Supersymmetry, Kihler Geometry and Beyond*

Hermann Nicolai

Abstract. This lecture briefly describes E. Kihler’s impact on the development of supersym-
metric field theories, which play a central role in modern attempts to unify the fundamental
laws of physics.

1 Introduction

As we review progress in theoretical physics over the past decades, the fundamental
importance of symmetries is a striking and persistent feature of successful model
building in physics. More than any other notion, the concept of symmetry has enabled
us to make progress in our understanding of nature at the smallestand the largest scales.
The work of E. Kahler, and especially the theory of Kihler manifolds have come to
occupy a central place in recent efforts to unify gravity with the other fundamental
forces. In this lecture I will try to explain briefly why this is so. The main message
will be that the restrictions that come with introducing more symmetry (in particular,
more supersymmetry) are accompanied by similar restrictions on the geometry of the
associated models. In this way physicists have been able to recover much of the terrain
conquered by pure mathematics since E. Kahler’s groundbreaking work on complex
manifolds in the early 1930s of the 20th century [12].

In modern physics, symmetries come in different guises. On the one hand, we dis-
tinguish between space-time symmetries and internal symmetries. On the other hand,
?Oth types of symmetries can appear as global (rigid) or local (gauge) symmetries;
In the former, the transformation parameters are constant, whereas for the latter they
vary with the space-time coordinates. As every physicist knows, rigid symmetries
fire associated with conservation laws by Noether’s theorem, which states that there
18 a conserved charge for every exact symmetry (e.g. linear momentum is conserved
In translationally invariant theories). By contrast, the presence of local symmetries
always indicates a redundancy in the parametrization of a physical system, such that
two parametrizations that are related by a gauge transformations must be considered

as physically equivalent.
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The most fundamental local symmetry of space-time is general covariance or (in
more mathematical parlance) invariance under space-time diffeomorphisms. Accord-
ing to Einstein, space-time is a pseudo-Riemannian manifold (M, g) whose metric g
is determined by Einstein’s equations (see e.g. [8])

Ruv — 3 8uv+ Mgy =« Ty (1)

where T}, is the matter energy momentum tensor, which acts as a source of the gravita-
tional field. A is the cosmological constant, which was considered an embarrassment
by Einstein (but is different from zero according to the most recent cosmological mea-
surements). This equation is generally covariant by construction: the laws of physics
must not depend on the coordinate system that one chooses to formulate them. The
diffeomorphism symmetry of Einstein’s equations is broken when one considers spe-
cial solutions, i.e. any specific space-time metric g, satisfying (1). We are then left
only with a rigid symmetry, namely the isometry group Isom(M) of the manifold M
under consideration; of course, this group may be trivial (and will be trivial for most
solutions). For instance, if the cosmological constant A vanishes and there are no
matter sources, the simplest solution to (1) is Minkowski space, and Isom(M) is just
the Poincaré group.l

Internal local symmetries play an essential role in the modern description of
elementary particles. Namely, the so-called standard model of elementary parti-
cle physics is a (spontaneously broken) Yang Mills gauge theory with gauge group
SU(3)xSU(2) x U (1) and certain fermionic matter multiplets (the quarks and leptons).
The symmetry is called “internal”” because in contrast to space-time diffeomorphisms
these groups do not act on physical space-time, but rather on an abstract internal space.
Apart from simplifying the construction and determining the possible interactions of
elementary particles, the Yang Mills symmetries are absolutely crucial for the consis-
tency of the standard model. The fact that quantum corrections can be consistently
computed and unambiguous predictions be made with a finite number of parameters
rests on the renormalizability of these models, which itself is ensured by the gauge
symmetry. While renormalizability is a perturbative notion, non-perturbative effects
have also been shown to arise in Yang Mills theories. Namely, there exist solitonic solu-
tions of the classical equations of motion (instantons and magnetic monopoles) which
are thought to play an essential role not only in explaining various non-perturbative
phenomena in particle physics, and are also considered to provide crucial insights into
non-perturbative aspects of modern superstring theory.

