables will be highly non-trivial to construct.

Let us summarize the gauge theory of GR in figure 6: The constraints C = Va = 0 define a
constraint hypersurface M within the full phase space M. The gauge motions are defined on all
of M but they have the feature that they leave the constraint hypersurface invariant, and thus
the orbit of a point m in the hypersurface under gauge transformations will be a curve or gauge
orbit [m] entirely within it. The set of these curves defines the so-called reduced phase space and
Dirac observables restricted to M depend only on these orbits. Notice that as far as the counting is
concerned we have twelve phase space coordinates qab, P

ab to begin with. The four constraints C, Va
can be solved to eliminate four of those and there are still identifications under four independent sets
of motions among the remaining eight variables leaving us with only four Dirac observables. The
corresponding so-called reduced phase space has therefore precisely the two configuration degrees of
freedom of general relativity.

I.2.2 Gauge Theory Formulation

We can now easily introduce the shift from the ADM variables qab, P
ab to the connection variables

introduced first by Ashtekar [25] and later somewhat generalized by Immirzi [26] and Barbero [27].
We introduce su(2) indices i, j, k, .. = 1, 2, 3 and co-triad variables eja with inverse eaj whose relation
with qab is given by

qab := δjke
j
ae
k
b (I.2.2.1)

Defining the spin connection Γja through the equation

∂ae
j
b − Γcabe

j
c + ǫjklΓ

k
ae
l
b = 0 (I.2.2.2)

where Γcab are the Christoffel symbols associated with qab we now define

Aja = Γja + βKabe
b
j , Ea

j =
√

det(q)eaj/β (I.2.2.3)

20



where β ∈ C − {0} is called the Immirzi parameter. In this article we only consider real valued and
positive β. Finally we introduce the SU(2) Gauss constraint

Gj := ∂aE
a
j + ǫjklA

k
aE

b
l (I.2.2.4)

with ǫjkl the structure constants of su(2) which we would encounter in the canonical formulation of
any SU(2) gauge theory. As one can check, modulo Gj = 0 one can then write C, Va in terms of A,E
as follows

Va = F j
abE

b
j ,

C =
F j
abǫjklE

a
jE

b
l√

| det(E)|
+ More (I.2.2.5)

where F = 2(dA + [A,A]) is the curvature of A and “More” is an additional term which is more
complicated but can be treated by similar methods as the one displayed.

We then have the following theorem [25].

Theorem I.2.1.
Consider the phase space M coordinatized by (Aja, E

b
j ) with Poisson brackets

{Ea
j (x), E

b
k(y)} = {Aja(x), Akb (y)} = 0, {Ea

j (x), A
k
b (y)} = κδab δ

k
j δ(x, y) (I.2.2.6)

and constraints Gj , C, Va. Then, solving only the constraint Gj = 0 and determining the Dirac
observables with respect to it leads us back to the ADM phase space with constraints C, Va.

The proof of the theorem is non-trivial and tedious and can be found in the notation used here
in [1]. Alternatively one can find directions for a proof in the subsequent exercise. In particular,
this works only because the Gauss constraint is in evolution with itself and the other constraints,
specifically {G,G} ∝ G, {G, V } = {G,H} = 0.

Exercise I.2.3.
i)
Prove theorem I.2.1.
Hint:
Express qab, P

ab in terms of Aja, E
a
j by using (I.2.2.1), (I.2.2.2), (I.2.2.3), and (I.2.2.4) and check that

the Poisson brackets, with respect to (I.2.2.6), among the solutions qab = sab[A,E], P ab = Sab[A,E]
equal precisely (I.2.1.9) modulo terms proportional to Gj.
ii)
Define G(Λ) :=

∫
σ
d3xΛjGj and D(U) :=

∫
σ
Ua[Va − AjaGj ] and [Λ,Λ′]j = ǫjklΛ

k(Λ′)l. Verify the
following Poisson brackets

{G(Λ), G(Λ′)} = κG([Λ,Λ′])

{G(Λ), V (U)} = 0

{D(U), D(U ′)} = κD([U,U ′]) (I.2.2.7)

and conclude that the Hamiltonian vector fields of G(Λ) and D(U) respectively generate SU(2) gauge
transformations and spatial diffeomorphisms of σ respectively.
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Hint:
Show first that

{G(Λ/κ), Aja(x)} = −Λj
,a + ǫjklΛ

kAla

{D(U/κ), Aja(x)} = U bAja,b + U b
,aA

j
b (I.2.2.8)

to conclude that A transforms as a connection under infinitesimal gauge transformations and as a
one-form under infinitesimal diffeomorphisms. Consider then gt(x) := exp(tΛjτj/(2κ)) and ϕt(x) :=
cU,x(t) where t 7→ cU,x(t) is the unique integral curve of U through x, that is, ċU,x(t) = U(cU,x(t)), cU,x(0) =
x. Recall that the usual transformation behaviour of connections and one-forms under finite gauge
transformations and diffeomorphisms respectively is given by (e.g. [28])

Ag = −dgg−1 + Adg(A)

Aϕ = ϕ∗A (I.2.2.9)

where A = Ajadx
aτj/2, Adg(.) = g(.)g−1 denotes the adjoint representation of SU(2) on su(2) and ϕ∗

denotes the pull-back map of p−forms and iτj are the Pauli matrices so that τjτk = −δjk12 + ǫjklτl.
Verify then that (I.2.2.8) is the derivative at t = 0 of (I.2.2.9) with g := gt, ϕ := ϕt. Similarly,
derive that E transforms as an su(2)−valued vector field of density weight one. (Recall that a tensor

field t of some type is said to be of density weight r ∈ R if t
√

| det(s)|−r is an ordinary tensor field
of the same type where sab is any non-degenerate symmetric tensor field).

From the point of view of the classical theory we have made things more complicated: Instead
of twelve variables q, P we now have eighteen A,E. However, the additional six degrees of freedom
are removed by the first class Gauss constraint which shows that working on our gauge theory phase
space is equivalent to working on the ADM phase space. The virtue of this extended phase space
is that canonical GR can be formulated in the language of a canonical gauge theory where A plays
the role of an SU(2) connection with canonically conjugate electric field E. Besides the remark that
this fact could be the starting point for a possible gauge group unification of all four forces we now
have access to a huge arsenal of techniques that have been developed for the canonical quantization
of gauge theories. It is precisely this fact that has enabled steady progress in this field in the last
fifteen years while one was stuck with the ADM formulation for almost thirty years.

I.3 Canonical Quantization Programme for Theories with

Constraints

I.3.1 Refined Algebraic Quantization (RAQ)

As we have seen, GR can be formulated as a constrained Hamiltonian system with first class con-
straints. The quantization of such systems has been considered first by Dirac [20] and was later
refined by a number of authors. It is now known under the name refined algebraic quantization
(RAQ). We will briefly sketch the main ideas following [29].

i) Phase Space and Constraints
The starting point is a phase space (M, {., .}) together with a set of first class constraints CI
and possibly a Hamiltonian H .
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ii) Choice of Polarization
In order to quantize the phase space we must choose a polarization, that is, a Lagrangean
submanifold C of M which is called configuration space. The coordinates of C have vanishing
Poisson brackets among themselves. If M is a cotangent bundle, that is, M = T ∗Q then it
is natural to choose Q = C and we will assume this to be the case in what follows. For more
general cases, e.g. compact phases spaces one needs ideas from geometrical quantization, see
e.g. [30]. The idea is that (generalized, see below) points of C serve as arguments of the vectors
of the Hilbert space to be constructed.

iii) Preferred Kinematical Poisson Subalgebra
Consider the space C∞(C) of smooth functions on C and the space V ∞(C) of smooth vector fields
on C. The vertical polarization of M, that is, the space of fibre coordinates called momentum
space, generates preferred elements of V ∞(C) through (vp[f ])(q) := ({p, f})(q) where we have
denoted configuration and momentum coordinates by q, p respectively and v[f ] denotes the
action of a vector field on a function. The pair C∞(C) × V∞(C) forms a Lie algebra defined
by [(f, v), (f ′, v′)] = (v[f ′] − v′[f ], [v, v′]) of which the algebra B generated by elements of the
form (f, vp) forms a subalgebra. We assume that B is closed under complex conjugation which
becomes its ∗−operation (involution).

iv) Representation Theory of the Corresponding Abstract ∗−Algebra
We are looking for all irreducible ∗−representations π : B → L(Hkin) of B as linear operators
on a kinematical Hilbert space Hkin such that the ∗−relations becomes the operator adjoint
and such that the canonical commutation relations are implemented, that is, for all a, b ∈ B

π(a)† = π(a∗)

[π(a), π(b)] = i~π([a, b]) (I.3.1.1)

Strictly speaking, (I.3.1.1) is to be supplemented by the domains on which the operators are
defined. In order to avoid this one will work with the subalgebra of C∞(C) formed by bounded
functions, say of compact support and one will deal with exponentiated vector fields in order
to obtain bounded operators. Irreducibility is a physically meaningful requirement because
we are not interested in Hilbert spaces with superselection sectors and the reason for why
we do not require the full Poisson algebra to be faithfully represented is that this is almost
always impossible in irreducible representations as stated in the famous Groenewald – van Hove
theorem. The Hilbert space that one gets can usually be described in the form L2(C, dµ) where
C is a distributional extension of C and µ is a probability measure thereon. A well-known
example is the case of free scalar fields on Minkowski space where C is some space of smooth
scalar fields on R3 vanishing at spatial infinity while C is the space of tempered distributions
on R3 and µ is a normalized Gaussian measure on C.

v) Selection of Suitable Kinematical Representations
Certainly we want a representation which supports also the constraints and the Hamiltonian as
operators which usually will limit the number of available representations to a small number,
if possible at all. The constraints usually are not in B unless linear in momentum and the
expressions ĈI := π(CI), Ĥ = π(H) will involve factor ordering ambiguities as well as regular-
izationand renormalization processes in the case of field theories. In the generic case, ĈI , Ĥ
will not be bounded and ĈI will not be symmetric. We will require that Ĥ is symmetric and
that the constraints are at least closable, that is, they are densely defined together with their
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adjoints. It is then usually not too difficult to find a dense domain Dkin ⊂ Hkin on which
all these operators and their adjoints are defined and which they leave invariant. Typically
Dkin will be a space of smooth functions of rapid decrease so that arbitray derivatives and
polynomials of the configuration variables are defined on them and such spaces naturally come
with their own topology which is finer than the subspace topology induced from Hkin whence
we have a topological inclusion Dkin →֒ Hkin.

vi) Imposition of the Constraints
The two step process in the classical theory of solving the constraints CI = 0 and looking for
the gauge orbits is replaced by a one step process in the quantum theory, namely looking for
solutions l of the equations ĈI l = 0. This is because it is obviously solves the constraint at the
quantum level (in the corresponding representation on the solution space the constraints are
replaced by the zero operator) and it simultaneously looks for states that are gauge invariant
because ĈI is the quantum generator of gauge transformations.

Now, unless the point {0} is in the common point spectrum of all the ĈI , solutions l to the
equations ĈIl = 0 ∀ I do not lie in Hkin, rather they are distributions. Here one has several
options, one could look for solutions in the space D′

kin of continuous linear functionals on
Dkin (topological dual) or in the space D∗

kin of linear functionals on Dkin with the topology
of pointwise convergence (algebraic dual). Since certainly Hkin ⊂ D′

kin ⊂ D∗
kin let us choose

the latter option for the sake of more generality. The topology on Hkin is again finer than
the subspace topology induced from D∗

kin so that we obtain a Gel’fand triple or Rigged Hilbert
Space

Dkin →֒ Hkin →֒ D∗
kin (I.3.1.2)

This a slight abuse of terminology since the name is usually reserved for the case that Dkin

carries a nuclear topology (generated by a countable family of seminorms separating the points)
and that D∗

kin is its topological dual.

We are now looking for a subspace D∗
phys ⊂ D∗

kin such that for its elements l holds

[Ĉ ′
I l](f) := l(Ĉ†

If) = 0 ∀ f ∈ Dkin, ∀I (I.3.1.3)

The prime on the left hand side of this eqution defines a dual, anti-linear representation of the
constraints on D∗

kin. The reason for the adjoint on the right hand side of this equation is that
if l would be an element of Hkin then (I.3.1.3) would be replaced by

[Ĉ ′
I l](f) :=< ĈI l, f >kin=< l, Ĉ†

If >kin=: l(Ĉ†
If) ∀ f ∈ Dkin, ∀I (I.3.1.4)

where < ., . >kin denotes the kinematical inner product, so that (I.3.1.3) is the natural extension
of (I.3.1.4) from Hkin to D∗

kin.

vii) Anomalies
Since we have a first class constraint algebra, we know that classically {CI , CJ} = fIJ

KCK for
some structure functions fIJ

K which depend in general on the phase space point m ∈ M. The
translation of this equation into quantum theory is then plagued with ordering ambiguities,
because the structure functions turn into operators as well. It may therefore happen that, e.g.

[ĈI , ĈJ ] = i~ĈK f̂IJ
K = i~{[ĈK , f̂IJ K ] + f̂IJ

KĈK} (I.3.1.5)

and it follows that any l ∈ D∗
phys also solves the equation ([ĈK , f̂IJ

K ])′l = 0 for all I, J . If that
commutator is not itself a constraint again, then it follows that l solves more than only the
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equations Ĉ ′
I l = 0 and thus the quantum theory has less physical degrees of freedom than the

classical theory. This situation, called an anomaly, must be avoided by all means.

viii) Dirac Observables and Physical Inner Product
Since generically Hkin∩D∗

phys = ∅, the space D∗
phys cannot be equipped with the scalar product

< ., . >kin. It is here wehere Dirac observables come into play. A strong Dirac observable
is an operator Ô on Hkin which is, together with its adjoint, densely defined on Dkin and
which commutes with all constraints, that is, [Ô, ĈI ] = 0 for all I. We require that Ô is the
quantization of a real valued function O on the phase space and the condition just stated is the
quantum version of the classical gauge invariance condition {O,CI} = 0 for all I. A weak Dirac
observable is the quantum version of the more general condition {O,CI}|CJ

= 0∀J = 0 ∀I
and simply means that the space of solutions is left invariant by the natural dual action of the
operator Ô′D∗

phys ⊂ D∗
phys.

A physical inner product on a subset Hphys ⊂ D∗
phys is a positive definite sesquilinear form

< ., . >phys with respect to which the Ô′ become self-adjoint operators, that is, Ô′ = (Ô′)⋆

where the adjoint on Hphys is denoted by ⋆. Notice that [Ô′
1, Ô

′
2] = ([Ô1, Ô2])

′ so that com-
mutation relations on Hkin are automatically transferred to Hphys which then carries a proper
∗−representation of the physical observables. The observables themselves will only be defined
on a dense domain Dphys ⊂ Hphys and we get a second Gel’fand triple

Dphys →֒ Hphys →֒ D∗
phys (I.3.1.6)

In fortunate cases, for instance when the ĈI are mutually commuting self-adjoint operators on
Hkin, all we have said is just a fancy way of stating the fact that Hkin has a direct integral
decomposition

Hkin =

∫ ⊕

S

dν(λ)Hλ (I.3.1.7)

over the spectrum S of the constraint algebra with a measure ν and eigenspaces Hλ which are
left invariant by the strong observables and therefore Hphys = H0. In the more general cases
that are of concern to us, more work is required.

ix) Classical Limit
It is by no means granted that the representation Hphys that one finally arrived at, carries
semiclassical states, that is states ψ[m] labelled by gauge equivalence classes [m] of points
m ∈ M with respect to which the Dirac observables have the correct expectation values and
with respect to which their relative fluctuations are small, that is, roughly speaking

|< ψ[m], Ô
′ψ[m] >phys

O(m)
− 1| ≪ 1 and |< ψ[m], (Ô

′)2ψ[m] >phys

(< ψ[m], Ô′ψ[m] >phys)2
− 1| ≪ 1 (I.3.1.8)

Only when such a phase exists are we sure that we have not constructed some completely
spurious sector of the quantum theory which does not admit the correct classical limit.

I.3.2 Selected Examples with First Class Constraints

In the case that a theory has only first class constraints, Dirac’s algorithm [20] boils down to the
following four steps:
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1)
Define the momentum pa conjugate to the configuration variable qa by (Legendre transform)

pa := ∂S/∂q̇a (I.3.2.1)

where S is the action.
2)
Equation (I.3.2.1) defines pa as a function of qa, q̇a and if it is not invertible to define the q̇a as a
function of qa, pa we get a collection of so-called primary constraints CI , that is, identities among the
qa, pa. In this situation one says that S or the Lagrangean is singular.
3)
Using that qa, pa have canonical Poisson brackets, compute all possible Poisson brackets CIJ :=
{CI , CJ}. If some CI0J0 is not zero when all CK vanish, then add this CI0J0, called a secondary
constraint, to the set of primary constraints.
4)
Iterate 3) until the CI are in involution, that is, no new secondary constraints appear.

In this report we will only deal with theories which have no second class constraints, so this
algorithm is all we need.

Exercise I.3.1.
Perform the quantization programme for a couple of simple systems in order to get a feeling for the
formalism:

1. Momentum Constraint
M = T ∗R2 with standard Poisson brackets among qa, pa; a = 1, 2 and constraint C := p1.
Choose Hkin = L2(R

2, d2x), Dkin = S(R2), D∗
kin = S ′(R2) (spaces of functions of rapid decrease

and tempered distributions respectively).
Solution:
Dirac observables are the conjugate pair q2, p2, Hphys = L2(R, dx2).
Hint: Work in the momentum representation and conclude that the general solution is of the
form lf(p1, p2) = δ(p1)f(p2) for f ∈ S ′(R).

2. Angular Momentum Constraint
M = T ∗R3 with standard Poisson brackets among qa, pa; a = 1, 2, 3 and constraints Ca :=
ǫabcx

bpc. Check the first class property and choose the kinematical spaces as above with R2

replaced by R3.
Solution:
Dirac observables are the conjugate pair r :=

√
δabqaqb ≥ 0, pr = δabq

apb/r, the physical phase
space is T ∗R+ and Hphys = L2(R+, r

2dr) where r̂ is a multiplication operator and p̂r = i~1
r
d
dr
r

with dense domain of symmetry given by the square integrable functions f such that f is regular
at r = 0.
Hint:
Introduce polar coordinates and decompose kinematical wave functions into spherical harmonics.
Conclude that the physical Hilbert space this time is just the restriction of the kinematical Hilbert
space to the zero angular momentum subspace, that is, Hphys ⊂ Hkin. The reason is of course

that the spectrum of the Ĉa is pure point (discrete).

3. Relativistic Particle
Consider the Lagrangean L = −m

√
−ηµν q̇µq̇ν where m is a mass parameter, η is the Minkowski
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metric and µ = 0, 1, .., D. Verify that the Lagrangean is singular, that is, the velocities q̇µ

cannot be expressed in terms of the momenta pµ = ∂L/∂q̇µ which gives rise to the mass shell
constraint C = m2 + ηµνpµpν. Verify that this happens because the corresponding action is
invariant under Diff(R), that is, reparameterizations t 7→ ϕ(t), ϕ̇(t) > 0. Perform the Dirac
analysis for constraints and conclude that the system has no Hamiltonian, just the Hamiltonian
constraint C which generates reparameterizations on the kinematical phase space M = T ∗RD+1

with standard Poisson brackets. Now choose kinematical spaces as in 1. with R2 replaced by
RD+1.
Solution:
Conjugate Dirac observables are Qa = qa − q0pa√

m2+δabpapb

and Hphys = L2(R
D, dDp) on which

q̂0 = 0.
Hint:
Work in the momentum representation and conclude that the general solution to the constraints
is of the form lf = δ(C)f(p0, ~p). Now notice that the δ−distribution can be written as a sum of
two δ−distribution corresponding to the positive and negative mass shell and choose f to have
support in the former.

This example has features rather close to those of general relativity.

