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Abstract

We continue the study of supersymmetric type IIB pp-wave solutions by Maldacena and Maoz

(hep-th/0207284), who showed Ramond-Ramond five-forms can induce potential terms in the light

cone string actions which are nonlinear sigma models with special holonomy target spaces. We show

that nonvanishing Ramond-Ramond three-forms provide extra potential terms involving Killing

vectors in the string action and identify the supersymmetry requirements. In particular, in solutions

with (1, 1) worldsheet supersymmetry, the Killing vectors are required to be self-dual in Spin(7).
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I. INTRODUCTION

Recently Maldacena and Maoz [1] have constructed an interesting class of supersymmetric

pp-wave solutions in ten dimensional type IIB supergravity, which includes the maximally

supersymmetric plane-wave solution [2] as a special case. The nontrivial curvature is sup-

ported by null Ramond-Ramond (RR) five-forms which are non-constant, and it is argued

that the light cone string actions in Green-Schwarz formalism are nonlinear sigma models

with potential terms. When the target space is curved the spacetime supersymmetry requires

it to have special holonomy. For solutions with (2, 2) worldsheet supersymmetry the target

spaces are Calabi-Yau four-folds in general, and RR five-forms give holomorphic superpo-

tential and Killing vector terms, whereas when one demands only (1, 1) supersymmetry the

target geometry has reduced Spin(7) holonomy most generally and non-constant five-forms

are translated into real harmonic superpotentials on the worldsheet. These solutions are

shown to be exact string backgrounds using the U(4) formalism [3] and also by considering

possible higher order correction terms to the string effective actions [4]. Thus a large class

of interacting two dimensional field theories, including integrable models, are added to the

list of quantizable RR backgrounds. For subsequent works on these pp-wave string theories

see [5, 6, 7, 8, 9, 10, 11].

Although the solutions in [1] comprise quite general class of massive nonlinear sigma

models, certainly they do not have the most general potential terms. The supersymmetry

requirements of potential terms in two dimensional nonlinear sigma models are summarised

in [12]. With N = (2, 2) the target spaces are Kähler and two commuting holomorphic

Killing vector terms and one holomorphic superpotential term can be present. And for

N = (1, 1) the target space can be any real manifold and the potential terms include one

real superpotential and one Killing vector term. Supersymmetry also requires that the Lie

derivative of the superpotential should be constant along the Killing vectors. Compared to

this, first of all the field theories from pp-waves are special in the sense that the target space

is always eight dimensional with special holonomy, and secondly we see that one Killing

vector contribution is missing both in N = (2, 2) and N = (1, 1) solutions. It is conceivable

that RR three-forms can provide the missing potential terms on the worldsheet. It is the

aim of this paper to show it is indeed the case.

In sec. II we closely follow and repeat the analysis of [1] with nontrivial RR three-forms
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as well as five-forms. We identify the spacetime supersymmetry requirements on the Killing

vectors from RR three-forms and find they are consistent with the results in [12] as quoted

above. For the analysis of N = (1, 1) solutions we find it more illuminating to assume that

the transverse space has Spin(7) holonomy, and find supersymmetry requires the Killing

vector to preserve the Spin(7) structure. In sec. III we conclude with a few comments.

II. IIB PP-WAVE SOLUTIONS WITH RAMOND-RAMOND BACKGROUNDS

For IIB supergravity in ten dimensions we follow the conventions of [13], and take the

ansatz

ds2 = −2dx+dx− +H(xi)(dx+)2 + ds2
8,

F (5) = dx+ ∧ ξ(xi), (1)

F (3) = dx+ ∧ θ(xi),

where i = 1, 2 . . . 8 denote the transverse eight dimensional space with Euclidean signature,

F (5), F (3) are the RR fields and all other fields are set to zero. The Einstein’s equation has

only one nontrivial component

∇2H = −
2

3
ξijklξ

ijkl −
1

2
θijθ

ij , (2)

and from other field equations and the Bianchi identities ξ is anti-self-dual, closed and

co-closed, and θ is a closed two-form in eight dimensions.

