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Abstract. We study the combined effects of land surface
conditions, atmospheric boundary layer dynamics and chem-
istry on the diurnal evolution of biogenic secondary organic
aerosol in the atmospheric boundary layer, using a model
that contains the essentials of all these components. First,
we evaluate the model for a case study in Hyytiälä, Fin-
land, and find that it is able to satisfactorily reproduce the
observed dynamics and gas-phase chemistry. We show that
the exchange of organic aerosol between the free troposphere
and the boundary layer (entrainment) must be taken into ac-
count in order to explain the observed diurnal cycle in or-
ganic aerosol (OA) concentration. An examination of the
budgets of organic aerosol and terpene concentrations show
that the former is dominated by entrainment, while the lat-
ter is mainly driven by emission and chemical transforma-
tion. We systematically investigate the role of the land sur-
face, which governs both the surface energy balance par-
titioning and terpene emissions, and the large-scale atmo-
spheric process of vertical subsidence. Entrainment is espe-
cially important for the dilution of organic aerosol concentra-
tions under conditions of dry soils and low terpene emissions.
Subsidence suppresses boundary layer growth while enhanc-
ing entrainment. Therefore, it influences the relationship be-
tween organic aerosol and terpene concentrations. Our find-
ings indicate that the diurnal evolution of secondary organic
aerosols (SOA) in the boundary layer is the result of cou-

pled effects of the land surface, dynamics of the atmospheric
boundary layer, chemistry, and free troposphere conditions.
This has potentially some consequences for the design of
both field campaigns and large-scale modeling studies.

1 Introduction

A large part of submicron atmospheric particulate material
is organic (Hallquist et al., 2009; Jimenez et al., 2009). Sec-
ondary organic aerosols (SOA) which are formed in the at-
mosphere from oxidation of high-volatility precursors are an
important contributor to the total organic aerosol budget. The
importance of SOA in new particle formation (Metzger et al.,
2010; Laaksonen et al., 2008; O’Dowd et al., 2002) and the
growth of atmospheric particles to cloud condensation nu-
clei (Riipinen et al., 2011; Slowik et al., 2010; Tunved et al.,
2006) is well established. Formation of SOA from gas-phase
species depends on the emissions of these species and their
processing in the atmosphere. When emitted at the land sur-
face, they enter into the atmospheric boundary layer (BL),
the lowest part of the atmosphere, which is characterized by
strong turbulent motions that are largely influenced by the
underlying land surface and the free troposphere (FT) on top
of it (de Bruin, 1983; van Heerwaarden et al., 2009). Act-
ing as a buffer between the surface processes and the FT,
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Fig. 1. Scheme of the interactions in and the boundaries of the sys-
tem studied in this work. The numbers relate to the forcings of the
system that are varied in the sensitivity analysis. Closed arrows in-
dicate a positive relation, open arrows a negative relation and pro-
cesses are indicated in the boxes.

the BL dynamics affect the processing of aerosol precursor
species and the partitioning into the aerosol phase of their
low-volatility reaction products.

Here we aim to systematically study the role of the diur-
nal variability of dynamics and chemical transformation on
the evolution of organic aerosol. We do this by modeling a
case study and conducting a set of sensitivity analyses us-
ing MXLCH-SOA, a coupled model of BL dynamics, land
surface, gas-phase chemistry and gas/particle partitioning,
aiming to determine the role of different processes in con-
trolling the diurnal variability in OA. A schematic overview
of the studied system is given in Fig.1. It is important to
note that we strive for a balance between all relevant com-
ponents of the system and therefore include the land sur-
face, BL dynamics, chemistry and gas/particle partitioning
in a way that keeps the essentials of all components. This al-
lows us to systematically study the whole system in a cou-
pled approach while avoiding excessive complexity. Thus,
we expand upon modeling studies that take the diurnal vari-
ability of BL characteristics on SOA formation into account
using box models with prescribed diurnal cycles of temper-
ature, humidity, boundary layer height, and oxidants (Shee-
han and Bowman, 2001; Bowman and Karamalegos, 2002;
Dzepina et al., 2009), or applying a fixed BL height, thereby
neglecting the effects of entrainment on BL growth and re-
actant concentrations (Tunved et al., 2006; Riipinen et al.,
2011). Besides, regional and global chemical transport mod-
els used for simulating SOA formation are usually forced by
offline meteorology (Lane et al., 2008; Slowik et al., 2010;
Riipinen et al., 2011), which hinders the ability to study their
sensitivity to meteorological and land surface boundary con-

ditions. In contrast, in our approach the dynamics and chem-
istry are solved simultaneously, which allows for an analysis
of different cases in which BL growth and entrainment are
driven by varying land surface and FT conditions. Moreover,
in our approach we are able to explicitly calculate the contri-
butions of the different processes to the budgets of reactants,
since MXLCH-SOA contains basic parametrizations of the
relevant processes based on sound physical and chemical as-
sumptions.

As a first step we validate MXLCH-SOA with observa-
tions of BL dynamics and gas-phase chemistry collected at
the SMEAR II measurement station at Hyytiälä, Finland. It
is located in the boreal forest which is an important source
of SOA, mainly from terpene oxidation (e.g.Tunved et al.,
2006). Then we perform a budget analysis of the main con-
tributions to terpene and organic aerosol mass in time, in-
cluding emissions, entrainment, chemistry and partitioning.
Finally, we analyze the sensitivity of BL organic aerosol evo-
lution to (1) the land surface conditions, in terms of surface
heat flux partitioning which drives the exchange between the
FT and the BL, and terpene emissions and (2) land surface
conditions (heat flux partitioning), entrainment and the large-
scale atmospheric process of vertical subsidence associated
with the presence of a high pressure system. The experiments
are based on a case study for the boreal forest region. How-
ever, since our focus is on understanding the processes that
occur in each BL in which SOA formation occurs, we will
discuss the general applicability of the findings for this case
study and their implications for field campaigns and large-
scale modeling.

2 Methods

In this section we briefly introduce the methods used to rep-
resent the BL dynamics and gas-phase chemistry, includ-
ing SOA formation through oxidation of volatile organic
compounds (VOCs), in MXLCH-SOA. Furthermore, we de-
scribe the case study and the numerical experiments that we
performed.

2.1 Dynamics of the boundary layer: mixed layer
approach

Mixed layer theory (Lilly , 1968; Tennekes, 1973) is an ap-
proximation for mixing in the BL under convective condi-
tions. Under this approximation scalars and chemical species
are instantaneously and perfectly mixed throughout the BL
due to the high turbulent intensity (Vil à-Guerau de Arel-
lano et al., 2011). In this way, the mixed layer approach is
comparable to a homogeneous reactive box in which chem-
ical transformations take place. Within this approach, the
BL grows due to the entrainment of dry air at the inter-
face between the FT and the BL, which is induced by the
buoyancy flux at the surface. These processes influence the
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Table 1. Chemical reaction scheme used in the numerical experiments of MXLCH-SOA. In the reaction rate functions,T is the absolute
temperature andχ is the solar zenith angle. First-order reaction rates are in s−1 and second-order reactions are in cm3molec−1s−1. PROD-
UCTS are reaction products which are not further evaluated in the chemical reaction scheme. In Reaction (R17),n = 0 (no OH-recycling).
α1−α4 are stoichiometric coefficients, see Table2.

