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Abstract
We consider the coupling of a symmetric spin-3 gauge field ϕμνρ to three-
dimensional gravity in a second-order metric-like formulation. The action that
corresponds to an SL(3, R)×SL(3, R) Chern–Simons theory in the frame-like
formulation is identified to quadratic order in the spin-3 field. We apply our
result to compute corrections to the area law for higher spin black holes using
Wald’s entropy formula.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Higher spin theories and holography’.

PACS numbers: 11.10.Kk, 11.15.Yc, 11.30.Ly

1. Introduction and overview

By now much is known about the structure of interacting field theories involving particles of
spin greater than 2. In particular, Vasiliev proposed a set of nonlinear equations of motion
that describe the interactions of an infinite tower of gauge fields of increasing spin on (A)dS
backgrounds [1] (see [2] for a review). This result rests upon a description of the dynamics
that mimics the frame approach to gravity: the degrees of freedom are encoded in a set of
differential forms taking values in an infinite-dimensional extension of the Lorentz algebra,
and the field equations are manifestly invariant under diffeomorphisms. Alternative approaches
to higher spin interactions are also actively investigated in order to look for generalizations of
Vasiliev’s construction or to make more transparent various features of the interactions (see
e.g. [3–5] for reviews). For instance, one can follow the path of the metric formulation of
gravity and encode the degrees of freedom of a spin-s particle in a symmetric tensor of rank s.
The advantage with respect to Vasiliev’s strategy is the simplification of the field content; the
price to pay is, at present, the lack of an organizing principle for the nonlinearities required
by a consistent theory. To unravel this puzzle one can begin by building perturbatively the
first interaction vertices; this has led, for instance, to a classification of cubic vertices for
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arbitrary massless particles in both Minkowski and (A)dS backgrounds of dimension D � 4
[6–10].1 On the other hand, a complete metric-like reformulation of Vasiliev’s equations is not
known, while the existence of other models that are consistent beyond the cubic order is still
controversial (see e.g. [11–15]).

In spite of closely related goals, the frame- and metric-like formulations have evolved
rather independently. For few exceptions, see e.g. [16–18] and references therein. With both
approaches having their own advantages and drawbacks, an exchange of ideas is nonetheless
expected to shed light on both sides. The goal of this paper is to establish a firm connection
between them in three spacetime dimensions, where higher spin gauge theories take a
remarkably simple form compared to their higher dimensional counterparts. We focus on
the gravitational coupling of a symmetric tensor of rank 3. In the frame-like language, this is
described by an SL(3, R)×SL(3, R) Chern–Simons (CS) theory when a negative cosmological
constant is present (see e.g. [19] and the previous works [20, 21]). In appendix C, we will add
a few comments on the generalization to SL(N, R) × SL(N, R) CS theories, which contain
fields of spin 2, 3, . . . , N.

The frame-like theory is well understood, with and without cosmological constant: one has
to complement the gravity dreibein and spin connection with two 1-forms which play a similar
role for the spin-3 field. The gauge connections can then be packed into two sl(3, R)-valued
forms (A = 1, . . . , 8 and a, b = 0, 1, 2)

e = eμ
AJA dxμ = (

eμ
aJa + eμ

abTab
)

dxμ, (1.1a)

ω = ωμ
AJA dxμ = (

ωμ
aJa + ωμ

abTab
)

dxμ, (1.1b)

where JA denotes the full set of sl(3, R) generators. The gravity dreibein eμ
a and spin

connection ωμ
a are associated with the generators Ja of the principally embedded so(2, 1) �

sl(2, R) ↪→ sl(3, R). The remaining five generators Tab (with T[ab] = ηab Tab = 0) are
associated with the spin-3 ‘vielbein’ and ‘spin connection’. One can then consider the action2

I = 1

16πG

∫
tr

(
e ∧ R + 1

3	2
e ∧ e ∧ e

)
, with R = dω + ω ∧ ω. (1.2)

The trace is in the fundamental of sl(3, R), G is Newton’s constant and 	 is the AdS radius.
A first step towards the identification of the metric-like counterpart of (1.2) was taken in

[19], where the metric and the spin-3 field were expressed in terms of the connection 1-forms
(1.1) as

g = 1
2 tr(eμeν ) dxμ dxν, ϕ = 1

6 tr(eμeνeρ ) dxμ dxν dxρ. (1.3)

The justification for (1.3) is that the action (1.2) is invariant under the transformations

δe = dξ + [ω, ξ ] + [e,�], (1.4a)

δω = d� + [ω,�] + 1

	2
[e, ξ ], (1.4b)

generated by sl(3, R)-valued parameters ξ and �. Those generated by � include and generalize
local Lorentz transformations: therefore metric-like fields should be invariant under them,
and this is guaranteed by (1.3) (see also [23] for a discussion of the sl(N, R) case). The
transformations with parameters ξ should then give rise to the transformations of g and ϕ

under diffeomorphisms and a suitable deformation of the linearized Fronsdal gauge symmetry
[24].

1 The classification of cubic interactions for arbitrary fields is discussed in a frame-like language in [11].
2 For 	2 > 0 (corresponding to a negative cosmological constant), one can rewrite (1.2) as the difference of two
sl(3, R) CS actions. A cosmological constant is however not necessary in D = 3, and for 	2 � 0 one can interpret
(1.2) as a CS action as well (see e.g. [22] for more details).
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In this paper, we verify these statements up to the quadratic order in the spin-3 field, while
keeping all nonlinearities in the metric. In particular, we show that the action (1.2) can be
rewritten in terms of the metric-like fields (1.3) as

I =
∫

d3x
√−g

16πG

{(
R + 2

	2

)
+ ϕ μνρ

(
Fμνρ − 3

2
g(μν Fρ)

)
− 3

2
R ϕμνρ ϕ μνρ

+ 9

4
Rρσ

(
2 ϕ ρ

μν ϕ σμν − ϕ ρ ϕ σ
) − 1

	2

(
6 ϕμνρ ϕ μνρ − 9 ϕμ ϕ μ

)} + O(ϕ4),

(1.5)

where Rμν is the Ricci tensor, ∇ is the Levi-Civita connection for the metric defined in (1.3)
and Fμνρ denotes the covariantized Fronsdal tensor

Fμνρ = � ϕμνρ − 3
2

(∇λ∇(μ ϕνρ)λ + ∇(μ∇λ ϕνρ)λ

) + 3 ∇(μ∇ν ϕρ). (1.6)

We have also defined ϕμ ≡ ϕμλ
λ and, likewise, Fμ is the trace of the Fronsdal tensor. Indices

between parentheses are meant to be symmetrized, and dividing by the number of terms that
are needed for the symmetrization is understood.3 We also show that the action (1.5)—while
manifestly diffeomorphism invariant—is invariant under the gauge transformations

δϕμνρ = 3∇(μξνρ) + O
(
ϕ2

)
,

δgμν = 12ξρσ
{ ∇ρϕμνσ − 2∇(μϕν)ρσ + 2gρ(μ|[∇ · ϕ|ν)σ − ∇σ ϕ|ν) − ∇|ν)ϕσ ] (1.7a)

+ 1
2 gρμgσν∇ · ϕ − gμν[∇· ϕρσ − 2∇ρϕσ ]

} + O(ϕ3), (1.7b)

generated by a traceless ξρσ . It thus preserves the same amount of gauge symmetry as the sum
of the linearized Einstein–Hilbert and Fronsdal actions.