The supersymmetry transformations for the dilatino λ and the gravitino ψa are given in

terms of a Weyl spinor ǫ,

δλ =
1

24
GabcΓ

abcǫ, (3)

δψa = Daǫ− Ωaǫ− Λaǫ
∗, (4)

with

Ωa = −
i

480
F

(5)
bcdefΓ

bcdefΓa,

Λa = −
1

96
(ΓaGbcdΓ

bcd + 2GbcdΓ
bcdΓa).

a, b, c . . . are used to denote the ten dimensional frame indices and the gamma matrices are

constants subsequently. Gabc is the complexified three-form, and since we have set Neveu-

Schwarz (NS) fields to zero G is pure imaginary, i.e. G = iF (3).
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Given the ansatz Eq.(1), it is natural to employ the following decomposition of ǫ,

ǫ = −
1

2
Γ+Γ−ǫ−

1

2
Γ−Γ+ǫ ≡ ǫ+ + ǫ−.

It is important to note that ǫ+, ǫ− have opposite chiralities in SO(8). Now we write down

the Killing spinor equations in terms of ǫ±. First by setting the variation of the dilatino to

zero,

θ/ǫ+ = 0, (5)

and from δψa = 0 we get

∂−ǫ+ = ∂−ǫ− = 0, (6)

∂+ǫ+ +
i

8
θ/ǫ∗+ = 0, (7)

∇iǫ+ = 0, (8)

∂+ǫ− +
i

2
ξ/ǫ− +

i

4
θ/ǫ∗

−
−

1

4
Γ−∇/Hǫ+ = 0, (9)

∇iǫ− −
i

4
Γ−ξ/Γµǫ+ +

i

16
Γ−(Γµθ/− 2θ/Γµ)ǫ

∗

+ = 0, (10)

where ξ/ = 1
4!
ξijklΓ

ijkl, θ/ = 1
2
θijΓ

ij . First from Eq.(6) we see that the Killing spinors are

independent of x−.

We find it useful to recall here the interpretation of different Killing spinor solutions

given in [1]. The Killing spinor solutions with nonvanishing ǫ+ are related to dynamical

supersymmetries in the light cone worldsheet action when it is rearranged to give a nonlinear

sigma model. On the other hand for the other half of Killing spinor components ǫ+ can be

set to zero and we can try to solve the remaining equations of ǫ− . These Killing spinors

are related to the kinematic part of the supersymmetries in the light cone gauge, and in the

nonlinear sigma models they are related to the number of free fields. Note that these Killing

spinors in general depend on x+, and the x+ dependence of ǫ+-nonvanishing Killing spinors

can be ignored by exploiting that we are free to superpose two different types of Killing spinor

solutions. Since our aim here is to show that RR three-forms give potentials involving Killing

vector terms to the string worldsheet action, and in flat spaces the isometries are trivial,

we concern ourselves particularly with nontrivial target geometry. We thus look for Killing

spinors with nonzero ǫ+ only.
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A. Solutions with four supercharges

In order to have two linearly independent complex spinors with nonvanishing ǫ+, we see

first from Eq.(8) that the transverse eight-dimensional space should most generally be a

Calabi-Yau four-fold. It is thus useful to consider how ξ, θ, originally in 35, 28 of SO(8) are

decomposed into SU(4).

35 → 15 + 10 + 10, (11)

28 → 15 + 6 + 6 + 1. (12)

When we choose the basis where the Killing spinors satisfy

Γ12ǫ+ = Γ34ǫ+ = Γ56ǫ+ = Γ78ǫ+, (13)

it becomes natural to choose the Fock space notations with γµ = Γ2µ−1 + iΓ2µ, µ = 1, 2, 3, 4

and states |0〉, |0̃〉 satisfying γµ|0〉 = γµ̄|0̃〉 = 0.

Now ǫ+ can be written as

ǫ+ = α|0〉 + ζ |0̃〉, (14)

where α, ζ are complex constants, and we used the fact that in Calabi-Yau spaces a gauge

choice for the spin connections can be made such that the Killing spinors are constants.

