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Abstract

Gravitational corrections in N = 1 and N = 2 supersymmetric gauge theories
are obtained from topological string amplitudes. We show how they are recov-
ered in matrix model computations. This provides a test of the proposal by
Dijkgraaf and Vafa beyond the planar limit. Both, matrix model and topolog-
ical string theory, are used to check a conjecture of Nekrasov concerning these
gravitational couplings in Seiberg-Witten theory. Our analysis is performed for
those gauge theories which are related to the cubic matrix model, i.e. pure
SU(2) Seiberg-Witten theory and N = 2 U(N) SYM broken to N = 1 via a
cubic superpotential. We outline the computation of the topological amplitudes
for the local Calabi-Yau manifolds which are relevant for these two cases.
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1. Introduction

The fact that string theory can be a powerful tool to study four-dimensional supersym-

metric gauge theories has been long appreciated. One of the most successful approaches

is geometric engineering, where the gauge theory is appropriately embedded in a local

Calabi-Yau compactification of type II string theory. A large and interesting class of su-

persymmetric field theories can be geometrically engineered in this way, including N = 2

supersymmetric Yang-Mills theory with or without matter [1][2]. The gauge theory is re-

covered in a certain singular limit of the Calabi-Yau geometry where the string corrections

decouple, and the gauge group and matter content of the field theory depend only on local

properties of the Calabi-Yau space near the singularity.

Type II string theory on Calabi-Yau geometries has a topological subsector called

topological string theory. It turns out that amplitudes in topological string theory com-

pute exactly certain holomorphic terms in the effective action [3]. There are two types of

topological strings, the A-model and the B-model. In the A-model, the relevant correlation

functions are sums of world-sheet instanton contributions of a given genus. Using mirror

symmetry one can relate the A-model to the B-model, and the latter provides an elegant

and efficient tool to perform these sums exactly. From a pure field theory point of view

the exact holomorphic information comes from summing over space-time instantons. The

decoupling limit relates string world-sheet instantons to field theory space-time instan-

tons, and for example the space-time instanton corrected exact gauge coupling of N = 2

Seiberg-Witten theory [4,5] is recovered in that limit from the genus zero topological string

amplitude. Higher genus world-sheet instanton corrections are believed to calculate ex-

actly, in the same limit, certain (holomorphic) couplings of the gauge theory to gravity.

On the field theory side, these couplings haven’t been much studied. For N = 2 theories,

the genus one coupling can be extracted from the low-energy twisted theory, where the

coupling to gravity plays an important role [6,7,8,9]. More recently there has been impor-

tant progress in calculating also the space-time instantons contributions for higher genus

[10,11].

In the context of geometric engineering of gauge theories, one can break N = 2 to

N = 1 by adding space-time filling D-branes wrapped on internal supersymmetric cycles,

or in a dual picture by turning on RR-fluxes. The best studied holomorphic N = 1 quantity

is the superpotential, which is computed via genus zero open or closed topological string

amplitudes, respectively. As in the N = 2 case, higher genus amplitudes give gravitational

corrections to the gauge theory effective action [3,12].
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Recently Dijkgraaf and Vafa [13,14,15] have made the exciting proposal that these

holomorphic terms in N = 1 and N = 2 supersymmetric field theories are calculated by

matrix models. The genus expansion is replaced by an expansion in 1/N , N being the

dimension of the matrices. This leads to the possibility to use matrix models techniques to

study supersymmetric gauge theories as well as topological string theories. In particular in

the N = 1 context the tree level superpotential appears in the action of the matrix model

and the exact effective low-energy superpotential is recovered in the planar limit. This has

been checked explicitly in various examples, see for example [15,16]. Although the original

proposal of Dijkgraaf and Vafa applies to N = 1 models, one can recover results for the

N = 2 theory in an appropriate limit [17,15,16].

The aim of this paper is to bring the above ideas together in order to perform a non-

trivial check of the matrix model proposal beyond the planar limit, calculating thereby the

corresponding gravitational terms in the supersymmetric field theories with completely

independent methods. In this paper we will consider the simplest case of the cubic matrix

potential. According to Dijkgraaf and Vafa, this matrix model captures the holomorphic

couplings of IIB theory on a Calabi-Yau geometry with fluxes that generate a superpo-

tential. On the other hand, N = 2 SU(2) Seiberg-Witten theory is recovered at a special

co-dimension one sub-locus in the moduli space, where the N = 2 supersymmetry is re-

stored. This in turn can be geometrically engineered by decoupling the string correction

from the dual type IIA string on the canonical line bundle over P1 × P1 = F0 [1]. The

interrelations between these theories are shown in the diagram.

1 2

α 0

O(−2,−2)        F0

N=2 local CY string geometry

’

N=1 local CY geometry with fluxes

S =−S

space−time instantons

N=2 SU(2) SYM coupled to SUGRA

cubic matrix model

world−sheet instantons

D−V

3
2 2 W=      x +      x

m g

2 3uv=W (x) + f (x) + y 

2
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We are able to check non-planar contributions of the cubic matrix model against the

holomorphic gravitational couplings in various ways. First, we calculate the exact genus

one free-energy F (1) of the matrix model over the whole N = 1 moduli space. This matches

the genus one contribution in the corresponding IIB model, which we obtained using the

holomorphic anomaly equation. Second, we consider the holomorphic gravitational cou-

plings of the N = 2 theory. We compute them in the string decoupling limit of type IIA

theory on local F0, and we check these in this limit against the corresponding space-time

instanton calculations. Finally, we show that, by specializing the matrix model answer for

F (1) to the N = 2 subspace, one recovers the right answer.

The paper is organized as follows. In section 2, we analyze topological string theory on

the relevant local Calabi-Yau geometries: local F0, which geometrically engineers N = 2,

SU(2) Yang-Mills theory, and the geometries that engineer N = 2 U(N) super Yang-Mills

theory broken down to N = 1 by a tree level cubic superpotential W (Φ). In section 3, we

derive an expression for the gravitational correction to F (1) of N = 2, SU(2) Yang-Mills

theory from topological field theory, and we show that it agrees with the decoupling limit of

the corresponding amplitude on local F0. The geometries considered in section 2 are both

captured by the cubic matrix model, which we analyze in section 4 from a perturbative

point of view and also from the point of view of the loop equations. In particular, we derive

an exact expression for F (1) that is shown to agree with the one computed in section 2 for

the N = 1 theory. We also analyze the embedding of N = 2 in the matrix model and we

reproduce the gravitational coupling of SU(2) Seiberg-Witten theory from the genus one

free energy of the matrix model. In section 5 we focus again on SU(2), N = 2 and we

show that the results obtained in this paper agree with the direct instanton computations

of [10,11], confirming in this way a conjecture of Nekrasov.

2. Topological string in the associated local Calabi-Yau geometries

In this section we will consider topological string theory on two different pairs of non-

compact Calabi-Yau three-folds I and II. They are both related to the cubic matrix model

in a way to be described below.

The first pair of Calabi-Yau three-folds, denoted by I, is a mirror pair. The A-model

geometry of I is the total space of the anti-canonical line bundle O(−2,−2) → P1 × P1.