4. Maxwell Theory
Consider the action for free Maxwell-theory on Minkowski space and perform the Legendre
transform. Conclude that there is a first class constraint C = ∂aE

a (Gauss constraint) with
Lagrange multiplier A0 and a Hamiltonian H =

∫
R3 d3x[EaEb+BaBb]/2 where Ea = Ȧa−∂aA0

is the electric field and Ba = ǫabc∂bAc the magnetic one. Verify that the Gauss constraint gen-
erates U(1) gauge transformations A 7→ A − df while Ea is gauge invariant. Choose Hkin to
be the standard Fock space for three massless, free scalar fields Aa and as Dkin, D∗

kin the finite
linear span of n−particle states and its algebraic dual respectively.
Solution:
Conjugate Dirac observables are the transversal parts of A,E respectively, e.g. Ea

⊥ = Ea −
∂a

1
∆
∂bE

b where ∆ is the Laplacian on R3. The physical Hilbert space is the standard Fock space
for two free, masless scalar fields corresponding to these transversal degrees of freedom.
Hint:
Fourier transform the fields and compute the standard annihilation and creation operators
ẑa(k), ẑ

†
a(k) with canonical commutation relations. Express the Gauss constraint operator in

terms of them and conclude that the gauge invariant part satisfies ẑa(k)k
a = 0. Introduce

ẑI(k) = ẑa(k)e
a
I(k) where ~e1(k), ~e2(k), ~e3(k) := ~k/||k|| form an oriented orthonormal basis.

Conclude that physical states are states without longitudonal excitations and build the Fock
space generated by the ẑ†1(k), ẑ

†
2(k) from the kinematical vacuum state.
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Part II

Mathematical and Physical Foundations
of Quantum General Relativity
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II.1 Mathematical Foundations

II.1.1 Polarization and Preferred Poisson Algebra B
The first two steps of the quantization programme were already completed in section I.2: The phase
space M is coordinatized by canonically conjugate pairs (Aja, E

a
j ) where A is an SU(2) connection

over σ while E is a su(2)−valued vector density of weight one over σ and the Poisson brackets were
displayed in (I.2.2.6). Strictly speaking, since M is an infinite dimensional space, one must supply
M with a manifold structure modelled on some Banach space but we will skip these functional
analytic niceties here, see [1] for further information. Also we must specify the principal fibre bundle
of which A is the pull-back by local sections of a globally defined connection, and we must specify
the vector bundle associated to that principal bundle under the adjoint representation of which E
is the pull-back by local sections. Again, in order not to dive too deeply into fibre bundle theoretic
subtleties, we will assume that the principal fibre bundle is trivial so that A,E are actually globally
defined. In fact, for the case of G = SU(2) and dim(σ) = 3 one can show that the fibre bundle is
necessarily trivial but for the generalization to the generic case we again refer the reader to [1].

With these remrks out of the way we may begin by defining a polarization. The fact that GR
has been casted into the language of a gauge theory suggests the choice C = A, the space of smooth
SU(2) connections over σ.

The next question then is how to choose the space C∞(A). Since we are dealing with a field
theory, it is not clear a priori what smooth or even differentiable means. In order to give precise
meaning to this, one really has to equip A with a manifold structure modelled on a Banach space.
This is because one usually says that a function F : A → C is differentiable at A0 ∈ A provided that
there exists a bounded linear functional DFA0 : TA0(A) → C such that F [A0+δA]−F [A0]−DFA0 ·δA
vanishes “faster than linearly” for arbitrary tangent vectors δA ∈ TA0(A) at A0. (The proper way
of saying this is using the natural Banach norm on T (A).) Of course, in physicist’s notation the
differential DFA0 = (δF/δA)(A0) is nothing else than the functional derivative. Using this definition
it is clear that polynomials in Aja(x) are not differentiable because their functional derivative is
proportional to a δ−distribution as it is clear from (I.2.2.6). Thus we see that the smooth functions
of A have to involve some kind of smearing of A with test functions, which is generic in field theories.

Now this smearing should be done in a judicious way. The function
F [A] :=

∫
σ
d3xF a

j (x)Aja(x) for some smooth test function F a
j of compact support is certainly smooth

in the above sense, its functional derivative being equal to F j
a (which is a bounded operator if F

is e.g. an L2 function on σ and the norm on the tangent spaces is an L2 norm). However, this
function does not transform nicely under SU(2) gauge transformations which will make it very hard
to construct SU(2) invariant functions from them. Here it helps to look up how physicists have
dealt with this problem in ordinary canonical quantum Yang-Mills gauge theories and they found
the following, more or less unique solution [31]:
Given a curve c : [0, 1] → σ in σ and a point A ∈ A we define the holonomy or parallel transport
A(c) := hc,A(1) ∈ SU(2) as the unique solution to the following ordinary differential equation for
functions hc,A : [0, 1] → SU(2)

dhc,A(t)

dt
= hc,A(t)Aja(c(t))

τj
2
ċa(t), hc,A(0) = 12 (II.1.1.1)

Exercise II.1.1. Verify that (II.1.1.1) is equivalent with

A(c) = P · exp(

∫

c

A) = 12 +
∞∑

n=1

∫ t

0

dt1

∫ 1

t1

dt2 ..

∫ 1

tn−1

A(t1)..A(tn) (II.1.1.2)
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where P denotes the path ordering symbol which orders the curve parameters from left to right ac-
cording to their value beginning with the smallest one and A(t) := Aja(c(t))ċ

a(t)τj/2.

With this definition it is not difficult to verify the following transformation behaviour of A(c)
under gauge transformations and spatial diffeomorphisms respectively (recall (I.2.2.9)):

Ag(c) = g(b(c))A(c)g(f(c))−1 and Aϕ(c) = A(ϕ−1(c)) (II.1.1.3)

where b(c), f(c) denote the beginning and final point of a curve respectively. Thus, the behaviour
under gauge transformations is extremely simple which makes it easy to construct gauge invariant
functions, for instance the Wilson loop functions Tr(A(c)) where c is a closed curve, that is, a
loop. This is the reason why QGR is also denoted as Loop Quantum Gravity. That holonomies
also transform very naturally under spatial diffeomorphisms as depicted in the second equation of
(II.1.1.3) has the following mathematical origin: A connection is in particular a one-form, therefore it
is naturally integrated (smeared) over one-dimensional submanifolds of σ. Here natural means without
using a background metric. Now the holonomy is not really the exponential of

∫
c
A but almost as

shown in (II.1.1.2). Thus, holonomies are precisely in accordance with our wish to construct a
background independent quantum field theory. Moreover, the simple transformation behaviour under
diffeomorphisms again makes it simple to construct spatially diffeomorphism invariant functions of
holonomies: These will be functions only labelled by diffeomporphism invariance classes of loops, but
these are nothing else than knot classes. Thus QGR has an obvious link with topological quantum
field theory (TQFT) [32] which makes it especially attractive and was one of the major motivations
for Jacobson, Rovelli and Smolin to consider Wilson loop functions for canonical quantum gravity
[33]. Finally one can show [34] that the holonomies separate the points of A, i.e. they encode all the
information that is contained in a connection.

The fact that the holonomy smears A only one-dimensionally is nice due to the above reasons
but it is also alarming because its functional derivative is certainly distributional and thus does not
exist in the strict mathematical sense. However, in order to obtain a well-defined Poisson algebra
it is not necessary to have smooth functions of A, it is only sufficient. The key idea idea is that
if we smear also the electric fields E then we might get a non-distributional Poisson algebra. By
inspection from (I.2.2.6) it is clear that E has to be smeared in at least two dimensions in order
to achieve this. Now again background independence comes to our help: Let ǫabc be the totally
skew, background independent tensor density of weight −1, that is, ǫabc = δ1

[aδ
2
bδ

3
c] where [..] denotes

total antisymmetrization. Then (∗E)jab := Ej
ab := Ec

jǫabc is a 2-form of density weight 0. Therefore
E is naturally smeared in two dimensions. Notice that the smearing dimensions of momenta and
configuration variables add up to the dimension of σ, they are dual to each other which is a generic
phenomenon for any canonical theory in any dimension. We are therefore led to consider the electric
fluxes

Ej(S) =

∫

S

∗Ej (II.1.1.4)

where S is a two-dimensional, open surface. It is easy to check that E(S) := Ej(S)τj has the following
transformation behaviour

Eg(S) =

∫

S

Adg(∗E) and Eϕ(S) = E(ϕ−1(S)) (II.1.1.5)

Thus, while the transformation under spatial diffeomorphisms is again simple, the one under gauge
transformations is not. However, the idea is that the Ej(S) are the basic building blocks for more
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complicated functions of E which are already gauge invariant. The prototype of such a function is
the area functional for a parameterized surface XS : D → σ, D ⊂ R2

Ar(S) :=

∫

D

d2u
√

det(X∗
Sq) (II.1.1.6)

Exercise II.1.2. Define nSa := ǫabcX
b
S,u1Xc

S,u2 and verify that (II.1.1.6) coincides with

Ar(S) := β

∫

D

d2u
√

(Ea
j n

S
a )(E

b
jn

S
b ) (II.1.1.7)

where β is the Immirzi parameter.

It is clear that Ej(S) =
∫
D
d2uEa

j n
S
a so that the area functional can be written as the limit of a

Riemann sum, over small surfaces that partition S, of functions of the electric fluxes for those small
surfaces.

Let us see whether the Poisson bracket between an electric flux and a holonomy is well-defined.
Actually, let us be slightly more general and introduce the following notion: Let us losely think for
the moment of a graph γ as a collection of a finite number of smooth, compactly supported, oriented
curves, called edges e, which intersect at most in their end points, which are called vertices v. We
denote by E(γ), V (γ) the edge and vertex set of γ respectively. A precise definition will be given in
section II.1.2.

Definition II.1.1.
Given a graph γ we define

pγ : A → SU(2)|E(γ)|; A 7→ (A(e))e∈E(γ) (II.1.1.8)

A function f : A → C is said to be cylindrical over a graph γ, if there exists a function fγ :
SU(2)|E(γ)| → C such that f = fγ ◦ pγ. We denote by Cylnγ , n = 0, 1, ..,∞ the set of n−times
continuously differentiable cylindrical functions over γ and by Cyln the set functions which are cylin-
drical over some γ with the same differentiability type. Here we say that f = fγ ◦ pγ ∈ Cylnγ if and
only if fγ is n−times continuously differentiable with respect to the standard differential structure on
SU(2)|E(γ)|.

Our Poisson Algebra will be based on the set of functions Cyl∞ which certainly form an Abelean
Poisson subalgebra. Our next task will be to compute the Poisson bracket between a flux and an
element of Cyl∞. In order to compute this we will use the chain rule (f ∈ Cyl∞γ )

{Ej(S), f}(A) =
∑

e∈E(γ)

[
∂fγ({he′}e′∈E(γ))

∂(he)AB
{Ej(S), (he)AB}]|he′=A(e′) (II.1.1.9)

so that the bracket will be well-defined once the bracket between a holonomy and a flux is well-
defined. To compute this the intersection structure of e with S is somewhat important. In order to
simplify the notation, we notice that we can always take γ to be adapted to S, that is, every edge e
belongs to one of the following three types:
a) e ∈ Eout(γ) ⇔ e ∩ S = ∅.
b) e ∈ Ein(γ) ⇔ e ∩ S = e.
c) e ∈ Etrans(γ) ⇔ e ∩ S = b(e).
This can be achieved by subdividing edges into a finite number of segments and inverting their
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Figure 7: Intersection structure of surfaces with edges

orientation if necessary as depicted in figure 7 (strictly speaking, this is true only if S is compactly
supported, open, oriented and analytic). We also need to introduce the function σ(S, e) which
vanishes for e ∈ Ein(γ) ∪ Eout(γ) and which is ±1 for e ∈ Etrans(γ) if the orientations of S and e
agree or disagree respectively. The easiest case is e ∈ Etrans(γ), σ(S, e) = 1. We find

{Ej(S), A(e)} = κ

∫

D

d2u nSa (u)

∫ 1

0

dsėa(s)δ(XS(u), e(s))A(es)
τj
2
A(es)

−1A(e) (II.1.1.10)

where es(t) := e(st). Noticing that the support of the δ−distribution is at XS(u) = e(0) which is an
interior point of S but a boundary point of e, a careful analysis reveals that (II.1.1.10) reduces to

{Ej(S), A(e)} =
κ

4
τjA(e) (II.1.1.11)

With this result, (II.1.1.9) can be written in the compact form

{Ej(S), f}(A) =
κ

4

∑

e∈E(γ)

σ(S, e)[Rj
efγ]|he′=A(e′) (II.1.1.12)

where we have defined the right invariant vector fields

(Rj
efγ)({he′}e′∈E(γ)}) := (

d

dt
)t=0fγ({he′}e′ 6=e, etτjhe) (II.1.1.13)

We can now define the vector fields vjS on Cyl∞ by vjS[f ] := {Ej(S), f} and arrive at the Poisson
∗−algebra B generated by the vjS, f ∈ Cyl∞ with involution defined by complex conjugation through
the general formula [(f, v), (f ′, v′)] = (v[f ′] − v′[f ], [v, v′]).

Exercise II.1.3.
Fill the gaps between (II.1.1.9) and (II.1.1.12.
Hint:
Use formula II.1.1.2 in order to derive (II.1.1.10), then expand XS(u) − e(t) around u = u0 defined
by XS(u0) = e(0) and t = 0 to linear order in u − u0 and sufficiently high order in t to arrive at
(II.1.1.11). (Notice that e is only transversal, so ė(0) may be tangential to S in e(0) !) Verify that
the end result coincides with (II.1.1.12).

32



So we see that we arrive at a well defined algebra B by smearing the momenta in two dimensions.
Could we also smear them in three dimensions ? The answer is negative: Consider a one-parameter
family of surfaces t 7→ St and define Ej({S}) :=

∫
dt Ej(St). Then f 7→ {Ej(S), f} maps f out

of Cyl∞ because it involves an integral over t and thus depends on an uncountably infinite number
of edges rather than a finite number. Thus this algebra would not be closed so that if we would
like to stick with at least countably infinite graphs then we are forced to stick with two dimensional
smearings of the electric fluxes !

II.1.2 Representation Theory of B and Suitable Kinematical Represen-
tations

The representation Theory of B has been considered only rather recently [35] and the analysis is not
yet complete. However, if one sticks to irreducible representations for which 1) the flux operators are
well-defined and self-adjoint (in other words, the corresponding one parameter unitary groups are
weakly continuous) and 2) the representation is spatially diffeomorphism invariant, then the unique
solution to the representation problem is the representation which we describe in this section.

This representation is of the form H0 = L2(A, dµ0) where A is a certain distributional extension
of A and µ0 is a probability measure thereon. The most elegant description of this Hilbert space
uses the theory of C∗−algebras [36] but fortunately there is a purely geometric description available
[37] which is easier to access for the beginner. In what follows we assume for simplicity that σ is an
oriented, connected, simply connected smooth manifold. One can show that each smooth manifold
admits at least one analytic structure (i.e. the atlas of charts consists of real analytic maps) and we
assume to have picked one once and for all.

II.1.2.1 Curves, Paths, Graphs and Groupoids

Definition II.1.2.
i)
By a curve c we mean a map c : [0, 1] → σ which is piecewise analytic, continuous, oriented and an
embedding (does not come arbitrarily close to itself). It is automatically compactly supported. The
set of curves is denoted C in what follows.
ii)
On C we define maps ◦, (.)−1 called composition and inversion respectively by

[c1 ◦ c2](t) =

{
c1(2t) t ∈ [0, 1

2
]

c2(2t− 1) t ∈ [1
2
, 1]

(II.1.2.1)

if f(c1) = b(c2) and
c−1(t) = c(1 − 2t) (II.1.2.2)

iii)
By a path p we mean an equivalence class of curves c which differ from each other by a finite number of
reparameterizations and retracings, that is, c ∼ c′ if there either exists a map t 7→ f(t), ḟ(t) > 0 with
c = c′◦f or we may write c, c′ as compositions of segments in the form c = s1◦s2, c

′ = s1◦s3◦s−1
3 ◦s2

(and finite combinations of such moves). Notice that a curve induces its orientation and its end points
on its corresponding path. The set of paths is denoted by P.
iv)
By a graph γ we mean a finite collection of elements of P. We may break paths into pieces such that
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Figure 8: Paths and graphs

γ can be thought of as a collection of edges e ∈ E(γ), that is, paths which have an entire analytic
representative and which intersect at most in their end points v ∈ V (γ) called vertices. The set of
graphs is denoted by Γ.

These objects are depicted in figure 8.

Exercise II.1.4.
a)
Despite the name, composition and inversion does not equip C with a group structure for many
reasons. Verify that composition is not associative and that the curve c ◦ c−1 is not simply b(c) but
rather a retracing. Moreover, contemplate that C does not have a unit and that not every two elements
can be composed.
b)
Define composition and inversion of paths by taking the equivalence class of the compositions and
inversions of any of their representatives and check that this definition is well defined. Check that
then composition of paths is associtive and that p ◦ p−1 = b(p). However, P still does not have a unit
and still not every two elements can be composed.
c)
Let Obj:= σ and for each x, y ∈ Σ let Mor(x, y) := {p ∈ P : b(p) = x, f(p) = y}. Recall the
mathematical definition of a category and conclude that P is a category in which every morphism is
invertible, that is, a groupoid.
d)
Define the relation ≺ on Γ by saying that γ ≺ γ′ if and only if every e ∈ E(γ) is a finite composition
of the e′ ∈ E(γ′) and their inverses. Verify that ≺ equips Γ with the structure of a directed set, that
is, for each γ, γ′ ∈ Γ we find γ′′ ∈ Γ such that γ, γ′ ≺ γ′′.
Hint:
For this to work, analyticity of the curve representatives is crucial. Smooth curves can intersect in
Cantor sets and thus define graphs which are no longer finitely generated. Show first that this is not
possible for analytic curves.
e)
Given a curve c with path equivalence class p notice that for the holonomy with respect to A ∈ A holds
A(c) = A(p). Contemplate that, in particular, every group is a groupoid and that every connection
A ∈ A qualifies as a groupoid homomorphism, that is, A : P → SU(2); p 7→ A(p) with

A(p ◦ p′) = A(p)A(p′) and A(p−1) = (A(p))−1 (II.1.2.3)

The fact that holonomies are really defined on paths rather than curves and that holonomies are
characterized algebraically by II.1.2.3 makes the following definition rather natural.
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Definition II.1.3. The quantum configuration space is defined as the set A := Hom(P, SU(2)) of
all algebraic, arbitrarily non-continuous groupoid morphisms.

Here non-continuous means that in contrast to A ∈ A for an element A ∈ A it is possible that
A(p) = 1 varies discontinuously as we vary p continuously. Thus, A can be thought of as a distribu-
tional extension of A.

II.1.2.2 Topology on A
So far A is just a set. We now equip it with a topology. The idea is actually quite simple. Recall the
maps (II.1.1.8) which easily extend from A to A and maps A into SU(2)|E(γ)|. Now SU(2)|E(γ)| is a
compact Hausdorff topological group5 in its natural manifold topology and we would like to exploit
that. Thus we are motivated to consider the spaces Xγ := Hom(γ, SU(2)|E(γ)|) where γ is considered
as a subgroupoid of Γ with objects V (γ) and morphisms generated by the e ∈ E(γ). The map

Xγ → SU(2)|E(γ)|; xγ 7→ {xγ(e)}e∈E(γ) (II.1.2.4)

identifies Xγ with G|E(γ)| since xγ ∈ Xγ is already defined by which values it takes on the e ∈ E(γ)
and we may thus use this identification in order to equip Xγ with a compact Hausdorff topology.
Now consider the uncountably infinite product

X∞ :=
∏

γ∈Γ

Xγ (II.1.2.5)

A standard result from general topology, Tychonov’s theorem, tells us that the smallest topology on
X∞ such that all the maps pγ : X∞ → Xγ; (xγ)γ∈Γ 7→ xγ are continuous is a compact Hausdorff
topology6. Now we would like to identify A with X∞ through the restriction map

Φ′ : A → X∞; A 7→ (xγ := A|γ = pγ(A))γ∈Γ (II.1.2.6)

However, that map cannot be surjective because the points of A satisfy the following constraint
which encodes the algebraic properties of a generalized connection: Let γ ≺ γ′ and define the graph
restriction maps

pγ′γ : Xγ′ → Xγ ; xγ′ 7→ (xγ′)|γ (II.1.2.7)

which satisfy the compatibility condition

pγ′′γ = pγ′γ ◦ pγ′′γ′ for γ ≺ γ′ ≺ γ′′ (II.1.2.8)

Then automatically
pγ′γ(A|γ′) = A|γ (II.1.2.9)

We are therefore forced to consider the subset of X∞ defined by

X := {(xγ)γ∈Γ ∈ X∞; pγ′γ(x
′
γ) = xγ ∀ γ ≺ γ′} (II.1.2.10)

5Here it is crucial that G = SU(2) is compact and thus for non-real Immirzi parameter all of what follows would
be false.