Number Reaction Reaction rate

R1 O3 + hν → O1D
+ O2 6.62×10−5

· e
−

0.575
cos(χ)

R2 O1D
+ H2O → OH+ OH 1.63×10−10

· e
60
T

R3 O1D
+ N2 → O3 2.15×10−11

· e
110
T

R4 O1D
+ O2 → O3 3.30×10−11

· e
55
T

R5 NO2 + hν → NO+ O3 1.67×10−2
· e

−
0.575
cos(χ)

R6 CH2O+ hν → HO2 5.88×10−5
· e

−
0.575
cos(χ)

R7 OH+ CO → HO2 + CO2 2.40×10−13

R8 OH+ CH4 → CH3O2 2.45×10−12
· e−

1775
T

R9 OH+ ISO → ISORO2 1.00×10−10

R10 OH+ MVK → HO2 + CH2O 2.40×10−11

R11 HO2 + NO → OH+ NO2 3.50×10−12
· e

250
T

R12 CH3O2 + NO → HO2 + NO2 + CH2O 2.80×10−12
· e

300
T

R13 ISORO2 + NO → HO2 + NO2 + CH2O+ MVK 1 .00×10−11

R14 OH+ CH2O → HO2 5.50×10−12
· e

125
T

R15 HO2 + HO2 → H2O2
∗

R16 CH3O2 + HO2 → PRODUCTS 4.10×10−13
· e

750
T

R17 ISORO2 + HO2 → nOH + PRODUCTS 1.50×10−11

R18 OH+ NO2 → HNO3 3.50×10−12
· e

340
T

R19 NO+ O3 → NO2 + (O2) 3.00×10−12
· e−

1500
T

R20 TERP+ O3 → α1C1 + α2C2 + α3C3 + α4C4 5.00×10−16
· e

−530
T

R21 TERP+ OH → α1C1 + α2C2 + α3C3 + α4C4 1.21×10−11
· e

436
T

∗ k = (k1 + k2) · k3; k1 = 2.2×10−13
· e

600
T ; k2 = 1.91×10−33

· e
980
T · cair; k3 = 1+ 1.4×10−21

· e
2200
T · cH2O

concentrations of reactive species due to the fact that the BL
becomes higher, which increases the mixing volume, and be-
cause the air that is entrained from the FT typically contains
different concentrations of reactive species. The importance
of FT–BL exchange for the diurnal variability of reactants in
the Amazon was already suggested byMartin et al.(1988)
andGanzeveld et al.(2008).

With respect to the surface conditions, the vegetated land
surface forms the source of biogenic VOCs that are oxidized
in the BL to form SOA. NO emissions from the soil influence
atmospheric NOx levels and consequently the formation of
the oxidants ozone (O3) and the hydroxyl radical (OH). In
this study, we prescribe surface fluxes of sensible (H) and la-
tent heat (LE), VOCs and NO. The FT conditions for temper-
ature, moisture and reactants are also imposed, both in terms
of their initial value and, in the case of temperature and mois-
ture, their lapse rate. Reactive species in the FT are affected
by chemical transformations, but have an assumed constant
concentration profile. More complex assumptions could be
made (e.g. modification of the lapse rate of the reactants due

Table 2. Stoichiometric coefficients atT = 298K for the different
volatility bins of the SOA precursor category TERP, with saturation
concentrationC∗

i
in µgm−3 from Tsimpidi et al.(2010).

i 1 2 3 4

C∗
i

1 10 100 1000
αi 0.107 0.092 0.359 0.600

to chemical transformations), but these would not take away
the existing uncertainties, yet would increase the degrees of
freedom of the model. Initial and boundary conditions are
obtained from fitting MXLCH-SOA to the case study obser-
vations.

2.2 Gas-phase chemistry

The chemical mechanism used to represent the essentials
of the O3–NOx–VOC–HOx chemistry is given by reac-
tions (R1)–(R19) in Table1. It is based on and further
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Table 3. VOC emissions for the case study. Emissions dur-
ing the day follow a sinusoid with the maximum emission flux
(µgm−2h−1) as specified.

ISO α-pinene TERP

101 111 304

extends the simplified reaction schemes used byKrol et al.
(2000) and Vil à-Guerau de Arellano et al.(2011) with re-
action rate coefficients from the International Union of Pure
and Applied Chemistry (IUPAC) Subcommittee for Gas Ki-
netic Data Evaluation (http://www.iupac-kinetic.ch.cam.ac.
uk/). It is able to capture the essential photochemistry of
the main reactive species in rural and remote areas with low
anthropogenic influence. O3 deposition follows a sinusoidal
profile during the day (Table5). In this way, the deposition
velocity of O3 scales with stomatal resistance and LE (e.g.
Ganzeveld et al., 2008).

A simple reaction mechanism to simulate SOA formation
is introduced in MXLCH. In this mechanism, semi-volatile
compounds that are able to partition into the aerosol phase
are generated by the first step oxidation of terpenes by O3
and OH. Further chemical ageing is not represented. The
SOA-forming reactions are shown in Table1 (Reactions R20
and R21) and the stoichiometric coefficients in Table2. For
all simulations we assumed low NOx conditions, i.e. that or-
ganic peroxy radicals react predominantly with HO2 or RO2
and not NO, which is a reasonable approximation for the con-
ditions of our study.

All terpenes in our model are assumed to behave asα-
pinene with reaction rate coefficients fromAtkinson and
Arey (2003). The total terpene concentration is the sum of
the measured concentrations of 8 terpenes bySpirig et al.
(2004). In the experiments, we used TERP, a generic terpene
with the properties ofα-pinene, but with emissions scaled
up to reproduce the total terpene concentration.Hao et al.
(2011) showed that for low VOC concentrations (<5 µgm−3)
the assumption that SOA yields forα-pinene and real plant
emissions are similar is justified. Furthermore, we assumed
that aerosol yields fromα-pinene with OH are equal to the
better documented yields for ozonolysis ofα-pinene. The in-
formation on OH initiated oxidation in the literature is lim-
ited. Hao et al.(2011) reported a higher volatility and thus
lower yields from OH dominated chemistry than for O3 initi-
ated oxidation. In contrast, there are other experiments which
show that OH yields are a little higher than the O3 yields (N.
Donahue, personal communication, 2011;Henry and Don-
ahue, 2011). Finally, we assumed that aerosol formation from
isoprene can be neglected due to the low concentrations of
this precursor at our study location (e.g.Spirig et al., 2004).

Terpene emissions are prescribed with a sinusoidal pro-
file during the day with a maximum as specified in Table3.
The sinusoidal form of the diurnal emission is supported by

the terpene flux measurements ofRinne et al.(2007). The
prescribed terpene fluxes lie within the range of the measure-
ments byRinne et al.(2007) for similar temperatures and at
the same location, but are higher than the estimates for the
same dataset with the mixed layer gradient method bySpirig
et al. (2004). One reason for this discrepancy could be the
fact that the method used bySpirig et al.(2004) did not ac-
count for entrainment and therefore underestimates dilution
of the terpenes in the BL.