Y As is well known the simplest solution of Einstein’s equations with positive cosmological constant and
without matter sources is de Sitter space. This is nothing but the coset space SO(1, 4)/ SO(1, 3), whose
isometry group is the de Sitter group SO(1,4). Curiously, the de Sitter group coincides with the “new
Poincaré group” considered by E. Kihler in connection with the coset space SO(1, 4)/ SO(4), which isa
generalization of the Poincaré upper half plane, and at the same time may be regarded as a Euclideanization
of anti-de Sitter space SO(2, 3)/ SO(1, 3).
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2 Supersymmetry

Given the important role of space-time and internal symmetries, already in the late
1960s the question was asked whether it might not be possible to unify them in one
simple group (to be sure, at that time physicists were mainly concerned with the
rigid Poincaré symmetry and the so-called flavor symmetries of strong interaction
physics). After several unsuccessful attempts, it was realized that this aim cannot be
achieved within the framework of ordinary Lie algebra theory: the famous Coleman—
Mandula No-Go Theorem [6] states that the most general symmetry of the S matrix
compatible with the general postulates of relativistic quantum field theory is always
a direct product of the space-time Poincaré symmetry and some internal symmetry.
Of course, an essential ingredient in this proof was the assumption that the S matrix
should be non-trivial, as free field theory can admit many more symmetries which are
incompatible with non-trivial self-interactions.

As with most no-go theorems in physics there was a loophole. This was hidden
in the assumption which seemed the most obvious of all, namely the requirement
that the symmetry should be realized as an ordinary Lie algebra. At about the same
time physicists started “experimenting” with new symmetry concepts (see [ 13] for the
early history). The breakthrough occurred in 1973 when Wess and Zumino discovered
the first example of a rigidly supersymmetric quantum field theory in four space-time
dimensions [14]. The essential new idea was to admit besides the standard (bosonic)
Lie algebra generators fermionic generators obeying anti-commutation relations. The
concomitant transformation parameters ¢ (still space-time independent) must then anti-
cominute, i.e. generate a Grassmann algebra. The associated symmetry “‘rotations”
thus act in some abstract “superspace” with both bosonic (commuting) and fermionic
(anti-commuting) coordinates.

The analysis of Coleman and Mandula was subsequently generalized and super-
seded by the work of Haag, Lopuszanski and Sohnius, who were able to classify all
possible supersymmetries of the S matrix [11]. This work is still the basis of all the
work done nowadays in supersymmetric model building. According to [11], the most
general supersymmetry in four space-time dimensions contains the Poincaré algebra,
which is generated by the momentum operators P* and the Lorentz generators M*",
and a number of so-called “central charges” U 17 and V17, which commute with all
the elements of the Lie algebra, as well as N real (Majorana) fermionic charges Q7
(for1,J =1, ..., N) transforming as spinors under the Lorentz group in accordance
with the spin statistics theorem). In this case (i.e. in the presence of N fermionic
generators) one speaks of “N-extended supersymmetry”. Referring for the full details
to ref. [11], let us here record only the crucial relation

(QL. Q) = 2(Cyu)ap P* + CapU' +y>V!7) )

showing how two supersymmetry transformations commute to give a translation in
space-time plus an action of the central charge generators. Here y, are the usual
y-matrices generating the Clifford algebra, and € is the charge conjugation matrix.

909




910 Hermann Nicolai

Having classified the possible superalgebras, the next task was to construct models
realizing the associated supersymmetries. What is important here is that these models
should allow non-trivial interactions, as a symmetry that can only be realized on free
fields would not be of much interest for the description of the real world. The effort
to construct all possible supersymmetric field theories kept theoretical physicists busy
for several years. To make a long story short, it turns out that the construction of
models becomes more and more difficult as N is increased, and at the same time the
possibilities become more scarce, such that for the maximum allowed values of N
there remains (essentially) only one theory. The possibilities are different according
to whether one is dealing with rigid or local supersymmetry. In the first case, the maxi-
mum helicity appearing in a supermultiplet cannot be greater than one (corresponding
to a vector particle), and we have the bound N < 4. The maximally extended theory
in this case is the celebrated N = 4 supersymmetric Yang Mills theory [10], and this
theory is still being studied by quantum field theorists because of its wondrous finite-
ness properties (most recently highlighted in the context of the so-called AdS/CFT
correspondence).