The B-model is its local mirror geometry, which is (in a patch) given by the constraint

vw = 1 + Y1 +
e−t̂1

Y1
+ Y2 +

e−t̂2

Y2
(2.1)
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where v, w ∈ C and Y1, Y2 ∈ C
∗. t̂i are the two complex structure deformations. A

canonical parameterization of the complex structure moduli space is in terms of periods ti

of a meromorphic differential on the elliptic curve obtained from (2.1) by setting vw = 0 [1].

The relation between ti and t̂i will be given below. The Picard-Fuchs equations as well as

explicit expressions for the periods in terms of various expansion parameters can be found

in [1,18].

The Calabi-Yau three-folds in the second pair, which will be denoted by II and ÎI,

are related by a geometric transition. The II geometry is obtained by deforming the

bundle O(−2)⊕O(0) → P1, such that the location of the P1 section in the O(0) direction,

parameterized by x, is restricted to the two critical points, a1, a2, of a cubic potential

W (x) = m
2

x2 + g
3
x3 [19]. Consider now type IIB string theory on this Calabi-Yau three-

fold. As pointed out in [20,19], by wrapping N1, N2 D5 branes around the P1’s located

at a1, a2, respectively, one can geometrically engineer an N = 1 theory. This theory is

U(N) N = 2 Yang-Mills theory broken to N = 1 via the addition of the superpotential

W (Φ) for the N = 1 adjoint chiral superfield Φ that is part of the N = 2 gauge multiplet.

The configuration with the above distribution of branes corresponds to a classical vacuum

where U(N) → U(N1) × U(N2). At low energies the SU(Ni) ⊂ U(Ni) parts confine and

the unbroken gauge group is a product of U(1) factors. For each SU(Ni) one has, at

low energy, a glue-ball superfield Si. The resulting dynamics is governed by the effective

superpotential for the glue-balls, Weff(Si).

The ÎI geometry is obtained from II by a geometric transition [19], in which the two

P1’s are contracted to a point and the resulting singular space is smoothened by two S3’s

of finite size. This has the local description as a hypersurface in C4:

vw = W ′(x)2 + f1(x) + y2, (2.2)

where x, y, v, w ∈ C and f1 is a polynomial of order one, which splits the double zeros

of W ′(x)2 to a±
1 , a±

2 . The two complex structure deformations of (2.2) are the two pa-

rameters of f1 or, alternatively, the differences a+
i − a−

i . The periods Si = 1
2πi

∫ a+
i

a−
i

ω and

Πi = 1
2πi

∫ Λ

a+
i

ω, i = 1, 2, where ω = dx
√

W ′(x)2 + f1(x), emerge by integrating over two

dimensions of the period integrals of the holomorphic three-form of the local Calabi-Yau

geometry (2.2)[19]. They are functions of the complex structure parameters and of the

parameters m and g which appear in W . The Πi also depend on a cut-off Λ which must be

introduced since we are working on a non-compact curve (i.e. x ∈ C rather than x ∈ P1;

otherwise there would be e.g. a linear relation S1 +S2 = 0). After the geometric transition

the D5 branes disappear, and we are left with a closed IIB string geometry with fluxes.
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2.1. Topological amplitudes on O(−2,−2) → P
1 × P

1 and their field theory interpretation.

The geometry I was considered in [1] to geometrically engineer SU(2) Seiberg-Witten

field theory from string theory. The two moduli of the A-model are the complexified

Kähler parameters t1 and t2 of the two P1’s. String corrections to the gauge theory can be

decoupled by sending ǫ ∼
√

α′ → 0. This should be done in such a way as to preserve the

renormalization group relation t1 ∼ 1/g2
s ∼ 1/g2

YM ∼ log(mW

Λ
) where mW ∼ a ∼ t2, Λ is

the scale of the gauge theory, gs the string coupling and a parameterizes the expectation

value of the adjoint scalar field in the Cartan subalgebra of SU(2). This leads to the double

scaling limit 1 ǫ → 0 [21,1]

exp

(
− 1

g2
s

)
= exp(−t1) = c1ǫ

4Λ4

t2 = ǫc2a ,

(2.3)

If we choose c1 = 1
2 and c2 = 2, Λ and a turn out to be those of the Seiberg-Witten theory.

We will make this choice in the following.

Our aim is to solve the topological B-model on this geometry at higher genus and

to take the field theory limit (2.3) of these contributions. In sect. 3 we will derive the

genus one result directly as the holomorphic coupling of the N = 2 chiral multiplet to

gravity and in sect. 4 we will recover it from non-planar contributions to the free energy of

the cubic matrix model, evaluated at the minimum of the effective superpotential. It has

been shown explicitly in [16] that the effective superpotential is computed by the planar

diagrams. Our results thus provide a test of the Dijkgraaf-Vafa conjecture beyond the

planar approximation.

The leading structure of the period vector in the large complex structure variables

near zi ≡ e−t̂i = 02 is

Π = (1, t1 = log(z1) + σ, t2 = log(z2) + σ, Fq = t1t2 + ρ)t , (2.4)

where σ = 2(z1 + z2) + 3(z2
1 + 4z1z2 + z2

2) + O(z3) and ρ = 4(z1 + z2) + (9z2
1 + 32z1z2 +

9z2
2) + O(z3). The formulae in [22] give the whole expansions. We denote qi = exp(−ti).

With q = q1/q2 and Q = q2 we can obtain the genus zero prepotential by integrating

Fq = −2q ∂
∂q F (0)(q, Q), cf. [22]. For later use we define Q =: e−T and q =: e−t.

1 In the heterotic–type II duality t1 is identified with the size of the base of the K3 fibration

and t2 with the size of a 2-cycle in the fiber.
2 A schematic view of the moduli space can be found in [18].
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The topological amplitudes F (g) for g > 0 are not holomorphic in the complex struc-

ture parameters, but various holomorphic limits exist. For example, if we expand them

around the large complex structure point where qi → 0 one can take the holomorphic limit

q̄i → 0 [23] in which F (g) has the form

F (g) = C(g) +
∞∑

m,n≥0
(m,n)6=(0,0

c(g)
nmqn

1 qm
2 , (2.5)

where C(g) stands for classical terms. The expansion parameters c
(g)
nm are the Gromov-

Witten invariants for the maps of genus g world-sheets with bidegree (m, n), while the

classical terms arise from maps of bidegree (0, 0). In our case we have C(0) = 1
24

t31− 1
8
t21t2−

1
8 t1t

2
2 + 1

24 t32, C(1) = − t1
24 − t2

24 and C(g) = (−1)g |B2gB2g−1|
4g(2g−1)(2g−1)!χ (χ is the ‘regularized’

Euler number of the non-compact target space).

In the decoupling limit (2.3) the topological amplitudes F (g) compute the holomorphic

part of the low-energy effective N = 2 SUSY field theory. In particular the complexified

effective gauge coupling (τ = 4πi
g2 + θ

2π ) is obtained in the field theory limit as τ(u) =
∂2

∂a2F (0) = limǫ→0 4∂2
t2

F (0) [1], where the log(ǫ) terms, which appear in this limit, have

been absorbed in the bare coupling and u(a) parameterizes the field theory moduli space.