2.3 Organic aerosol formation:
gas/particle partitioning

Gas/particle partitioning is dominated by absorption of semi-
volatile species into an organic aerosol phase (Pankow,
1994). We assume that the semi-volatile terpene oxidation
products are in thermodynamic equilibrium with the aerosol
phase, which means that partitioning occurs instantaneously.
We account for gas/particle partitioning in MXLCH-SOA
by implementing the volatility basis set approach (Don-
ahue et al., 2006). This approach lumps the numerous semi-
volatile products that are formed after VOC oxidation into
several bins with logarithmically spaced effective saturation
concentrations. The mass yields for the different bins are ob-
tained by fitting results from laboratory studies of SOA for-
mation. Here, we use 4 bins with effective saturation con-
centrations of 1, 10, 100 and 1000 µgm−3 at 298 K, encom-
passing a relevant range of product vapor pressures (Lane
et al., 2008). The mass stoichiometric coefficients for the
different bins of the TERP category of the SOA precursors
are taken fromTsimpidi et al.(2010), see Table2. At each
time step, the total organic aerosol concentrationCOA is di-
agnosed from:

COA =

∑
i

(Xp,iCi) + OABG ; Xp,i =

(
1+

C∗

i

COA

)−1

(1)

whereCOA is the total organic aerosol mass concentration
(µgm−3), OABG the background organic aerosol concentra-
tion (µgm−3), Xp,i is the fraction of compoundi in the
aerosol phase (dimensionless), andC∗

i is the effective sat-
uration concentration of compoundi (µgm−3).

Temperature dependence of the saturation concentrations
follows Clausius-Clapeyron (Sheehan and Bowman, 2001):

C∗

i = C∗

i,0
T0

T
exp

[
1Hvap

R

(
1

T0
−

1

T

)]
(2)

in whichC∗

i,0 is the effective saturation concentration of com-
poundi at reference temperatureT0 (here 298 K),T is the ac-
tual temperature (K),1Hvap is the enthalpy of vaporization
(kJmol−1), andR is the ideal gas constant (Jmol−1K−1).
Here, we follow Pathak et al.(2007) and set1Hvap to
30 kJmol−1 for all condensable products.

Atmos. Chem. Phys., 12, 6827–6843, 2012 www.atmos-chem-phys.net/12/6827/2012/
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Fig. 2. Sensitivity of the partitioning coefficient of the first bin
(Xp,1) and organic aerosol concentration (COA) to temperature (T )
and the background organic aerosol concentration (OABG). Shades
indicateXp,1 (dimensionless) and the blue contoursCOA (µgm−3).

A backgroundCOA of 0.8 µgm−3 and of 0.2 µgm−3 is as-
sumed for the BL and FT, respectively. The BL value is based
on the measurements byRaatikainen et al.(2010). These
measurements are made in the canopy and therefore serve as
an estimate of the order of magnitude for the BL concentra-
tion. Since a FT value is not available from measurements,
we have performed an analysis to determine the sensitivity
to the assumed value, presented in Sect.3.2. The background
organic aerosol in BL and FT is assumed to be aged and thus
non-volatile, and will therefore not repartition back into the
gas phase (Cappa and Jimenez, 2010).

Figure2 shows the sensitivity of the calculated partition-
ing coefficient for the first bin (Xp,1) andCOA to variations
in T and OABG for a range of typical values for this study.
While the response ofXp,1 to variations inT and OABG is
quite nonlinear, especially at lowT and high OABG, the re-
sponse ofCOA is nearly linear to changes in OABG. This is
due to the fact that the strongest nonlinear behavior ofXp,1
is found for conditions where OABG makes up the largest
part of COA, and therefore the partitioning of semi-volatile
speciesC1 into the aerosol phase plays only a minor role in
determiningCOA. The sensitivities of the partitioning coeffi-
cients of the other bins show similar patterns.

2.4 Observational evaluation: case study

To evaluate our modeling approach, we selected a dataset of
surface and boundary layer characteristics (both dynamics
and chemistry) that is as complete as possible. Our assump-
tion of a well-mixed boundary layer is justified for sunny
days characterized by convective turbulent conditions. To

Table 4.The initial and boundary conditions in boundary layer (BL)
and free troposphere (FT) as obtained from fitting MXLCH-SOA to
the case study observations. All initial conditions are imposed at
07:50 LT. Heat fluxes are applied from 07:50 to 18:50 LT with H=

ρcpw
′
θ

′

s and LE= ρLvw
′
q

′

s. t is the time (s) andtd the length
of the simulation (s). The subscriptss ande indicate values at the
surface and the entrainment zone, respectively.

Property Value

Initial BL height 200
h (m)

Subsidence rate 0
ω (s−1)

Surface sensible heat flux 0.11sin(πt/td )

w
′
θ

′

s (Kms−1)
Entrainment/surface heat flux ratio 0.2

β = −w
′
θ

′

e/w
′
θ

′

s (dimensionless)
Initial BL potential temperature 288

〈θ〉 (K)
Initial FT potential temperature 288.4

θFT (K)
Potential temperature lapse rate FT 0.0035

γθ (Km−1)
Surface latent heat flux 0.06sin(πt/td )

w
′
q

′

s (gkg−1ms−1)
Initial BL specific humidity 8.0

〈q〉 (gkg−1)
Initial FT specific humidity 6.25

qFT (gkg−1)
Specific humidity lapse rate FT −0.0024

γq (gkg−1m−1)

meet these two requirements, we selected observations from
8 August 2001 at the SMEAR II field station at Hyytiälä
(61◦51

′

N, 24◦17
′

E) in southern Finland, where ecosystem,
meteorological, trace gas and aerosol properties have been
measured since 1996 (Hari and Kulmala, 2005).

Surface fluxes of sensible (H) and latent heat (LE) are
measured at 23.3 m by means of the eddy covariance tech-
nique (Mammarella et al., 2009). These observations are
used as forcing for our model and are therefore prescribed
as boundary conditions. The model simulation covers 11 h,
beginning at 07:50 LT (sunrise is at 07:30 LT). The diurnal
evolution of temperature, humidity, O3 and NOx, observed
at 67.2 m – the highest measurement level available at 52 m
above the canopy – and obtained using the SMEAR Smart-
Search database (Junninen et al., 2009), is used to determine
the ability of the model to reproduce the diurnal variability in
the BL. In addition, observations of BL height from tempera-
ture and humidity profiles and BL concentrations of terpenes
gathered with a tethered balloon (Spirig et al., 2004) enable
us to complete the validation.

www.atmos-chem-phys.net/12/6827/2012/ Atmos. Chem. Phys., 12, 6827–6843, 2012
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Fig. 3. Diurnal evolution of(a) surface sensible (H) and latent (LE) heat flux, which are both prescribed,(b) boundary layer height (h), (c)
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67.2 m) and balloon measurements, respectively. Model results are indicated by lines.