Our results give further support to the interpretation of SL(N, R) × SL(N, R) CS theories
as higher spin gauge theories, but at the present stage the metric-like action (1.5) is certainly
more involved than its frame-like counterpart (1.2). The simplicity of the frame-like action has
various advantages: for instance, it enabled the computation of the asymptotic symmetries of
(1.2) on AdS3 spaces [25, 19, 26, 23]. The appearance of nonlinear W-algebras then led to a
duality conjecture between a class of higher spin theories with matter couplings [27] and WN

minimal models [28]; see [29] for a review. Another interesting result was the identification
of solutions of the field equations—flat connections—that generalize the BTZ black hole
[30–36]. On the other hand, there are aspects of higher spin theories, such as gravitational
interactions, which might be easier to deal with in a metric-like theory. As an example, in this
paper we use the action (1.5) to compute the entropy of higher spin black holes using Wald’s
formula [37]. In a cylindrical coordinate system (ρ, t, θ ), for a non-rotating black hole with a
horizon at ρ = ρh, we find

S = A

4G

{
1 − 3

2

(ϕθθθ )
2

(gθθ )3
+ O(ϕ4)

}∣∣∣∣
ρ=ρh

, (1.8)

where A denotes the length of the horizon.
The paper is organized as follows: to arrive at (1.5), we consider in section 2.1 the most

general action quadratic in ϕ, that contains the minimal coupling to gravity of Fronsdal’s
action. In section 2.2, we fix the free parameters by requiring that its field equations are
solved by the class of asymptotically AdS3 extrema of (1.2) which we constructed in [19].
In section 2.3, we comment on the algebra generated by the gauge transformations (1.7). A
generalization to spin-s fields is relegated to appendix C. In section 3, we rederive the result
of section 2.2 by a direct elimination of the spin connections ωμ

a and ωμ
ab from (1.2), and

3 Note that this and several other conventions used in this paper differ from those of [19].
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we discuss the map between frame- and metric-like gauge transformations. Further details are
presented in appendix B. In section 4, we turn to applications of (1.5): we derive (1.8) and we
compare our result with the proposal of [32, 33]. We close with a discussion of possible future
directions. Our conventions are collected in appendix A.

2. Minimal coupling of higher spins to gravity

In this section, we consider actions that contain the minimal coupling to gravity of Fronsdal’s
Lagrangian [24], but we also allow additional terms quadratic in ϕ which are manifestly
diffeomorphism invariant and with at most two derivatives. The frame-like action (1.2) is
indeed diffeomorphism invariant, its linearization reduces to Fronsdal’s action [19] and on
shell ω can be rewritten in terms of e and its first derivative. We show that when D = 3
all actions of this type are also invariant at the lowest order in ϕ under a deformation of
the linearized Fronsdal gauge symmetry and are actually related by field redefinitions. We
eventually select the point in the parameter space of field redefinitions that corresponds to the
action (1.2) through the map (1.3).

2.1. General quadratic coupling for a spin-3 field

The free propagation of a spin-3 particle in a Minkowski background of dimension D � 4 can
be described by the Fronsdal equations [24]

Fμνρ ≡ � ϕμνρ − 3 ∂λ∂(μ ϕνρ)λ + 3 ∂(μ∂ν ϕρ) = 0. (2.1)

They can be derived from an action which is left invariant by the gauge transformations

δϕμνρ = 3 ∂(μ ξ νρ), with ξλ
λ = 0. (2.2)

In D � 4 this guarantees the propagation of the correct number4 of d.o.f., while in D = 3 it
implies that there is no local dynamics associated with (2.1). In order to couple this system to
gravity, it is natural to try minimal coupling, i.e. the substitutions η → g and ∂ → ∇, where g
is the spacetime metric and ∇ is the Levi-Civita connection. However, a consistent coupling
must preserve all gauge symmetries of the linearized theory, while the covariantized Fronsdal
tensor5

Fμνρ = � ϕμνρ − 3
2 (∇λ∇(μ ϕνρ)λ + ∇(μ∇λ ϕνρ)λ) + 3 ∇(μ∇ν ϕρ) (2.3)

transforms under

δϕμνρ = 3 ∇(μ ξ νρ), with ξλ
λ = 0 (2.4)

as

δFμνρ = −6 ξλσ∇(μ|R λ|νρ)σ − 9 R λ(μν|σ ∇|ρ) ξλσ + 6 R λ(μν|σ ∇λ ξ|ρ)
σ

− 6 ξλ
(μ|∇λ R |νρ) + 3

2 R λ(μ|∇λ ξ|νρ) − 9 R λ(μ∇ν ξρ)
λ. (2.5)

This equation lies at the heart of the Aragone–Deser argument against higher spin interactions
[38]: when D � 4, one cannot cancel the contributions in the Riemann tensor with a ξ -
dependent gauge transformation of the metric, and even adding to the action non-minimal
terms of the form R···ϕ···ϕ··· does not improve the situation. In general, one can overcome
this problem in two ways; Fradkin and Vasiliev showed in [39] that in the presence of a
cosmological constant one can cancel (2.5) by adding higher derivative contributions to the

4 Namely 1
3! (D − 3)(D − 2)(D + 2).

5 This definition assumes a conventional choice for the ordering of covariant derivatives. In the following, we will
consider curvature terms as well, so that there is no lack of generality in resolving the ambiguity in a convenient way.
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action (see also [40, 11]). This solution preserves the invariance under diffeomorphisms and
eventually leads to the Vasiliev equations, that indeed require a non-zero cosmological constant
and are manifestly diffeomorphism invariant. As an alternative, one can abandon the minimal
coupling and consider also the gravitational field as a fluctuation around a fixed background;
this makes it possible to identify non-trivial interactions even in flat space [6–10], but now
diffeomorphisms (or a proper deformation thereof) have to be recovered order by order in the
metric fluctuation.

When D = 3, the solution is much simpler: the Weyl tensor vanishes, so that the dangerous
terms are actually proportional to the Ricci tensor and can be cancelled by a ξ -dependent
transformation of the metric (even in flat space). Let us thus consider the action

I = 1

16πG

∫
d3x

√−g(LEH + LF ), (2.6)

where LEH denotes the Einstein–Hilbert Lagrangian,

LEH = R + 2

	2
, (2.7)

while

LF = ϕ μνρ

(
Fμνρ − 3

2
g(μν Fρ)

)
+ 1

	2

(
m1 ϕμνρ ϕ μνρ + m2 ϕμ ϕ μ

)
+ 3 Rρσ

(
k1 ϕ ρ

μν ϕ σ μν + k2 ϕ ρσ
μ ϕ μ + k3 ϕ ρ ϕ σ

)
+ 3 R

(
k4 ϕμνρ ϕ μνρ + k5 ϕμ ϕ μ

) + O(ϕ4). (2.8)

This is the most general Lagrangian quadratic in ϕ that reduces to the Fronsdal one upon
linearization, is manifestly diffeomorphism invariant and contains at most two derivatives.
As already recalled, the restriction on the number of derivatives is dictated by our goal to
identify the metric-like counterpart of the frame-like action (1.2). On dimensional grounds
one could also add terms in 	−1 and a single covariant derivative, but the only candidate is
	−1∇ · ϕλ

λ, a total derivative. Furthermore, higher order corrections are at least quartic in ϕ,
as one cannot build a scalar with the inverse metric, three spin-3 fields and two derivatives.
Cubic contributions proportional to 	−1 and with a single derivative would be available, but
they are not needed for the gauge invariance, and they cannot be generated by the elimination
of ω from the action (1.2).

Under covariantized gauge transformations (2.4), the Lagrangian varies as

δ
(√−g (LEH + LF )

) =
(

δ(
√−gLEH)

δgμν

δgμν + δ(
√−gLF )

δϕμνρ

δϕμνρ

)
+ δ(

√−gLF )

δgμν

δgμν.