Similarly, the holomorphic functions F (g)(u(a)), which multiply the following combinations

of the self-dual part of the graviphoton field strength, F+, and of the curvature tensor,

R+, in the effective Lagrangian

F (g)(u(a))F 2g−2
+ R2

+ (2.6)

can be calculated from F (g) in the limit (2.3). On dimensional grounds, these terms are

suppressed by M
(2−2g)
pl ∼ ǫ(2g−2).

A non-vanishing n-space-time-instanton contribution to F (g)(u) = limǫ→0 ǫ(2g−2)F (g)

arises from the infinite number of terms in F (g) at fixed degree n (i.e. w.r.t. the base)

in (2.5). This contribution must have the structure a2−2g
(

Λ4

a4

)n

. This requires that the

corresponding term in f (g) scales like 1
(aǫ)2g−2

(
Λ4

a4

)n

∼ q4n
1

(1−q2)4n+2g−2 . This in turn implies

that c
(g)
nm grows with m as

ĉ(g)
nm = γnm4n−3+2g. (2.7)

A similar argument was given in [1] for g = 0. The proportionality factor γn is directly

related to the gauge theory space-time instantons. E.g. for the gauge coupling we have

ĉ(0)
nm =

2(4n−1)

(4n − 3)!n
Fnm4n−3 , (2.8)
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with Fn the n-instanton contribution to F (0) as calculated in [24].

The topological amplitudes for this model in the large volume limit have been cal-

culated for g = 0 in [1] and for g = 1 in [22]. Generally, the amplitudes F (g) for g > 1

are defined recursively in terms of all amplitudes with lower g and the propagators Sij

as defined in [3]. It can be shown that for this model the propagators can be chosen to

vanish except for Stt [18]. It can be determined from the g = 0, 1 amplitudes by using the

simplification of the holomorphic anomaly equation which occurs at genus one in the case

with only one non-zero propagator:

∂tF
(1) = Stt∂3

t F (0) + ∂t

∑

r

ar log(∆r) . (2.9)

Here the sum is over the components of the discriminant loci which are (i) are the conifold

locus ∆1 = 1 − 8(z1 + z2) + 16(z2
1 + z2

2) − 32z1z2 and (ii) the divisors ∆2 = z1z2 at large

radius limit. The coefficients ar parameterize the holomorphic ambiguity. A convenient

choice is a1 = − 1
12 and a2 = 1

12 which yields, using the genus 0, 1 results, the expansion of

Stt

Stt =
1

2
+ 4q1q2 + 16(q2

1q2 + q1q
2
2) + 40(q3

1q2 + q1q
3
2) + 188q2

1q2
2 + O(q5) . (2.10)

With the recursive definition of the F (g) [3], worked out for the local B-model in [25], the

higher F (g) can be calculated up to the holomorphic ambiguity. We have fixed the latter

from the knowledge of the absence of holomorphic curves of low degree[26].

We have calculated the Gromov-Witten invariants using the above procedure and

found agreement with genus 2 results of [27], who used the same method and at higher

genus with the ones evaluated in [28] using Chern-Simons theory. In particular we find

that the c
(g)
nm are

c(g)
nm = P (4n−3+2g)

n (m) = p(2n−2+2g)
n (x)

2n−1∏

k=1

(k + m) (2.11)

where P
(d)
n (x), p

(d)
n (x) are polynomials of degree d. The remarkable fact that the Gromov-

Witten invariants lie on polynomials is a consequence of the embedding of the SU(2)

N = 2 supersymmetric gauge theory in the string geometry and holds therefore also for

other geometries like O(−K) → Fn with n = 1, 2, which allow for such an embedding [1].
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We can give the topological string amplitudes exactly to all orders in q2 by specifying the

P
(2n−2+2g)
n (x) or alternatively by writing

F (0) = C(0)(t) − 2
(
Li3(q2) +

∞∑

n=1

qn
1

n3(1 − q2)4n−2
h(0)

n (q2)
)

F (1) = C(1)(t) − 1

6

(
Li1(q2) −

∞∑

n=1

qn
1

n(1 − q2)4n
h(1)

n (q2)
)

F (g) = C(g) +
(−1)gB2g

g(2g − 2)!

∞∑

n=0

qn
1

n3−2g(1 − q2)4n+2g−2
h(g)

n (q2) .

(2.12)

The h
(g)
n are polynomials of degree 2(n+g−1) whose symmetric coefficients determine

all orders in q2 for given a order in q1. E.g. for g = 0 we find

h
(0)
1 =1

h
(0)
2 =1 + 18q + q2

h
(0)
3 =1 + 98q + 450q2 + 98q3 + q4

h
(0)
4 =1 + 306 q + 4851 q2 + 13188 q3 + 4851 q4 + . . .

h
(0)
5 =1 + 732 q + 26903 q2 + 206434 q3 + 426060 q4 + . . .

h
(0)
6 =1 + 1490 q + 105315 q2 + 1660604 q3 + 8358292 q4 + 14651604 q5 + . . .

...

(2.13)

The missing terms, indicated by . . ., can be recovered from the ones displayed via

h
(g)
n (1/q) = q−(2(n+g−1)h(g)(q). (2.13) and (2.3) allow to determine the Fn and also pro-

vides an expansion scheme for the string corrections. E.g. using c1 = 1
2 and c2 = 2 we ex-

pand F (0) in the limit (2.3), using Li3(1−ǫa) = ζ(3)−π2

6
aǫ+( 3

4
−π2

12
− 1

2
log(ǫa))a2ǫ2+O(ǫ3).

This yields to the relevant order, namely ǫ2, from (2.12) and (2.13)

F (0) = a2
(
log(x)+c(0)− x

25
−5x2

214
−3x3

218
−1469x4

231
−4471x5

5 · 234
−40397x6

243
−441325x7

7 · 247
+O(x8)

)
,

(2.14)

where x =
(

Λ
a

)4
and c(0) is related to the bare gauge coupling into which a log(ǫ) term has

been absorbed. This matches the Seiberg-Witten prepotential [24].
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The corresponding expressions for genus one are

h
(1)
1 = (1 − q)2

h
(1)
2 = 1 − 2q − 94q2 − 2q3 + q4

h
(1)
3 = 1 − 1137 q2 − 3872 q3 − . . .

h
(1)
4 = 1 + 4 q − 6818 q2 − 72168 q3 − 158262 q4 − . . .

h
(1)
5 = 1 + 10 q − 28440 q2 − 643440 q3 − 3622665 q4 − 6479092 q5 − . . .

h
(1)
6 = 1 + 18 q − 94008 q2 − 3827252 q3 − 41834673 q4 − 167100606 q5 − 265697392 q6 − . . .

...