2.5 Numerical strategy

We designed a series of numerical experiments to investi-
gate the dependence of the SOA evolution on the chemical
and dynamical processes and their relationships as depicted
in Fig. 1. In the first experiment, we study the sensitivity of
COA to the surface conditions. The sensitivity analysis is car-
ried out as a function of the evaporative fraction (EF) and the
terpene emission flux (FTERP) (indicated by (1) in Fig.1). EF
is defined as LE/(H+LE), i.e. it is the fraction of the surface
heat flux that is used for evaporation of water from the sur-
face. In the second experiment, we evaluated the sensitivity
of COA to EF and to large-scale vertical subsidence motions
(indicated by (2) in Fig.1). The latter are due to the pres-
ence of synoptic high pressure systems that suppress the BL
growth. In these analyses, we studiedCOA at the end of the
day (18:50), because then BL growth and entrainment cease
and we can evaluate the net effect of the daytime dynamics,
emissions and chemistry.

3 Results

3.1 Model evaluation

Figure3 shows the time evolution of the dynamic variables
for the initial and boundary conditions as specified in Table4:

the surface heat fluxes (H and LE), boundary layer height (h),
mixed layer potential temperature (〈θ〉) and specific moisture
(〈q〉). The onset of the prescribed surface heat fluxes is de-
layed by about one hour, as compared to the measurements.
By so doing, we ensure that the model calculations begin
within the well-mixed assumptions when the ground ther-
mal inversion is already broken. Both H and LE fall within
the low end of the observations. This results from fitting the
model to observedθ , q andh and could be due to the differ-
ent footprints of the heat fluxes andθ andq: H and LE are
measured at 23.3 m, whileθ andq are observed at 67.2 m,
and consequently the measurements of H and LE represent a
smaller area.

The time evolutions of〈θ〉 and 〈q〉 are reproduced well.
This satisfactory agreement of the〈θ〉 and 〈q〉 evolutions
demonstrates that the model is capable of reproducing the
entrainment process well for a given set of surface heat
fluxes. Although only one observation is available at 12:20,
the calculated BL height is similar to the measured height of
1000 m.

The diurnal trends in the chemical species (Fig.4), with
initial concentrations and surface fluxes as specified in Ta-
ble 5, agree well with the observations. This confirms that
the processes of entrainment, emission and chemistry (see
Fig. 1) and their influence on the time evolution of the chem-
ical species are simulated well. The evolution of O3 is the

Atmos. Chem. Phys., 12, 6827–6843, 2012 www.atmos-chem-phys.net/12/6827/2012/
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Table 5. Initial mixing ratios in BL and FT and surface emission fluxes of the reactants as obtained from fitting MXLCH-SOA to the
case study observations. Species in the reaction mechanism that are not included in this table have zero initial concentrations and zero
surface emissions, except TERP and ISO (see Table3). For the molecules O2 and N2, we have imposed the values 2×108 and 8×108 ppb,
respectively.

O3 NO NO2 CH4 CO

Initial mixing ratio (ppb)
BL 31.0 0.04 0.1 1800. 100.
FT 39.0 0.0 0.2 1800. 100.

Surface emission flux (ppbms−1) −0.20sin
(

πt
td

)
4×10−3 0.0 0.0 0.0
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Fig. 4. Diurnal evolution of mixed layer concentrations of(a) O3, (b) NO, (c) OH and(d) NO2 for the case study. NO2 measurements are
scaled down to match the NO2/NO ratio of 5 obtained during summer 2010 from more reliable measurements than those from August 2001.
Dots indicate measurements from the tower at 67.2 m. Model results are indicated by lines.

result of entrainment of O3 from the FT, especially during
the rapid growth of the BL during the morning, a net posi-
tive chemical production during the day and its removal by
dry deposition. Averaged over the day, the entrainment flux is
about 1.4 times as large as the deposition flux, but in the early
morning (08:00) the entrainment flux is 8 times larger than
the deposition flux. This is due to the fact that the O3 deposi-
tion flux follows a sinusoidal form during the day (Table5),
which has a minimum in the morning. The NOx measure-
ments must be interpreted carefully since they are probably
affected by error in the measurement procedure (P. Keronen,
personal communication, 2011). Possible sources of error are
the absence of a NO2 specific converter in the NOx anal-
yser, which may have biased the observed NO2 concentration

upwards, and the 100 m sampling line, which may have af-
fected the observed NO concentrations. NO2 measurements
are scaled down to match an observed NO2/NO ratio of 5 as
obtained from more reliable measurements in summer 2010
at the same location (P. Keronen, personal communication,
2011). In spite of the large uncertainty regarding the NOx
measurements, we are able to satisfactorily reproduce the or-
der of magnitude of the observed NOx concentrations. Cal-
culated OH concentrations range from 4×105 at the end of
the day to 4.5×106moleccm−3 in the late morning. Unfor-
tunately, no observations of OH in the mixed layer (above
the canopy) are available for this environment.Peẗajä et al.
(2009) report an observed diurnal range in in-canopy OH
concentrations in the order of 104 to 105moleccm−3. BL
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Fig. 5. (a) 〈α-pinene〉 and (b) sum of terpenes (〈TERP〉) for the
case study. Crosses indicate balloon measurements and model re-
sults are indicated by lines. Errors are 100 % for concentrations
lower than 0.03 µgm−3, 50 % for concentrations between 0.03 and
0.15 µgm−3 and 30 % for concentrations higher than 0.15 µgm−3.
The conversion factor from µgm−3 to ppt is 178.

concentrations are likely higher, because of the higher O3
concentration and light intensity and lower concentrations of
VOCs, which deplete OH. We find, however, thatCOA is not
very sensitive to OH levels. For the case study, increasing the
OH concentration by a factor 2 resulted in an increase ofCOA
at the end of the day of only 1 % and reducing it by a factor
2 in a decrease of 3 %. The reason for this weak sensitivity
will be further discussed in Sect.3.3.

Figure 5 shows the results for terpenes with emission
fluxes as specified in Table3. MXLCH-SOA is able to repro-
duce the order of magnitude of the observed concentrations
of both α-pinene and the sum of terpenes (〈TERP〉). Since
there are only four data points and the error in the individual
measurements is large, we cannot draw conclusions on how
well we can reproduce the diurnal evolution of the terpene
concentrations from these data. Typically, terpene concentra-
tions will increase during nighttime (e.g.Ruuskanen et al.,
2009) due to temperature-driven emissions into a BL that is
shallow and stably stratified. Besides, it is characterized by
low O3 concentrations and consequently low chemical de-
struction. A sensitivity analysis revealed that the diurnal cy-
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cluding the sensitivity to different FT background OA concentra-
tions (0.0, 0.2, 0.4, 0.8 µgm−3). The inset shows the diurnal cycle
of the measured SV-OOA-concentration, averaged over 15 days.

cle in COA is not very sensitive to the initial terpene con-
centration. The reason for this will be discussed further in
Sect.3.3.