(2.9)

The terms in parentheses could cancel, up to total derivatives, if the metric transforms with a
gauge transformation linear in ϕ and ξ . This is possible for any choice of the coefficients ki,
while the ‘mass’ coefficients in (2.8) have to satisfy6

m1 = 6 (k1 + 3k4 − 1) , m2 = 6
(
k2 + k3 + 3k5 + 9

4

)
. (2.10)

One can indeed check that when (2.10) holds, the action (2.6) is invariant, at lowest order in
ϕ, under (2.4) and under the simultaneous transformation

6 On (A)dS3 backgrounds all contributions of the form R···ϕ···ϕ··· become mass-like terms proportional to 	−2 as the
ones that we already included in (2.8). Therefore not all parameters in (2.8) can be free: on (A)dS3 one has to recover
the Fronsdal ‘mass’ [41], whose gauge variation cancels (2.5) on constant-curvature backgrounds. This is guaranteed
by (2.10).

5
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δgμν = 3{ 2k2 ϕμνρ∇ · ξρ + a (2k1 + 5) ϕρσ (μ∇ν) ξρσ + 2 (2k1 − 3) ϕρσ (μ∇ρ ξν)
σ

+ (4k3 + 3) ϕ(μ∇ · ξν) + 2b (k2 + 4) ϕρ∇(μ ξν)
ρ + k2 ϕρ∇ρ ξμν

+ 4 ξρσ ∇ρ ϕμνσ + (a − 1) (2k1 + 5) ξρσ ∇(μ ϕν) ρσ + 8 ξρ
(μ∇ · ϕν) ρ

− 8 ξρ (μ∇ρ ϕν) + 2(b − 1) (k2 + 4) ξρ
(μ∇ν) ϕρ + 2 ξμν∇ · ϕ

− gμν[ 3 (2k1 + 4k4 − 1) ϕρσλ∇ρξσλ + 4 ξρσ ∇· ϕρσ

+ (4k2 + 4k3 + 8k5 + 3) ϕρ ∇· ξρ − 8 ξρσ ∇ρ ϕσ ]}. (2.11)

The two parameters a and b are undetermined as they parameterize field-dependent
diffeomorphisms.

The last term in (2.9) does not vanish and higher order corrections to both the action and
the gauge transformations are needed to preserve the gauge symmetry. In sections 2.2 and 2.3
we shall give further arguments for this.

We found that the coefficients ki are free, but this does not mean that we have a five-
parameter family of interacting theories. Actually, one can remove all R···ϕ···ϕ··· contributions
with the field redefinition

g(new)
μν = gμν − 3 { k1 ϕρσ (μ ϕν)

ρσ + k2 ϕμνρ ϕ ρ + k3 ϕ(μ ϕν)

− gμν[(k1 + 2k4) ϕρσλ ϕρσλ + (k2 + k3 + 2k5) ϕλ ϕ λ]}. (2.12)

In conclusion, in three dimensions there exists a two-derivative coupling between gravity and
a spin-3 field, that at O(ϕ2) is unique up to field redefinitions. On the other hand, it is not clear
a priori what is the counterpart of the frame-like action (1.2) under the map (1.3). This issue
will now be addressed. It will lead to definite values for the ki.

2.2. Relation with the Chern–Simons action

It is rather straightforward to construct solutions of the theory in its CS formulation: the
extrema of the action are flat connections e and ω, with the condition that the gravity dreibein
is invertible. The map (1.3) then allows us to construct the metric and the spin-3 field explicitly.
For a class of asymptotically AdS solutions this was done in [19] leading to

g = 	2 dr2

r2
−

{
r2 + (8πG	)2

(
L(x+)L̃(x−)

r2
− 	2

4

W(x+)W̃(x−)

r4

)}
dx+dx−

− 8πG	
(
L(x+)(dx+)2 + L̃(x−)(dx−)2

)
, (2.13a)

ϕ = −	

8
(8πG	)

{ (
W(x+)(dx+)3 + W̃(x−)(dx−)3

)
+ (8πG	)

(
2
L̃(x−)W(x+)

r2
+ (8πG	)

L(x+)2W̃(x−)

r4

)
(dx+)2 dx−

+ (8πG	)

(
2
L(x+)W̃(x−)

r2
+ (8πG	)

L̃(x−)2W(x+)

r4

)
(dx−)2 dx+

}
. (2.13b)

Here, r denotes a radial coordinate and x± = t
	

± θ .
We will now fix the coefficients ki by requiring that these fields also solve the equations

of motion derived from the action (2.6) to the lowest non-trivial order in ϕ. This will lead to
(1.5). The equation of motion for the metric is

Rμν − 1

2
gμνR − 1

	2
gμν = − 1√−g

δ(
√−gLF )

δgμν
. (2.14)

6
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The rhs is the energy–momentum tensor of the spin-3 field, whose explicit expression is
somewhat lengthy and will not be displayed. The equation of motion for ϕ is

Fμνρ − 3

2
g(μν Fρ) +

(m1

	2
+ 3k4 R

)
ϕμνρ +

(m2

	2
+ 3k5 R

)
g(μν ϕρ) + 3k1 Rλ(μ ϕνρ)

λ

+ 3

2
k2 R(μν ϕρ) + 3

2
k2 g(μν ϕρ)

λσ Rλσ + 3k3 g(μνRρ)σ ϕσ = 0. (2.15)

In this way, we find a unique solution for the coefficients ki:

k1 = 3
2 , k2 = 0, k3 = − 3

4 , k4 = − 1
2 , k5 = 0. (2.16)

We remark that substituting (2.16) in the gauge transformation of the metric (2.11), all terms
where the derivative acts on the parameter ξρσ vanish. Moreover, the fields (2.13) solve the
equations of motion (2.14) and (2.15) only at the lowest order in W and W̃ . Therefore, one
has to add O(ϕ4) corrections to the Lagrangian (2.8).

The solutions (2.13) are thus rich enough to fix all coefficients ki, even if they do not
parameterize the whole space of solutions of (1.2). For instance, they do not include black
holes with higher spin charges, as constructed in [32, 33, 35, 36], but we checked explicitly
that these also solve the metric-like equations of motion. In section 3, we confirm the values
(2.16) for the coefficients by a direct elimination of the auxiliary fields from the frame-like
action, which guarantees that all fields constructed via the map (1.3) from solutions of the
frame-like theory solve the equations of motion (2.14) and (2.15). This argument does not
depend on the presence of a cosmological constant, and the coefficients (2.16) thus identify
the metric-like counterpart of the action (1.2) also in Minkowski or de Sitter backgrounds.

2.3. Algebra of gauge transformations

We will now present the algebra of metric-like gauge transformations, up to the accessible
orders in ϕ, and show that it closes on shell. Recall that the algebra generated by the frame-
like transformations (1.4) closes off shell, but it still contains the auxiliary fields which
are eliminated, via their equations of motion, in the metric formulation (see section 3). To
compute the algebra one has to specify the tensorial nature of fields and gauge parameters. In
analogy with gravity, we assume that gauge fields are symmetric covariant tensors, while gauge
parameters are symmetric contravariant tensors. Moreover, we impose the trace constraint on
the gauge parameter with a projector built from the metric.