6Recall that we know the topology on a space when we know a base of open sets from which we obtain all open
sets by arbitrary unions and finite intersections. Since the preimages of open sets under continuous functions are open
by definition, we obtain a topology once we know which functions are continuous.
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Exercise II.1.5.
i)
Show that the maps (II.1.2.7) are continuous surjections.
Hint:
Exploit the identification of the Xγ with powers of SU(2) and the continuity of multiplication and
inversion in groups to establish continuity. To establish surjectivity use the fact that each edge e of
γ contains an edge e′e of γ′ as a segment such that the e′e do not overlap each other. Now given xγ
set xγ′(e

′
e) = xγ(e) and extend trivially away from the e′e. Check that this defines an element of Xγ′.

ii)
Show that X is a closed subset of X∞.
Hint:
Since X is not a metric space we must work with nets and show that every net of points xα ∈ X
which converges in X∞ actually converges in X. Using the defintion of the topology on X∞, show
that this is equivalent to showing that the pγ(x

α) = xαγ converge to points xγ which satisfy (II.1.2.9)
and verify this using continuity of the pγ′γ just established.

The surjectivity of the pγ′γ qualifies X as the so-called projective limit of the Xγ, a mathematical
structure which is independent of our concrete context once we have a directed index set Γ at our
disposal and surjective projections which satisfy the compatibility condition (II.1.2.8).

Now another standard result from topology now tells us that X, being the closed subset of a
compact Hausdorff space, is a compact Hausdorff space in the subspace topology and the question
arises whether

Φ : A → X; A 7→ (xγ := A|γ = pγ(A))γ∈Γ (II.1.2.11)

is a bijection. Injectivity is fairly easy to see while surjectivity is a little bit tricky.

Exercise II.1.6.
Show that (II.1.2.11) is a bijection.
Hint:
Given x ∈ X and p ∈ P choose any γp ∈ Γ such that p ∈ γp and define Ax by Ax(p) := xγp(p). Show
that this definition is well defined using the directedness of Γ and that Ax is a groupoid homomorphism.

Let us collect these results in the following theorem [38].

Theorem II.1.1.
The space A equipped with the weakest topology such that the maps pγ of (II.1.1.8) are continuous,
is a compact Hausdorff space.

The value of this result is that it gives us a powerful tool for constructing measures on A.

II.1.2.3 Measures on A
A powerful theorem due to Riesz and Markov, sometimews called the Riesz representation theorem,
tells us that there is a one – to – one correspondence between the positive linear functionals Λ
on the algebra C(A) of continuous functions on a compact Hausdorff space A and (regular, Borel)
probability measures µ thereon through the simple formula

Λ(f) :=

∫

A
dµ(A) f(A) (II.1.2.12)
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One says Λ is represented by f . Here a linear functional is called positive if Λ(|f |2) ≥ 0 for
any f ∈ C(A). A function algebra on a compact space can be equipped with the sup – norm
||f || := supA∈A |f(A)| which evidently has the so-called C∗−property ||ff || = ||f ||2 so that (w.l.g.
we may take C(A) to be complete w.r.t. the norm) C(A) is a C∗−algebra. A standard result in func-
tional analysis reveals that positive linear functionals on C∗−algebras are automatically continuous,
|Λ(f)| ≤ Λ(1) ||f || and if we choose the normalization of Λ to be Λ(1) = 1 then µ is a probability
measure.

In order to specify the measure µ0 that we are interested in, it is therefore enough to specify a
positive linear functional Λ0. The most elegant way of defining Λ0 is through the following definition.

Definition II.1.4.
i)
Given a graph γ, label each edge e ∈ E(γ) with a triple of numbers (je, me, ne) where je ∈ {1

2
, 1, 3

2
, 2, ..}

is a half-integral spin quantum number and me, ne ∈ {−je,−je + 1, .., je} are magnetic quantum
numbers. A quadruple

s := (γ,~j := {je}e∈E(γ), ~m := {me}e∈E(γ), ~n := {ne}e∈E(γ)) (II.1.2.13)

is called a spin network (SNW). We also write γ(s) etc. for the entries of a SNW.
ii)
Choose once and for all one representative ρj , j > 0 half integral, from each equivalence class of
irreducible representations of SU(2). Then

Ts : A → C; A 7→
∏

e∈E(γ)

[
√

2je + 1[ρje(A(e))]mene] (II.1.2.14)

is called the spin-network function (SNWF) of s. Here [ρj(.)]mn denotes the matrix elements of the
matrix valued function ρj(.).

An example of a SNW, which can be arbitrarily large and with vertices of arbitrarily high valence,
is given in figure 9. The original motivation for the definition of spin network functions [40] in loop
quantum gravity was the fact that they are linearly independent in contrast to the Wilson loop
functions which suffer from the so-called Mandelstam identities. For SU(2) matrices h, h′ they are
Tr(h) Tr(h′) = Tr(hh′)+Tr(h(h′)−1) and Tr(h) = Tr(h−1) which leads to an infinite tower of identities
of the form

[Tr(A(α1)) Tr(A(α2))]Tr(A(α1)) = Tr(A(α1))[Tr(A(α2)) Tr(A(α1))] (II.1.2.15)

depending on how we bracket the product of traces involving the three loops α1, α2, α3 with a common
base point. The SNWF’s remove these cumbersome identities first by labelling functions by edges
rather than loops and secondly by the simple observation that a tensor product of (fundamental)
representations can be uniquely decomposed into irreducibles (Clebsh-Gordon decomposition).

Theorem II.1.2.
The uniform (Ashtekar – Lewandowski) measure µ0 is uniquely defined by the positive linear func-
tional [39]

Λ0(Ts) :=

{
1 s = (∅,~0,~0,~0)
0 otherwise

(II.1.2.16)
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Figure 9: A SNW. Orientations and magnetic quantum numbers are suppressed

Exercise II.1.7.
i)
Recall the representation theory of SU(2) from the quantum mechanics of angular momentum and
verify that the SNWF are indeed linearly independent.
ii)
Verify that Λ0 is a positive linear functional.
Hint:
Using the Stone – Weierstrass theorem, show first that the finite linear combinations of SNWF are
dense in C(A). By continuity of Λ0 it is therefore sufficient to check positivity on finite linear
combinations

f =
N∑

n=1

znTsn, N <∞, zn ∈ C (II.1.2.17)

with sn mutually different SNW’s. To see this, verify that Λ0(TsTs′) = 0 for s 6= s′ by using the
Clebsh – Gordon formula j ⊗ j′ ≡ (j + j′) ⊕ (j + j′ − 1) ⊕ ..⊕ (|j − j′|).
iii)
For the representation theory of compact groups fundamental is a theorem due to Peter and Weyl
[41] which for SU(2) amounts to saying that the functions

Tjmn : SU(2) → C; h 7→
√

2j + 1[ρj(h)]mn (II.1.2.18)

form an orthonormal basis for the Hilbert space L2(SU(2), dµH) where µH is the normalized Haar
measure on SU(2) (the unique normalized measure which invariant under inversion as well as left
and right translation in SU(2)). Based on this result, show that the SNWF form an orthonormal
basis for the Hilbert space L2(A, dµ0).

Let us summarize the results of the exercise in the following theorem [40].

Theorem II.1.3.
The kinematical Hilbert space Hkin := L2(A, dµ0) defined by (II.1.2.16) is non-separable and has the
SNWF’s Ts as orthonormal basis.
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II.1.2.4 Representation Property

So far we did not verify that Hkin is a representation space for our ∗−algebra B of basic operators.
This will be done in the present section. Indeed, until today no other irreducible representation of
the holonomy – flux algebra has been found (except if one allows also infinite graphs [42]).

By theorem (II.1.4) the subspace of finite linear combinations of SNWF’s is dense in Hkin with
respect to the L2 norm. On the other hand, we notice that the definition of Cyl∞(A) simply extends
to Cyl∞(A) and that finite linear combinations of SNWF’s form a subspace of Cyl∞(A). Thus, we
may choose Dkin := Cyl∞(A) and obtain a dense, invariant domain of B as we will see shortly. We
define a representation of the holonomy – flux algebra by (f ′ ∈ Cyl∞(A), f ∈ Cyl∞(A), A ∈ A)

[π(f) · f ′](A) := (f ′f)(A)

[π(vjS) · f ](A) = [π(vjS)π(f) · 1](A) = [([π(vjS), π(f)] + π(f)π(Ej(S))) · 1](A)

:= i~[π(vjS[f ]) · 1](A) = i~(vjS[f ])(A) (II.1.2.19)

Thus π(f) is a multiplication operator while π(vjS) is a true derivative operator, i.e. it annihilates
constants. Notice that the canonical commutation relations are already obeyed by construction, thus
we only need to verify the ∗−relations and the fact that π(vjS) annihilates constants will be crucial
for that.

The π(f) are bounded multiplication operators (recall that smooth, i.e. in particular continuous,
functions on copmpact spaces are uniformly bounded, that is, have a sup – norm) so that the adjoint
is complex conjugation, therefore there is nothing to check. As for π(vjS) we notice that given two
smooth cylindrical functions on A we always find a graph γ over which both of them are cylindrical
and which is already adapted to S.

Exercise II.1.8.
Let f be cylindrical over γ. Verify that

Λ0(f) =

∫

SU(2)|E(γ)|

∏

e∈E(γ)

dµH(he)fγ({he}e∈E(γ)) (II.1.2.20)

Hint:
Write f as a (Cauchy limit of) finite linear combinations of SNWF’s and verify that (II.1.2.20)
coincides with (II.1.2.16).

Using the explicit expression (II.1.1.12) and the result of exercise II.1.8 it is easy to see that the
symmetry condition < f, π(vjS)f

′ >kin=< π(vjS)f, f
′ >kin is equivalent with the condition

< F,RjF ′ >L2(SU(2),dµH )= − < RjF, F ′ >L2(SU(2),dµH ) (II.1.2.21)

for any F, F ′ ∈ C∞(SU(2)) and Rj is the right invariant vector field on SU(2). However, µH is by
definition invariant under left translations and Rj is a generator of left translations in SU(2) so the
result follows. This shows that Dkin is contained in the domain of π(vjS)

† and that the restriction of
the adjoint to Dkin coincides with π(vjS). That Dkin is actually a domain of (essential) self-adjointness
requires a little bit more work but is not difficult to see, e.g. [1].

Finally, let us verify that the representation is irreducible. By definition, a representation is
irreducible if every vector is cyclic and a vector Ω is cyclic if the set of vectors π(a)Ω, a ∈ B is dense.
Now the vector Ω = 1 is cyclic because the vectors π(f)Ω = f, f ∈ Cyl∞ are already dense. Given
an arbitrary element ψ ∈ Hkin we know that it is a Cauchy limit of finite linear combinations of spin
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network functions. Thus, if we can show that we find a sequence an ∈ B such that π(an)ψ converges
to Ω, then we are done. It is easy to see (exercise) that this problem is equivalent to showing that
any F ∈ L2(F, dµH) can be mapped by the algebra formed out of right invariant vector fields and
smooth functions on SU(2) to the constant function.

Exercise II.1.9.
Check that this is indeed the case.
Hint:
Show first that it is sufficient to establish that any polynomial p of the a, b, c, d, ad − bc = 1 for

h =

(
a b
c d

)
∈ SU(2) can be mapped to the constant function. Show then that suitable linear

combinations of the Rj , j = 1, 2, 3 with coefficients in C∞(SU(2)) produce the derivatives ∂a, ∂b, ∂c
and convince yourself that aNp is a polynomial in a, b, c for sufficiently large N .

Let us collect these results in the following theorem [43].

Theorem II.1.4.
The relations (II.1.2.19) define an irreducible representation of B on Hkin.

Thus, the representation space Hkin constructed satisfies all the requirements that qualify it as
a good kinematical starting point for solving the quantum constraints. Moreover, the measure µ0

is spatially diffeomorphism invariant as we will see shortly and together with the uniqueness result
quoted at the beginning of this section, this is the only representation with that property. There
are, however, doubts on physical grounds whether one should insist on a spatially diffeomorphism
invariant representation because the smooth and even analytic structure of σ which is encoded in
the spatial diffeomorphism group should not play a fundamental role at short scales if Planck scale
physics is fundamentally discrete. In fact, as we will see later, QGR predicts a discrete Planck
scale structure and therefore the fact that we started with analytic data and ended up with discrete
(discontinuous) spectra of operators looks awkward. Therefore, on the one hand we should keep in
mind that other representations are possibly better suited in the final picture, on the other hand
there is no logical contradiction within the present formulation and in fact in 2+1 gravity one has a
final combinatorical description while one started with analytical structures as well.

II.2 Quantum Kinematics

In this section we discuss the complete solution of the Gauss and Vector constraint as well as the
quantization of kinematical, geometrical operators that measure the length, area and volume of
coordinate curves, surfaces and regions respectively. We call these results kinematical because the
Gauss and Vector constraint do not generate dynamics, this is the role of the Hamiltonian constraint
which we will discuss in the third part. Moreover, the kinematical geometrical operators do not
commute with the Vector constraint or the Hamiltonian constraint and are therefore not Dirac
observables. However, as we will show, one can turn these operators easily into Dirac observables,
at least with respect to the Vector constraint, and the fact that the spectrum is discrete is robust
under those changes.
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Figure 10: Action of Spatial Diffeomorphisms on SNW’s

II.2.1 The Space of Solutions to the Gauss and Spatial Diffeomorphism

Constraint

Recall the transformation behaviour of classical connections A ∈ A under SU(2) gauge transforma-
tions and spatial diffeomorphisms (II.1.1.3). These equations trivially lift from A to A and we may
construct corresponding operators as follows: Let G := Fun(Σ, SU(2)) be the set of local gauge trans-
formations without continuity requirement and consider the set Diffω(Σ) of analytic diffeomorphisms.
We are forced to consider analytic diffeomorphisms as otherwise we would destroy the analyticity
of the elements of Γ. These two groups have a natural semi – direct product structure that has its
origin in the algebra (I.2.2.7) and is given by

[G � Diffω(Σ)] × [G � Diffω(Σ)] → [G � Diffω(Σ)]; [g, ϕ] · [g′, ϕ′] = [(g′ ◦ ϕ−1)g, ϕ ◦ ϕ′] (II.2.1.1)

Exercise II.2.1.
Verify (II.2.1.1).
Hint:
Define [g, id] · A := Ag, [id, ϕ] · A := Aϕ and [g, ϕ] · A := [g, id] · ([id, ϕ] ·A).

We now define representations

Û : G → B(Hkin); g 7→ Û(g)

V̂ : Diffω(Σ) → B(Hkin); ϕ 7→ V̂ (ϕ) (II.2.1.2)

densely on f = p∗γfγ ∈ Dkin by

[Û(g)f ](A) := fγ({g(b(e)) A(e) g(f(e))−1}e∈E(γ)})
[V̂ (ϕ)f ](A) := fγ({A(ϕ−1(e))}e∈E(γ)}) (II.2.1.3)

Here B(.) denotes the bounded operators on a Hilbert space. This definition of course comes precisely
from the classical formula (II.1.1.3). The action of a diffeomorphism on a SNWF Ts is therefore
simply by mapping the graph γ(s) to ϕ−1(s) while the labels je, me, ne are carried from e to ϕ−1(e)
as depicted in figure 10. Then the following theorem holds [43].

Theorem II.2.1.
The relations (II.2.1.3) define a unitary representation of the semi – direct product kinematical group
G × Diffω(Σ).

Exercise II.2.2.
Prove theorem (II.2.1).
Hint:
Check unitarity on the SNWF basis using the bi – invariance of the Haar measure. That (II.2.1.3)
holds can be traced back to exercise II.2.1.
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The unitarity of the kinematical gauge group implies invariance of the measure µ0 and thus
supplies additional motivation for the representation space Hkin. Notice that the statement that
(II.2.1.3) defines a representation in particular means that the kinematical constraint algebra is free
of anomalies. This should be contrasted with string theory where the anomly sits also in the spatial
diffeomorphism group (e.g. Diff(S1) for the closed string) unless one chooses the critical dimension
D = 25(9) for the bosonic (supersymmetric) string.

Let us now solve the kinematical constraints. By definition, we are supposed to find algebraic
distributions l ∈ D∗

kin which satisfy

l(Û(g)f) = l(V̂ (ϕ)f) = l(f) ∀ g ∈ G, ϕ ∈ Diffω(Σ), f ∈ Dkin (II.2.1.4)

Now it is not difficult to see that any element of D∗
kin can be conveniently written in the form

l(.) =
∑

s

cs < Ts, . >kin (II.2.1.5)

where cs are complex valued coefficients and the uncountably infinite sum extends over all possible
SNW’s. The general solution to (II.2.1.4) is then easy to describe: Invariance under G means that
for fixed γ the coefficients cγ,~j,~m,~n have to be chosen, as ~j, ~m,~n vary, in such a way that at each vertex
of γ the resulting function is gauge invariant. That is, if j1, .., jn are the labels of edges incident at v,
then the cs have to arrange themselves to a projector on the trivial representations contained in the
tensor product j1 ⊗ ..⊗ jn. Such a projector is also called intertwiner in the mathematical literature.
For SU(2) this leads to the theory of Clebsh-Gordon coefficients, 6j−symbols etc. As for Diffω(Σ)
we see that cϕ(γ),~j,~m,~n must be independent of ϕ, therefore cϕ,~j,~m,~n depends only on the generalized
knot class of γ ! We say generalized because, as we will see later on, the physically relevant graphs
are those with self-intersections while classical knot theory deals only with smooth curves.

One may ask whether one should already define a physical inner product with respect to the
Gauss and spatial Diffeomorphism constraint and then solve the Hamiltonian constraint in a second,
separate step on that already partly physical Hilbert space . While such a Hilbert space can indeed
be constructed [43] it is of no use for QGR because the Hamiltonian constraint cannot leave that
Hilbert space invariant as we see from the second equation in (I.2.1.12) and we must construct the
physical inner product from the full solution space to all constraints. However, at least with respect
to the kinematical constraints the full quantization programme including the question of observables
has already been completed except for the analysis of the classical limit.

II.2.2 Kinematical Geometrical Operators

We will restrict ourselves to the description of the area operator the classical expression of which we
already wrote in (II.1.1.6) and (II.1.1.7).

In order to quantize Ar(S) one starts from (II.1.1.7) and decomposes the analytical, compactly
supported and oriented surface S or, equivalently, its preimage D under XS into small pieces SI .
Then the exact area functional is approximated by the Riemann sum

Ar({S}) = β
∑

I

√
Ej(SI)2 (II.2.2.1)

This function is easily quantized because Êj(SI) = i~vjs is a self-adjoint operator so that the sum
over j of its squares is positive semi-definite, hence its square root is well-defined. Let us denote the
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resulting, partition dependent operator by Âr({S}). Now one can show that the (strong) limit as

the partition is sent to the continuum exists [44] and a partition independent operator Âr(S) results
[44].

Theorem II.2.2.
The area functional admits a well-defined quantization Âr(S) on Hkin with the following properties:

i) Âr(S) is positive semidefinite, (essentially) self-adjoint with Cyl2(A) as domain of (essential)
self-adjointness.

ii) The spectrum Spec(Âr(S)) is pure point (discrete) with eigenvectors being given by finite linear
combinations of spin network functions.

iii) The eigenvalues are given explicitly by

λj1,j2,j12 =
βℓ2P
4

√
2j1(j1 + 1) + 2j2(j2 + 1) − j12(j12 + 1

J12 ∈ {j1 + j2, j1 + j2 − 1, .., |j1 − j2|} (II.2.2.2)

where j1, j2 are spin quantum numbers and ℓ2P = ~κ is the Planck area. The spectrum has an
area gap (smallest non-vanishing eigenvalue) given by

λ0 = βℓ2P

√
3

4
(II.2.2.3)

iv) Spec(Âr(S)) contains information about the topology of S, for instance it matters whether
∂S = ∅ or not.