Overall, comparison of the model results with the observa-
tions shows that we can reproduce the time evolution of the
dynamics and the order of magnitude of the gas-phase chem-
istry well, which gives confidence in the validity of MXLCH-
SOA for further analyses.

3.2 Diurnal evolution of organic aerosol

A key aspect of this study is the ability of MXLCH-SOA to
model the organic aerosol concentrationCOA as a function of
dynamics and chemistry (Fig.1). As expressed in Eq. (1), the
background organic aerosol concentration OABG affectsCOA
both directly and indirectly by influencing the partitioning
into the aerosol phase of the semi-volatile reaction products
(Ci) that result from TERP oxidation. Therefore, to under-
stand the diurnal evolution ofCOA it is crucial to represent
the OABG accurately, both in the BL and the FT, the latter
since OABG from the FT is entrained into the BL during its
growth.

Unfortunately, there are no observed verticalCOA profiles
for this environment, which could help constrain our numeri-
cal experiments (Heald et al., 2011). In order to determine the
sensitivity of the diurnal cycle inCOA to the FT OABG, we
carry out 4 identical numerical experiments, only varying the
OABG in the FT (Fig.6). By so doing, we are able to study the
influence of the OABG in the residual layer (the remainder of
the BL from the previous day) that was decoupled from the
nocturnal boundary layer. We included a case for which BL
and FT concentrations are equal. This may not be realistic,
because we simulate biogenic OA only, which has a surface
source and thus lower concentrations in the FT; however, the
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high FT biogenic OA is shown for illustrational purposes.
Since we expect thatCOA is much lower in the FT than in
the BL, the other three cases represent FT OABG of 0.0, 0.2
and 0.4 µgm−3. For all these cases, we find a net decrease
of COA during the day. Without further observational con-
straints on the actual FT concentration, we assumed a value
of 0.2 µgm−3 for the numerical experiments presented here-
after.

There are only a few measurements of organic aerosol con-
centrations for the location of our case study, and as a re-
sult we are not able to directly compare modeled with mea-
sured data. There are, however, observations available at the
same site that allow us to qualitatively compare the diurnal
behavior of OA.Raatikainen et al.(2010) measured organic
aerosol concentrations at Hyytiälä during 15 days in spring
2005. They identified two oxygenated organic aerosol (OOA)
groups. One of them, SV-OOA (semi-volatile OOA, formally
OOA2), has a clear diurnal cycle, has undergone little ox-
idation and is qualified as originating from local sources,
the most likely being the oxidation of locally emitted VOCs
based on the observation that the presence of SV-OOA is in-
dependent of air mass history. Therefore, it is interesting to
compare the diurnal cycle of SV-OOA with the simulated
COA and we include the SV-OOA data in Fig.6. The mea-
sured SV-OOA shows a similar concentration decrease dur-
ing the day as the modeledCOA. This further indicates the
need to have a balanced approach in calculating theCOA
taking into account emission, dynamical processes like en-
trainment and chemical transformations (Fig.1). The abso-
lute concentrations should be compared with care, however,
since the measurements were performed inside the canopy
while the model results reflect BL averages.

3.3 Budgets

To deepen our understanding of the concentration tenden-
cies, we make use of the ability of the mixed layer model
to calculate the different contributions of entrainment, emis-
sions and chemistry to the total tendency of chemical species
(Tennekes, 1973; Vil à-Guerau de Arellano et al., 2011), in
this caseCOA and TERP. The TERP budget reads:

d〈TERP〉

dt
=

emission︷ ︸︸ ︷
FTERP

h
sin

(
πt

td

)
+

entrainment︷ ︸︸ ︷
we1TERP

h
(3)

−

chemistry︷ ︸︸ ︷∑
j

kj 〈TERP〉〈OXj 〉

whereFTERP is the maximum daily terpene emission flux
(µgm−2h−1), as specified in Table3; h is the BL height (m);
t is the time since the start of the simulation (s);td is the
length of the simulation (s);we is the entrainment velocity
(ms−1), which in absence of subsidence equals BL growth
(dh/dt); 1TERP is the TERP concentration jump between

Fig. 7. Contribution of the individual processes to the terpene ten-
dency (Eq.3) for the case study.(a) total tendency and the indi-
vidual contributions of emission, entrainment and chemistry, and
(b) the normalized contributions to the chemical terpene loss for
the reactions with O3 and OH.

the BL and the FT (µgm−3) (with the jump of a scalar or re-
actantC defined as1C = CFT − 〈C〉, see also Fig.10); kj

is the reaction rate of TERP with oxidant OXj (either O3 or
OH); and〈OXj 〉 is the mixed layer concentration of oxidant
OXj . Note thath, we, 1TERP, 〈TERP〉 and 〈OX〉 are cal-
culated simultaneously during the MXLCH-SOA runs and
therefore account for the coupling between dynamics and
chemistry. This defines the difference between our approach
and using box models with a fixedh or a BL growth calcu-
lated from measurements: here, the development of the BL
and entrainment are governed by the diurnal dynamics of
temperature and moisture, throughwe in the second term on
the right hand side (RHS) of Eq. (3), which result from the
coupling of the BL with the land surface and the FT.

Figure7 shows the budget of TERP and the relative con-
tributions to the total chemical tendency of the reactions of
TERP with O3 and OH for the case study. Overall, emis-
sion and chemistry contribute about equally to the budget
(Fig. 7a). The prescribedFTERP is low in the early morn-
ing, but since the BL is still shallow, the emission term con-
tributes strongly to the TERP budget during the course of
the morning and becomes the most important term with a
maximum of 0.4 µgm−3h−1 at 10:00. After this time, the BL
height increases rapidly, which decreases the importance of
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this term. The chemistry is dominated by the destruction by
OH (Fig.7b), so the late morning peak in the chemistry term
is associated with the peak in OH that occurs then. The con-
tribution of O3 to the chemical destruction of TERP is 25 %
during the day, but becomes dominant in the evening as OH
is reduced. Entrainment contributes significantly to the total
tendency between 9 and 12 when BL growth is strongest with
230 mh−1. The maximum contribution of entrainment to the
total tendency of TERP is about 20 % of the contribution of
the emission. During most of the morning, the TERP ten-
dency is positive, mainly due to the emissions, but at the end
of the afternoon the tendency becomes negative due to the
fact that chemical destruction continues while the emissions
decrease.

Damk̈ohler numbers (the ratio of the turbulent time scale
to the chemistry time scale) for TERP range from 0.05 to 0.2.
Under this regime of relatively slow chemistry, the emission
and entrainment (term 1 and 2 on the RHS of Eq.3) play
an important role. This further confirms the importance of
the atmospheric transport and turbulence for the behavior of
TERP.

Similar to Eq. (3) for TERP, we can calculate the budget of
COA. The derivation of theCOA budget is more complex than
that of TERP, so here we show an approximation which is
accurate under the conditions of this study (the full derivation
is given in Appendix A):

dCOA

dt
'

OABG-entrainment︷ ︸︸ ︷
we1OABG

h
(4)

+

∑
i

Xp,i


Ci -entrainment︷ ︸︸ ︷

we1Ci

h
+

Ci -chemistry︷ ︸︸ ︷∑
j

αikj 〈TERP〉〈OXj 〉

 .