(2.15)

The holomorphic quantities of the gauge theory from higher F (g) (2.6) can be extracted

in the limit (2.3) at order ǫ2−2g, as explained above. For F (1) we obtain from (2.12) and

(2.15)

F (1) = − 1

24
log(x)+c(1)+

x2

213
+

x3

3 · 214
+

1647x4

229
+

981x5

231
+

450137x6

3 · 241
+

45111x7

242
+O(x8) ,

(2.16)

this expression matches exactly the one calculated in the twisted N = 2 gauge theory in

the next section and the matrix model calculation in section 4.

We have calculated the h
(g)
i with the topological B-model methods described in [18],

albeit at another expansion point, up to genus 3. These expressions can be found in

appendix A. In the gauge theory limit we get the following expressions for the holomorphic

functions in (2.6)

F (2) =
1

a2

(
− 1

480
− 11x2

218
− 117x3

222
− 171201x4

234
− 1919923x5

5 · 237
− 96877135x6

247
+ O(x7)

)
,

F (3) =
1

a4

(
− 1

8064
+

7x2

219
+

293x3

223
+

985823x4

235
+

4069345x5

5 · 238
+

416333277x6

246
+ O(x7)

)
.

(2.17)

2.2. The B-model on the local geometry ÎI

As explained before, the geometry ÎI describes the low-energy dynamics of U(N)

super Yang-Mills theory with a cubic tree-level superpotential, and Dijkgraaf and Vafa

conjectured in [13] that the amplitudes of the topological B-model on this geometry, which

correspond to the holomorphic couplings of the gauge theory, is captured by the cubic

matrix model. At genus zero this was checked by noticing that the planar solution of the
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matrix model reproduces the special geometry of ÎI [13], and it was also confirmed in [16]

by using matrix model perturbation theory. To check this at genus one, we shall calculate

F (1). As explained in [23,3], F (1) is a section of a determinant line bundle over the complex

moduli space, which was studied by Ray and Singer. F (1) satisfies a holomorphic anomaly

equation which can be readily integrated up to a holomorphic ambiguity to be discussed

below.

To proceed we need the periods S1, S2 from [19], whose notation we adopt. It is

convenient to change variables (a−
1 , a+

1 , a−
2 , a+

2 ) ≡ (x1, x2, x3, x4) → (∆21, ∆43, Q, I) where

∆21 ≡ 1

2
(x2 − x1) , ∆43 ≡ 1

2
(x4 − x3)

Q ≡ 1

2
(x1 + x2 + x3 + x4) = −m

g

I ≡ 1

2
[(x3 + x4) − (x1 + x2)] =

√
∆2 − 2(∆2

21 + ∆2
43)

(2.18)

We will also use z1 = ∆2
43 and z2 = ∆2

21 and ∆ = (a1 − a2) = m
g .

The periods Si(z1, z2, g, ∆) were computed in [19]3. To express the B-model ampli-

tudes in terms of the Si we need the inverse relations

z1(S1, S2, g, ∆) =
4

g∆
S1 +

8

g2∆4
(2S2

1 − 3S1S2) +
8

g3∆7
S1(5S1 − 13S2)(4S1 − 3S2) + O(S4)

z2(S1, S2, g, ∆) = z1(S2, S1, g,−∆)

(2.19)

According to [23] and [3] and taking the simplification in the local case [25] into account,

we expect the holomorphic S̄i → 0 limit of the genus one B-model amplitude to be, up to

an additive constant,

F (1) =
1

2
log

(
det

(
∂zi

∂Sj

)
f(z)

)
. (2.20)

For the holomorphic ambiguity f(z) we make the Ansatz f(z) = (
∏

i ∆κi

i )Iκ3 . The ∆i

are components of the discriminant of the Riemann surface. It splits into two factors, the

conifold divisor ∆1 = z1 ·z2 and ∆2 = (x3−x1)(x3−x2)(x4−x2)(x4−x1). The exponents

κi determine the leading behavior of F (1) at the degeneration loci. At the conifold we

expect [29] κ1 = −1
6 . We fixed the κi by comparing with any three coefficients of the

matrix model computation, which we will present in sect. 4, to κ1 = −1
6 , κ2 = 2

3 and

κ3 = −1. Note that I = 0 is not a discriminant component of the local geometry. The

3 Note that the sums in the expressions for the periods S1 and Π1 in appendix B of [19] should

read
∑

∞

n=1
cn∆2n

21
F

2n−2(0)
(2n−2)!

and
∑

∞

n=1
cn∆2n

21
G

2n−2(0)
(2n−2)!

, respectively.
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above ansatz for f was motivated by simplicity. I seems to appear in f as a branch locus

in the moduli space similarly as the Z5 orbifold point Ψ = 0 appears in the ambiguity of

F (1) for the quintic in [3]. F (1) has the expansion

F (1) = − 1

12
log

(S1S2

Λ6

)
+

1

6
(S1 − S2) +

g4

m6

(
7

3
S2

1 − 31

3
S1S2 +

7

3
S2

2

)

+
g6

m9

(
332

9
S3

1 − 923

3
S2

1S2 + . . .

)

+
g8

m12

(
1864

3
S4

1 − 47083

6
S3

1S2 + 15349S1
2S2

2 − . . .

)

+
g10

m15

(
54416

5
S5

1 − 187528S1
4S2 + 570066S1

3S2
2 − . . .

)

+
g12

m18

(
1762048

9
S6

1 − 12980560S1

3
S5

1S2 +
54863776

3
S4

1S2
2 − 256344964

9
S3

1S3
2 + . . .

)

+ O(S7),

(2.21)

where . . . means antisymmetric completion.

3. F (1) from topological field theory

In the decoupling limit (2.3), the amplitudes F (g) give corrections to the low energy

effective action of N = 2 super Yang-Mills theory of the form (2.6). In particular, F (1)

gives a term ∫
d4xF (1)(a)TrR2

+ (3.1)

which can be integrated to obtain

1

2
F (1)(a)

(
χ − 3

2
σ
)
. (3.2)

Here a is a coordinate in the moduli space of N = 2 super Yang-Mills, and χ and σ denote

the Euler characteristic and signature of the four-manifold, respectively. A coupling to

gravity like (3.2) is natural when the theory is embedded in string theory, as we are doing

here. Another way in which couplings to gravity are relevant is when the N = 2 theory

is topologically twisted. Indeed, as shown in [6], the low-energy effective action of twisted

N = 2 super Yang-Mills on an arbitrary four-manifold contains terms proportional to the

Euler characteristic and the signature (these terms appear in any twisted gauge theory with

N = 2 [8,9] or N = 4 [7] supersymmetry). As pointed out in [7,14], when the manifold is

11



hyperKähler, the twisted and the physical theory agree, and we should therefore be able to

compare the coupling (3.2) with the corresponding result in topological field theory. This

was done in [14] for the N = 4 theory.