Exercise II.2.3.
Verify that the area gap is indeed given by (II.2.2.3) and check that the distance between subsequent
eigenvalues rapidly decreases as j1, j2 → ∞. Can one give an asymptotic formula for N(A), the
number of eigenvalues (discarding multiplicity) in the interval [A− ℓ2P , A+ ℓ2P ] ? Thus, a correspon-
dence principle, important for the classical limit is valid. If the spectrum would only consist of the

main series λj =
ℓ2P
2

√
j(j + 1) which one obtains for j1 = j2 = j, j12 = 0 then such a correspondence

principle would certainly not hold which is, e.g., relevant for the black body spectrum of the Hawking
radiation.

Theorem II.2.2 is an amazing result for several reasons:
A)
First of all, the expression for Ar(S) depends non-polynomially, not even analytically on the product
Ea
j (x)E

b
j (x), x ∈ S. Now Ea

j (x) becomes an operator valued distribution in the quantum theory

and products of distributions at the same point are usually badly divergent. However, Âr(S) is
perfectly well-defined ! This is the first pay-off for sticking to a rigorous and background independent
formalism !
B)

Although S, γ,Σ, .. are analytical, the spectrum Spec(Âr(S)) is discrete. In other words, suppose we
are measuring the area of a sheet of paper with a spin-network state. As long as the sheet does not
cut an edge of the graph, the area eigenvalue is exactly zero no matter how “close” the edge and
the sheet are. We have put the word “close” in inverted commas because this word has no meaning:
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Since there is no background metric, we do not know what close means, only diffeomorphism invariant
notions have a meaning such as “the edge is cut” or “the edge is not cut”. However, once the edge
is cut the area eigenvalue jumps at least by the area gap. This strongly hints that the microscopical
geometry is really distributional (discontinuous) and that we have a discrete Planck scale structure,
the role of the atoms of geometry being played by the one-dimensional (polymer-like) excitations
labelled by SNW’s. One may speculate that this discrete structure is fundamental and that the
analyticity assumptions that we began with should be unimportant, in the final picture everything
should be only combinatorical. The smooth geometry that we are familiar with at macroscopic scales
is merely a result of coarse graining, for instance in order that a SNWF labelled with spin j = 1/2
on every edge assigns to our sheet of paper its area of about 100cm2, an order of 1068 edges of the
SNW have to cut the sheet !
C)

Qualitatively similar results apply to the volume operator V̂ol(R) [44, 45] and the length operator

L̂en(c) [46] whose classical expressions are given by

Vol(R) =

∫

R

d3x
√

det(q) and Len(c) =

∫

c

√
qabdxadxb (II.2.2.4)

D)
These kinematical operators are certainly not Dirac observables because they are not even spatially
diffeomorphism invariant (but SU(2) invariant) since the objects R, S, c are just coordinate subman-
ifolds of Σ. Thus, one may wonder whether the properties of the spectrum just stated have any
significance at all. The answer is believed to be affirmative as the following argument shows: For
instance, instead of Vol(R) consider

VolEM =

∫

Σ

d3x
√

det(q) θ(
qab√
det(q)

[EaEb +BaBb]) (II.2.2.5)

where we have coupled a Maxwell field to GR with electromagnetic fields Ea, Eb and θ is the step
function. The physical meaning of (II.2.2.5) is that it measures the volume of the region where
the electromagnetic field energy density is non-vanishing and it is easy to check that (II.2.2.5) is
actually spatially diffeomorphism invariant ! Now in QGR the argument of the step function can
be given a meaning as an operator (valued distribution) as we will see in the next section and the
theta function of an operator can be defined through the spectral theorem. Since the spectrum of
the θ−function consists only of {0, 1}, the spectrum of (II.2.2.5) should actually coincide with that

of V̂ol(R) [47]. A similar argument should also be valid with respect to Dirac observables commuting
with the Hamiltonian constraint.
E)
The existence of the area gap is also at the heart of the finiteness of the Bekenstein – Hawking
entropy of black holes as we will see.
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Selected Areas of Current Research
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III.1 Quantum Dynamics

The Hamiltonian constraint C of QGR is, arguably, the holy grail of this approach to quantum gravity,
therefore we will devote a substantial amount of space to this subject. In fact, unless one can quantize
the Hamiltonian constraint, literally no further progress can be made so that it is important to know
what its status is. From the explicit, non-polynomial expression (I.2.2.5) it is clear that a well-
defined operator version of this object will be extremely hard to obtain and in fact this had been
the major obstacle in the whole approach until the mid 90’s. In particular, within the original ADM
formulation only formal results were available. However, since with the new connection formulation
also the non-polynomial kinematical operators of the previous section could be constructed, chances
might be better.

At this point we include a brief account of the historical development of the subject in order to
avoid confusion as one looks at older papers:
Originally one chose the Immirzi parameter as β = ±i and considered C̃ =

√
det(q) rather than C

because then C̃ is actually a simple polynomial of only fourth order (the “More” term disappears).
Polynomiality was considered as mandatory. There were three problems with this idea:
1) The non-polynomiality was shifted from C into the reality conditions A + Ā = 2Γ(E) where
the spin connection Γ is now a highly non-polynomial function of E. The operator version of this
equation should be very hard to implement.
2) If A is complex, then we are dealing with an SL(2,C) bundle rather than an SU(2) bundle. Since
SL(2,C) is not compact, the mathematical apparatus of section II is blown away.
3) Even formal trials to quantize C̃ resulted in either divergent, or background dependent operators.
In [27] it was suggested to keep β real which solves problems 1) and 2), however, then C̃ becomes
even more complicated and anyway problem 3) is not cured. Finally in [48] it was shown that non-
polynomiality is not necessarily an obstacle, even better, it is actually required in order to arrive at a
well-defined operator: It was established that the reason for problem 3) is that C̃ is a scalar density
of weight two while it was shown that only density weight one scalars have a chance to be quantized
rigorously and background independently. Therefore the currently accepted point of view is that β
should be real and that one uses the original unrescaled C rather than C̃.

III.1.1 A Possible New Mechanism for Avoiding UV Singularities in
Background Independent Quantum Field Theories

Before we go into more details concerning [48], let us give a heuristic explanation just why it happens
that QGR may cure UV problems of QFT, making the connection with the issue of the density
weight just mentioned. Consider classical Einstein – Maxwell theory on M = R × σ in its canonical
formulation, then the Hamiltonian constraint gains an extra matter piece given for unit lapse N = 1
by

HEM =
1

2e2

∫

σ

d3x

Density weight -1︷ ︸︸ ︷
qab√
det(q)

[EaEb +BaBb]︸ ︷︷ ︸
Density weight +2

(III.1.1.1)

Exercise III.1.1.
Starting from the Lagrangean

L = − 1

4e2

√
| det(g)|FµνFρσgµρgνσ (III.1.1.2)
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where F = 2dA is the spacetime curvature of the Maxwell connection A with unit cm−1 and e is the
electric charge in units such that α = ~e2 is the dimensionfree Feinstrukturkonstante, perform the
Legendre transform. With the electric field Ea being the momentum conjugate to the spatial piece Aa
of A verify that the “Hamiltonian” is given by −A0G+NaV ′

a+NC
′ where G = ∂aE

a is the Gauss law,
V ′
a = FabE

b and C ′ is the integrand of (III.1.1.1) with Ba = ǫabcFbc/2 the magnetic field. Check that
G′ generates U(1) gauge transformations while V ′

a generates spatial diffeomorphisms where Aa, E
a

transform as a one – form and a vector density of weight one respectively. Conirm that also Ba is a
vector density of weight one.

As the exercise reveals, the geometry factor in (III.1.1.1) is a symmetric covariant tensor of rank
two of density weight −1 due to the factor

√
det(q) in the denominator while the matter part is a

symmetric contravariant tensor of rank two of density weight +2. That the resulting scalar has net
density weight is +1 is no coincidence but a direct consequence of the diffeomorphism invariance
or background independence of any matter theory coupled to gravity: only the integral over σ of a
scalar density of weight +1 is spatially diffeomorphism invariant.

We can now quantize (III.1.1.1) in two ways:
1)
In the first version we notice that if g = η is the Minkowski metric, that is, qab = δab then (III.1.1.1)
reduces to the ordinary Maxwell Hamiltonian on Minkowski space. Thus we apply the formalism
of QFT on a background spacetime, in this case Minkowski space, because we have fixed qab to the
non-dynamical C−number field δab which is not quantized at all.
2)
In the second version we keep qab dynamical and quantize it as well. Thus we apply QGR, a
background independent quantization. Now qab becomes a field operator q̂ab and the statement
that the metric is flat can at most have a semiclassical meaning, that is, the expectation value of q̂ab
in a gravitational state is close to δab.
Let us now sketch how these two different quantizations are performed and exactly pin-point how it
happens that the first quantization is divergent while the second is finite.

1) QFT on a background spacetime
As we have said, the metric qab = δab is now no longer a dynamical entitity but just becomes a
complex number. What we get is the usual Maxwell Hamiltonian operator

ĤM =
1

2e2

∫

Σ

d3x δab[Ê
aÊb + B̂aB̂b] (III.1.1.3)

Notice the crucial difference with (III.1.1.1): The net density weight of the operator valued
distribution in the integral is now +2 rather than +1 ! By switching off the metric as a
dynamical field we have done a severe crime to the operator, because the net density weight +2
will be remembered by the operator in any faithful representation of the canonical commutation
relations and leads to the following problem: The only coordinate density of weight one that
one can construct is a δ−distribution (and derivatives thereof), thus for instance the operator
Êa(x) is usually represented as a functional derivative which one can rewrite formally as

αδ/δAa(x) = α
∑

y∈Σ

δ(x, y)∂/∂Aa(y) (III.1.1.4)

The right hand side of (III.1.1.4) is a sum over terms each of which consists of a well-defined
operator Ya(y) = ∂/∂Aa(y) and a distributional prefactor δ(x, y). It is for this reason that
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expressions of the form Êa(x)Êb(x) cannot be well-defined since we get products of distribu-
tions supported at the same point x and which result in divergent expressions of the form∑

y,z δ(x, y)δ(x, z)Ya(y)Yb(z) =
∑

y δ(x, y)
2Ya(y)Yb(y). The density weight two is correctly en-

coded in the term δ(x, y)2 = δ(0, 0)δ(x, y) which, however, is meaningless.

These heuristic arguments can of course be made precise: (III.1.1.3) is quantized on the Fock
space HFock and one obtains

ĤM = : ĤM : + ~

∫

Σ

[
√

−∆xδ(x, y)]x=y︸ ︷︷ ︸
UV Singularity

(III.1.1.5)

Here the colons stand for normal ordering. The UV (or short distance) singularity is explicitly
identified as the coincidence limit x = y of the integrand in the normal ordering correction.
Therefore ĤM is ill-defined on HFock. Notice that even if the integrand would be finite, the
integral suffers from an IR (or large volume) singularity if σ is not compact which comes from
the fact that we are dealing with an infinite number of degrees of freedom. This singularity is,
in contrast to the UV singularity, physical since it captures the vacuum energy of the universe
which is of course infinite if the volume is.

2) QFT coupled to QGR
This time we keep the metric as a dynamical variable and quantize it. Thus instead of (III.1.1.3)
we obtain something of the form

ĤEM =
1

2e2

∫

Σ

d3x
q̂ab√
det(q)

[ÊaÊb + B̂aB̂b] (III.1.1.6)

This time the net density weight is still +1. Now while the expression (III.1.1.4) is still valid
and implies that there will be a product of δ−distributions in the numerator coming from the
matter operator valued distributions, there is also a δ−distribution in the denominator due to
the factor

√
det(q) which comes about as follows: As we already mentioned in section II.2.2

the volume functional in (II.2.2.4) admits a well-defined quantization of the form

V̂ol(R)Ts = ℓ3P
∑

v∈V (γ(s))∩R
V̂vTs (III.1.1.7)

where V̂v is a well-defined, dimensionfree operator (not an operator valued distribution !) built
from the vector fields vjS. Since Vol(R) is the integral over R of

√
det(q) we conclude that√

det(q) admits a quantization as an operator valued distribution, namely

√̂
det(q)(x)Ts = ℓ3P

∑

v∈V (γ(s))

δ(x, v)V̂vTs (III.1.1.8)

Now certainly (III.1.1.6) cannot be quantized on the Hilbert space Hkin⊗HFock because HFock

depends on a background metric (for instance through the Laplacian ∆) which is not available
to us. However, we may construct a background independent Hilbert space H′

kin for Maxwell
theory which is completely identical to our Hkin, just that SU(2) is replaced by U(1) [48].
In H′

kin the role of spin network states is played by charge network (CNW) states, that is,
edges e are labelled by integers ne (irreducibles of U(1). Let us denote CNW’s by c = (γ, ~n =
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{ne}e∈E(γ)) and CNWF’s by T ′
c. Then a basis for the Einstein-Maxwell theory kinematical

Hilbert space Hkin ×H′
kin is given by the states Ts ⊗ T ′

c.

Now something very beautiful happens, which is not put in by hand but rather is a derived
result: A priori the states Ts, T

′
c may live on different graphs, however, unless the graphs are

identical, the operator automatically (III.1.1.6) annihilates Ts ⊗ T ′
c [49]. This is the mathe-

matical manifestation of the following deep physical statement: Matter can only exist where
geometry is excited. Indeed, if we have a gravitational state which has no excitations in a
coordinate region R then the volume of that region as measured by the volume operator is
identically zero. However, if a coordinate region has zero volume, then it is physically sim-
ply not there, it is empty space. Summarizing, the operator (III.1.1.6) is non-trivial only if
γ(s) = γ(c).

With this being understood, let us then sketch the action of (III.1.1.6) on our basis. One finds
heuristically

ĤEMTs ⊗ T ′
c = mP

∑

v∈V (γ)

∑

e,e′∈E(γ),e∩e′=v
×

×
∫

Σ

d3x[
q̂e,e′

V̂v

1

δ(x, v)︸ ︷︷ ︸
↑

Ts] ⊗ [δ(x, v)︸ ︷︷ ︸
↑

︸ ︷︷ ︸
Cancellation

δ(y, v)Y eY e′T ′
c]x=y] (III.1.1.9)

where mP =
√

~/κ is the Planck mass. Here q̂e,e′ and Y e are well-defined, dimensionfree
operators (not distribution valued !) on Hkin and H′

kin respectively built from the right invariant
vector fields Rj

e, Re that enter the definition of the flux operators as in (II.1.1.12) and its analog
for U(1). The product of δ−distributions in the numerator of (III.1.1.9) has its origin again in
the fact that the matter operator has density weight +2 certainly also in this representation
and therefore has to be there, so nothing is swept under the rug! The δ−distribution in
the denominator comes from (III.1.1.8) and correctly accounts for the fact that the geometry
operator has density weight −1. Again we have a coincidence limit x = y which comes from a
point splitting regularization and which in the background dependent quantization gave rise to
the UV singularity. Now we see what happens: One of the δ−distributions in the numerator
gets precisely cancelled by the one in the denominator leaving us with only one δ−distribution
correctly accounting for the fact that the net density weight is +1. The integrand is then
well-defined and the integral can be performed resulting in the finite expression

ĤEMTs ⊗ T ′
c =

∑

v∈V (γ)

∑

e,e′∈E(γ),e∩e′=v
×

× [
q̂e,e′

V̂v
Ts] ⊗ [Y eY e′T ′

c]x=y (III.1.1.10)

Notice that finite here means non-perturbatively finite, that is, not only finite order by order
in perturbation theory (notice that in coupling gravity we have a highly interacting theory in
front of us). Thus, comparing our non-perturbative result to perturbation theory the result
obtained is comparable to showing that the perturbation series converges ! Notice also that
for non-compact σ the expression (III.1.1.10) possibly has the physically correct IR divergence
coming from a sum over an infinite number of vertices.
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Exercise III.1.2.
Recall the Fock space quantization of the Maxwell field and verify (III.1.1.5).

This ends our heuristic discussion about the origin of UV finiteness in QGR. The crucial point is
obviously the density weight of the operator in question which should be precisely +1 in order to
arrive at a well-defined, background independent result: Higher density weight obviously leads to
more and more divergent expressions, lower density weight ends in zero operators.

III.1.2 Sketch of a Possible Quantization of the Hamiltonian Constraint

We now understand intuitively why the rescaled Hamiltonian constraint C̃ had no chance to be
well-defined in the quantum theory: It is similar to (III.1.1.5) due to its density weight +2. The
same factor 1/

√
det(q) that was responsible for making (III.1.1.6) finite also makes the original,

non-polynomial, unrescaled Hamiltonian constraint C = C̃/
√

det(q) finite. We will now proceed to
some details how this is done, avoiding intermediate divergent expressions such as in (III.1.1.9).

The essential steps can already be explained for the first term in (I.2.2.5) so let us drop the
“More” term and consider only the integrated first term

CE(N) =
1

κ

∫

Σ

d3xN
F j
abǫjklE

a
jE

b
l√

| det(E)|
(III.1.2.1)

Let us introduce a map
R : Σ → O(Σ); x 7→ Rx (III.1.2.2)

where O(Σ) denotes the set of open, compactly supported, connected and simply connected subsets
of Σ and Rx ∈ O(Σ) is constrained by the requirement that x ∈ Rx. We define the volumes of the
Rx by

V (x) := Vol(Rx) =

∫

Rx

d3y
√
| det(E)|(y) (III.1.2.3)

Then, up to a numerical prefactor we may write (III.1.2.1) in the language of differential forms and
in terms of a Poisson bracket as

CE(N) =
1

κ2

∫

Σ

NTr(F ∧ {A, V }) (III.1.2.4)

Exercise III.1.3.
Verify that (III.1.2.3) is really the volume of Rx and (III.1.2.4).

The reasoning behind (III.1.2.4) was to move the factor 1/
√

det(q)(x) from the denominator into
the numerator by using a Poisson bracket. This will avoid the δ−distribution in the denominator as
in (III.1.1.9) and has the additional advantage that

√
det(q) now appears smeared over Rx so that

one obtains an operator, not a distribution. Thus, the idea is now to replace the function V (x) by

the well-defined operator V̂ol(Rx) and the Poisson bracket by a commutator divided by i~. The only
thing that prevents us from doing this is that the operators Aja, F

j
ab do not exist on Hkin. However,

they can be regularized in terms of holonomies as follows:
Given tangent vectors u, v ∈ Tx(Σ) we define one parameter homotopies of paths and loops of triangle
topology

ǫ 7→ puǫ,x, α
uv
ǫ,x (III.1.2.5)
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respectively with b(puǫ,x) = b(αuvǫ,x) = x and (ṗuǫ,x)x = (α̇uvǫ,x)x+ = ǫu, (α̇uvǫ,x)x− = −ǫv (left and right
derivatives at x). Then for smooth connections A ∈ A the Ambrose – Singer theorem tells us that

lim
ǫ→0

[A(puǫ,x − 1]/ǫ = uaAa(x), lim
ǫ→0

[A(αuvǫ,x − 1]/ǫ2 = uavbFab(x)/2 (III.1.2.6)

Exercise III.1.4. Verify (III.1.2.6) by elementary means, using directly the differential equation
(II.1.1.1).
Hint:
For sufficiently small ǫ we have up to ǫ2 corrections puǫ,x(t) = x+ ǫtu and

αuvǫ,x(t) = x+ ǫ





tu t ∈ [0, 1]
u/3 + (t− 1)(v − u) t ∈ [1, 2]

(3 − t)v t ∈ [2, 3]

Thus, given a triangulation τǫ of σ, that is, a decomposition of σ into tetrahedra ∆ with base
points v(∆), edges pI(∆), I = 1, 2, 3 of ∆ of the type puǫ,v starting at v and triangular loops αIJ(∆) =
pI(∆) ◦ aIJ(∆)pJ(∆)−1 of the type αuvǫ,v where the arcs aIJ(∆) comprise the remaining three edges of
∆, it is easy to show, using (III.1.2.6), that up to a numerical factor

Cτǫ
E (N) =

1

κ2

∑

∆∈τǫ
N(v(∆))

∑

IJK

ǫIJKTr(A(αIJ(∆)A(pK(∆)){A(pK(∆))−1, V (v)} (III.1.2.7)

tends to CE(N) as ǫ→ 0 (in this limit the triangulation gets finer and finer).