The additional symmetry of the diffeomorphism invariant action (2.6) (with coefficients
fixed as in (2.16) for simplicity) can thus be cast in the form7

δξϕμνρ = 3
(
gλ(μgν|σ − 1

3 gλσ g(μν|
)∇|ρ)ξ

λσ + O(ϕ2), (2.17a)

δξ gμν = 12ξρσ
{ ∇ρϕμνσ − 2∇(μϕν)ρσ − gρσ gλτ

[∇λϕμντ − 2∇(μϕν)λτ

]
+ 2gρ(μ|gλτ [∇λϕ|ν)στ − ∇σ ϕ|ν)λτ − ∇|ν)ϕσλτ ] − gμνgλτ [∇λϕρστ − 2∇ρϕσλτ ]

+ 1
2 (gμρgνσ − gμνgρσ )gλγ gαβ∇λϕαβγ

} + O(ϕ3), (2.17b)

where now ξρσ is a traceful tensor. The extra terms appearing in (2.17) compared to (1.7) are
those needed to implement the traceless projection, i.e. they are introduced by the substitution

ξμν → (
δμ
ρ δν

σ − 1
3 gρσ gμν

)
ξρσ . (2.18)

The issue is that the trace condition involves the metric which itself transforms under a second
transformation on δξϕ.

7 v, w are the vector fields which generate diffeomorphisms and ξ, κ are the tensor fields which generate spin-3
transformations.

7
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Diffeomorphisms generate an off-shell subalgebra since they satisfy

[δv, δw] gμν = δ[v,w] gμν, [δv, δw] ϕμνρ = δ[v,w] ϕμνρ, (2.19)

where

[v,w]μ = vν∂ν wμ − wν∂ν vμ (2.20)

is the Lie bracket of the two vector fields v and w. The commutator of a diffeomorphism with
a spin-3 transformation can be cast in a similar form. For instance,

[δv, δξ ] ϕμνρ = 3
(
gλ(μ gν|σ − 1

3 gλσ g(μν|
)∇|ρ) [v, ξ ]λσ . (2.21)

The resulting spin-3 transformation is generated by the Lie derivative of ξμν along vσ ,

[v, ξ ]μν = vσ ∂σ ξμν − 2 ξσ (μ|∂σ v|ν). (2.22)

A similar result holds for the metric, so that

[δv, δξ ] gμν = δ[v,ξ ] gμν, [δv, δξ ] ϕμνρ = δ[v,ξ ] ϕμνρ. (2.23)

Note that [v, ξ ]μν is not traceless even for a traceless ξμν , but this is not a problem thanks to the
projector which multiplies it. Moreover, (2.23) remains true in arbitrary spacetime dimensions.
The peculiarities of the three-dimensional case thus manifest themselves in the commutator
of two spin-3 transformations.

We were able to evaluate the commutators (2.19) and (2.23) because a diffeomorphism
generates terms that are linear in the field on which it acts. Therefore, different orders in the
expansion in powers of ϕ cannot mix, and we expect that (2.23) continues to hold order by
order in ϕ. The situation is very different when one considers commutators of two spin-3
transformations: these are not linear in the fields and, as a result, different orders could mix in
the commutator. When the commutator acts on the spin-3 field, the higher order corrections to
(2.17) could even have an effect at lowest order. In fact, the gauge variation of ϕ is schematically
of the form

δϕ ∼ g2 ∇ ξ + O(ϕ2). (2.24)

In a second gauge transformation, the O(ϕ) variation of the metric mixes with the
corresponding terms coming from the variation of the (yet unknown) O

(
ϕ2

)
corrections.

The only conclusion that we can draw from this commutator is that we do need corrections,
since in their absence it is not possible to obtain a diffeomorphism out of [δκ, δξ ] ϕμνρ . In
contrast, when the commutator acts on the metric there is a term of order zero in ϕ that is
insensitive to any correction to (2.17) and reads

[δκ, δξ ] gμν = 12 ξρσ
{∇ρ∇σ κμν + 2 ∇ρ∇(μκν)σ − 4 ∇(μ|∇ρ κ|ν)σ − 2 ∇(μ∇ν)κρσ

+ 2 gρ(μ|
[
� κ|ν)σ + ∇λ∇|ν)κσ

λ + ∇λ∇σ κ|ν)
λ − 2 ∇|ν)∇λ κσ

λ − 2 ∇σ ∇λ κ|ν)
λ
]

− gμν

[
� κρσ + 2 ∇λ∇ρ κσ

λ − 4 ∇ρ∇λ κσ
λ
] + 2 gμρgνσ ∇λ∇τ κλτ

}
− (ξ ↔ κ) + O(ϕ2). (2.25)

For simplicity, we presented the result in terms of traceless parameters; inserting (2.18)
one recovers the full expression. At this order the right-hand side cannot contain a spin-3
transformation (that is at least linear in ϕ), so that it must be a diffeomorphism in order to
grant the closure of the algebra. This can be made manifest rewriting (2.25) as

[δκ, δξ ] gμν = − 36
{∇(μ|

(
ξρσ∇|ν) κρσ − κρσ∇|ν) ξρσ

)
+ 3

(
ξρσ Rρσ κμν − κρσ Rρσ ξμν

) − 4
(
ξρσ Rρ(μ κν)σ − κρσ Rρ(μ ξν)σ

)
+ ξρσ Y T

{2,2}∇(ρ∇σ )κμν − κρσ Y T
{2,2}∇(ρ∇σ )ξμν

} + O(ϕ2), (2.26)

8
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where Y T
{2,2} denotes the projector onto the traceless {2, 2} irrep of the group of permutations

acting on the spacetime indices μ, ν, ρ, σ . It can be built in terms of

Tμν,ρσ ≡ Y{2,2}∇(μ∇ν)ξρσ = 1
6

(
2∇(μ∇ν)ξρσ − ∇ρ∇(μξν)σ − ∇σ∇(μξν)ρ

− ∇μ∇(ρξσ )ν − ∇ν∇(ρξσ )μ + 2∇(ρ∇σ )ξμν

)
(2.27)

as

Y T
{2,2}∇(μ∇ν) ξρσ = Tμν, ρσ − (gμνTρσ − gρ(μTν)σ − gσ (μTν)ρ + gρσTμν )

+ 1
2

(
gμνgρσ − gρ(μgν)σ

)
T , (2.28)

where we defined Tμν ≡ Tμν, λ
λ and T ≡ Tρ

ρ
, σ

σ . The resulting combination has the same
symmetries as the Weyl tensor and thus vanishes in three dimensions. In conclusion, we
recovered a diffeomorphism generated by8

vμ = 18 gμν
{
κρσ∇ν ξρσ − ξρσ∇ν κρσ + 1

3

(
κρ

ρ∇ν ξσ
σ − ξρ

ρ∇ν κσ
σ

) }
, (2.29)

plus a remainder proportional to the Ricci tensor. However, one can rewrite it in terms of the
Einstein tensor: if one performs the substitution

Rμν → Rμν − 1

2
gμν

(
R + 2

	2

)
, (2.30)

the contributions in gμν cancel either identically or on account of the tracelessness of the
parameters. At this order in ϕ the field equations for the metric are the Einstein equations, so
that the remainder in (2.26) signals that the algebra of gauge transformations closes only on
shell.

3. Mapping frame- to metric-like formulations

In the last section we identified the metric-like theory that corresponds to the higher spin theory
defined by the frame-like action (1.2) to the first non-trivial order by analysing its equations
of motion. Alternatively, one can identify it directly by eliminating the spin connections. This
will be the content of this section. This also leads to an identification between the parameters
of frame- and metric-like gauge symmetries.