The geometry I of the preceding section engineers N = 2 Yang-Mills theory with

gauge group SU(2) in the limit (2.3). On the other hand, the coupling to gravity that

appears in the effective action of the twisted theory can be written [6,8] in terms of data

of the Seiberg-Witten elliptic curve [4,5]:

−χ

2
log

(Λda

du

)
+

σ

8
log

( ∆

Λ4

)
, (3.3)

where a(u) is the a-period of the Seiberg-Witten differential, u the coordinate on the

moduli space, and ∆ is the discriminant of the curve. This should agree with (3.2) on a

compact four-dimensional hyperKähler manifold. There are two such manifolds: T 4 and

K3. For T 4, χ = σ = 0, and both (3.2) and (3.3) are trivial. For K3, χ = 24, σ = −16,

and by comparing (3.2) to (3.3) we find:

F (1)(a) = −1

2
log

(Λda

du

)
− 1

12
log

( ∆

Λ4

)
. (3.4)

Using the explicit expressions ∆ = u2 − Λ4, and the explicit relation between u and a

worked out in [24],

u(a) = 2a2

(
1 +

1

24

(Λ

a

)4

+ +
5

212

(Λ

a

)8

+
9

217

(Λ

a

)12

+
1469

228

(Λ

a

)16

+ · · ·
)

, (3.5)

we computed the first few non-trivial corrections:

F (1)(a) =
1

6
log

(
32

a

Λ

)
+

1

213

(Λ

a

)8

+
1

3 · 214

(Λ

a

)12

+
1647

229

(Λ

a

)16

+
981

231

(Λ

a

)20

+
450137

3 · 241

(Λ

a

)24

+
45111

242

(Λ

a

)28

+ · · ·
(3.6)

This is precisely what we found in sect. 2.

It is interesting to notice that, when F (1) is written in terms of modular forms (by

using for example the results in [8]), one finds

F (1) = − log η(τ). (3.7)

In this equation τ is the modular parameter of the Seiberg-Witten curve when written in the

Γ(2) description of [4], and it is related to the modular parameter τ0 of the Γ0(4) description

of [5,24] by τ = τ0/2. Equation (3.7) is in agreement with the general considerations in

[15] relating F (1) to η(τ) whenever the local Calabi-Yau geometry reduces to a Riemann

surface.
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4. Matrix model considerations

The conjecture of Dijkgraaf and Vafa states that the cubic matrix model captures all

the information about the F (g) of the ÎI geometry. On the other hand, one can consider

a limit that recovers the Seiberg-Witten exact solution to SU(2), N = 2 super Yang-Mills

theory, together with its gravitational corrections [17,15,16], which are given by the non-

planar sector of the matrix model. In this section we give some results for the cubic matrix

model beyond the planar approximation. We compute the free energy up to sixth order in

perturbation theory, providing in this way information up to g = 3, and we use the loop

equations to find an exact expression for F (1).

4.1. Perturbative calculation

The cubic matrix model has the potential

W (Φ) = tr
(m

2
Φ2 +

g

3
Φ3

)
=

N∑

i=1

(m

2
λ2

i +
g

3
λ3

i

)
. (4.1)

Classically the potential is extremized if the eigenvalues are in either one of the two critical

points, i.e. at a1 = 0 or a2 = −m/g. Quantum-mechanically the eigenvalues form two

bands and there is eigenvalue tunneling between the two bands. We want to consider the

metastable vacuum in which N1 eigenvalues are at 0 and N2 eigenvalues are at −m/g, with

N1 and N2 fixed, subject only to the condition that N1 + N2 = N . This corresponds, in

matrix model terminology, to a two-cut solution. This issue has already been addressed

recently [16]. Here we will use a slightly different approach which avoids introducing

ghost degrees of freedom. While the authors of [16] considered only the planar limit of

the matrix model, we also compute non-planar contributions. While the former contain

the information about the effective superpotential, the holomorphic couplings of the field

theory to gravity are obtained from the non-planar part of the free energy.

The partition function Z and free energy F of the matrix model are:

Z = eF =
1

Vol(U(N))

∫
DΦ Φe−W (Φ) =

1

N !(2π)N

∫ ∏

i

dλi∆
2(λ)e−

m
2

∑
i
λ2

i−
g

3

∑
i
λ3

i ,

(4.2)
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where ∆(λ) =
∏

i<j(λi − λj) is the Vandermonde determinant. We expand around the

vacuum with λi = 0 for i = 1, . . . , N1 and λi = −m
g for i = N1 + 1, . . . , N . Denoting the

fluctuations by µi and νj , the Vandermonde determinant becomes

∆2(λ) =
∏

1≤i1<i2≤N1

(µi1 − µi2)
2

∏

1≤j1<j2≤N2

(νj1 − νj2)
2

∏

1≤i≤N1
1≤j≤N2

(
µi − νj +

m

g

)2

. (4.3)

We also expand the potential around this vacuum and get

W =

N1∑

i=1

(m

2
µ2

i +
g

3
µ3

i

)
−

N2∑

i=1

(m

2
ν2

i − g

3
ν3

i

)
+

m3

6g2
N2. (4.4)

Notice that the propagator of the fluctuations around −m/g has the ‘wrong’ sign. The

interaction between the two sets of eigenvalues, which is given by the last factor in (4.3),

can be exponentiated and included in the action, as in [18]. This generates an interaction

term between the two eigenvalue bands

Wint = −2N1N2 log
m

g
+ 2

∞∑

k=1

1

k
(

g

m
)k

∑

i,j

k∑

p=0

(−1)p

(
k

p

)
µp

i ν
k−p
j . (4.5)

By rewriting the partition function in terms of matrices instead of their eigenvalues, we

can represent this model as an effective two-matrix model, involving an N1 × N1 matrix

Φ1, and an N2 × N2 matrix Φ2:

Z =
1

Vol(U(N1)) × Vol(U(N2))

∫
DΦ1DΦ2e

−W1(Φ1)−W2(Φ2)−W (Φ1,Φ2), (4.6)

where

W1(Φ1) = + tr
(1

2
mΦ2

1 +
g

3
Φ3

1

)
,

W2(Φ2) = − tr
(1

2
mΦ2

2 −
g

3
Φ3

2

)
,

Wint(Φ1, Φ2) = 2
∞∑

k=1

1

k
(

g

m
)k

k∑

p=0

(−1)p

(
k

p

)
tr Φp

1 trΦk−p
2

+ N2W (a2) + N1W (a1) + 2N1N2 ln
(m

g

)
.