Using this basis, it is easy to see from Eq.(5) that only 15, a traceless (1, 1)-form, can

be nonzero since they annihilate the Killing spinor ǫ+ in Eq.(14) for arbitrary α, ζ . When

6 and 6̄, holomorphic and anti-holomorphic two-forms of SU(4) respectively, are dual to

each other with respect to the holomorphic four-form ǫµνλρ, Eq.(14) can be satisfied with a

relation between α, ζ , making the number of worldsheet supercharges reduced to two, i.e.

N = (1, 1). Together with 15, there are 21 components of θ which now satisfy Eq.(14) and

it is better described as 21 of Spin(7) in SO(8). This will be studied in more detail in the

next subsection and here we consider the solutions with arbitrary α, ζ .

Using the fact that ǫ+, ǫ− have opposite SO(8) chiralities we can write

ǫ− = Γ−(βµ̄γ
µ̄|0〉 + δµγ

µ|0̃〉). (15)

Now it is straightforward to find equations for α, ζ, βµ̄, δµ from the Killing spinor equations.

Following [1] we introduce a holomorphic tensor ξµν ≡ 1
3!
ξµλρσǫ

λρσνgνν and a hermitian tensor,

ξµν ≡ 1
2
gλλξµνλλ.
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From Eq.(9), we have

2i(−βµ̄ξ
µ̄
ν̄ + δµξ

µ
ν̄) −

i

2
θµ̄

ν̄δµ̄ =
α

4
∂ν̄H, (16)

2i(+βµ̄ξ
µ̄
ν − δµξ

µ
ν) +

i

2
θµ

νβµ =
ζ

4
∂νH, (17)

with βµ ≡ β∗

µ̄, δµ̄ ≡ δ∗µ. Eq.(10) gives

∇µ̄βν̄ − iζξµ̄ν̄ = 0, (18)

∇µδν − iαξµν = 0, (19)

∇µβν̄ + iαξµν̄ +
i

4
ζ∗θµν̄ = 0, (20)

∇µ̄δν + iζξµ̄ν −
i

4
α∗θµν̄ = 0. (21)

Of course apart from the terms involving θ’s the above equations are the same as the

ones found in [1], and we can proceed in the same spirit to find the solutions for βµ, δµ in

terms of arbitrary α, ζ and identify the requirements on ξ, θ from consistency.

By exploiting the properties like closure and anti-self-duality of ξ, θ and considering the

integrability conditions we find we can write

ξµν = 2∇µ∇νW, (22)

ξµν = 2∇µ∇νG1, (23)

θµν = 8∇µ∇νG2, (24)

with the coefficients chosen for later convenience. W is a holomorphic function and G1, G2

are real harmonic functions which serve as the potentials for holomorphic Killing vectors

V 1
µ = i∇µG1 and V 2

µ = i∇µG2. The fact that G1, G2 are harmonic is obvious from the group

theory consideration that they are 15, i.e. (1, 1)-form which is traceless.

The solution for ǫ− is given by

βµ = 2i(−α∇µG1 + ζ∇µW + ζ∗∇µG2), (25)

δµ = 2i(−ζ∇µG1 + α∇µW + α∗∇µG2). (26)

When they are substituted into Eqs.(16) and (17) we find from consistency

∇νG2∇
ν∇µG1 −∇νG1∇

ν∇µG2 = 0,

∇ν(∇
νG1∇µW ) = 0,

∇ν(∇
νG2∇µW ) = 0,
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and the complex conjugates. It is obvious what they mean. As promised, the spacetime

supersymmetry requires that the two Killing vectors should commute with each other and

the Lie derivative of the holomorphic superpotential along the Killing vectors should vanish.

This precisely matches the field theory supersymmetry conditions in [12].

Finally the metric is given in terms of

H = −32gµν(∇µG1∇νG1 + ∇µG2∇νG2 + ∇µW∇νW ).

B. Solutions with two supercharges

The existence of one Killing spinor solution to ∇iǫ+ = 0 implies that the transverse eight-

dimensional space has a reduced holonomy Spin(7) in general. The Killing spinor which is

left invariant under Spin(7) subgroup of SO(8) will be denoted as η and is chosen to be real.