3.1. Elimination of spin connections

To go from the frame-like formulation to the metric-like formulation, we have to solve the
torsion constraint (the equation of motion for ω derived from the action (1.2)),

de + ω ∧ e + e ∧ ω = 0, (3.1)

to express the generalized spin connection ω in terms of the generalized vielbein e. In
components this constraint reads

∂[μ eCν] + fAB
C ωA

[μ eBν] = 0 ⇔ D[μeCν] = 0, (3.2)

where the curly letters are labels for the generators {JA} of sl(3, R), and Dμ denotes the
full sl(3) covariant connection including Levi-Civita and sl(3) spin connection. The torsion
constraint (3.2) together with the metric being covariantly constant,

∇μ gνρ = Dμ gνρ = 0, (3.3)

8 With respect to (2.25) and (2.26) we reinserted here the full dependence on the metric, so that καβ and ξαβ are
traceful tensors.
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leads to

κAB eAρ Dμ eBν = 0. (3.4)

For g = sl(2, R) one could multiply this expression by the inverse vielbein to conclude that the
vielbein is covariantly constant under the full connection (vielbein postulate), which makes it
possible to solve for the spin connection. For general Lie algebras this is not directly possible,
and instead we will solve for the spin connection in a perturbative expansion. For that we
separate the generators into the sl(2) generators {Ja} (labelled by small Latin indices), and the
remaining generators {JA} (labelled by capital Latin indices and chosen to be orthogonal to
the Ja with respect to the Killing form). Relation (3.4) can be separated, and one obtains

Dμ ec
ν = −κAB

(0)
g ρλ ec

λ eA
ρ DμeB

ν , (3.5)

where we used the inverse
(0)
g μν of the sl(2)-part

(0)
g μν of the metric,

(0)
g μν ≡ ea

μ eb
ν κab. (3.6)

Equation (3.5) can be interpreted as the correction to the vielbein postulate of the sl(2)

components ec of the vielbein. It remains also to get an expression for the covariant derivative
of the non-sl(2) components eC, and for that we have to determine the spin connection. To this
end, we split the sum over B = (b, B) in (3.2) and we arrive, after some simple manipulations,
at

fmn
p fA

Cm (0)

gμν ωA
μ en

ν = − fmn
p (0)

gμρ (0)

gνσ em
ρ en

σ

(
∂[μ eCν] + fAB

C ωA
[μ eB

ν]

) ≡ VC,p. (3.7)

We will now solve (3.7) for ω in terms of V . By replacing the result for ω in the ω-dependence
of V successively, we arrive at a perturbative expansion in the number of higher spin
vielbeins eB.

We contract (3.7) with a suitable combination of structure constants, and arrive, after
repeated use of the Jacobi identity and other identities collected in appendix A, at

(C2)
D
A ωA

μ eb
ν

(0)

gμν = (
δb

a δDC + fa
be feC

D + faC
E fE

bD)
VC,a. (3.8)

Here, C2 denotes the quadratic Casimir of sl(2) in the adjoint representation on sl(3),

(C2)
D
A = fDmC f Cm

A. (3.9)

The Casimir can of course be inverted as it is constant on every irreducible representation
that occurs. In our convention the Casimir takes the value s(s − 1) if the corresponding sl(2)-
representation has dimension (2s − 1). Note that until now all manipulations were valid for
general semi-simple Lie algebras. We now specialize to sl(3), and we find

2ωd
β = eb

β

(
κabδ

d
c + fab

e fec
d + fac

e feb
d
)

V c,a, (3.10)

6ωD
β = eb

β

(
κabδ

D
C + fab

e feC
D + faC

E fEb
D
)

VC,a. (3.11)

In the following, we will use the notation ea
μ for sl(2) components of the vielbein and EA

μ

for the remaining components to better distinguish them. Similarly, we use ωa
μ and �A

μ. The
lowest order solutions for the spin connections then read

ωd
β = − 1

2 eb
β

(
fmnbδ

d
c + 2κb[n fm]c

d + 2κc[n fm]b
d
) (0)

gμρ (0)

gνσ em
ρ en

σ ∂[μec
ν] + O

(
E2

)
, (3.12a)

�D
β = − 1

6 eb
β fmn

a
(
κabδ

D
C + fab

e feC
D + faC

E fEb
D
) (0)

gμρ (0)

gνσ em
ρ en

σ

(
∂[μEC

ν] + faB
Cωa

[μEB
ν]

)
.

(3.12b)

10
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Note that the second equation does not receive corrections of higher order in E,9 but replacing
ωa by its lowest order contribution will only yield �D up to terms of order O(E3).

We could use these relations to rewrite the frame-like action (1.2) in terms of vielbeins,
and then rewrite it in terms of metric g and spin-3 field ϕ. Instead, we will follow a different
route by determining the gauge transformations of the metric-like theory from those in the
frame-like theory.

3.2. Relations between gauge parameters

The frame-like theory is invariant under the gauge transformations (1.4), i.e. under generalized
Lorentz transformations,

δeCμ = fAB
C eAμ �B, (3.13)

and generalized local translations,

δeCμ = ∂μ ξC + fAB
C ωA

μ ξB. (3.14)

In the frame-like description of pure gravity, diffeomorphisms are induced by local translations
(see e.g. [42]). The same argument applies to the higher spin setup: a local translation by

ξA = eAμ ξμ, (3.15)

can be decomposed as

δeCμ = eCλ ∂μξλ + ξλ ∂λeCμ + 2 ξλ
(
∂[μeCλ] + fAB

C ωA
[μ eBλ]

) + ξλ fAB
C ωA

λ eBμ . (3.16)

The term in parentheses is proportional to the torsion constraint (3.2), so that up to a Lorentz-
like transformation generated by �B = − ξλωB

λ , the transformation is on-shell equivalent to
a diffeomorphism generated by ξμ.

In the pure gravity case, one can invert this argument to conclude that any local translation
by ξ a generates a diffeomorphism where the corresponding vector field is obtained by
contracting ξ a with the inverse vielbein. In the higher spin theory, we expect that this expression
is modified, and the simplest ansatz covariant in the sl(3) indices leads to

ξμ = gμν κAB eAν ξB. (3.17)

This is consistent with the previous argument: if we insert ξA given in (3.15) into (3.17), then
we obtain an identity.

A general gauge parameter ξA will induce a spin-3 transformation as well as a
diffeomorphism given by (3.17). On the other hand, we know from (3.15) that the
diffeomorphism part is generated by

ξ̃A = eAμ gμν κBC eCν ξB ≡ PA
B ξB, (3.18)

and we can identify PA
B as the projector onto diffeomorphisms (that it is indeed a projector

can be easily verified). This means in turn that the projector on pure spin-3 transformations is
(1 − P ).

To find the correct ansatz for the spin-3 transformation, we start from the linearized
relation for a free spin-3 field,

ξ ab = 3 ēa
μ ēb

ν ξμν, (3.19)

where ē denotes the vielbein of the fixed background (for which ēA
μ = 0). We can rewrite this

with the help of the symmetric structure constants dABC (see appendix A) as

ξA = 3 dA
ab ēa

μ ēb
ν ξμν. (3.20)

9 There are no �A appearing on the right-hand side due to the fact that in sl(3) the structure constants involving only
non-sl(2) indices vanish, fABC = 0.
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To obtain the corrections to this expression in the nonlinear theory, we let the indices run over
all sl(3) labels and project the result by (1−P ) to ensure that no diffeomorphism is generated.
This leads to the following ansatz for a pure spin-3 transformation generated by ξμν ,

ξA = 3
(
δAB − PA

B
)
ξμνeCμeDν dB

CD

= 3
(
ξμνeCμeDν dA

CD − dBCDeAρ eBσ eCμeDν gρσ ξμν
)
. (3.21)

With this ansatz we can then derive the expression for the spin-3 transformation in the metric-
like theory, which will be done in the following section. Note that this ansatz most likely needs
to be modified at higher order in E, which becomes important if one computes higher order
corrections to the gauge transformations.

3.3. Transformations of metric-like fields

Coming from the frame-like theory we can derive the spin-3 gauge transformations in the
metric-like theory. The strategy is the following: we first express the metric and the spin-3
field in terms of vielbeins (see equation (1.3)),

gμν = κAB eAμ eBν , ϕμνρ = 1
6 dABC eAμ eBν eCρ , (3.22)

then use the gauge transformations (3.14) of the vielbeins under local translations by
a parameter given in (3.21), insert the spin connection in terms of the vielbein (see
equation (3.12)) and finally express the result in terms of g and ϕ.