(4.7)

where trΦ0
1 = N1, tr Φ0

2 = N2, W (a1) = 0 and W (a2) = m3

6g2 . We have dropped the statis-

tical factor N !/(N1!N2!) which counts the number of ways to distribute the N eigenvalues

among the two critical points of the potential. This two-matrix model is (perturbatively)
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well defined if we choose Φ1 hermitian and Φ2 anti-hermitian, i.e. µi real and νj imag-

inary. We can now compute the free energy F = log(Z) is a straightforward way. F

consists of two parts, a perturbative part Fpert = log
(
Z(g)/Z(g=0)

)
which vanishes for

the free (Gaussian) model and a non-perturbative part Fn.p. which gets contributions from

the U(N) group-volume factor. Both can be computed in a straightforward way. The

perturbative part can be expanded as

Fpert = −N1W (a1)−N2W (a2)+2N1N2 ln
(m

g

)
+

∞∑

h=1

∑

g≥0
h+2−2g>0

( g2

m3

)h

Fh,g(N1, N2) (4.8)

where Fh,g is a homogeneous polynomial in N1 and N2 of degree h + 2 − 2g. One finds,

up to h = 6,

Fpert = −N1W (a1) − N2W (a2) + 2N1N2 ln(
m

g
)

+
g2

m3

[(
2

3
N

3
1 − 5N

2
1 N2 + 5N1N

2
2 −

2

3
N

3
2

)
+

1

6
(N1 − N2)

]

+
g4

m6

[(
8

3
N

4
1 −

91

3
N

3
1 N2 + 59N

2
1 N

2
2 −

91

3
N1N

3
2 +

8

3
N

4
2

)
+

(
7

3
N

2
1 −

31

3
N1N2 +

7

3
N

2
2

)]

+
g6

m9

[(
56

3
N

5
1 −

871

3
N

4
1 N2 +

2636

3
N

3
1 N

2
2 −

2636

3
N

2
1 N

3
2 +

871

3
N1N

4
2 −

56

3
N

5
2

)

+
(

332

9
N

3
1 −

923

3
N

2
1 N2 +

923

3
N1N

2
2 −

332

9
N

3
2

)
+

35

6
(N1 − N2)

]

+
g8

m12

[(
512

3
N

6
1 −

6823

2
N

5
1 N2 +

28765

2
N

4
1N

2
2 −

67310

3
N

3
1 N

3
2 ± . . .

)

+
(

1864

3
N

4
1 −

47083

6
N

3
1 N2 + 15349N

2
1 N

2
2 ∓ . . .

)
+

(
338N

2
1 − 1632N1N2 + 338N

2
2

)]

+
g10

m15

[
9152

5

(
N

7
1 − 45118N

6
1 N2 + 247980N

5
1 N

2
2 − 540378N

4
1 N

3
2 ± . . .

)

+
(

54416

5
N

5
1 − 187528N

4
1 N2 + 570066N

3
1 N

2
2∓

)
+

(
66132

5
N

3
1 − 120880N

2
1 N2 ∓ . . .

)

+
5005

3
(N1 − N2)

]

+
g12

m18

[(
65536

3
N

8
1 −

1933906

3
N

7
1 N2 +

13258178

3
N

6
1 N

2
2 −

37761034

3
N

5
1 N

3
2 +

52780010

3
N

4
1 N

4
2 ∓ . . .

)

+
(

1762048

9
N

6
1 −

12980560

3
N

5
1 N2 +

54863776

3
N

4
1 N

2
2 −

256344964

9
N

3
1 N

3
2 ± . . .

)

+
(

1305280

3
N

4
1 −

18059582

3
N

3
1 N2 + 11824166N

2
1 N

2
2 ∓ . . .

)

+
(

1680704

9
(N2

1 + N
2
2 ) −

8748896

9
N1N2

)]
+ . . .

(4.9)
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where . . . means again anti-symmetric completion. The non-perturbative contribution to

the free energy is

eFn.p. = m− 1
2 (N2

1 +N2
2 )(2π)−

1
2 (N1+N2)

N1∏

k=1

Γ(k)

N2∏

l=1

Γ(l) . (4.10)

With the help of the asymptotic expansion (see e.g.[30])

ln
( N∏

k=1

Γ(k)
)

=
N2

2
lnN − 1

12
lnN − 3

4
N2 +

1

2
N ln 2π + ζ ′(−1) +

∞∑

g=2

B2g

4g(g − 1)

1

N2g−2

(4.11)

this becomes

Fn.p. =
1

2
N2

1 ln
(N1

m

)
+

1

2
N2

2 ln
(N2

m

)
− 3

4
(N2

1 + N2
2 ) − 1

12
ln(N1N2)

+ 2ζ ′(−1) +

∞∑

g=2

B2g

4g(g − 1)

( 1

N2g−2
1

+
1

N2g−2
2

) (4.12)

Comparing with the prepotential of the gauge theory with cubic superpotential, which can

be extracted from the results given in [19], we find it to be in precise agreement with the

leading terms, at each order in the coupling constant, of the free energy computed from

the matrix model if we identify Ni → Si. The only part of the gauge theory result which

is not directly determined by the matrix model is the dependence on the cut-off Λ.

4.2. F (1) from the loop equations

The expression for the free energy (4.9) was obtained by doing perturbation theory.

However one can obtain analytic expressions for the genus g free energies by using the

loop equations of the matrix model. These equations were used systematically in [31] in

the one-cut case, and extended to the multi-cut case in [32]. Before moving on to the

comparison with topological string theory calculations, we derive an analytic expression

for F (1) for the cubic matrix model which can be easily expanded to high powers in N1

and N2. The computation closely parallels the derivation in [32] of the two-cut solution, to

which we refer for further details. The reason why we cannot directly adopt the result of

[32] is that instead of imposing the absence of eigenvalue tunneling between the two bands

(equal chemical potential), we fix N1 and N2, i.e. we impose

∫ x4

x3

ρ(x)dx = N1 , and

∫ x2

x1

ρ(x)dx = N2 . (4.13)
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instead of
∫ x3

x2
ρ(x)dx = 0. In other words, we are not looking for the true vacuum but

consider a meta-stable vacuum with fixed N1 and N2
4. Here ρ(x) is the eigenvalue density

which is given by the discontinuity of the resolvent of the matrix Φ. For the cubic superpo-

tential W (x) = m
2

x2 + g
3
x3 it is ρ(x) = g

2πi

√∏4
i=1(x − xi) = 1

2πi

√
W ′2(x) − f1(x) where

f1 is a polynomial of order one whose two coefficients parameterize the widths of the two

branch cuts. Note that Ni are given by the same integrals as Si in the gauge theory. The

two conditions (4.13) are not independent since N1+N2 = N . The other conditions, which

follow from the asymptotic behavior of the resolvent, are exactly as in [32]. Following the

steps in [32] one finds (we give a few intermediate results of the computation in appendix

B)

F (1) = − 1

24

4∑

i=1

lnMi−
1

2
lnK(k)− 1

12

∑

i<j

ln(xi−xj)
2+

1

8
ln(x1−x3)

2+
1

8
ln(x2−x4)

2+const.

(4.14)

where K(k) is a complete elliptic integral with modulus

k2 =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
(4.15)

and the moments Mi are defined as

Mi =

∮

C

dx

2πi

W ′(x)

(x − xi)
√∏4

i=1(x − xi)
(4.16)

where the contour C encloses both cuts. For cubic W , Mi = g for all i = 1, . . . , 4, as one

shows by deforming C such as to enclose infinity.

It remains to express F (1) as a series in N1 and N2, with coefficients depending on m

and g, the two parameters of W . For this purpose it is convenient to change variables, as

in [19], (x1, x2, x3, x4) → (∆21, ∆43, Q, I), where the explicit relations were given in (2.18).