Here,1OABG is the jump in the background organic aerosol
concentration between the BL and the FT (µgm−3), 1Ci the
concentration jump of the oxidized semivolatile productCi ,
andαi the stoichiometric coefficient forCi (see Table2).

Note that for theCOA budget, contrary to the TERP bud-
get, there is no emission term since the aerosol is either of
secondary origin or present as a background concentration.
This is justified since our budget is focused on the submi-
cron OA concentrations, while primary biological particles
(PBAP) are thought to be important only for the supermicron
mode (Pöschl et al., 2010).

The evolution ofCOA is thus the result of a combination
of the influence of the OABG originating from the FT and
the newly formed condensable species from the oxidation of
TERP (Fig.5b). Entrainment of background OA dominates
the budget ofCOA (Fig. 8): during the morning, the OA that
was concentrated in the shallow BL during the night is di-
luted when the BL grows and air from the FT with a lower
OABG concentration is entrained. The importance in our sim-
ulations of the background OA level in the FT stresses the
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able products from terpene oxidation (Ci ), and the chemical pro-
duction ofCi to the tendency.

importance of having upper air measurements (Heald et al.,
2011) to understand the evolution ofCOA in the BL. The
semi-volatile productsCi have net production throughout the
day, but their contribution to theCOA budget is relatively
small. Only at the end of the day (from 15:30 onwards) is
there a net positive tendency ofCOA, since the BL growth
becomes negligible and the partitioning of terpeneCi to the
particle phase outweighs the entrainment term.

These tendencies show that for TERP andCOA emissions,
chemistry and entrainment play a different role, which is im-
portant in understanding the results of the sensitivity analy-
ses, presented in Sect.3.4. Since TERP is a reactive species
with a relatively short lifetime and no background concen-
tration, the relative importance of chemistry in its budget is
larger than for OA, which does have a long lived background
with a typical lifetime of a week.

To quantify the importance of the newly formed SOA from
TERP oxidation (OATERP) versus the OABG that is initially
present and mixed in from the FT, we define a fresh SOA to
background OA ratio:

rFB =
OATERP

OABG
. (5)

This ratio can be interpreted as follows: forrFB�1 the
OABG dominates and theCOA will be determined by the dilu-
tion of this background organic aerosol. WhenrFB∼1, there
is an equal contribution of background and newly formed
OA. For rFB�1, theCOA is determined completely by the
formation of SOA during the day. However, values ofrFB�1
are not expected to be common, since the partitioning of
the semi-volatile products into the aerosol phase depends on
OABG (see Eq.1 and Fig.2). For an initial OABG in the FT
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indicates the conditions for which theCOA consists of equal parts of OATERPand OABG (rFB = 1), and the asterisk indicates the conditions
for the case study.

of 0.2 µgm−3, therFB = 0.22 at 18:50. This further demon-
strates the dominating effect of the background aerosol on
theCOA in the BL for the case study.

3.4 Sensitivity analysis

3.4.1 Response ofCOA to land surface conditions

As shown in the previous budget analyses, it is important to
reproduce accurately both the BL dynamics and chemistry
tendency, since they together determine the concentration of
a given species. We therefore extend our analysis to analyze
the role of land surface in driving both dynamics and chem-
istry. The land surface determines how much terpenes are
emitted and into what size mixing volume by regulating the
partitioning between sensible and latent heat flux (see Fig.7
of the TERP budget). The partitioning of the heat flux gov-
erns the growth of the BL, with a much larger growth when
sensible flux dominates over latent heat flux (EF∼0), i.e. for
dry surface conditions. Under these conditions, the sensible
heat flux will strongly heat the BL, which decreases the tem-
perature jump between the BL and FT. This further facili-
tates the entrainment of warm air from the FT into the BL,
which subsequently enhances the BL growth. Conversely, the
BL grows less rapidly when the latent heat flux dominates
(EF∼1) under very moist surface conditions. This is due to
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Fig. 10.Sketches of the vertical profiles ofθ , q, θv andCOA at the
end of the day (18:50), in cases of subsidence and no subsidence.
A 1 indicates the jump of a scalar or reactantC defined as1C =

CFT − 〈C〉 and aγC the lapse rate of a scalarC in the FT.

the fact that for a high EF, most available energy is used to
evaporate water from the surface and there is little left for
BL growth. In Fig.10, typical vertical profiles ofθ andq are
sketched, to illustrate these effects. Therefore, our first sensi-
tivity analysis addresses the role of different combinations of
evaporative fraction (EF) and terpene emission flux (FTERP)
on the diurnal evolution ofCOA. We explore the complete
range of possible conditions of EF: from a BL driven solely
by the sensible heat flux (EF= 0) to a BL driven only by
the evaporation flux (EF= 1). Similarly,FTERP ranges from
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0 to 1 mgm−2h−1, which encompasses the range of terpene
fluxes observed at the SMEAR II station (Rinne et al., 2007).

Figure 9a shows the calculatedCOA and TERP concen-
tration at 18:50. The conditions of EF andFTERP for the
case study discussed above are indicated in the figure. As
expected,COA always increases with largerFTERPdue to the
higher formation rate of biogenic SOA. It also increases with
EF, because shallower boundary layers, weaker entrainment
and thus less mixing of FT air with low OA concentrations
occur when the land surface is dominated by the evaporation
flux. The effect on temperature acts in the same direction,
i.e. a higher EF leads both to a lower sensible heat flux into
the BL and to less entrainment of relatively warm free tropo-
spheric air. Consequently, the temperature in the mixed layer
becomes lower. The temperature decreases by 6 K in the ex-
periment going from EF= 0 to EF= 1. Because of the lower
temperatures, more semi-volatile material will partition into
the aerosol phase, but this has only a minor effect compared
to the changes in dilution. This becomes clear from the par-
titioning coefficientXp, which is shown together withCOA
in Fig. 9a for the semi-volatile product C1. Xp depends on
COA and T, following Eqs. (1) and (2). Here, we find thatXp
closely follows the behavior ofCOA, and only a slight de-
viation from this pattern is caused by the dependence ofXp
onT . TheT dependence is the most pronounced for low EF,
when a large sensible heat flux leads to a larger heating of the
BL and consequently a large entrainment of relatively warm
air from the FT.

Based on the relationship betweenCOA and TERP concen-
tration, we can distinguish 2 different regimes: one character-
ized by soils with low moisture content (EF<0.5) and low
terpene emissions (FTERP <0.6) and another characterized
by high moisture content (i.e. wet soil) and strong terpene
emissions. Dry soil causes larger sensible heat fluxes, which
lead to rapid BL growth and enhance dilution ofCOA due to
entrainment of air from the FT. For TERP, on the other hand,
the entrainment term has a minor contribution to the total
tendency (due to the shorter lifetime of this species), which
is dominated by the emissions and the chemical destruction
(see Fig.7). SinceCOA and TERP are dominated by differ-
ent processes in this regime, their tendencies are not strongly
related. In this regime, the role of entrainment will dominate
over that of chemistry.