Exercise III.1.5.
Verify this statement.

The expression (III.1.2.7) can now be readily quantized on Hkin because holonomies and volume
functionals are well-defined operators. However, we must remove the regulator ǫ in order to arrive at
a quantization of (III.1.2.4). Now the regulator can be removed in many inequivalent ways because
there is no unique way to refine a triangulation. Moreover, we must specify in which operator
topology Ĉτǫ(N) converges. The discussion of these issues is very complicated and the interested
reader is referred to [48] for the detailed arguments that lead to the following solution:

i) Triangulation
First of all we define the operator explicitly on the SNW basis Ts. In order for the refinement
limit to be non-trivial, it turns out that the triangulation must be refined in such a way that
γ(s) ⊂ τǫ for sufficiently small ǫ. This happens essentially due to the volume operator which
has non-trivial action only at vertices of graphs. Thus the refinement must be chosen depending
on s. This is justified because classically all refinements lead to the same limit. One might
worry that this does not lead to a linear operator, however, this is not the case because it is
defined on a basis.

ii) Operator Topology
The limit ǫ→ 0 exists in the following sense:
Let D∗

Diff ⊂ D∗
kin be the space of solutions of the diffeomorphism constraint. We say that a fam-

ily of operators Ôǫ converges to an operator Ô on Hkin in the uniform – weak – Diff∗−topology
provided that for each δ > 0 and for each l ∈ D∗

Diff , f ∈ Dkin there exists ǫ(δ) > 0 independent
of l, f such that

|l([Ôǫ − Ô]f)| < δ ∀ǫ < ǫ(δ) (III.1.2.8)
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Figure 11: Meaning of the loop, path and arc assignment of the Hamiltonian constraint. Notice how
a tetrahedron emerges from those objects, making the link with the triangulation. The broken lines
indicate possible other edges or continuations thereof.

This topology is of course motivated by physical considerations: Since the operator is un-
bounded, the uniform (i.e. operator norm) topology is too strong. The strong or weak topolo-
gies (pointwise convergence in Hilbert space norm or as matrix elements) give a trivial (zero)
limit (excercise !). Thus one is naturally led to ∗ topologies. The maximal dual space on
which to build a topology would be D∗

kin but one can check that the limit does not exist even
pointwise in D∗

kin. Thus one is looking for suitable subspaces thereof. The natural, physically
motivated choice is, of course, the space D∗

Diff which is singled out by the spatial diffeomor-
phism constraint. The reason for why have required uniform convergence in (III.1.2.8) is that
this excludes the existence of the limit for larger spaces D∗

Diff ⊂ D∗
⋆ ⊂ D∗

kin.

The end result is

Ĉ†
E(N) = mP

∑

v∈V (γ(s))

N(v)
∑

e, e′, e′′ ∈ E(γ(s))
e ∩ e′ ∩ e′′ = {v}

×

× {Tr([A(αγ(s),v,e,e′) − (A(αγ(s),v,e,e′))
−1]A(pγ(s),v,e′′)[A(pγ(s),v,e′′)

−1, V̂v])

+cyclic permutation in{e, e′, e′′}} Ts (III.1.2.9)

The meaning of the loops αγ,v,e,e′ and paths pγ,v,e′′ that appears in this sum over vertices and triples of
edges incident at them is maybe best explained in the following figure 11. Their precise specification
makes use of the axiom of choice and is diffeomorphism covariant, that is, for ϕ ∈ Diffω(Σ), e.g. the
loops αγ,v,e,e′ and αϕ(γ),ϕ(v),ϕ(e),ϕ(e′) are analytically diffeomorphic. Moreover, the arcs aγ,v,e,e′ defined
by

αγ,v,e,e′ = pγ,v,e ◦ aγ,v,e,e′ ◦ p−1
γ,v,e′ (III.1.2.10)

are such that also γ ∪ aγ,v,e,e′ and ϕ(γ) ∪ aϕ(γ),ϕ(v),ϕ(e),ϕ(e′) are anlytically diffeomorphic. The adjoint

in (III.1.2.9) is due to the fact that CE(N) is classically real-valued, so we are quantizing CE(N) as
well. The operator (III.1.2.9) is not symmetric, however, its adjoint is densely defined on Dkin and
it is therefore closable. Usually one requires real valued functions to become self-adjoint operators
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because then by the spectral theorem the spectrum (possible measurement values) is a subset of the
real line. However, this argument is void when we are only interested in the kernel of the operator
(“zero eigenvalue”).

Exercise III.1.6.
Verify that Ĉ†

E(N) is not symmetric but it is, together with ĈE(N), densely defined on Dkin. Show
that if real valued constraints CI form a Poisson algebra {CI , CJ} = fIJ

KCK with non-trivial,
real valued structure functions such that {fIJ K , CK}{CL=0} 6= 0, then ĈI , f̂IJ

K must not be both
symmetric in order for the quantum algebra to be free of anomalies. Conclude that the failure of
(III.1.2.9) to be symmetric is likely to be required for reasons of consistency.

The fact the loop αγ,v,e,e′ is not shrunk to v as one would expect is of course due to our definition
of convergence, in fact, an arbitrary loop assignment (γ, v, e, e′) 7→ αγ,v,e,e′ that has the same dif-
feomorphism invariant characteristics is allowed, again because in a diffeomorphism invariant theory
there is no notion of “closeness” of αγ,v,e,e′ to v. Notice that the operator ĈE(N) is defined on Hkin

using the axiom of choice and not on diffeomorphism invariant states as it is sometimes misleadingly
stated in the literature [50]. In fact, it cannot be because the dual operator Ĉ ′

E(N) defined by

[Ĉ ′
E(N)l](f) := l(Ĉ†

E(N)f) (III.1.2.11)

for all f ∈ Dkin, l ∈ D∗
kin does not preserve D∗

Diff as is expected from the the classical Poisson algebra
{V, C} ∝ C 6= V . If one wants to take this dual point of view then one is forced to introduce a larger
space D∗

⋆ which is preserved but which does not solve the diffeomorphism constraint and is therefore
unphysical. This has unnecessarily given rise to a large amount of confusion in the literature and
should be abandomed.

As we have said, the loop assignment is to a very large extent arbitrary at the level of Hkin

and represents a serious quantization ambiguity, it cannot even be specified precisely because we
are using the axiom of choice. However, at the level of Hphys this ambiguity evaporates to a large
extent because all choices that are related by a diffeomorphism result in the same solution space to
all constraints defined by elements l ∈ D∗

Diff which satisfy in addition

[Ĉ ′
E(N)l](f) = l(Ĉ†

E(N)f) = 0 ∀ N ∈ C∞
0 (Σ), f ∈ Dkin (III.1.2.12)

where C∞
0 (Σ) denotes the smooth functions of compact support. Thus the solution space D∗

phys

will depend only on the spatially diffeomorphism invariant characteristics of the loop assignment
which can be specified precisely [48], it essentially characterizes the amount by which the arcs knot
the original edges of the graph. Besides this remaining ambiguity there are also factor ordering
ambiguities but no singularities some of which are discussed in [51].

Let us list without proof some of the properties of this operator:

i) Matter Coupling
Similar Techniques can be applied to the case of (possibly supersymmetric) matter coupled to
GR [48].

ii) Anomaly – Freeness
The constraint algebra of the Hamiltonian constraint with the spatial diffeomorphism con-
straint and among each other is mathematically consistent. From the classical constraint al-
gebra {V, C} ∝ C we expect that V̂ (ϕ)Ĉ†

E(N)V̂ (ϕ)−1 = ĈE(ϕ∗N) for all diffeomorphisms ϕ.
However, this is just the statement of the loop assignment being diffeomorphism covariant
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which can be achieved by making use of the axiom of choice. Next, from {C,C} ∝ V we ex-
pect that the dual of [Ĉ†

E(N), Ĉ†
E(N ′)] = [ĈE(N ′), ĈE(N)]† annihilates the elements of D∗

Diff .

This can be explicitly verified [48]. We stress that [Ĉ†
E(N), Ĉ†

E(N ′)] is not zero, the algebra of
Hamiltonian constraints is not Abelean as it is sometimes misleadingly stated in the literature.
The commutator is in fact explicitly proportional to a diffeomorphism.

iii) Physical States
There is a rich space of rigorous solutions to (III.1.2.12) and a precise algorithm for their
construction has been developed [48].

iv) Intuitive Picture
The Hamiltonian constraint acts by annihilating and creating spin degrees of freedom and
therefore the dynamical theory obtained could be called “Quantum Spin Dynamics (QSD)” in
analogy to “Quantum Chromodynamics (QCD)” in which the Hamiltonian acts by creating
and annihilating colour degrees of freedom. In fact we could draw a crude analogy to Fock
space terminology as follows: The (perturbative) excitations of QCD carry a continuous label,
the mode number k ∈ R3 and a discrete label, the occupation number n ∈ N (and others). In
QSD the continuous labels are the edges e and the discrete ones are spins j (and others). So
we have something like a non – linear Fock representation in front of us.

Next, when solving the Hamiltonian constraint, that is, when integrating the Quantum Einstein
Equations, one realizes that one is not dealing with a (functional) partial differential equation
but rather with a (functional) partial difference equation. Therefore, when understanding
coordinate time as measured how for instance volumes change, we conclude that also time
evolution is necessarily discrete. Such discrete time evolution steps driven by the Hamiltonian
constraint assemble themselves into what nowadays is known as a spin foam. A spin foam is a
four dimensional complex of two dimensional surfaces where each surface is to be thought of as
the world sheet of an edge of a SNW and it carries the spin that the edge was carrying before
it was evolved7.

Another way of saying this is that a spin foam is a complex of two-surfaces labelled by spins
and when cutting a spin foam with a spatial three-surface Σ one obtains a SNW. If one uses two
such surfaces Σt,Σt+TP

where TP = ℓP/c is the Planck time then one rediscovers the discrete
time evolution of the Hamiltonian constraint. These words are summarized in figure 12.

While these facts constitute a promising hint that the Hilbert space Hkin could in fact support the
quantum dynamics of GR, there are well-taken concerns about the physical correctness of the oper-
ator Ĉ†

E(N):

The problem is that one would like to see more than that the commutator of two dual Hamilto-
nian constraints annihilates diffeomorphism invariant states, one would like to see something of the
kind

[Ĉ†
E(N), Ĉ†

E(N ′)] = iℓ2P
̂

[

∫

Σ

d3x[NN ′
,a −N,aN ′]qabVb] (III.1.2.13)

The reason for this is that then one would be sure that Ĉ†
E(N) generates the correct quantum

evolution. While this requirement is not necessary, it is certainly sufficient and would be reassuring8.

7Thus, a spin foam model can be thought of as a background independent string theory !
8Example: Suppose that Ca are the angular momentum components for a particle in in R3 with classical constraint
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Figure 12: Emergence of a spin foam from a SNW by the action of the Hamiltonian constraint

There are two obstacles that prevent us from rewriting the left hand side of (III.1.2.13) in terms of
the right hand side.
1)
The one parameter groups s 7→ V̂ (ϕus ) of unitarities where ϕus are the one parameter groups of
diffeomorphisms defined by the integral curves of a vector field u are not weakly continuous, therefore
a self-adjoint generator V̂ (u) that we would like to see on the right hand side of (III.1.2.13) simply
does not exist.

Exercise III.1.7.
Recall Stone’s theorem about the existence of the self-adjoint generators of weakly continuous one-
parameter unitary groups and verify that V̂ (ϕus ) is not weakly continuous on Hkin.

2)
One can quantize the right hand side of (III.1.2.13) by independent means and it does annilate D∗

Diff

[48], however, that operator does not resemble the left hand side in any obvious way. The reason
for this is that even classically it takes a DinA4 page of calculation in order to rewrite the Poisson
bracket {CE(N), CE(N ′)} as in (III.1.2.13) with Va given by (I.2.2.5). The manipulations that must
be performed in order to massage the Poisson bracket into the desired form involve a) integrations by
part, b) writing Fab in terms of Aa, c) derivatives of

√
det(q), d) multiplying fractions by functions

in both numerator and denominator, e) symmetry arguments in order to see that certain tems cancel
etc. (exercise !). These steps are obviously difficult to perform with operators.

In summary, there is no mathematical inconsistency, however, there are doubts about the physi-
cal correctness of the Hamiltonian constraint operator presently proposed although no proof exists
so far that it is necessarily wrong. In order to make progress on this issue, it seems that we need
to develop first a semiclassical calculus for the theory, more precisely, we need coherent states so
that expectation values of operators and their commutators can be replaced, up to ~ corrections, by
their classical values and Poisson brackets respectively for which then the manipulations listed in 2)

algebra {Ca, Cb} = ǫabcCc. Introduce polar coordinates and define the non-self adjoint operators Ĉ1 = i~∂/∂θ, Ĉ2 =
i~∂/∂φ, Ĉ3 = 0. Then the quantum constraint algebra is Abelean and does not at all resemble the classical one,
however, the physical states are certainly the correct ones, functions that depend only on the radial coordinate.
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above can be carried out. If that is possible, and the outcome of these calculations is the expected
one, possibly after changing the operator by making use of the available quantization ambiguities,
then one would be able to claim that one has indeed constructed a quantum theory of GR with the
correct classical limit. Only then can one proceed to solve the theory, that is, to construct solutions,
the physical inner product and the Dirac observables. The development of a semiclassical calculus
is therefore one of the “hot” research topics at the moment.

Another way to get confidence in the quantization method applied to the Hamiltonian constraint
is to study model systems for which the answer is known. This has been done for 2+1 gravity [48]
and for quantum cosmology to which we turn in the next section.

III.2 Loop Quantum Cosmology

III.2.1 A New Approach To Quantum Cosmology

The traditional approach to quantum cosmology consists in a so-called mini – superspace quantiza-
tion, that is, one imposes certain spacetime Killing symmetries on the metric, plugs the symmetric
metric into the Einstein Hilbert action and obtains an effective action which depends only on a finite
number of degrees of freedom. Then one canonically quantizes this action. Thus one symmetrizes
before quantization. These models are of constant interest and have natural connections to inflation.
See e.g. [52] for recent reviews.

What is not perfect about these models is that 1) not only do they switch off all but an infinite
number of degrees of freedom, but 2) also the quantization method applied to the reduced model
usually is quite independent from that applied to the full theory. A fundamental approach to quantum
cosmology will be within the full theory and presumably involves the construction of semiclassical
physical states whose probability amplitude is concentrated on, say a Friedmann – Robertson –
Walker (FRW) universe. This would cure both drawbacks 1) and 2). At the moment we cannot
really carry out such a programme since the construction of the full theory is not yet complete.
However, one can take a more modest, hybrid approach, where while dealing only with a finite
number of degrees of freedom one takes over all the quantization machinery from the full theory !
Roughly speaking, one works on the space Hkin of the full theory but considers only states therein
which satisfy the Killing symmetry. Hence one symmetrizes after quantization which amounts to
considering only a finite subset of holonomies and fluxes. This has the advantage of leading to a
solvable model while preserving pivotal structures of the full theory, e.g. the volume operator applied
to symmetric states will still have a discrete spectrum as in the full theory while in the traditional
approaches it is continuous. Such a programme has been carried out in great detail by Bojowald
in a remarkable series of papers [53] and his findings are indeed spectacular, should they extend to
the full theory: It turns out that the details of the quantum theory are drastically different from the
traditional minisuperspace approach. In what follows we will briefly describe some of these results,
skipping many of the technical details.

III.2.2 Spectacular Results

Consider the FRW line element (in suitable coordinates)

ds2 = −dt2 +R(t)2[
dr2

1 − kr2
+ r2dΩ2

2] =: −dt2 + R(t)2q0
abdx

adxb (III.2.2.1)
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Figure 13: Spectrum of the inverse scale factor

The universe is closed/flat/open for k = 1/0/ − 1. The only dynamical degree of freedom left is
the so-called scale factor R(t) which describes the size of the universe and its conjugate momentum.
The classical big bang singularity corresponds to the fact that the Einstein equations predict that
limt→0R(t) = 0 at which the metric (III.2.2.1) becomes singular and the inverse scale factor 1/R(t)
blows up (the curvature will be ∝ 1/R(t)2 so this singularity is a true curvature singularity).

We are interested in whether the curvature singularity 1/R → ∞ exists also in the quantum
theory. To study this we notice that for (III.1.1.3) det(q) = R6 det(q0). Hence, up to a numerical
factor this question is equivalent to the question whether the operator corresponding to 1/ 6

√
det(q),

when applied to symmetric states, is singular or not. However, we saw in the previous section that
one can trade a negative power of det(q) by a Poisson bracket with the volume operator. In [53]
precisely this, for the Hamiltonian constraint, essential quantization technique is applied which is
why this model tests some aspects of the quantization of the Hamiltonian constraint. Now it turns

out that this operator, applied to symmetric states, leads to an operator 1̂
R

which is diagonalized by
(symmetric) SNWF’s and the spectrum is bounded ! In figure 13 we plot the qualitative behaviour
of the eigenvalues ℓPλj as a function of j where j is the spin label of a gauge invariant SNWF with
a graph consisting of one loop only (that only such states are left follows from a systematic analysis
which defines what a symmetric SNWF is). One can also quantize the operator R̂ and one sees that
its eigenvalues are essentially given by jℓP up to a numerical factor. Thus the classical singularity
corresponds to j = 0 and one expects the points λjℓp at the values 1/j on the curve ℓP/R. Evidently
the spectrum is discrete (pure point) and bounded, at the classical singularity it is finite. In other
words, the quantum universe never decreases to zero size. For larger j, in fact already for R of the
order of ten Planck lengths and above, the spectrum follows the classical curve rather closely hinting
at a well-behaved classical limit (correspondence principle).

Even more is true: One can in fact quantize the Hamiltonian constraint by the methods of the
previous section and solve it exactly. One obtains an eighth order difference equation (in j). The
solution therefore depends non-trivially on the initial condition. What is surprising, however, is the
fact that only one set of initial conditions leads to the correct classical limit, thus in loop quantum
cosmology initial conditions are derived rather than guessed. One can even propagate the quantum
Einstein equations through the classical singularity and arrives at the picture of a bouncing universe.

Finally one may wonder whether these results are qualitatively affected by the operator ordering
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ambiguities of the Hamiltonian constraint. First of all one finds that these results hold only if one
orders the loop in (III.1.2.9) to the left of the volume operator as written there. However, one is
not forced to work with the holonomy around that loop in the fundamental representation of SU(2),
there is some flexibility [51] and one can choose a different one, say j0. It turns out that the value
j0 influences the onset of classical behaviour, that is, the higher j0 the higher the value j(j0) from
which on the spectrum in figure 13 lies on the curve 1/j. Now this is important when one copuples,

say scalar matter because the operator 1̂
R

enters the matter part of the Hamiltonian constraint and
modifies the resulting effective equation for R(t) in the very early phase of the universe and leads to
a quantum gravity driven inflationary period whose duration gets larger with larger j0 !

Thus, loop quantum cosmology not only confirms aspects of the quantization of the Hamiltonian
constraint but also predicts astonishing deviations from standard quantum cosmology which one
should rederive in the full theory.