Let us start with the transformation of the spin-3 field ϕ. Under a local translation it
transforms as

δϕμνρ = 1
2 dABC eA(μ eBν Dρ)ξ

C . (3.23)

Replacing the gauge parameter by expression (3.21) and expanding in powers of E we obtain

δϕμνρ = 3
2 dAbc dA

de eb
(μ ec

ν Dρ)

(
ed
λ ee

σ ξλσ
) + O(E2). (3.24)

The covariant derivative of the sl(2) components of the vielbein is of order O(E2) (see
equation (3.5)), and we arrive at

δϕμνρ = 3
2 dAbcdA

deed
λee

σ eb
(μec

ν∇ρ)ξ
λσ + O

(
E2

)
= 3∇(μ

(
ξνρ) − 1

3 gνρ)g
λσ ξλσ

) + O(E2), (3.25)

where we used identity (A.9d) for the structure constants. This result equals (2.17a) including
the projection of ξλσ to its traceless part.

We now consider the spin-3 transformation of the metric. Under a general local translation
(3.14), it transforms as

δgμν = 2 κAB eA(μ Dν)ξ
B. (3.26)

We replace the gauge parameter by expression (3.21) for a pure spin-3 transformation, and
after some manipulations where we also use (3.4) we arrive at

δgμν = −6dABCξρσ eBρ eCσD(μeAν)

= −6dAbcξ
ρσ eb

ρec
σD(μEA

ν) + O
(
E3) , (3.27)

where in the last step we expanded in sl(2) and non-sl(2) indices using that the covariant
derivative of ea is of orderO(E2) (see equation (3.5)). One observes that in (3.27) no derivatives
of the gauge parameter ξρσ appear. In fact one can show (see appendix B for the details) that
this result precisely reproduces the gauge transformation (2.17b). Since there is a unique
action at quadratic order in ϕ that is invariant under this gauge transformation, we have again
identified the action (1.5) as the metric-like counterpart of the frame-like action.

12
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4. Wald entropy for higher spin black holes

In [32] the class of solutions considered in [19] was enlarged, in search for black holes with
higher spin charges; see also [33–36]. Although the presence of an event horizon is not a gauge-
invariant statement in the theories we are considering (due to the Fronsdal-like transformations
(2.17)), there is a gauge where these solutions exhibit a regular event horizon [33]. This gauge
is also supposed to be unique, and one can thus try to evaluate the entropy of higher spin black
holes using Wald’s formula [37]. For a static black hole in three dimensions with metric

g = gρρ (ρ) dρ2 + gtt (ρ) dt2 + gθθ (ρ) dθ2 (4.1)

and regular horizon at ρ = ρh, it reads

S = π

G

√
gθθ gtt gρρ

δL
δRtρ tρ

∣∣∣∣
ρ=ρh

. (4.2)

In all static solutions considered in [33–36] the spin-3 field takes the form

ϕ = 3 ϕρρθ (ρ) dρ2 dθ + 3 ϕttθ (ρ) dt2 dθ + ϕθθθ (ρ) dθ3. (4.3)

Evaluating (4.2) and taking into account (4.1) and (4.3), we find

S = π

2G

√
gθθ

{
1 + 3

2
[2 (k4 + k5)(g

θθ )3(ϕθθθ )
2 + 2 (k2 + 2k5) gttgρρgθθϕttθ ϕρρθ

+ (2k1 + k2 + 6k4 + 2k5)((g
tt )2gθθ (ϕttθ )

2 + (gρρ
)2

gθθ (ϕρρθ )
2)

+(k2 + 4k5) (gθθ )2(gtt ϕttθ ϕθθθ + gρρ ϕρρθ ϕθθθ )] + O(ϕ4)

}∣∣∣∣
ρ=ρh

. (4.4)

Substituting the values (2.16) for the coefficients ki, it simplifies to10

S = A

4G

{
1 − 3

2
(gθθ )3(ϕθθθ )

2 + O(ϕ4)

}∣∣∣∣
ρ=ρh

, (4.5)

where A = 2π
√

gθθ (ρh) is the length of the horizon. The same result can be recovered by
taking advantage of the uniqueness of the two-derivative coupling up to field redefinitions.
The field redefinition (2.12) cancels all terms with the Ricci tensor so that for the new action
the black hole entropy is just one quarter of the area of the horizon, i.e.

S = π

2G

√
g(new)

θθ (ρh) = π

2G

√
gθθ

{
1 + 1

2
gθθ δgθθ + O

(
ϕ4) }∣∣∣∣

ρ=ρh

. (4.6)

Using (2.12), this can be shown to coincide with (4.4).
The black hole solutions of [32, 33, 35, 36] are constructed in such a way that they have a

pointwise smooth BTZ limit if one switches off the spin-3 charge. We can then parameterize
their mass, temperature and entropy by their deviation from the BTZ limits as

M = MBTZ(1 + αMε), (4.7a)

T = TBTZ(1 + αT ε), (4.7b)

S = SBTZ(1 + αSε), (4.7c)

where ε = 0 in the BTZ limit. In terms of the dimensionless parameters L and W used in
[33], one has

MBTZ = 4π

	
L, TBTZ =

√
2L

πk 	2
, SBTZ = 4π

√
2πkL, (4.8)

10 The action (2.6) can be rewritten in many ways, e.g. by changing the order of covariant derivatives in the Fronsdal
tensor which will shift some of the coefficients ki. We have checked that the final expression for the entropy is
unchanged.
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where k = 	
4G , and we set11

ε = W2

L3
. (4.9)

There are also higher order corrections in ε, but from our action we can only evaluate the
deviation from the BTZ entropy (and the other thermodynamical parameters of the black hole)
to the lowest non-trivial order in the spin-3 charge. Therefore, we restrict the discussion to
O(ε) terms. In addition, there is also the spin-3 charge Q. It vanishes as W → 0 and we
assume it to be of the form

Q = W(1 + αQ ε + · · ·). (4.10)

However, αQ does not affect the following discussion, and to the order we are computing we
can identify Q with W .

If one expresses the entropy as a function of M and Q, the first law of black hole
thermodynamics states(

∂S

∂M

)
Q

= 1

T
. (4.11)

We can use (4.7a) and (4.8) to obtain (· · · are higher order terms in W)

L = 	

4π
M − (4π)2αM

W2

	2M2
+ · · · . (4.12)

Inserting this into the expression for the entropy, we find

S = 2π
√

2kM	

(
1 + 32π3(2αS − αM )

W2

	3M3
+ · · ·

)
, (4.13)

from where we compute(
∂S

∂M

)
W

= π

√
2k	

M

(
1 − 160π3(2αS − αM )

W2

	3M3
+ · · ·

)
. (4.14)

On the other hand, for the temperature (4.7b), we find

1

T
= π

√
2k	

M

(
1 − 32π3(2αT − αM )

W2

	3M3
+ · · ·

)
. (4.15)

Comparison gives the linear relation for the coefficients

5αS − 2αM = αT . (4.16)

Demanding regularity at the horizon,

1

T
= 2π

√
2 gρρ

− g′′
tt

∣∣∣∣∣
ρ = ρh

= 2π

√
2 ϕρρθ

−ϕ′′
ttθ

∣∣∣∣∣
ρ = ρh

, (4.17)

the temperature is fixed in terms of L and W , and for the solution presented in equations (4.13)
and (C.1) of [33], this leads to

αT = − 15k

256π
. (4.18)