4 The complete matrix-model partition function involves a sum over all possible eigenvalue

distributions and does not have a topological expansion, as explained in [33]. This subtlety is,

however, not relevant here as we fix N1 and N2.
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Inserting (2.19) with Si replaced by Ni, we obtain

F (1) = − 1

12
log(N1N2) +

g2

m3

(
N1

6
− N2

6

)
+

g4

m6

(
7N2

1

3
− 31N1N2

3
+

7N2
2

3

)

+
g6

m9

(
332N3

1

9
− 923N2

1 N2

3
± . . .

)
+

g8

m12

(
1864N4

1

3
− 47083N3

1 N2

6
+ 15349N1

2N2
2 ∓ . . .

)

+
g10

m15

(
54416N1

5

5
− 187528N1

4N2 + 570066N1
3N2

2 ∓ . . .

)

+
g12

m18

(
1762048N1

6

9
− 12980560N1

5N2

3
+

54863776N1
4N2

2

3
− 256344964N1

3N2
3

9
± . . .

)

+ O(N7)

(4.17)

where . . . means, as before, antisymmetric completion. This expression agrees exactly

with the expansion of F (1) for the local geometry II (2.21) that we obtained in section

2, with the identification Si = Ni, i = 1, 2. This provides a one-loop test of the relation

conjectured in [13].

Using the iterative procedure developed in [31], one can, with some effort, derive

expressions for the higher genus contributions to the free energy.

4.3. N = 2 Yang-Mills from the matrix model

As explained in [17][15][16], using the results of the cubic matrix model one can derive

results for SU(2), N = 2 Yang-Mills theory. The idea is the following: the cubic matrix

model corresponds to the N = 2 theory broken down to N = 1 by adding the tree level

superpotential W (Φ) for the chiral superfield Φ. By taking g, m → 0 and keeping ∆ fixed,

we recover the pure N = 2 theory. In general, a tree level superpotential of order r + 1

allows one to recover the moduli space of the SU(r) theory. In our case, we can recover the

SU(2) theory, and ∆ will then be related to the well-known u-modulus of Seiberg-Witten

theory [4][5]. Some results for the prepotential for general r have been recently obtained

in [34].

In order to recover the N = 2 results, we first have to find the relation between the

matrix model variables and the usual variables of the Seiberg-Witten solution. Following

[16], we extremize the effective superpotential of the gauge theory Weff = ∂F (0)

∂S1
+ ∂F (0)

∂S2
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where (cf. (4.9) and (4.12) with Ni → Si and the Λ dependence added on dimensional

grounds)

F (0) =
1

2
S2

1 log
( S1

mΛ2

)
+

1

2
S2

2 log
( S2

mΛ2

)
− 3

4
(S2

1 + S2
2) + 2S1S2 log

( m

Λg

)

+
1

g∆3

(2

3
S3

1 − 5S2
1S2 + 5S1S

2
2 − 2

3
S3

2

)
+ O(S4).

(4.18)

Here we have ignored terms O(S) since they will not contribute to the positions of the

extrema of Weff . Extremizing Weff , i.e. solving ∂Si
Weff = 0, requires S1 = −S2 ≡ S with

S

g∆3
=

( Λ

∆

)4
(

1+6
( Λ

∆

)4

+140
( Λ

∆

)8

+4620
( Λ

∆

)12

+180180
( Λ

∆

)16

+7759752
( Λ

∆

)20

+· · ·
)

,

(4.19)

as obtained in [16]. Note that the relation S1 + S2 = 0 implies that f1 in (2.2) vanishes.

This, on the other hand means that the contours which define S1 and S2 can be deformed

into each other without picking up a contribution from the point at infinity. In other

words, we can add this point and consider a compact Riemann surface, as in Seiberg-

Witten theory. However, the scale Λ which appears in (4.19) is, a priori, not identical with

the scale appearing in Seiberg-Witten theory. To find their relation, we relate the curve

y2 = W ′(x)2 + f0 = g2
∏

(x− xi) to the Seiberg-Witten curve. First we shift x → x− 1
2
∆.

Using the relations (2.18) and the solutions ∆21(S,−S) and ∆43(S,−S) (c.f. (2.19)) one

finds, after rescaling y → gy, y2 =
(
x2 − 1

4
∆2

)2

− 4Λ4. Comparing this with the SU(2)

SW curve, y2 = (x2 − u)2 − Λ4
SW leads to the identifications

u =
1

4
∆2 , and Λ =

1√
2
ΛSW . (4.20)

This, together with (4.19), gives the relation between the variables in the matrix model

computation and the usual variables in Seiberg-Witten theory.

Since in order to obtain pure SU(2) super Yang-Mills we take a limit of the matrix

model, in order to compare the results of the matrix model calculation with the results

obtained in sections 2 and 3 we have to be very careful and look for quantities that do not

vanish or diverge as g → 0. For example, S vanishes as g → 0, while S/g is independent of

g and can be expressed solely in terms of ∆, as it is apparent from (4.19). When we express

F (r) in terms of S/g, we see that it is given by g2−2r, times a function of S/g. Therefore,

if r 6= 1, the resulting quantity depends on g and vanishes or diverges as g → 0. This is

related to the fact that F (r) is not a function in moduli space, but rather a section of a line

bundle L2−2r, i.e. for r 6= 1 it is not invariant under the gauge transformations of special
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geometry. This also indicates that, in order to compare the matrix model calculations with

the results of section 2 and 3, we should focus on gauge-invariant quantities.

Following this idea, in the case of F (0) it is clear that the appropriate quantities are

the second derivatives w.r.t. the moduli, i.e. the τij couplings, which are independent of

g [17]. One can check [16] that the τij computed in the matrix model lead to the right

result for τ in the N = 2 theory. Since F (1) is gauge-invariant and can be expressed in

terms of ∆, with no g dependence, one should be able to compare directly the F (1) of (3.6)

with the F (1) obtained in the matrix model. Indeed, using (4.19), (4.20), and the relation

between the u modulus and the a variable given in (3.5), we find that the F (1) of (4.17)

reproduces (3.6) after evaluating it at the extremum 5. It seems less straightforward to

relate the matrix model results for F (g) for g > 1 to the couplings F (g) in Seiberg-Witten

theory derived from string theory. In the final section we will, however, find agreement

between the expressions (2.17) and a recent conjecture by Nekrasov.

5. Comparison with instanton computations

The semiclassical expansion of the N = 2 prepotential of Yang-Mills theory can be

obtained by direct computation of instanton corrections. In a recent tour de force Nekrasov

[10](see also [11]) was able to provide general expressions for the n-th instanton contribution

to the N = 2, SU(N) prepotential, with or without matter. The answer for the n-th

instanton correction has the form Fn(a, ǫ1, ǫ2) and it is an analytic function in ǫ1,2. For

ǫ1 = −ǫ2 = ǫ, one can expand this as

ǫ−2Fn(a, ǫ) =

∞∑

k=0

F (g)
n (a)ǫ2g−2. (5.1)

The first coefficient in this expansion, F (0)
n (a), gives the prepotential of the corresponding

N = 2 theory. It was conjectured in [10] that the remaining coefficients F (g)
n (a), g ≥ 1,

give the n-instanton correction to the gravitational couplings F (g) of the N = 2 theory.