For a wet soil (EF>0.5) and high emissions (FTERP>0.6),
on the other hand, we are in a regime where chemistry plays
a larger role in determining the tendency ofCOA. Here, the
larger emission contributes more to theCOA tendency, while
the low sensible heat flux results in weak BL growth and
entrainment. The combined effect of higher emissions into
shallower BL causes a significant contribution of chemistry
to theCOA tendency. Only in the upper right corner of Fig.9
do we find conditions for which there is a net increase of
COA during the day, since here condensation outweighs en-
trainment. These conditions are delimited by the black con-

tour. In this regime,COA and TERP are strongly related since
there the influence of entrainment is relatively small.

The consequences of this sensitivity ofCOA for conditions
of the case study can be deduced from Fig.9a.COA at a ter-
pene emission flux of 304 mgm−2h−1 ranges from 0.30 to
0.62 µgm−3, a difference of a factor of 2, when the EF in-
creases from 0 to 1. For a constant EF of 0.25 andFTERP
ranging from 0 to 1 mgm−2h−1, COA could range from 0.26
to 0.49 µgm−3, a difference of almost a factor of 2. On the
other hand, in the dry regime with a low emission there is a
large range of conditions of EF andFTERP which can lead to
a certain observedCOA. An observedCOA of 0.31 µgm−3, as
in the case study, could result from EF= 0 andFTERP= 0.4,
but also from EF= 0.9 andFTERP= 0.

Figure9b shows the behavior ofrFB as a function of EF
andFTERP. The entrainment and chemistry limited regimes
are also well developed here: for low EF andFTERP the back-
ground aerosol dominates, while for wet soils (EF> 0.3) and
FTERP> 0.4, rFB becomes larger than 1, meaning that there
is more OATERPpresent than OABG. There is a wide range of
conditions for which they are equally important: from EF= 1
andFTERP∼ 0.4 to EF∼ 0.3 andFTERP= 1.

3.4.2 Combined response ofCOA to subsidence and land
surface conditions

As indicated in Fig.1 and in order to complete our analysis,
it is interesting to analyze the role of subsidence because on
summer days, high pressure systems typically prevent the BL
growth by inducing downward air motions. This was, for ex-
ample, the case over Finland during the HUMPPA-COPEC
campaign in summer 2010 (Williams et al., 2011). Further,
the soil moisture content determines the partitioning of the
surface heat fluxes and thus the energy that is available for
BL growth and entrainment.

To understand the influence of subsidence, it is important
to note that its effect is twofold: it suppresses BL growth
while simultaneously enhancing entrainment. The suppres-
sion of BL growth becomes clear when looking at the equa-
tion for BL growth, which is the net result of the entrainment
velocity we on one hand and the subsidence velocityws on
the other:
dh

dt
= we+ ws. (6)

In the analysis, we prescribe the large-scale subsidence
rate (ω (s−1)), defined as the divergence of the horizontal
mean wind. It can be thought of as the fraction with which
the BL is pushed down each second due to large-scale verti-
cal subsiding motions. The subsidence velocity (ws (ms−1)),
with a typical order of magnitude of 10−2ms−1, is therefore
in our modeling approach represented as:

ws = −ω h. (7)

To understand the effects of subsidence on entrainment,
we need to analyze the expression to calculatewe. It is a
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Fig. 11. (a) Sensitivity of organic aerosol concentration (COA), BL height (h) and TERP concentration at 18:50 LT to subsidence and
evaporative fraction (EF). Shades indicateCOA (µgm−3), the blue contoursh (m), and the red contours TERP concentration (µgm−3). (b)
Sensitivity ofCOA and the the OA chemistry background ratio (rFB) at 18:50 LT to subsidence and evaporative fraction (EF). Shades indicate
COA (µgm−3) and the blue contoursrFB (dimensionless). The asterisk indicates the conditions for the case study.

function of the buoyancy flux and the virtual potential tem-
perature jump between the BL and the FT (1θv) (van Heer-
waarden et al., 2009):

we =
β(w

′
θ

′

v)s

1θv
(8)

whereβ is the (fixed) ratio between the entrainment and sur-
face buoyancy flux (dimensionless),(w

′
θ

′

v)s is the surface
buoyancy flux (Kms−1), and1θv is the jump of the virtual
potential temperature between the BL and FT, defined as:

1θv = 1θ + 0.61(〈q〉1θ + 〈θ〉1q + 1θ1q) (9)

' 1θ + 0.61〈θ〉1q

where1θ and1q are the differences inθ andq between
the BL and the FT, respectively. Figure10shows sketches of
typical vertical profiles ofθ , q, θv andCOA for conditions
with and without subsidence to illustrate these effects.

For a constant EF, the buoyancy flux and therefore the nu-
merator in Eq. (8) remain constant. Consequently, subsidence
only affectswe through1θv. In case of subsidence, the same
amount of sensible heat is introduced into a shallower BL, so
〈θ〉 increases and1θ decreases. The specific moisture (〈q〉),
however, decreases with subsidence, because the increase in
moisture due to evaporation into a smaller mixing volume is
offset by the enhanced entrainment of dry air.1q is therefore
smaller in the case with subsidence. Taken together, these ef-
fects result in a smaller1θv in the case of subsidence: the
effect of1θ on1θv is only partly compensated by the effect
of 1q through the second term on the RHS of Eq. (9). In

all our experiments, we find thatwe is enhanced when sub-
sidence increases. This means that the enhanced entrainment
due to a stronger heating of the BL is further enhancing itself
by diminishing1θv. For EF= 1, the daily averagewe ranges
from 1 cms−1 when there is no subsidence to 2 cms−1 for
ω = 1×10−4s−1.

Figure 11a shows the sensitivity ofCOA to EF, ranging
from 0 to 1, and subsidence ranging from no subsidence
(ω = 0s−1) to strong subsidence (ω = 1×10−4s−1). By in-
creasing EF, BL height decreases and bothCOA and TERP
concentration increase. As in the previous sensitivity analy-
sis, the highest sensitivity is found for wet soils. BL height
decreases rapidly when EF> 0.8, which leads to an increase
of COA by∼ 50% over the whole subsidence range, e.g. from
0.31 to 0.44 µgm−3 at ω = 5×10−5s−1. TERP concentra-
tion doubles for an EF ranging from 0.8 to 1.0, e.g. from
0.24 to 0.48 µgm−3 at ω = 5×10−5s−1. However,COA de-
creases while TERP concentrations increase with stronger
subsidence. ForCOA, this is because there is a stronger di-
lution due to entrainment with increasing subsidence. Since
OA has a large background fraction compared to the pro-
duction of SOA from TERP (Fig.8), the enhanced dilu-
tion means thatCOA decreases despite the lower BL height.
TERP concentrations, on the other hand, increase with larger
subsidence values, because they are emitted into a shallower
BL. Enhanced entrainment partly compensates for this, but
has only a small effect on the TERP concentration due to
the relatively short lifetime of this species (see also Fig.7).
The consequence is that under all conditions considered in
our case study, the behavior ofCOA is unrelated to that of
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TERP, due to the different roles that entrainment, emission
and chemistry have on their respective budgets.