As it is well-known Spin(7) holonomy is characterised by the Cayley four-form Ψ which can

be constructed from the Killing spinor

Ψijkl = ηTΓijklη, (27)

which is covariantly constant by construction and self-dual in SO(8) when we take the

convention that ξ is anti-self-dual. We assume that η is normalised appropriately and Ψ can

take values 0,±1. In the standard basis the non-zero components of Ψ are given as

1 = Ψ1234 = Ψ5678 = Ψ3478 = Ψ2468 = Ψ2367

= Ψ1368 = Ψ1256 = Ψ1357 = Ψ1458 = Ψ2457

= Ψ1287 = Ψ1476 = Ψ3465 = Ψ2385.

The basic identity involving Ψ is

ΨijkpΨ
lmnp =

1

6
δ
[l
[iδ

m
j δ

n]
k] −

1

4
Ψ

[lm
[ij δ

n]
k] , (28)

which will prove useful in verifying the statements in the following discussions.

Now in order to solve the Killing spinor equations involving ξ, θ, we first recall that

35asd → 35, (29)

28 → 21 + 7. (30)
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It turns out that 35 of Spin(7) can be alternatively described as a traceless symmetric

rank-two tensor when we make use of Ψ. It is straightforward to show that

(Ψ · ξ)ij ≡ Ψiklmξ
klm

j (31)

is symmetric and traceless.

The decomposition of the adjoint representation Eq.(30) and its implication on the solu-

tion of Eq.(5) is rather famous. Projection operators for two-forms in eight dimensions can

be explicitly constructed using Ψ, so that

θ±ij = λ±Ψ kl
ij θ±kl, (32)

where θ+ is 21 with λ+ = 1
2
, while θ− is 7 with λ− = −1

6
. This was first considered in [15]

as a generalization of the four-dimensional self-dual gauge fields, and extended to nontrivial

special holonomy manifolds in [16]. It is customary to call 21 self-dual and 7 anti-self-dual.

Since ǫ+ is proportional to η, the invariance of the dilatino means that we should keep 21

while 7 should be set to zero. This is consistent with what we observed in the previous

subsection with transverse Calabi-Yaus. When we demand two complex ǫ+ spinors we keep

only 15 of SU(4), but when 6 and 6̄ are nonzero and dual to each other we still have one

spinor solution to Eq.(5) η = |0〉 + |0̃〉.

Now we take the following ansatz for Killing spinors,

ǫ+ = αη, ǫ− = −iΓ−viΓ
iη, (33)

where α is a constant and vi is an unknown nonconstant vector to be determined. From

Eq.(10) we have

∇ivj =
α

4!
(Ψ · ξ)ij +

1

8
θijα

∗. (34)

In deriving this and other equations we have chosen the gauge for spin connections which

makes η constant, like the discussions about Calabi-Yau four-folds in the last subsection. A

proof that it is possible also with exceptional holonomy manifolds can be found for instance

in [14].

Since Ψ, ξ are closed, (Ψ · ξ)ij is curl-free. Therefore we can write locally

1

4!
(Ψ · ξ)ij = ∇i∇jU, (35)
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where U is a real harmonic function since (Ψ · ξ)ij is traceless, and U becomes the real

superpotential of N = (1, 1) nonlinear sigma models in the light cone lagrangian. Then

Eq.(34) implies that the gauge potential for θ can be chosen to be a Killing vector, i.e.

1

8
θij = DiGj , D(iGj) = 0. (36)

When we substitute

vi = α∇iU + α∗Gi, (37)

into Eq.(9) we get a consistency condition on the Killing vector G,

Di(G
j∇jU) = 0 or LGU = const (38)

which matches with the condition for potential terms of N = (1, 1) supersymmetric nonlinear

sigma models. When we integrate what remains we obtain

H = −4(GiG
i + ∇iU∇

iU), (39)

which serves as the scalar potential of the light cone worldsheet lagrangian.

Before we finish let us point out that an alternative interpretation can be given to the

requirement that the Killing vector should be in the adjoint representation 21 of Spin(7).

We note that for any Killing vector K,

LKΨ ≡ (diK + iKd)Ψ

= ∇jK
n Ψnklm dxj ∧ dxk ∧ dxl ∧ dxm

= (∇jK
n)−Ψnklm dxj ∧ dxk ∧ dxl ∧ dxm.