III.3 Path Integral Formulation: Spin Foam Models

III.3.1 Spin Foams from the Canonical Theory

Spin Foam models are the fusion of ideas from topological quantum field theories and loop quantum
gravity, see e.g. [54] for a review, especially the latest, most updated one by Perez. The idea that
connects these theories is actually quite simple to explain at an heuristic level:

If we forget about 1) all functional analytic details, 2) the fact that the operator valued distri-
butions corresponding to the Hamiltonian constraint Ĉ(x) do not mutually commute for different
x ∈ σ and 3) that the Hamiltonian constraint operators Ĉ(N) are certainly not self-adjoint, at least
as presently formulated, then we can formally write down the complete space of solutions to the
Hamiltonian constraint as a so-called “rigging map” (see e.g. [1])

η̄ : Dkin → D∗
phys; f 7→ δ[Ĉ] f := [

∏

x∈Σ

δ(Ĉ(x)) f ] (III.3.1.1)

(where η̄ = c.c · η is the complex conjugate of the actual anti-linear rigging map). Here the
δ−distribution of an operator is defined via the spectral theorem (assuming the operator to be
self-adjoint). Notice that we do not need to order the points x ∈ σ as we assumed the Ĉ(x) to be
mutually commuting for the moment and only under this assumption it is true that, at least for-
mally η̄[f ](Ĉ(N)f ′) = 0 (exercise)9. Now we use the formula δ(x) =

∫
R
dk
2π
eikx to write the functional

δ−distribution δ[Ĉ] as a path integral

δ[Ĉ] =

∫

N ′

[DN ]eiĈ(N) (III.3.1.2)

where we have neglected an infinite constant as usual in this formal business. Here N ′ is the space
of lapse functions at a fixed time. Let us introduce also the space of lapses with arbitray time
dependence Nt1,t2 in t ∈ [t1, t2]. Then, up to an infinite constant one can verify that

δ[Ĉ] =

∫

N t2
t1

[DN ]ei
∫ t2
t1
dt

∫
Σ
d3xN(x,t)Ĉ(x) (III.3.1.3)

9At an even more formal level η̄[f ] is also a solution in the non-commuting case if, as is the case with the currently
proposed Ĉ, the algebra with the spatial diffeomorphism constraint closes
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The rigging map machinery then tells us that the scalar product on the image of the rigging map is
simply given by

< η̄(f), η̄(f ′) >phys:=< f, η̄(f ′) >kin=

∫

N t2
t1

[DN ] < f, ei
∫ t2

t1
dtĈ(Nt)f ′ >kin (III.3.1.4)

This formula looks like a propagator formula, that is, like a transition amplitude between an initial
state f ′ on Σt1 and a final state f on Σt2 after a multi-fingered time evolution generated by Ĉ(Nt).
In fact, if we use the Taylor expansion of the exponential function and somehow regularize the
path integral then the expansion coefficients < Ts, Ĉ(Nt)

nT ′s′ >kin can be interpreted as probability
amplitude of the evolution of the SNW state T ′

s′ to reach the SNW state Ts after n time steps (recall
figure 12).

Now by the usual formal manipulations that allow us to express a unitary operator ei(t2−t1)Ĥ as
a path integral over the classical pase space M (the rigorous version of which is the Feynman – Kac
formula, e.g. [56]) one can rewrite (III.3.1.4) as

< η̄(f), η̄(f ′) >phys=

∫
[DN D ~N DΛ DA DE] < f, eiSf ′ >kin (III.3.1.5)

where S is the Einstein-Hilbert action written in canonical form in terms of the variables A,E, that
is

S =

∫

R

dt

∫

Σ

d3x{ȦjaEa
j − [−ΛjGj +NaVa +NC]} (III.3.1.6)

and we have simultaneously included also projections on the space of solutions to the Gauss and
vector constraint. Now the action (III.3.1.6) is the 3 + 1 split of the following covariant action

S =

∫

M

{ΩIJ ∧ [ǫIJKL − β−1ηIKηJK]eK ∧ eL} (III.3.1.7)

discovered in [57] where β is the Immirzi parameter. Here ΩIJ is the (antisymmetric) curvature
two-form of an (antisymmetric) SL(2,C) connection one-form ωIJ with Lorentz indices I, J,K, .. =
0, 1, 2, 3, η is the Minkowski metric and eI is the co-tetrad one-form. The first term in (III.3.1.7)
is called the Palatini action while the second term is topological (a total differential modulo the
equations of motion). The relationn between the four-dimensional fields ωIJµ , e

I
µ (40 components)

and the three-dimensional fields Aja, E
a
j ,Λ

j, N,Na (25 components) can only be established if certain
so-called second class constraints [20] are solved.

III.3.2 Spin Foams and BF – Theory

Thus, it is formally possible to write the inner product between physical states as a covariant path
integral for the classical canonical action and using only the kinematical inner product, thus providing
a bridge between the covariant and canonical formalism. However, this bridge is far from being
rigorously established as we had to perform many formal, unjustified manipulations. Now rather
than justifying the steps that lead from Ĉ to (III.3.1.5) one can turn the logic upside down and start
from a manifestly covariant formulation and derive the canonical formultion. This is the attitude
that one takes among people working actively on spin foam models. Thus, let us forget about the
topological term in (III.3.1.7) and consider only the Palatini term. Then the Palatini action has
precisely the form of a BF – action

SBF =

∫

M

ΩIJ ∧BIJ (III.3.2.1)
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just that the (antisymmetric) two-form field BIJ is not arbitrary (it would have 36 independent
components), it has to come from a tetrad with only 16 independent components, that is, it has to
be of the form ǫIJKLeK ∧ eL.

Exercise III.3.1.
Show that the condition that B comes from a tetrad is almost10 equivalent to the simplicity constraint

ǫIJKLB
IJ
µνB

KL
ρσ = cǫµνρσ (III.3.2.2)

for some spacetime scalar density c of weight one.

The reasoning is now as follows: BF – theory without the constraint (III.3.2.2) is a topological
field theory, that is, it has no local degrees of freedom. Therefore quantum BF – theory is not really
a QFT but actually a quantum mechanical system and can therefore be handled much more easily
than gravity. Let us now write an action equivalent to the Palatini action given by

S ′
P [ω,B,Φ] = SBF [ω,B] + SI [B,Φ]

SI [B,Φ] :=

∫

M

ΦµνρσǫIJKLB
IJ
αβB

KL
γδ [δαµδ

β
ν δ

γ
ρδ

δ
σ −

1

4!
ǫαβγδǫµνρσ] (III.3.2.3)

where the Lagrange multiplier Φµνρσ [58] is a four dimensional tensor density of weight one, symmetric
in the index pairs (µν) and (ρσ) and antisymmetric in each index pair. Thus, Φ has (6 · 7)/2 = 21
independent components of which the totally skew component is projected out in (III.3.2.3), leaving
us with 36 − 16 = 20 independent components. Hence the Euler Lagrange equations for Φ precisely
delete the amount of unwanted degrees of freedom in B and impose the simplicity constraint. Hence,
classically S ′

P [Ω, B,Φ] and SP [Ω, e] are equivalent. Thus, if we write a path integral for S ′
P and treat

the Lagrange multiplier term SI in (III.3.2.3) as an interaction Lagrangean (a perturbation) to BF
– theory, then we can make use of the powerful techniques that have been developed for the path
integral quantization for BF – theory and its perturbation theory.

Exercise III.3.2.
i) Write the Euler Lagrange equations for BF – theory and conclude that the solutions consist of flat
connections ω and gauge invariant B− fields. Conclude that ω can be gauged to zero by SL(2,C)
transformations locally and that then B is closed, that is, locally exact by Poincaré’s theorem. Now,
verify that the BF – action is not only invariant under local SL(2,C)−transformations but also under

BIJ = 7→ BIJ + (D ∧ θ)IJ = BIJ + dθIJ + ωI K ∧ θKJ + θIK ∧ ωK J (III.3.2.4)

for some sl(2,C) valued one – form θ and that therefore also B can be gauged to zero locally.
Hint:
Use the Bianchi identity for Ω.
ii) Perform the Legendre transformation and conclude that there are as many first class constraints
as canonical pairs so that again at most a countable number of global degrees of freedom can exist.

One may wonder how it is possible that a theory with less kinematical degrees of freedom has more
dynamical (true) degrees of freedom. The answer is that BF – theory has by far more symmetries
than the Palatini theory, thus when constraining the number of degrees of freedom we are freezing
more symmetries than we deleted degrees of freedom.

10Another solution is BIJ = eI ∧ eJ but this possibility is currently not discussed.
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Let us now discuss how one formulates the path integral corresponding to the action (III.3.2.3).
It is formally given by

KP (Σt1 ,Σt2) =

∫
[Dω DB DΦ]eiS

′
P [ω,B,Φ] (III.3.2.5)

where Σt1,Σt2 denote suitable boundary conditions specified in more detail below. Suppose we set
Φ = 0, then (III.3.2.5) is a path integral for BF – theory and the integral over B results in the
functional δ−distribution δ[Ω] imposing the flatness of ω. Now flatness of a connection is equivalent
to trivial holonomy along contractable loops by the Ambrose – Singer theorem. If one regularizes the
path integral by introducing a triangulation τ of M , then δ[F ] can be written as

∏
α δ(ω(α), 1) where

the product is over a generating system of independent, contractible loops in τ and δ(ω(α), 1) denotes
the δ−distribution on SL(2,C) with respect to the Haar measure. Since SL(2,C) is a non-compact
group, the δ−distribution is a direct integral over irreducible, unitary representations rather than a
direct sum as it would be the case for compact groups (Peter&Weyl theorem). Such representations
are infinite dimensional and are labelled by a continuous parameter ρ ∈ R+

0 and a discrete parameter
n ∈ N+

0 . Thus, one arrives at a triangulated a spin foam model: For a fixed triangulation one
integrates (sums) over all possible “spins” ρ (n) that label the generating set of loops (equivalently:
the faces that they enclose) of that triangulated four manifold. The analogy with the state sum
models for TQFT’s is obvious.

Now what one does is a certain jump, whose physical implication is still not understood: Instead
of performing perturbation theory in SI one argues that formally integrating over Φ and thus im-
posing the simplicity constraint is equivalent to the restriction of the direct integral that enters the
δ−distributions to simple representations, that is, representations for which either n = 0 or ρ = 0.
In other words, one says that the triangulated Palatini path integral is the same as the triangulated
BF path integral restricted to simple representations. To motivate this argument, one notices that
upon canonical quantization of BF theory on a triangulated manifold the B field is the momentum
conjugate to ω and if one quantizes on a Hilbert space based on sl(2,C) connections using the Haar
measure (similar as we have done for SU(2) for a fixed graph), its corresponding flux operator B̂IJ(S)
becomes a linear combination of right invariant vector fields RIJ on SL(2,C). Now the simplicity
constraint becomes the condition that the second Casimir operator RIJRKLǫIJKL vanishes. However,
on irreducible representations this operator is diagonal with eigenvalues nρ/4. While this is a strong
motivation, it is certainly not sufficient justification for this way of implementing the simplicity
constraint in the path integral because it is not clear how this is related to integrating over Φ.

In any case, if one does this then one arrives at (some version of) the Lorentzian Barrett – Crane
model [59]. Surprisingly, for a large class of triangulations τ the amplitudes

Kτ
P (Σt1 ,Σt2) := [

∫
[Dω DB]eiSBF [ω,B]]|simplereps. (III.3.2.6)

actually converge although one integrates over a non-compact group ! This is a non-trivial result
[60]. The path integral is then over all possible representations that label the faces of a spin foam
and the boundary conditions keep the representations on the boundary graphs, that is, spin networks
fixed (SL(2,C) reduces to the SU(2) on the boundary). This also answers the question of what the
boundary conditions should be.

There is still an open issue, namely how one should get rid of the regulator (or triangulation)
dependence. Since BF – theory is a topological QFT, the amplitudes are automatically triangulation
independent, however, this is certainly not the case with GR. One possibility is to sum over trian-
gulations and a concrete proposal of how to weigh the contributions from different triangulations
comes from the so-called field theory formulation of the theory [61]. Here one reformulates the BF
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– theory path integral as the path integral for a scalar field on a group manifold which in this case
is a certain power of SL(2,C). The action for that scalar field has a free piece and an interaction
piece and performing the perturbation theory (Feynman graphs !) for that field theory is equiva-
lent to the sum over BF – theory amplitudes for all triangulated manifolds with precisely defined
weights. This idea can be straightforwardly applied also to our context where the restriction to sim-
ple representations is realized by imposing corresponding restrictions (projections) on the scalar field.

Summarizing, spin foam models are a serious attempt to arrive at a covariant formulation of QGR
but many issues are still unsettled, e.g.:
1)
There is no clean equivalence with the Hamiltonian formulation as we have seen. Without that it
is unlcear how to interpret the spin foam model amplitude and whether it has the correct classical
limit. In order to make progress on the issue of the classical limit, model independent techniques for
constructing “causal spin foams” [62] with a built in notion of quantum causality and renormalization
methods [63], which should allow in principle the derivation of a low energy effective action, have
been developed.
2)
The physical correctness of the Barrett – Crane model is unclear. This is emphasized by recent
results within the Euclidean formulation [64] which suggest that the classical limit is far off GR since
the amplitudes are dominated by spin values close to zero. This was to be expected because in the
definition of the Barrett – Crane model there is a certain flexibility concerning the choice of the
measure that replaces [Dω DB] at the triangulated level and the result [64] indicates that one must
gain more control on that choice.
3)
It is not even clear that these models are four – dimensionally covariant: One usually defines that
the amplitudes for a fixed triangulation are the same for any four - diffeomorphic triangulation.
However, recent results [65] show that this natural definition could result nevertheless in anomalies.
This problem is again related to the choice of the measure just mentioned.

Thus, substantially more work is required in order to fill in the present gaps but the results al-
ready obtained are very promising indeed.

III.4 Quantum Black Holes

III.4.1 Isolated Horizons

Any theory of quantum gravity must face the question whether it can reproduce the celebrated result
due to Bekenstein and Hawking [66] that a black hole in a spacetime (M, g) should account for a
quantum statisical entropy given by

SBH =
Ar(H)

4ℓ2P
(III.4.1.1)

where H denotes the two-dimensional event horizon of the blak hole. This result was obtained within
the framework of QFT on Curved SpaceTimes (CST) and should therefore be valid in a semiclassical
regime in which quantum fluctuations of the gravitational field are neglible (large black holes). The
most important question from the point of view of a microscopical theory of quantum gravity is,
what are the microscopical degrees of freedom that give rise to that entropy. In particular, how can
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it be within a quantum field theory with an infinite number of degrees of freedom, that this entropy,
presumably a measure for our lack of information of what happens behind the horizon, comes out
finite.

In [67] the authors performed a bold computation: For any surface S and any positive number
A0 they asked the question how many SNW states there are in QGR such that the area operators
eigenvalues lie within the interval [A0 − ℓ2P , A0 + ℓ2P ]. This answer is certainly infinite because a
SNW can intersect S in an uncountably infinite number of different positions without changing
the eigenvalues. This divergence can be made less severe by moding out by spatial diffeomorphisms
which we can use to map these different SNW onto each other in the vicinity of the surface. However,
since there are still an infinite number of non-spatially difeomorphic states which look the same in
the vicinity of the surface but different away from it, the answer is still divergent. Therefore, one
has to argue that one must not count information off the surface, maybe invoking the Hamiltonian
constraint or using the information that S = H is not an arbitrary surface but actually the horizon
of a black hole. Given this assumption, the result of the, actually quite simple counting problem
came rather close to (III.4.1.1) with the correct factor of 1/4.

Thus the task left is to justify the assumptions made and to make the entropy counting water
– tight by invoking the information that H is a black hole horizon. The outcome of this analysis
created a whole industry of its own, known under the name “isolated horizons”, which to large part
is a beautiful new chapter in classical GR. In what follows we will focus only on a tiny fraction of
the framework, mostly concentrating on the ingredients essential for the quantum formulation. For
reviews see [68] which also contain a complete list of references on the more classical aspects of this
programme, the pivotal papers concerning the quantum applications are [69].

By definition, an event horizon is the external boundary of the part of M that does not lie in
the past of null future infinity J+ in a Penrose diagramme. From an operational point of view,
this definition makes little sense because in order to determine whether a candidate is an event
horizon, one must know the whole spacetime (M, g) which is never possible by measurements which
are necessarily loacal in spacetime (what looks like an eternal black hole now could capture some
dust later and the horizon would change its location). Thus one looks for some local substitute of the
notion of an event horizon which captures the idea that the black hole has come to some equilibrium
state at least for some amount of time. This is roughly what an isolated horizon ∆ is, illustrated in
figure 14. More in technical details we have the following.

Definition III.4.1.
A part ∆ of the boundary ∂M of a spacetime (M, g) is called an isolated horizon, provided that
1) ∆ ≡ R × S2 is a null hypersurface and has zero shear and expansion11.
2) The field equations and matter energy conditions hold at ∆.
3) g is Lie derived by the null generator l of ∆ at ∆.

The canonical formulation of a field theory on a manifold M with boundary ∆ must involve
boundary conditions at ∆ in order that the variation principle be well-defined (the action must be
functionally differentiable). Such boundary conditions usually give birth to boundary degrees of
freedom [70] which would normally be absent but now come into being because (part of the) gauge
transformations are forced to become trivial at ∆. In the present situation what happens is that the

11Recall the notions of shear, expansion and twist of a congruence of vector fields in connection with Raychaudhuri’s
equation.
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Figure 14: An isolated horizon ∆ boundary of a piece M (shaded) of spacetime also bounded by
spacelike hypersurfaces Σ1,Σ2. Radiation γ may enter or leave M and propagate into the singularity
before or after the isolated horizon has formed but must not cross ∆. An intersection of a spacelike
hypersurface Σ with ∆ is denoted by H which has the topology of a sphere.

boundary term is actually a U(1) Chern-Simons action12

SCS =
A0

πβ

∫

∆

W ∧ dW =

∫

R

dt

∫

H

d2yǫIJ [ẆIWJ +Wt(dW )IJ ] (III.4.1.2)

where W is a U(1) connection one form and H = S2 = Σ ∩ ∆ is a sphere. The relation between the
bulk fields Aja, E

a
j and the boundary fields WI , I = 1, 2 is given by

X∗
HA

j = Wrj and [X∗
H(∗E)j]rj = − A0

2πβ
dW (III.4.1.3)

where XH : H → Σ is the embedding of the boundary H of Σ into Σ and rj is an arbitrary but fixed
unit vector in su(2) which is to be preserved under SU(2) gauge transformations at ∆ and therefore
reduces SU(2) to U(1). The number A0 is the area of H as measured by g which turns out to be a
constant of the motion as a consequence of the field equations. The existence of rj is a consequence
of definition (III.4.1) and ∗E is the natural metric independent two – form dual to E.

III.4.2 Entropy Counting

One now has to quantize the system. This consists of several steps whose details are complicated
and which we will only sketch in what follows.

i) Kinematical Hilbert Space
The bulk and boundary degrees of freedom are independent of each other, therefore we choose
Hkin = HΣ

kin ⊗ HH
kin where both spaces are of the form L2(A, dµ0) just that the first factor is

for an SU(2) bundle over Σ while the second is for an U(1) bundle over H .

12It was observed first in [71] that general relativity in terms of connection variables and in the presence of boundaries
leads to Chern – Simons boundary terms.
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ii) Quantum Boundary conditions
Equation (III.4.1.3) implies, in particular, that in quantum theory we must have schematically

[ ̂[X∗
H(∗E)j]rj ] ⊗ idHH

kin
= idHΣ

kin
⊗ [− A0

2πβ
d̂W ] (III.4.2.1)

Now we have seen in the bulk theory that we have discussed in great detail throughout this
review, that ∗E is an operator valued distribution which must be smeared by two – surfaces
in order to arrive at the well-defined electric fluxes. Since (III.4.2.1) is evaluated at H , this
flux operator will non-trivially act only on SNWF’s Ts which live in the bulk but intersect H
in punctures p ∈ H ∩ γ(s). Now the distributional character of the electric fluxes implies that
the left hand side of (III.4.2.1) is non-vanishing only at those punctures. Thus the curvature
of W is flat everywhere except for the punctures where it is distributional.

Consider now SNWF’s Ts of the bulk theory and those of the boundary theory T ′
c. Then

̂[X∗
H(∗E)j]rj ] acts on Ts like the z−component of the angular momentum operator and will

have distributional eigenvalues proportional to the magnetic quantum numbers me of the edges
with punctures p = e ∩H and spin je where me ∈ {−je,−je + 1, .., je}.

iii) Implementation of Quantum Dynamics at ∆

It turns out that ̂X∗
H(∗E)j]rj and d̂W are the generators of residual SU(2) gauge transforma-

tions close to XH(H) and of U(1) on H respectively. Now these residual SU(2) transformations
are frozen to U(1) transformations by rj and the most general situation in order for a state
to be gauge invariant is that these residual SU(2) transformations of the bulk theory and the
U(1) transformations of the boundary theory precisely cancel each other. It turns out that this
cancellation condition is precisely given by the quantum boundary condition (III.4.2.1). Thus
the states that solve the Gauss constraint are linear combinations of states of the form Ts⊗ T ′

c

where the boundary data of these states are punctures p ∈ P where p ∈ γ(s) ∩ H , the spins
jp = jep of edges e ∈ E(γ(s)) with ep∩H = p and their magnetic quantum numbers mp = mep .
However, due to the specific features of the geometrical quantization of Chern-Simons theories
[72] the mp cannot be specified freely, they have to satisfy the constraint

∑

p∈P
2mp = 0 mod k, k =

A0

4πℓ2P
(III.4.2.2)

where k is called the level of a Chern Simons theory which is constrained to be an integer due
to Weil’s quantization obstruction cocycle criterion of geometric quantization [30] and comes
about as follows: The T ′

c are actually fixed to be Θ−functions of level k labelled by integers ap
which satisfy the gauge invariance condition

2mp = −ap mod k,
∑

p

ap = 0 mod k (III.4.2.3)

Next, the spatial diffeomorphism constraint of the bulk theory tells us that the position of the
punctures on H are not important, important is only their number.