Figure11b shows the behavior ofrFB for varying subsi-
dence and EF.rFB is always below 1, because of the low for-
mation of OATERP due to a lowFTERP. It increases with EF,
because bothCOA, which enhances the partitioning into the
aerosol phase, and TERP increase. For a changingω and low
EF (< 0.8), it decreases with increasingω, because the en-
hanced dilution of OABG affects the partitioning negatively.
For EF> 0.8, however,rFB shows some interesting nonlin-
ear behavior: atω = 4×10−5, rFB has a maximum, because
there the combination of a high TERP concentration and a
high Xp, caused by highCOA, result in the partitioning of a
large fraction ofCi into the aerosol phase.

4 Conclusions

We have studied the integrated effects of land surface, chem-
istry, and entrainment on the diurnal evolution of SOA, using
MXLCH-SOA, a model that reproduces the dynamics of a di-
urnal convective atmospheric boundary layer and the chem-
ical transformations of terpenes and their oxidants that lead
to SOA formation (Fig.1).

MXLCH-SOA is able to reproduce the diurnal variability
of SOA production and relate it with the observed dynamics
and gas-phase chemistry for a characteristic case study in the
boreal forest. Our findings indicate the importance of includ-
ing entrainment to explain the observed diurnal cycle in SOA
concentration, and suggest that entrainment may contribute
ten times more to the total tendency than SOA production
during daytime. This contribution is due to a large volume of
air that is entrained from the residual layer during the rapid
growth of the boundary layer in the morning. A sensitivity
analysis further suggests that the boreal forest is in a regime
where relatively low terpene emissions are the limiting factor
for SOA formation. For environments or situations with wet
soils and high VOC emissions, e.g. the tropics, the effects of
entrainment may be weaker, and the SOA concentration and
VOC concentration may therefore show a stronger relation-
ship. Furthermore, we also find that under conditions of sub-
sidence there is no straightforward relation between organic
aerosol concentrations and terpene concentrations.

Measured SOA and VOC concentrations are the net re-
sult of emissions, chemistry and dynamics. To interpret these
measurements, it is important to include observations of all
of these components in the design of field campaigns. More
specifically, the role of the increase of SOA during the night
both in the residual layer and in the nocturnal stable bound-
ary layer will be an important factor to understand, since for
most studied situations, the SOA evolution during daytime
is mainly driven by entrainment. Therefore, it is essential to
have early morning profiles ofCOA to characterize both the
initial concentration in the nocturnal stable BL and the or-
ganic aerosol that has built up in the residual layer, because

this will be entrained into the convective boundary layer dur-
ing the morning. Further, to understand ambient SOA con-
centrations it may be equally important to characterize BL
height and entrainment as it is to understand the tempera-
ture dependence of the saturation concentration of the semi-
volatile species.

Our findings are also important for regional and global
modeling studies: the strong sensitivity ofCOA to land sur-
face and FT conditions means that uncertainties in the repre-
sentation of these components may strongly affect the sim-
ulatedCOA. To modelCOA accurately, large-scale models
should be able to reproduce the coupling between the land
surface, boundary layer dynamics, free troposphere condi-
tions and chemistry and the resulting behavior of organic
aerosol and terpene concentrations as presented in the sen-
sitivity analyses. Due to the wide range of conditions under
study (Figs.9 and 11), our findings can be used to quan-
tify the uncertainty that arises from inaccurately represent-
ing these processes in large-scale models. Besides, our re-
sults indicate that box models are only applicable for study-
ing ambient SOA formation when they account for boundary
layer growth and entrainment and when background organic
aerosol levels are well constrained.

Future research on the diurnal evolution of SOA concen-
trations will include an interactive land surface, since both
surface heat fluxes (van Heerwaarden et al., 2009) and ter-
pene emissions (Guenther et al., 1995; Niinemets et al.,
2010) are the result of the interaction of the BL with the land
surface.

In summary, our findings indicate that in order to under-
stand the diurnal evolution of SOA in the boundary layer the
coupled effects of the land surface, dynamics of the atmo-
spheric boundary layer, chemistry, and free troposphere con-
ditions should be studied simultaneously. A balanced repre-
sentation of all these processes should be considered when
preparing and conducting both field campaigns and model-
ing.

Appendix A

Derivation of the COA budget

We derive the budget equation ofCOA by taking the time
derivative of Eq. (1):

dCOA

dt
=

dOABG

dt
+

∑
i

[
Xp,i

dCi

dt
+ Ci

dXp,i

dt

]
. (A1)

If Ci
dXp,i

dt
�Xp,i

dCi

dt
, which is the case for our case study,

the former term can be ignored and then Eq. (A1) reduces to:

dCOA

dt
'

dOABG

dt
+

∑
i

Xp,i

dCi

dt
. (A2)
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The individual terms can be further written out as:

dOABG

dt
=

entrainment︷ ︸︸ ︷
we1OABG

h
(A3)

dCi

dt
=

entrainment︷ ︸︸ ︷
we1Ci

h
+

chemistry︷ ︸︸ ︷∑
j

αikj 〈TERP〉〈OXj 〉 . (A4)
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fects of turbulence and heterogeneous emissions on photochemi-

www.atmos-chem-phys.net/12/6827/2012/ Atmos. Chem. Phys., 12, 6827–6843, 2012

http://dx.doi.org/10.1021/cr0206420
http://dx.doi.org/10.1021/es015717g
http://dx.doi.org/10.5194/acp-10-5409-2010
http://dx.doi.org/10.1175/1520-0450(1983)022<0572:AMFTPT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022<0572:AMFTPT>2.0.CO;2
http://dx.doi.org/10.1021/es052297c
http://dx.doi.org/10.5194/acp-9-5681-2009
http://dx.doi.org/10.5194/acp-8-6223-2008
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-11-1367-2011
http://dx.doi.org/10.5194/acp-11-12673-2011
http://dx.doi.org/10.1080/02786826.2011.552926


6842 R. H. H. Janssen et al.: Effects of surface conditions, dynamics and chemistry on SOA evolution

cally active species in the convective boundary layer, J. Geophys.
Res., 105, 6871–6884, 2000.

Laaksonen, A., Kulmala, M., O’Dowd, C. D., Joutsensaari, J., Vaat-
tovaara, P., Mikkonen, S., Lehtinen, K. E. J., Sogacheva, L.,
Dal Maso, M., Aalto, P., Petäjä, T., Sogachev, A., Yoon, Y. J., Li-
havainen, H., Nilsson, D., Facchini, M. C., Cavalli, F., Fuzzi, S.,
Hoffmann, T., Arnold, F., Hanke, M., Sellegri, K., Umann, B.,
Junkermann, W., Coe, H., Allan, J. D., Alfarra, M. R.,
Worsnop, D. R., Riekkola, M.-L., Hÿotyläinen, T., and Viisa-
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