Here we provide nontrivial evidence for this conjecture by comparing some of the instanton

computations of [10,11] with the results of section 2 (and, therefore, with the matrix model

computations).

5 Note that the scale appearing in sect. 3 is, in fact, ΛSW.
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In [11] Fn(ǫ1, ǫ2) was explicitly computed for SU(2), up to n = 4. To compare with

our results in section 2, we restore units as follows: Fn → (Λ/2)4nFn. For n = 1 one finds

ǫ−2F1(ǫ) =
ǫ−2

25

Λ4

a2
. (5.2)

This says that the one-instanton contribution to F (g) vanishes for g > 0, which agrees with

(2.16) and (2.17). For n = 2, one finds:

ǫ−2F2(ǫ) =
Λ8

28

10a2 − ǫ2

8ǫ2a4(4a2 − ǫ2)2

=ǫ−2 5

214

Λ8

a6
+

1

213

Λ8

a8
+ ǫ2

11

218

Λ8

a10
+ ǫ4

7

219

Λ8

a12
+ · · ·

(5.3)

For n = 3, one finds from [11]:

ǫ−2F3(ǫ) =
Λ12

212

18a4 − 13a2ǫ2 + ǫ4

24ǫ2a6(a2 − ǫ2)2(4a2 − ǫ2)2

=ǫ−2 3

218

Λ12

a10
+

1

3 · 214

Λ12

a12
+ ǫ2

117

222

Λ12

a14
+ ǫ4

293

223

Λ12

a16
+ · · ·

(5.4)

Finally, for n = 4, one can extract from [11]:

ǫ−2F4(ǫ) =
Λ16

216

23504a10 − 70872a8ǫ2 + 67461a6ǫ4 − 26339a4ǫ6 + 3708a2ǫ8 − 162ǫ10

128ǫ2a8(4a2 − 9ǫ2)2(a2 − ǫ2)2(4a2 − ǫ2)4

= ǫ−2 1469

231

Λ16

a14
+

1647

229

Λ16

a16
+ ǫ2

171201

234

Λ16

a18
+ ǫ4

985823

235

Λ16

a20
+ . . .

(5.5)

We see that, after relabelling ǫ → iǫ, the coefficients in the above expansions are in perfect

agreement with the results in (2.14), (2.16) and (2.17).
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Appendix A.

We collect the first few polynomials g
(g)
n which enter the topological amplitudes (2.12).

h
(2)
1 = (1 − q)4

h
(2)
2 =

1

2
(2 − 17q + 80q2 + 1190q3 + 80q4 − 17q5 + 2q6)

h
(2)
3 =

1

3
(3 − 38 q + 1712 q2 + 48326 q3 + 124634q4 + . . .)

h
(2)
4 =

1

4
(4 − 67 q + 14592 q2 + 711059 q3 + 4924138 q4 + 9244668 q5 + . . .)

h
(2)
5 =

1

5
(5 − 104 q + 76705 q2 + 6090098 q3 + 82568187 q4 + 358139062 q5 + 580752958 q6 + . . .)

(A.1)

h
(3)
1 = (1 − q)6

h
(3)
2 =

1

8
(1 + 4q + q2)(8 − 125q + 1016q2 − 8854q3 + 1016q4 − 125q + 8q6)

h
(3)
3 =

1

33
(33 − 428q + 207q2 − 584608q3 − 6606954q4 − 13969512q5 − . . .)

h
(3)
4 =

1

43
(43 − 1275q − 62364q2 − 14760656q3 − 289184988q4 − 1451906781q5 − 2450425504q6 − . . .)

h
(3)
5 =

1

53
(53 − 2994q − 655802q2 − 183946424q3 − 5822909304q4 − 53583541710q5

− 190175648587q6 − 288031344528q7 − . . .)

(A.2)

They were used to derive (2.17). Note that the h
(g)
d1

can be used to write down the

conjecturally integer Gopakumar-Vafa invariants for O(−2,−2) → F0 (see e.g. [26]) n
(g)
d1,d2

for g < 4, d1 < 6 and d2 arbitrary, e.g.

{n(3)
4,d2

, d2 = 0, . . .} ={0, 0, 15, 4680, 184056, 3288688, 36882969, 300668486,

1935031484, 10359890196, 47820549652, 195274337280, 719145083800, . . .}

We checked integrality of the n
(g)
d1,d2

for g < 4, d1 < 6 and d2 ≤ 2000.

Appendix B.

We collect some of the intermediate results which are needed to derive (4.14). As we

mentioned in sect. 4, the derivation is almost identical to that in sect. 6 of [32]. Instead of
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the elliptic integrals Ki defined there, we encounter (we choose x1 < x2 < x3 < x4)

Ki =

∫ x4

x3

√
(x − x1)(x − x2)(x − x3)(x − x4)

(x − xi)
dx (B.1)

They arise from varying the constraint that N1 =
∫ x4

x3
ρ(x)dx is kept fixed rather than

requiring
∫ x3

x2
ρ(x)dx = 0 as in [32]. Explicit calculation gives [35]

K1 = iX
{
(−α6 + 2α4 + α2k2 − 2α4k2)E(k) − (k2 − α2)(α4 − 2α2 + k2)K(k)

+ (α8 − 4α6k2 + 6α4k2 − 4α2k2 + k4)Π(α2, k2)
}

K2 = iX
{
−α2(α4 − 2α2 − 2α2k2 + 3k2)E(k) − (k2 − α2)(α4 − 2α2 + 4α2k2 − 3k2)K(k)

+ (α8 − 6α4k2 + 4α2k4 + 4α2k2 − 3k4)Π(α2, k2)
}

K3 = iX
{
(3α6 − 2α4 − 2α4k2 + α2k2)E(k) + (k2 − α2)(3α4 − 2α2 − k2)K(k)

+ (−3α8 + 4α6 + 4α6k2 − 6α4k2 + k4)Π(α2, k)
}

K4 = iX
{
(−α6 − 2α4 + 2α4k2 + α2k2)E(k) − (k2 − α2)(α4 + 2α2 − 4α2k2 + k2)K(k)

+ (α8 − 4α6 + 6α4k2 − 4α2k4 + k4)Π(α2, k)
}

(B.2)

where

α2 =
(x4 − x3)

(x4 − x2)

k2 =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)

X =
1

4

(x1 − x3)
3/2(x2 − x4)

7/2

(x4 − x3)2(x3 − x2)

(B.3)

Next we have to solve eqs. (6.1) in [32] for the coefficients αi, however with Ki as given

above. We find

α1 =
1

(x1 − x2)

[
1 − (x4 − x2)

(x4 − x1)

E(k)

K(k)

]

α2 =
1

(x2 − x1)

[
1 − (x3 − x1)

(x3 − x2)

E(k)

K(k)

]

α3 =
1

(x3 − x4)

[
1 − (x4 − x2)

(x3 − x2)

E(k)

K(k)

]

α4 =
1

(x4 − x3)

[
1 − (x3 − x1)

(x4 − x1)

E(k)

K(k)

]

(B.4)

With these values for k2 and αi, the derivation of F (1) proceeds exactly as in [32] and

finally leads to (4.14).
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