Finally, one of the boundary conditions at ∆ implies that the lapse becomes trivial N = 0
at H if Ĉ(N) is to generate an infinitesimal time reparameterization13. Thus, luckily we can

13This does not mean that the lapse of a classical isolated horizon solution must vanish at S, rather there is a subtle
difference between gauge motions and symmetries for field theories with boundaries [70] where in this case symmetries
map solutions to gauge inequivalent or equivalent ones respectively, if N|H 6= 0 or N|H = 0 respectively.
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Figure 15: Punctures, spins, magnetic quantum numbers and entropy counting. Only the relevant
boundary data are shown, the bulk information is traced over.

escape the open issues with the Hamiltonian constraint as far as the quantum dynamics at H
is concerned.

We can now come to the issue of entropy counting. First of all we notice that Ar(H) is a Dirac
observable because H is invariant under Diff(H) and N = 0 at H . Given n punctures with spins
jl, l = 1, .., N the area eigenvalue for H is

λ(n,~j) = 8πℓ2Pβ
n∑

n=1

√
jl(jl + 1) (III.4.2.4)

Now the physical Hilbert space is of the form

Hphys = ⊕n,~j,~m,~a=k−2~m HB
n,~j,~m

⊗HBH
n,~j,~m

⊗HH
n,~a (III.4.2.5)

where HBH
n,~j,~m

describes bulk degrees of freedom at H corresponding to the black hole (finite dimen-

sional), HB
n,~j,~m

describes bulk degrees of freedom away from H and finally HH
n,~a describes Chern –

Simons degrees of freedom which are completetly fixed in tems of ~m due to reasons of gauge invariance
(III.4.2.3). The situation is illustrated in figure 15. Let δ > 0 and let SA0,δ be the set of eigenstates
ψn,~j,~m ∈ HBH

n,~j,~m
of the area operator such that the eigenvalue lies in the interval [A0 − δ, A0 + δ] and

NA0,δ their number. Define the density matrix

ρ̂BH = idB ⊗ [
1

N A0,δ

∑

ψ∈SA0,δ

|ψ >< ψ|] ⊗ idH (III.4.2.6)

The quantum statistical entropy from this microcanonical ensemble is given by

SBH = −Tr(ρ̂BH ln(ρ̂BH)) = ln(NA0,δ) (III.4.2.7)

Thus we just need to count states and the answer will be finite because the area operator has an area
gap.
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Exercise III.4.1.
Estimate NA0,δ from above and below taking into account the constraint (III.4.2.2) and that k is an
integer (purely combinatorical problem !).

The result of the counting problem is that SBH is indeed given by (III.4.1.1) to leading order in
A0 (there are logarithmic corrections) for δ ≈ ℓ2P provided that

β =
ln(2)

π
√

3
(III.4.2.8)

Here the numbers ln(2),
√

3 comes from the fact that the configurations with lowest spin jl = 1/2
make the dominant contribution to the entropy with eigenvalue ∝ βn

√
3 ≈ A0 and number of states

given by NA0,δ ≈ 2n that is, two Boolean degrees of freedom per puncture [73]. This provides an
explicit explanation for the origin of the entropy. Now fixing β at the value (III.4.2.8) would make
little sense would it be different for different types of black hole (that is, in presence of different
matter, charges, rotation, other hair,..). However, this is not the case !

In summary, the analysis sketched above provides a self-contained derivation of SBH within QGR.
The result is highly non-trivial because it was not to be expected from the outset that Loop Quan-
tum Gravity, classical GR and Chern Simons theory would interact in such a harmonic way as to
provide the expected result: Chern – Simons theory is very different from QGR and still they have
an interface at H . The result applies to astrophysically interesting balck holes of the Schwarzschild
type and does not require supersymmetry. Nevertheless, the calculation still has a semiclassical input
because the presence of the isolated horizon is fed in at the classical level already. It would be more
satisfactory to have a quantum definition of an (isolated) horizon but this is a hard task and left for
future research. Another unsolved problem then is the calculation of the Hawking effect from first
principles.

III.5 Semiclassical Analysis

III.5.1 The Complexifier Machinery for Generating Coherent States

Let us first specify what we mean by semiclassical states.

Definition III.5.1.
Let be given a phase space M, {., .} with preferred Poisson subalgebra O of C∞(M) and a Hilbert
space H, [., .] together with an operator subalgebra Ô of L(H). The triple M, {., .},O is said to
be a classical limit of the triple H, [., .], Ô provided that there exists an (over)complete set of states
{ψm}m∈M such that for all O,O′ ∈ O the infinitesimal Ehrenfest property

|< Ô >m

O(m)
− 1| ≪ 1

|< [Ô, Ô′] >m

i~{O,O′}(m)
− 1| ≪ 1 (III.5.1.1)

and the small fluctuation property

|< Ô2 >m

< Ô >2
m

− 1| ≪ 1 (III.5.1.2)
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holds at generic14 points in M. Here < . >m:=< ψm, .ψm > /||ψm||2 denotes the expectation value
functional.

For systems with constraints, strictly speaking, semiclassical states should be physical states, that
is, those that solve the constraints because we are not interested in approximating gauge degrees of
freedom but only physical observables. Only then are the predictions (~ corrections to the classical
limit) of the theory reliable. In the present situation with QGR, however, we are more interested in
constructing kinematical semiclassical states for the following reason: As we have shown, the status
of the physical correctness of the Hamiltonian constraint operator Ĉ is unsettled. We would therefore
like to test whether it has the correct classical limit. This test is obviously meaningless on states
which the Hamiltonian constraint annihilates anyway. For the same reason it also does not make
sense to construct semiclassical states which are at least spatially diffeomorphism invariant because
the Hamiltonian constraint does not leave this space invariant.

The key question then is how to construct semiclassical states. Fortunately, for phase spaces
which have a cotangent bundle structure as is the case with QGR, a rather general construction
guideline is available [74], the so-called Complexifier Method, which we will now sketch:

Let (M, {., .}) be a phase space with (strong) symplectic structure {., .} (notice that M is allowed
to be infinite dimensional). We will assume that M = T ∗C is a cotangent bundle. Let us then choose
a real polarization of M, that is, a real Lagrangean submanifold C which will play the role of our
configuration space. Then a loose definition of a complexifier is as follows:

Definition III.5.2. A complexifier is a positive definite function 15 C on M with the dimension
of an action, which is smooth a.e. (with respect to the Liouville measure induced from {., .}) and
whose Hamiltonian vector field is everywhere non-vanishing on C. Moreover, for each point q ∈ C the
function p 7→ Cq(p) = C(q, p) grows stronger than linearly with ||p||q where p is a local momentum
coordinate and ||.||q is a suitable norm on T ∗

q (C).

In the course of our discussion we will motivate all of these requirements.
The reason for the name complexifier is that C enables us to generate a complex polarization of

M from C as follows: If we denote by q local coordinates of C (we do not display any discrete or
continuous labels but we assume that local fields have been properly smeared with test functions)
then

z(m) :=

∞∑

n=0

in

n!
{q, C}(n)(m) (III.5.1.3)

define local complex coordinates of M provided we can invert z, z̄ for m := (q, p) where p are the
fibre (momentum) coordinates of M. This is granted at least locally by definition III.5.2. Here the
multiple Poisson bracket is inductively defined by {q, C}(0) = q, {q, C}(n+1) = {{q, C}(n), C} and
makes sense due to the required smoothness. What is interesting about (III.5.1.3) is that it implies
the following bracket structure

{z, z} = {z̄, z̄} = 0 (III.5.1.4)

while {z, z̄} is necessarily non-vanishing. The reason for this is that (III.5.1.3) may be written in the
more compact form

z = e−iLχC q = ([ϕtχC
]∗q)t=−i (III.5.1.5)

14The set of points where (III.5.1.1), (III.5.1.2) are violated should have small Liouville measure.
15For the rest of this section C will denote a complexifier function and not the Hamiltonian constraint.
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where χC denotes the Hamiltonian vector field of C, L denotes the Lie derivative and ϕtχC
is the one

– parameter family of canonical transformations generated by χC . Formula (III.5.1.5) displays the
transformation (III.5.1.3) as the analytic extension to imaginary values of the one parameter family
of diffeomorphisms generated by χC and since the flow generated by Hamiltonian vector fields leaves
Poisson brackets invariant, (III.5.1.4) follows from the definition of a Lagrangean submanifold. The
fact that we have continued to the negative imaginary axis rather than the positive one is important
in what follows and has to do with the required positivity of C.

The importance of this observation is that either of z, z̄ are coordinates of a Lagrangean sub-
manifold of the complexification MC, i.e. a complex polarization and thus may serve to define a
Bargmann-Segal representation of the quantum theory (wave functions are holomorphic functions of
z). The diffeomorphism M → CC; m 7→ z(m) shows that we may think of M either as a symplectic
manifold or as a complex manifold (complexification of the configuration space). Indeed, the polar-
ization is usually a positive Kähler polarization with respect to the natural {., .}-compatible complex
structure on a cotangent bundle defined by local Darboux coordinates, if we choose the complexifier
to be a function of p only. These facts make the associated Segal-Bargmann representation especially
attractive.

We now apply the rules of canonical quantization: a suitable Poisson algebra O of functions O
on M is promoted to an algebra Ô of operators Ô on a Hilbert space H subject to the condition
that Poisson brackets turn into commutators divided by i~ and that reality conditions are reflected
as adjointness relations, that is,

[Ô, Ô′] = i~ ̂{O,O′} + o(~), Ô† = ˆ̄O + o(~) (III.5.1.6)

where quantum corrections are allowed (and in principle unavoidable except if we restrict O, say to
functions linear in momenta). We will assume that the Hilbert space can be represented as a space of
square integrable functions on (a distributional extension C of) C with respect to a positive, faithful
probability measure µ, that is, H = L2(C, dµ) as it is motivated by the real polarization.

The fact that C is positive motivates to quantize it in such a way that it becomes a self-adjoint,
positive definite operator. We will assume this to be the case in what follows. Applying then the
quantization rules to the functions z in (III.5.1.3) we arrive at

ẑ =

∞∑

n=0

in

n!

[q̂, Ĉ](n)

(i~)n
= e−Ĉ/~q̂eĈ/~ (III.5.1.7)

The appearence of 1/~ in (III.5.1.7) justifies the requirement for C/~ to be dimensionless in definition
III.5.2. We will call ẑ annihilation operator for reasons that will become obvious in a moment.

Let now q 7→ δq′(q) be the δ-distribution with respect to µ with support at q = q′. (More in
mathematical terms, consider the complex probability measure, denoted as δq′dµ, which is defined
by

∫
δq′dµf = f(q′) for measurable f). Notice that since C is non-negative and necessarily depends

non-trivially on momenta (which will turn into (functional) derivative operators in the quantum

theory), the operator e−Ĉ/~ is a smoothening operator. Therefore, although δq′ is certainly not square

integrable, the complex measure (which is probability if Ĉ · 1 = 0)

ψq′ := e−Ĉ/~δq′ (III.5.1.8)

has a chance to be an element of H. Whether or not it does depends on the details of M, {., .}, C.
For instance, if C as a function of p at fixed q has flat directions, then the smoothening effect of
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e−Ĉ/~ may be insufficient, so in order to avoid this we required that C is positive definite and not
merely non-negative. If C would be indefinite, then (III.5.1.8) has no chance to make sense as an L2

function.
We will see in a moment that (III.5.1.8) qualifies as a candidate coherent state if we are able

to analytically extend (III.5.1.8) to complex values z of q′ where the label z in ψz will play the
role of the point in M at which the coherent state is peaked. In order that this is possible (and
in order that the extended function is still square integrable), (III.5.1.8) should be entire analytic.
Now δq′(q) roughly has an integral kernel of the form ei(k,(q−q

′)) (with some pairing < ., . > between
tangential and cotangential vectors) which is analytic in q′ but the integral over k, after applying

e−Ĉ/~, will produce an entire analytic function only if there is a damping factor which decreases faster
than exponentially. This provides the intuitive explanation for the growth requirement in definition
III.5.2. Notice that the ψz are not necessarily normalized.

Let us then assume that

q 7→ ψm(q) := [ψq′(q)]q′→z(m) = [e−Ĉ/~δq′(q)]q′→z(m) (III.5.1.9)

is an entire L2 function. Then ψm is automatically an eigenfunction of the annihilation operator ẑ
with eigenvalue z since

ẑψm = [e−Ĉ/~q̂δq′ ]q′→z(m) = [q′e−Ĉ/~δq′ ]q′→z(m) = z(m)ψm (III.5.1.10)

where in the second step we used that the delta distribution is a generalized eigenfunction of the
operator q̂. But to be an eigenfunction of an annihilation operator is one of the accepted definitions
of coherent states !

Next, let us verify that ψm indeed has a chance to be peaked at m. To see this, let us consider
the self-adjoint (modulo domain questions) combinations

x̂ :=
ẑ + ẑ†

2
, ŷ :=

ẑ − ẑ†

2i
(III.5.1.11)

whose classical analogs provide real coordinates for M. Then we have automatically from (III.5.1.10)

< x̂ >m:=
< ψm, x̂ψm >

||ψm||2
=
z(m) + z̄(m)

2
=: x(m) (III.5.1.12)

and similar for y. Equation (III.5.1.12) tells us that the operator ẑ should really correspond to the
function m 7→ z(m), m ∈ M.

Now we compute by similar methods that

< [δx̂]2 >m:=
< ψm, [x̂− < x̂ >m]2ψm >

||ψm||2
=< [δŷ]2 >m=

1

2
| < [x̂, ŷ] >m | (III.5.1.13)

so that the ψm are automatically minimal uncertainty states for x̂, ŷ, moreover the fluctuations are
unquenched (equal each other). This is the second motivation for calling the ψm coherent states.
Certainly one should not only check that the fluctuations are minimal but also that they are small
as compared to the expectation value, at least at generic points of the phase space, in order that the
quantum errors are small.

The infinitesimal Ehrenfest property

< [x̂, ŷ] >z

i~
= {x, y}(m) +O(~) (III.5.1.14)
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follows if we have properly implemented the canonical commutation relations and adjointness rela-
tions. The size of the correction, however, does not follow from these general considerations but
the minimal uncertainty property makes small corrections plausible. Condition (III.5.1.14) supplies
information about how well the symplectic structure is reproduced in the quantum theory.

For the same reason one expects that the peakedness property

|< ψm, ψm′ > |2
||ψm||2 ||ψm′ ||2 ≈ χKm(m′) (III.5.1.15)

holds, where Km is a phase cell with center m and Liouville volume ≈
√
< [δx̂]2 >m< [δŷ]2 >m and

χ denotes the characteristic function of a set.
Finally one wants coherent states to be overcomplete in order that every state in H can be

expanded in terms of them. This has to be checked on a case by case analysis but the fact that our
complexifier coherent states are for real z nothing else than regularized δ distributions which in turn
provide a (generalized) basis makes this property plausible to hold.

Exercise III.5.1.
Consider the phase space: M = T ∗R = R2 with standard Poisson brackets {q, q} = {p, p} =
0, {p, q} = 1 and configuration space C = R. Consider the complexifier C = p2/(2σ) where σ is a
dimensionful constant such that C/~ is dimensionfree. Check that it meets all the requirements of
definition III.5.2 and perform the coherent state construction displayed above.
Hint:
Up to a phase, the resulting, normalized coherent states are the usual ones for the harmonic oscillator
with Hamiltonian H = (p2/m + mω2q2)/2 with σ = mω. Verify that the states ψm are Gaussian
peaked in the configuration representation with width

√
~/σ around q = q0 and in the momentum

representation around p = p0 with width
√

~σ where m = (p0, q0).

As it has become clear from the discussion, the complexifier method gives a rough guideline,
but no algorithm, in order to arrive at a satisfactory family of coherent states, there are things to
be checked on a case by case basis. On the other hand, what is nice is that given only one input,
namely the complexifier C, it is possible to arrive at a definite and constructive framework for a
semiclassical analysis. It is important to know what the classical limit of Ĉ is, otherwise, if we have
just an abstract operator Ĉ then the map m 7→ z(m) is unknown and an interprtation of the states
in terms of M is lost.

III.5.2 Application to QGR

Let us now apply these ideas to QGR. Usually the choice of C is stronly motivated by a Hamiltonian,
but in QGR we have none. Therefore, at the moment the best we can do is to play with various
proposals for Ĉ and to explore the properties of the resulting states. For the simplest choice of Ĉ
[75] those properties have been worked out more or less completely and we will briefly describe them
below.

The operator Ĉ is defined by its action on cylindrical functions f = p∗γfγ by

Ĉ

~
f = −p∗γ [

1

2
[

∑

e∈E(γ)

l(e)[Rj
e/2]2] fγ ] =: p∗γ [Ĉγfγ] (III.5.2.1)

where the positive numbers l(e) satisfy l(e ◦ e′) = l(e) + l(e′) and l(e−1) = l(e) and Rj
e are the usual

right invariant vector fields.
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Exercise III.5.2.
Recall the definition of the maps pγ′γ for γ ≺ γ′ from section II.1.2 and check that the Ĉγ are

consistently defined, that is, Ĉγ′ ◦ p∗γ′γ = p∗γ′γ ◦ Ĉγ.

This choice is in analogy to the harmonic oscillator where the quantum complexifier is essentially
the Laplacian −(d/dx)2. The classical limit of (III.5.2.1) depends in detail on the function l which
is analogous to the parameter ~/σ for the case of the harmonic oscillator. For instance [74], one can
choose a) three families of foliations s 7→ HI

s , I = 1, 2, 3 of σ by two dimensional surfaces HI
s such

that there is a bijection (s1, s2, s3) 7→ x(~s) := [∩IHI
sI ] ∈ σ and b) a partition P I

s of the HI
s into small

surfaces S and define

C =
1

2a2κ

∫

R

ds
3∑

I=1

∑

S∈P I
s

[Ar(S)]2 (III.5.2.2)

where Ar(S) is again the area functional and a is a dimensionful constant of dimension cm1. The

function l for this example is then roughly16 l(e) = (βℓP )2

a2

∫
ds

∑
I

∑
S∈P I

s
χS(e) where χS(e) = 1 if

S ∩ e 6= ∅ and vanishes otherwise.
The δ−distribution with respect to the measure µ0 can be written as the sum over all SNW’s

(exercise !)