In order to get the third line Eq.(28) and Eq.(32) are used. We thus see that the Killing

vector G’s being 21 means it preserves the Spin(7) structure, in the sense that the Lie

derivative of Ψ vanishes along G.

III. DISCUSSIONS

In this paper we have presented a general class of IIB pp-wave solutions with Ramond-

Ramond backgrounds. In the light cone gauge the bosonic string action can be simply read

off from the metric and it is obvious we have nonlinear sigma models with eight dimensional
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special holonomy manifold target spaces followed by potential terms given by H . Then

the worldsheet supersymmetries inherited by the Killing spinors found above dictates how

the terms with fermions should be written. In particular the non-vanishing RR fields give

fermionic mass terms or Yukawa couplings more generally.

The potential terms of supersymmetric nonlinear sigma models are studied in [12]. The

analysis does not make use of the superfield formalism; it started with the most general la-

grangian and supersymmetry transformation rules allowed by Lorentz invariance and found

the consistency conditions. The potential is given in terms of one holomorphic superpoten-

tial and two commuting holomorphic Killing vectors for N = (2, 2) models and one real

superpotential and one Killing vector for N = (1, 1) solutions. The Lie derivatives of the

superpotentials along the Killing vectors are required to be constants. The supergravity

analysis presented in [1] and here is found to be consistent with the field theory results, but

in general the spacetime supersymmetry is more restrictive. It is particularly distinctive

with N = (1, 1) solutions; the superpotential is a harmonic function and the Killing vector

should be self-dual with respect to Spin(7). For N = (2, 2) solutions the Killing potentials

are required to be harmonic.

Perhaps it is useful to consider an example of the pp-wave with nonzero three-form. In

flat transverse space mass terms can be given to the worldsheet fields by a holomorphic

Killing vector, for instance one can consider a pure RR three-form background such as

F
(3)
+12 = F

(3)
+34 = F

(3)
+56 = F

(3)
+78 = m. (40)

This solution is already considered in [17] where generic supersymmetric plane-wave solu-

tions with nonvanishing RR fields are studied. This solution in fact preserves 28 spacetime

supersymmetries. What is special with this solution is that the worldsheet fields all have

the same mass. With bosons it is obvious from the metric and the worldsheet supersym-

metry guarantees that fermion masses are the same. In other words, the light cone string

spectrum of this background is the same as that of the maximally supersymmetric solution

with nontrivial five-form [18]. This of course is a natural consequence of our claim that for

N = (2, 2) solutions the same Killing vector terms on the worldsheet can come from either

RR five-forms or three-forms. Our result is also consistent with the observation made in

[17] that the plane-wave solutions can be superposed. In this paper we have extended it to

nontrivial target geometries and non-constant form fields, i.e. general pp-waves. Although
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we expect the degeneracy will be lifted once string interactions are taken into account, it

will be interesting if we can find a field theory dual of this solution using the Penrose limit

as in [19, 20]. It is not immediately obvious how or whether the solution Eq.(40) can be

obtained from an AdS solution as the Penrose limit [17]. It might be also worth mentioning

that our results can be used to regularize the orbifolds of solutions found in [17] by replacing

the orbifolded part of the target spaces with, e.g., Eguchi-Hanson space.

In [4] pp-wave solutions with nonvanishing NS and RR three-forms are considered and the

authors concluded that three-forms cannot induce worldsheet interactions without breaking

supersymmetry. Our result does not contradict theirs, since in flat target spaces the Killing

vectors can give mass terms at most. It is essentially the target space curvature and the

superpotential which make the worldsheet action interacting, but the message of our analysis

is that the RR three-forms can be succinctly incorporated into interacting models.

Finally we reckon it is an important enterprise to study the field theoretical properties

of the massive nonlinear sigma models found in this paper. They are special in the sense

that although manifestly non-conformal they can be embedded into exact superconformal

theories. By working out the quantum corrections one might be able to identify the hidden

conformal covariance of these massive two dimensional field theories. It should also help

rectifying the definition of supersymmetric D-branes in the class of nonlinear sigma models

considered in this paper.
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