We can now evaluate Wald’s formula (4.5) on the black hole solution of [33] to fix αS.
Relation (4.16) would then fix also αM . To this end the overall normalization of the fields is
crucial, and we checked that the metric and the spin-3 field presented in [33] solve our equations

11 Our parameter ε is related to the parameter ζ used in [33] by ε = 32π
k ζ 2.
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of motion (2.14) and (2.15) provided that one multiplies their ϕμνρ by 1/6.12 Equation (4.5)
eventually implies

αS = 9k

256π
, (4.19)

and together with (4.16) and (4.18)

αM = 15k

128π
. (4.20)

The correction to the BTZ entropy that we found in this way does not agree with the
one presented in section 4.2 of [33] (see also [34, 43] for a discussion of the proposal of
[33] from a CFT perspective). On the other hand, the previous analysis suggests a possible
interpretation of the mismatch: in [33] the entropy was derived from the first law (4.11) under
the assumption M = MBTZ, i.e. αM = 0. Inserting this ansatz in (4.16) one indeed reproduces
the αS of [33], while our result seems to suggest the need for W corrections to the mass. To
test this possibility, it would be desirable to compute the shift in the mass in an independent
way.13 However, due to the modified asymptotic behaviour of the black hole solutions this is
not straightforward: at infinity the metric has the same radial dependence as an AdS space with
half the radius of the vacuum solution of our field equations (2.14) and (2.15). The discrete
jump in the asymptotic behaviour could also create problems of convergence of the integrals
involved in Wald’s proof of the first law of black hole thermodynamics. This issue deserves
further study.

5. Discussion

We considered the minimal coupling of Fronsdal’s action to gravity in three spacetime
dimensions and we showed that at the lowest order in the higher spin field, it preserves
the same amount of gauge symmetry as the free action. The resulting two-derivative coupling
(that is not available in higher spacetime dimensions [6–11]) is unique up to field redefinitions,
and it does not require a cosmological constant. In the spin-3 case, we exhibited its relation
with the SL(3, R) × SL(3, R) CS action that describes the coupling in a frame-like language.
We also proved that a complete metric-like action would require higher order corrections in
the spin-3 field to preserve the gauge invariance, but the frame-like formulation indicates that
neither fields of different spin nor higher derivative couplings are necessary.

A natural extension of this work would be to identify the full metric-like counterpart of
the SL(3, R) × SL(3, R) CS action. The major simplification of the spectrum in comparison
to all known higher spin gauge theories in D � 4 gives hope to achieve this goal, although the
next order is already quite intricate and at present, it is not even clear whether the action has
to be polynomial in the spin-3 field. The situation is as if in gravity we only knew the action
up to some order in the graviton field. Without an understanding of the geometric principles—
covariant derivatives, curvatures, etc—and of the full nonlinear diffeomorphism symmetry,
this action would look mysterious. In the higher spin case, the ‘geometric’ structures which
are implied by the extension of diffeomorphism to include higher spin gauge symmetries are
unknown. Some attempts in this direction are reported, e.g. in [45–49], where reformulations
of the free theory in terms of higher spin curvatures were studied. In our setup, progress in this
direction might come from abandoning metric compatibility and starting from a Palatini-like

12 The need for this rescaling can also be inferred from the comparison between our definition for the metric-like
fields (1.3) and the corresponding definition in [33].
13 A modification of the relation M = MBTZ was also proposed in [44] via a direct construction of the corresponding
conserved charge in the CS formulation.

15



J. Phys. A: Math. Theor. 46 (2013) 214017 A Campoleoni et al

description of the dynamics. The elimination of the auxiliary fields from the frame-like action,
that we analysed in section 3, also gives hope that a simple way to group all nonlinearities
exists, but a detailed analysis of the next corrections is needed.

Another interesting direction to be explored is the extension of all previous considerations
to SL(N, R) × SL(N, R) CS theories and to their N → ∞ limits [20, 21], possibly including
the matter couplings of [27] or generalizations thereof.

Acknowledgments

We performed or checked various computations with xAct packages for Mathematica [50], and
we are grateful to T Nutma for his advise and for the use of his package xTras. AC, SF and SP
acknowledge the Erwin Schrödinger Institute in Vienna for hospitality, and the participants in
the ESI workshop on Higher Spin Gravity for feedback on a presentation of some of the results
contained in this paper. In particular, we would like to thank M Ammon for a suggestion which
provoked the analysis presented in section 4. We also thank M Bañados, C Eling, E Joung, M
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Appendix A. Conventions

A pair of parentheses denotes the symmetrization of the indices it encloses with weight 1,
such that for instance

A(μ Bν) = 1
2 (Aμ Bν + Aν Bμ). (A.1)

In a similar fashion a pair of square brackets denotes the antisymmetrization of the indices it
encloses. Note that this convention differs from the one employed in our earlier publication
[19]. We adopt the mostly plus convention for the metric and our curvature conventions are

[∇μ,∇ν] ωρ = Rμνρ
σωσ , Rμν = Rμρν

ρ. (A.2)

We often omit contracted indices in the traces of a tensor: for instance ϕμ ≡ ϕμλ
λ.

The algebra sl(3, R) can be given in terms of generators Ja and Tab with the commutation
relations14

[Ja, Jb] = εabcJc, (A.3a)

[Ja, Tbc] = 2εd
a(bTc)d, (A.3b)

[Tab, Tcd] = −2(ηa(cεd)be + ηb(cεd)ae)J
e, (A.3c)

with T[ab] = ηab Tab = 0. The Levi-Civita symbol is defined such that

ε012 = −ε012 = 1, (A.4)

and indices are raised and lowered with ηab = diag(−1, 1, 1). An explicit 3 × 3 matrix
representation for the Tab is given by

Tab = (
JaJb + JbJa − 2

3 ηab JcJc
)
, (A.5)

with Ja in the three-dimensional representation of sl(2, R) ↪→ sl(3, R). We denote by {JA} a
set of five independent generators built from the Tab, and the set of all generators {Ja, JA} is
denoted by {JA}.
14 With respect to [19] we choose σ = −1.
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We normalize the Killing form to be one-half of the matrix trace in the fundamental
representation of sl(3, R),

κAB = 1
2 tr (JA JB) , (A.6)

such that, e.g., κab = ηab and κaB = 0. The anti-symmetric and symmetric structure constants
are defined as

fABC = 1
2 tr ([JA, JB]JC ) , (A.7)

dABC = 1
2 tr ({JA, JB}JC ) , (A.8)

such that fabc = εabc and dabc = 0. The structure constants satisfy a number of identities, and
in the main text, we use

fa
bc fbc

d = −2δd
a , (A.9a)

fab
c fc

de = − (
δd

aδe
b − δe

aδ
d
b

)
, (A.9b)

dAbcκ
bc = 0, (A.9c)

dAbcdA
de = − 2

3κbcκde + 2κd(bκc)e. (A.9d)

Appendix B. Spin-3 transformation of the metric

In this appendix, we want to show that the spin-3 transformation of the metric in (3.27) derived
from the frame-like formulation (which we call δIgμν in the following) can be expressed in
terms of metric g and spin-3 field ϕ as in (2.17b) (which we will call δIIgμν).