δA′(A) =
∑

s

Ts(A
′)Ts(A) (III.5.2.3)

with resulting coherent states

ψAC(A) =
∑

s

e−
1
2

∑
e∈E(γ(s)) l(e)je(je+1)Ts(A

C)Ts(A) (III.5.2.4)

where the SL(2,C) connection AC is defined by

AC[A,E] =

∞∑

n=0

in

n!
({A,C}(n))[A,E] (III.5.2.5)

Thus we see that in this case the symplectic manifold given as the cotangential bundle M = T ∗A
over the space of SU(2) connections is also naturally given as the complex manifold AC of SL(2,C)
connections. From the general discussion above it now follows that the classical interpretation of the
annihilation operators

ÂC(e) := e−Ĉ/~Â(e)eĈ/~ (III.5.2.6)

is simply the holonomy of the complex connection AC(e).
In order to study the semiclassical properties of these states we consider their cut-offs ψAC,γ for

each graph γ defined on cylindrical functions f = p∗γfγ by

< ψAC , f >kin=:< ψAC,γ, f >kin (III.5.2.7)

Now, (if we work at the non-gauge invariant level,) one can check that

ψAC,γ(A) =
∏

e∈E(γ(s)

ψ
l(e)

AC(e)
(A(e)) (III.5.2.8)

16This formula gets exact in the limit of infinitely fine partition, at finite coarseness, it is an approximation to the
exact, more complicated formula.
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where for any g ∈ SL(2,C), h ∈ SU(2) we have defined

ψtg(h) :=
∑

j

(2j + 1)e−tj(j+1)/2χj(gh
−1) (III.5.2.9)

Exercise III.5.3.
Verify, using the Peter&Weyl theorem, that for g ∈ SU(2) we have ψ0

g(h) = δg(h), the δ−distribution
with respect to L2(SU(2), dµH). Conclude that (III.5.2.9) is just the analytic extension of the heat
kernel e−t∆/2 where ∆ is the Laplacian on SU(2). Thus the states (III.5.2.9) are in complete analogy
with those for the harmonic oscillator, just that R was replaced by SU(2) and the complexification
C of R by the complexification SL(2,C) of SU(2). In this form, coherent states on compact gauge
groups were originally proposed by Hall [76].

The analysis of the semiclassical properties of the states ψAC,γ on Hkin can therefore be reduced
to that of the states ψtg on L2(SU(2), dµH). We state here without proof that the following properties
could be proved [75]: I) Overcompleteness, II) expectation value property, III) Ehrenfest property,
IV) peakedness in phase space, V) annihilation operator eigenstate property, VI) minimal uncertainty
property and VII) small fluctuation property. Thus, these states have many of the desired properties
that one requires from coherent states.

In the following graphic we display as an example the peakedness properties of the analog of
(III.5.2.9) for the simpler case of the gauge group U(1), the case of SU(2) is similar but requires
more plots because of the higher dimensionality of SU(2). Thus g0 = eph0 ∈ U(1)C = C − {0}, p ∈
R, h0 ∈ U(1) and u ∈ U(1) where we parameterize u = eiφ, φ ∈ [−π, π). Similarly, g = ep1u, p1 ∈ R.
We consider in figure 16 the peakedness in the configuration representation given by the probability
amplitude

u = eiφ 7→ jtg0(u) = |ψtg0(u)|2/||ψtg0||2 (III.5.2.10)

at h0 = 1, p ∈ [−5, 5]. In figure 17 the phase space peakedness expressed by the overlap function

g = ep1u 7→ it(g, g0) =
| < ψtg, ψ

t
g0 > |2

||ψtg||2 ||ψtg0||2
(III.5.2.11)

is shown at fixed p = 0, h0 = 1 for p ∈ [−5, 5], u ∈ U(1). We have made use of the fact (exercise
!) that ψg0(u) and < ψg, ψg0 > respectively depend only on the combinations g0u

−1 = ep0hu−1 and
ḡg0 = ep+p1u−1h0 respectively. Therefore, peakedness at u = h0 or g = g0 = eph0 respectively for
any h0 is equivalent to peakedness at u = 1 or at g = ep0 respectively for h0 = 1. Both plots are
for the value t = 0.001 and one clearly sees the peak width of

√
t ≈ 0.03 when resolving those plots

around the peak as in figure 18, which has a close to Gaussian shape just like the harmonic oscillator
coherent states have. As a first modest application, these states have been used in order to analyze
how one would obtain, at least in principle, the QFT’s on CST’s (Curved SpaceTime) limit from full
QGR in [49]. In particular, it was possible to perform a detailed calculation concerning the existence
of Poincaré invariance violating dispersion relations of photon propagation within QGR which were
discussed earlier at a more phenomenological level in the pioneering papers [77]: The idea is that the
metric field is a collection of quantum operators which are not mutually commuting. Therefore it
should be impossible to construct a state which is peaked on, say the Minkowski metric, and which
is a simultaneous eigenstate of all the metric operator components, in other words, there should be
no such thing as a Poincar/’e invariant state in full QGR17, already because such an object should

17This seems to contradict the fact that we are even interested in four dimensionally diffeomorphism invariant states
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Figure 16: Probability amplitude u 7→ jtg0(u) at p ∈ [−5, 5], h0 = 1.
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Figure 17: Overlap function g 7→ itg0(g) at p = 0, h0 = 1 for p1 ∈ [−5, 5], u ∈ U(1).
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Figure 18: Resolution of a neighbourhood of the peak of the function g 7→ itg0(g) at p = 0, h0 = 1.

be highly background dependent. The best one can construct is a coherent state peaked on the
Minkowski metric. The small fluctuations that are encoded in that state influence the propagation
of matter and these tiny disturbances could accumulate to measurable sizes in so-called γ−ray burst
experiments [78] where one measures the time delay of photons of higher energy as compared to
those of lower energy as they travel over cosmological distances as a result of the energy dependence
of the speed of light. If such an effect exists then it is a non-perturbative one because perturbatively
defined QFT’s on Minkowski space are by construction Poincaré invariant (recall e.g. the Wightman
axioms from section I.1).

These are certainly only first moderate steps. The development of the semiclassical analysis for
QGR is still in its very beginning and there are many interesting and new mathematical and phys-
ical issues that have to be settled before one can seriously attack the proof that, for instance, the
Hamiltonian constraint of section III.1 has the correct classcical limit or that full QGR reduces to
classical GR plus the standard model in the low energy regime.

III.6 Gravitons

III.6.1 The Isomorphism

The reader with a strong background in ordinary QFT and/or string theory will have wondered
throughout these lectures where in QGR the graviton, which plays such a prominent role in the per-
turbative, background dependent approaches to quantum gravity, resides. In fact, if one understands
the graviton, as usually, as an excitation of the quantum metric around Minkowski space, then there
is a clear connection with the semiclassical analysis of the previous section: One should construct
a suitable coherent state which is peaked on the gauge invariant phase space point characterizing

and the fact that the Poincaré group should be a tiny subgroup thereof. However, this is not the case because we
require the states only to be invariant under diffeomorphisms which are pure gauge and those have to die off at spatial
infinity. Poincaré transformations are therefore not gauge transformation but symmetries and what we are saying is
that there are no Poincaré symmetric, diffeomorphism gauge invariant states.
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Minkowski space and identify suitable excitations thereof as gravitons. It is clear that at the moment
such graviton states from full QGR cannot be constructed, because we would need first to solve the
Hamiltonian constraint.

However, one can arrive at an approximate notion of gravitons through the quantization of lin-
earized gravity: Linearized gravity is nothing else than the expansion of the full GR action around
the gauge variant initial data (E0)aj = δaj , (A0)ja = 0 to second order in E − E0, A which results
in a free, classical field theory with constraints. In fact, the usual notion of gravitons is precisely
the ordinary Fock space quantization of that classical, free field theory [79]. In order to see whether
QGR can possibly accomodate these graviton states, Varadarajan in a beautiful series of papers [80]
has carried out a polymer like quantization of that free field theory on a Hilbert space Hkin which
is in complete analogy to that for full QGR, the only difference being that the gauge group SU(2)
is replaced by the gauge group U(1)3. While there are certainly large differences between the highly
interacting QGR theory and linearized gravity, one should at least be able to gain some insight into
the the answer to the question, how a Hilbert space in which the excitations are one dimensional can
possibly describe the Fock space excitations (which are three dimensional).

The problem of describing gravitons within linearized gravity by polymer like excitations is math-
ematically equivalent to the simpler problem of describing the photons of the ordinary Fock Hilbert
space HF of Maxwell theory by polymer like excitations within a Hilbert space HP = L2(A, dµ)
where A is again a space of generalized U(1) connections with some measure µ thereon. Thus, we
decribe the latter problem in some detail since it requires less space and has the same educational
value.

The crucial observation is the following isomorphism I between two different Poisson subalgebras
of the Poisson algebra on the phase space M of Maxwell theory coordinatized by a canonical pair
(E,A) defined by a U(1) connection A and a conjugate electric field E: Consider a one-parameter
family of test functions of rapid decrease which are regularizations of the δ−distribution, for instance

fr(x, y) =
e−

||x−y||2

2r2

(
√

2πr)3
(III.6.1.1)

where we have made use of the Euclidean spatial background metric. Given a path p ∈ P we denote
its distributional form factor by

Xa
p (x) :=

∫ 1

0

dt ṗa(t)δ(x, p(t)) (III.6.1.2)

The smeared form factor is defined by

Xa
p,r(x) :=

∫
d3yfr(x, y)X

a
p (y) =

∫ 1

0

dt ṗa(t)fr(x, p(t)) (III.6.1.3)

which is evidently a test function of rapid decrease. Notice that a U(1) holonomy maybe written as

A(p) := ei
∫
d3xXa

p (x)Aa(x) (III.6.1.4)

and we can define a smeared holonomy by

Ar(p) := ei
∫
d3xXa

p,r(x)Aa(x) (III.6.1.5)
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Likewise we may define smeared electric fields as

Ea
r (x) :=

∫
d3yfr(x, y)E

a(y) (III.6.1.6)

If we denote by q the electric charge (notice that in our notation α = ~q2 is the fine structure
constant), then we obtain the following Poisson subalgebras: On the one hand we have smeared
holonomies but unsmeared electric fields with

{Ar(p), Ar(p′)} = {Ea(x), Eb(y)} = 0, {Ea(x), Ar(p)} = iq2Xa
p,r(x)Ar(p) (III.6.1.7)

and on the other hand we have unsmeared holonomies but smeared electric fields with

{A(p), A(p′)} = {Ea
r (x), E

b
r(y} = 0, {Ea

r (x), A(p)} = iq2Xa
p,r(x)hp (III.6.1.8)

Thus the two Poisson algebras are isomorphic and also the ∗ relations are isomorphic, bothEa(x), Ea
r (x)

are real valued while both A(p), Ar(p) are U(1) valued. Thus, as abstract ∗− Poisson algebras these
two algebras are indistinguishable and we may ask if we can find different representations of it. Even
better, notice that Ar(p)Ar(p

′) = Ar(p ◦ p′), Ar(p)−1 = Ar(p
−1) so the smeared holonomy algebra is

also isomorphic to the unsmeared one. Hence there is an algebra ∗−isomorphism I defined on the
generators by Ir(hp) = hp,r, Ir(Er) = E. One must also show that the Ar(p) are still algebarically
independent as are the A(p) [80].

III.6.2 Induced Fock Representation With Polymer – Excitations

Now we know that the unsmeared holonmy algebra is well represented on the Hilbert space Hkin =
L2(A, dµ0) while the smeared holonomy algebra is well represented on the Fock Hilbert space HF =
L2(S ′, dµF ) where S ′ denotes the space of divergence free, tempered distributions and µF is the
Maxwell-Fock measure. These measures are completely characterized by their generating functional

ωF (Âr(p)) := µF (Ar(p)) = e−
1
4α

∫
d3xXa

p,r(x)
√
−∆

−1
Xb

p,rδab (III.6.2.1)

since finite linear combinations of the hp,r are dense in HF [80]. Here ∆ = δab∂a∂b denotes the
Laplacian and we have taken a loop p rather than an open path so that Xp,r is transversal. Also
unsmeared electric fields are represented through the Fock state ωF by

ωF (Âr(p)Ê
a(x)Âr(p

′)) = −α
2

[Xa
p,r(x) −Xa

p′,r(x)]ωF (ĥp◦p′,r) (III.6.2.2)

and any other expectation value follows from these and the commutation relations.
Since ωF defines a positive linear functional we may define a new representation of the algebra

A(p), Ea
r by

ωr(Â(p)) := ωF (Âr(p)) and ωr(Â(p)Êa
r (x)Â(p′)) := ωF (Âr(p)Ê

a(x)Âr(p
′)) (III.6.2.3)

called the r−Fock representation. In other words, we have ωr = ωF ◦ Ir.
Since ωr is a positive linear functional on C(A) by construction there exists is a measure µr on A

that represents ωr in the sense of the Riesz representation theorem (recall II.1.2.12). In [81] Velhinho
showed that the one – parameter family of measures µr are expectedly mutually singular with respect
to each other and with respect to the uniform measure µ0 (that is, the support of one measure is a
measure zero set with respect to the other and vice versa).

77



Result 1: There is a unitary transformation between any of the Hilbert spaces Hr and their im-
ages under Ir in the usual Fock space HF . Since finite linear combinations of the Ar(p) for fixed
r are still dense in HF [80], there exists indeed a polymer like description of the usual n-photon states.

Recall that the Fock vacuum ΩF is defined to be the zero eigenvalue coherent state, that is, it
is annihilated by the annihilation operators

â(f) :=
1√
2α

∫
d3xfa[

4
√
−∆Âa − i(

4
√
−∆)−1Êa] (III.6.2.4)

where fa is any transversal smearing field. We then have in fact that ωF (.) =< ΩF , .ΩF >HF
. (For

readers familiar with C∗−algebras this means that ΩF is the cyclic vector that is determined by
ωF through the GNS construction.) The idea is now the following: From (III.6.2.3) we see that
we can easily answer any question in the r−Fock representation which has a preimage in the Fock
representation, we just have to replace everywhere Ar(p), E

a(x) by A(p), Ea
r (x). Since in the r−Fock

representations only exponentials of connections are defined, we should exponentiate the annihilation
operators and select the Fock vacuum through the condition

eiâ(f)ΩF = ΩF (III.6.2.5)

In particular, choosing f =
√

2α( 4
√
−∆)−1Xp,r for some loop p we get

e
∫
d3xXa

p,r[iÂa+(
√
−∆)−1Êa]ΩF = ΩF (III.6.2.6)

Using the commutation relations and the Baker – Campell – Hausdorff formula one can write
(III.6.2.6) in terms of Âr(p) and the exponential of the electric field appearing in (III.6.2.6) times a
numerical factor. The resulting expression can then be translated into the r−Fock representation.
Denoting the translated expression by I−1

r (eiâ(f)) we now ask the question, whether there exists
a state Ωr ∈ Hkin = L2(A, dµ0) such that I−1

r (eiâ(f))Ωr = Ωr. Remarkably, expanding Ωr into the
charge network basis introduced in section (III.1) one finds a (up to a multiplicative constant) unique
solution given by

Ωr =
∑

c

e
−α

2

∑
e,e′∈E(γ(c))G

r
e,e′

ne(c)ne′ (c)Tc (III.6.2.7)

where c = (γ(c), {ne(c)}e∈E(γ(c))) denotes a charge network (the U(1) analogue of a spin network)
and

Gr
e,e′ =

∫
d3xXa

e,r

√
−∆

−1
Xb
e′,rδ

T
ab (III.6.2.8)

where δTab = δab − ∂a∆
−1∂b denotes the transverse projector.

Exercise III.6.1.
Fill in the gaps that lead from (III.6.2.6) to (III.6.2.8).

Let us discuss this result. First of all, (III.6.2.7) is not normalizable with respect to the inner
product on Hkin and neither are the images of n−photon states or coherent states from HF . This
seems to indicate that the space Hkin does not play any role for physically interesting states. However,
in [74] it was shown that this is not the case: It turns out, that, given a suitable regularization, that
one can indeed obtain the expectation values such as ωr(A(p)) from the formal expression

ωr(A(p)) :=
< Ωr, A(p)Ωr >

||Ωr||2
(III.6.2.9)
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where both numerator and denominator are infinite but the fraction is finite.

Result 2: The polymer images of photon states can be obtained as certain limits of states from
Hkin which therefore is a valid starting point in order to obtain physically interesting representations.

Moreover, as can be expected from the similarity between the formulas (III.6.2.8) and (III.5.2.4)
(for AC = 0 corresponding to vacuum E = A = 0 in the present case), the states Ωr also arise from
a complexifier, given in this case by

C =
1

2q2

∫

R3

d3x[Ea
r

√
−∆

−1
Eb
r ]δab (III.6.2.10)

Result 3: The complexifier framework is also able to derive images of n−photon states and usual
Fock coherent states from the universal input of a complexifier.

We conclude that at least for the linearized theory the question posed at the beginning of this
section could be answered affirmatively: There is indeed a precise framework available for how to
accomodate graviton states into the framework of loop quantum gravity. This is a promising result
and should have an analog in the full theory.
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Part IV

Selection of Open Research Problems
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Let us summarize the most important open research problems that have come up during the
discussion in these lectures.

i) Hamiltonian Constraint and Semiclassical States
The unsettled correctness of the quantum dynamics is the major roadblock to completing the
quantization programme of QGR. In order to make progress a better understanding of the
kinematical semiclassical sector of the theory is necessary.

ii) Physical Inner Product
Even if we had the correct Hamiltonian constraint and the complete space of solutions, at the
moment there is no really good idea available of how to construct a corresponding physical
inner product because the constraint algebra is not a Lie algebra but an open algebra in the
BRST sense so that techniques from rigged Hilbert spaces are not available. A framework for
such open algebras must be developed so that an inner product can be constructed at least in
principle.

iii) Dirac Observables
Not even in classical general relativity do we know enough Dirac observables. For QGR they
are mandatory for instance in order to select an inner product by adjointness conditions and
in order to arrive at an interpretation of the final theory. A framework of how to define Dirac
observables, at least in principle, even at the classical level, would be an extremely important
contribution.

iv) Covariant Formulation
The connection between the Hamiltonian and the Spin Foam formulation is poorly understood.
Without such a connection e.g. a proof of covariance of the canonical formulation on the one
hand and a proof for the correct classical limit of the spin foam formulation on the other cannot
be obtained using the respective other formulation. One should prove a rigorous Feynman –
Kac like formula that allows to switch between these complementary descriptions.

v) QFT on CST’s and Hawking Effect from First Principles
The low energy limit of the theory in connection with the the construction of semiclassical
states must be better understood. Once this is done, fundamental issues such as whether
the Hawking effect is merely an artefact of an invalid description by QFT’s on CST’s while a
quantum theory of gravity should be used or whether it is a robust result can be answered.
Similar remarks apply to the information paradoxon associated with black holes etc.

vi) Combinatorial Formulation of the Theory
The description of a theory in terms of smooth and even analytic structures curves, surfaces
etc. at all scales in which the spectra of geometrical operators are discrete at Planck scales is
awkward and cannot be the most adequate language. There should be a purely combinatorical
formulation in which notions such as topology, differential structure etc. can only have a
semiclassical meaning.

vii) Avoidance of Classical and UV Singularities
That certain classical singularities are absent in loop quantum cosmology and that certain
operators come out finite in the full theory while in the usual perturbative formulation they
would suffer from UV singularities are promising results, but they must be better understood.
If one could make contact with perturbative formulations and pin – point exactly why in QGR
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the usual perturbative UV singularities are absent then the theory would gain a lot more
respect in other communities of high energy physicists. There must be some analog of the
renormalization group and the running of coupling constants that one usually finds in QFT’s
and CST’s. Similar remarks apply to the generalization of the loop quantum cosmology result
to the full theory.

viii) Contact with String (M) – Theory
If there is any valid perturbative description of quantum gravity then it is almost certainly
string theory. It is conceivable that both string theory and loop quantum gravity are comple-
mentary descriptions but by themselves incomplete and that only a fusion of both can reach the
status of a fundamental theory. To explore these possibilities, Smolin has launched an ambi-
tious programme [82] which to our mind so far did not raise the interest that it deserves18. The
contact arises through Chern – Simons theory which is part of both Loop Quantum Gravity
and M – Theory [83] (when considered as the high energy limit of 11 dimensional Supergravity).
Another obvious starting point is the definition of M – Theory as the quantum supermembrane
in 11 dimensions [84], a theory that could be obtained as the quantization of the classical
supermembrane by our non-perturbative methods. Finally, a maybe even more obvious con-
nection could be found through the so-called Pohlmeyer String [85] which appears to be a
method to quantize the string non-perturbatively, without supersymmetry, anomalies or extra
dimensions, by working directly at the level of Dirac observables which are indeed possible to
construct explicitly in this case.

We hope to have convinced the reader that Loop Quantum Gravity is an active and lively approach
to a quantum theory of gravity which has produced already many non-trivial results and will continue
to do so in the future. There are still a huge number of hard but fascinating problems to be solved of
which the above list is at most the tip of an iceberg. If at least a tiny fraction of the readers would
decide to dive into this challenging area and help in this endeavour, then these lectures would have
been successful.
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