We first expand the sl(3)-covariant derivative D in (3.27) as the sum of the sl(2)-covariant

derivative
(0)

D and the non-sl(2) part � of the spin connection,

δIgμν = −6 dAbc eb
ρ ec

σ ξρσ
( (0)

D(μEA
ν) + f A

Bd �B
(μ ed

ν)

) + O(E3), (B.1)

and replace � by expression (3.12b) to arrive at

δIgμν = −ξρσ ee
ρe f

σ ea
(μeb

ν)e
m
α en

γ gαβgγ δ
(0)

DβEA
δ

× (
6κm(aκb)ndAe f + dD

e f fmn
d fCD(a

(
κb)dδ

C
A + fb)d

g fAg
C + fb)E

C fAd
E
))

. (B.2)

On the other hand, we can start from expression (2.17b) and expand it in vielbeins. For
that we first augment the Levi-Civita covariant derivative ∇μ to the sl(2)-covariant derivative
(0)

Dμ because then it acts trivially on the sl(2)-components ea of the vielbein (up to O(E2)

corrections). We obtain

δIIgμν = ξρσ ee
ρe f

σ ea
(μeb

ν)e
m
α en

γ gαβgγ δ
(0)

DβEA
δ

× (4κn(adb)A(eκ f )m + 2dAabκm(eκ f )n − 4dAe f κm(aκb)n − 8κm(adb)A(eκ f )n

+ 4dAm(eκ f )(aκb)n + 4dAm(aκb)(eκ f )n + 4dA(a|(eκ f )|b)κmn − 8dAn(aκb)(eκ f )m

− 8dAn(eκ f )(aκb)m + 2dAmnκa(eκ f )b − 2dAe f κabκmn − 4dAm(eκ f )nκab

+ 8dAn(eκ f )mκab − 2dAmnκabκe f − 2dAabκe f κmn − 4dAm(aκb)nκe f

+ 8dAn(aκb)mκe f ). (B.3)

Identifying the two expressions (B.2) and (B.3) then amounts to checking an identity for the
structure constants which can easily be done with the help of a computer.
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Appendix C. Tensors of arbitrary rank

One can extend the considerations of section 2.1 to symmetric tensors of arbitrary rank. To this
end, it is convenient to switch to a more compact notation: in this section repeated covariant (or
contravariant) indices denote a symmetrization. Moreover, symmetrized indices belonging to
the same tensor are substituted by a single Greek letter with a label counting the total number
of indices. For instance, the covariantized Fronsdal tensor can be written as

Fμs = � ϕμs − s

2

(∇λ∇μ ϕμs−1λ + ∇μ∇λ ϕμs−1λ

) +
(

s

2

)
∇μ∇μ ϕμs−2 , (C.1)

where ϕμs−2 = gρσ ϕμs−2ρσ . With these conventions its variation under

δϕμs = s ∇μ ξμs−1 , with ξμs−3 = 0 (C.2)

takes essentially the same form as in the spin-3 case,

δFμs = −6

(
s

3

)
ξαβ

μs−3∇μRαμμβ − 9

(
s

3

)
Rαμμβ∇μξμs−3

αβ + 2

(
s

2

)
Rαμμβ∇αξμs−2

β

− 2

(
s

2

)
ξα

μs−2∇αRμμ + s

2
Rμα∇αξμs−1 − 3

(
s

2

)
Rμα∇μξμs−2

α. (C.3)

In Fronsdal’s approach the double trace of the fields is forced to vanish. As a result, at the
lowest order in ϕ, the spin-3 example already captures all features of the general case because
one cannot construct other curvature terms than those in (2.8). The most general Lagrangian
that is quadratic in ϕ and contains at most two derivatives is

LF =
√−g

16πG

{
ϕμs

(
Fμs − 1

2

(
s

2

)
gμμFμs−2

)
+ 1

	2

(
m1ϕμsϕ

μs + m2ϕμs−2ϕ
μs−2

)
+

(
s

2

)
Rαβ

(
k1ϕ

α
μs−1ϕ

βμs−1 + k2ϕ
αβ

μs−2ϕ
μs−2 + (s − 2)k3ϕ

α
μs−3ϕ

βμs−3
)

+
(

s

2

)
R

(
k4ϕμsϕ

μs + k5ϕμs−2ϕ
μs−2

) }
. (C.4)

Requiring that on (A)dS the terms in 	−2 build the Fronsdal mass term [41] then implies

m1 = s

{
(s − 1)(k1 + 3k4) − 3s − 5

2

}
, (C.5)

m2 =s(s − 1)

{
k2 + (s − 2)k3 + 3k5 + s(3s − 1) − 6

8

}
. (C.6)

If these conditions are satisfied, the Lagrangian L = LEH +LF is invariant, up to linear order
in ϕ and up to total derivatives, under the simultaneous transformations (C.2) and

δgμμ =
(

s

2

)
{a1ϕμμαs−2∇ · ξαs−2 + (a2 + b2)ϕμαs−1∇μξαs−1 + a3ϕμαβs−2∇αξμ

βs−2

+ a4ϕμαs−3∇ · ξμ
αs−3 + (a5 + b5)ϕαs−2∇μξμ

αs−2 + a6ϕαβs−3∇αξμμ
βs−3

+ b1ξ
αβs−2∇αϕμμβs−2 + b2ξ

αs−1∇μϕμαs−1 + b3ξμ
αs−2∇ · ϕμαs−2

+ b4ξμ
αβs−3∇αϕμβs−3 + b5ξμ

αs−2∇μϕαs−2 + b6ξμμ
αs−3∇ · ϕαs−3 + gμμ(c1ϕαβs−1∇αξβs−1

+ c2ϕαs−2∇· ξαs−2 + d1ξ
αs−1∇· ϕαs−1 + d2ξ

αβs−2∇αϕβs−2 )}. (C.7)

As in the spin-3 case, all coefficients in (C.7) are fixed except b2 and b5, which parameterize
field-dependent diffeomorphisms.
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The coefficients ai and ci, which multiply terms with the derivative acting on the gauge
parameter, depend on the ki,

a1 = 2k2, a2 = 4s + 2(s − 1)k1 − 2

s − 1
,

a3 = 2(s − 1)(k1 − 2) + 2, a4 = (s − 2)(2s + 4k3 − 3),

a5 = 2(4s + k2 − 8), a6 = (s − 2)k2,

c1 = −2s(s − 1)(k1 + 2k4 − 2) + 2s2

s − 1
,

c2 = −4(k2 + (s − 2)k3 + 2k5) − s(s − 2).

(C.8)

The remaining coefficients do not depend on the free parameters in the Lagrangian:

b1 = 4, b3 = 8(s − 2), b4 = −4(s − 1)(s − 2),

b6 = 2(s − 2), d1 = −4(s − 2), d2 = 2(s − 2)(s + 1).
(C.9)

As in the spin-3 case, one can set to zero all terms with the derivative acting on ξ by choosing
b2 = −a2, b5 = −a5 and

k1 = 2s − 3

s − 1
, k2 = 0, k3 = 3 − 2s

4
, k4 = − 1

2
, k5 = (s − 2)(s − 3)

8
. (C.10)

The coupling is again unique since one can remove all contributions in the Ricci tensor with
the field redefinition

g(new)
μμ = gμμ −

(
s

2

)
{ k1 ϕμαs−1 ϕμ

αs−1 + k2 ϕμμαs−2 ϕ αs−2 + k3 ϕμ αs−3 ϕμ
αs−3

− gμμ[(k1 + 2k4) ϕαs ϕ αs + (k2 + k3 + 2k5) ϕαs−2 ϕ αs−2 ]}. (C.11)

Note that the terms in (C.4) should appear in the metric-like counterpart of any Chern–
Simons theory involving ϕμ1··· μs since they provide a diffeomorphism invariant version of
Fronsdal’s kinetic operator. On the other hand, we expect inequivalent higher order completions
of (C.4), corresponding to different Chern–Simons theories. The simplest examples of this type
involve various higher spin fields, and it is not clear whether for s > 4 the gauge symmetry of
(C.4) can also be preserved at higher orders without considering at the same time symmetric
tensors of different rank (see also [51] for a direct construction of higher spin interactions in
the frame-like formulation).
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