For local supersymmetry, on the other hand, there are more possibilities. As one
can immediately see from (2), the commutator of two local supersymmetry trans-
formations gives a local translation, which is nothing but an infinitesimal coordinate
transformation. In this way, it is almost obvious that local supersymmetry implies
gravity, as this is the only way to accommodate the symmetry under local translations.
The resulting locally supersymmetric extension of the Einstein’s theory is supergravity
[9]; in addition to the graviton field, it requires a fermionic gauge field of spin %, the
gravitino. In order to avoid yet higher massless spin fields (for which we don’t know
how to construct consistent self-interactions), the helicities in a supermultiplet can
only go up to h = 2, which yields the bound N < 8. The maximally extended theory
is N = 8 supergravity [7] which could play some role in the ultimate unification of
particle physics and gravitation.

A salient feature of locally supersymmetric theories is the presence of a differential
geometric structure not only in the gravitational sector (which is still governed by the
Einstein—Hilbert Lagrangian), but also in the sector containing the scalar and fermionic
matter fields. More specifically, the scalar matter fields appearing in these theories are
always governed by a non-linear o-model based on some Riemannian manifold. This
manifold is “internal” in the sense that it has nothing to do with space-time, rather
it is attached to every space-time point. The unification of space-time and internal
symmetries is thus beautifully realized at the level of differential geometry. (In the
context of Kaluza—Klein theories one can view this differential geometric structure
of the scalar sector as a remnant of pure gravity in higher dimensions.) Just like
the associated supersymmetric models, the possible choices for these manifolds get
more restricted as one increases the number N of supersymmetries. It is here that
E. Kihler’s work enters the stage. Namely, as first noticed in [17], Kiihler geometry
automatically appears when one tries to supersymmetrize non-linear o -models already
in the context of simple N = 1 supersymmetry in four dimensions. As shown not
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much later, going to higher N implies further restrictions, so that for N = 2 one gets
quaternionic manifolds (see [4], and [15] for more recent developments and many
further references). For yet higher N, the manifolds are associated with exceptional
geometries: the choices of the internal manifolds become restricted to coset spaces
involving the exceptional groups.

The appearance of geometrical structures in the scalar sector is, of course, not
restricted to four space-time dimensions. One of the earliest investigations on the
connection between supersymmetry and the theory of Kahler and hyper-Kihler man-
ifolds was in fact done in the context of two-dimensional supersymmetric non-linear
o-models [2]. One feature that sets these models apart from their (non-renormalizable)
higher-dimensional analogs is their UV behavior, which is much better than that of the
generic (non-supersymmetric) models, and for special examples leads to completely
UV finite theories. However, in the remainder I will turn to another example illustrat-
ing the interplay between supersymmetry and differential geometry, namely the case
of locally supersymmetric models in three space-time dimensions [16)].

3 Supersymmetry and Differential Geometry in Three Dimensions

The representations of massless supermultiplets relevant for the construction of super-
symmetric field theories in three dimensions are particularly simple to classify. The
main reason for this is that there is no spin any more because the little group becomes
trivial (recall that the little group is the rotation group in the transverse dimensions,
which would be SO(1) in three dimensions). As a consequence, the supercharges

carry only internal indices I, J = 1, ..., N, and the most general superalgebra in the
Lorentz frame appropriate to a massless particle reduces to
(o', 0’y =2" 3)

where the supercharges have been rescaled by an irrelevant factor for convenience. In
addition, we have the fermion number operator F satisfying

Fr=1 4)
(¢!, F}=0. 5

Thus, the massless supermultiplets of N-extended supersymmetry in .three dimensior.ls
are in one-to-one correspondence with the representations of real Clifford algébrz.is.m
N + 1 dimensions. The latter have been given in [3], and obey the famous peno@qty
8 property. The centralizer Z for each Clifford algebra is one of the three division
algebras R, C or H (the quaternions): we have Z = Rfor N =0,1,7mod8,Z =C
for N =2,6mod8,and Z = Hfor N = 3,4,5mod8. Accordingly, one finds th'at tpe
geometries of the associated o -models will be Riemannian, K'ahler,'or quaternionic,
respectively. However, just like in higher dimensions, supersymxpetgc mgdels Fannot
exist for arbitrary N. Rather one finds the bound N < 16, which is derived in [16]
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by invoking a subtle theorem of [5] according to which the holonomy group of a
Riemannian manifold uniquely determines the manifold if it does not act transitively
on the unit sphere in tangent space. Of course, physicists had already guessed this
bound beforehand because it is directly related to the corresponding bounds in higher
dimensions based on the absence of massless higher spin particles.

The actual construction of the models is somewhat tedious, and I will therefore be
sketchy. As already mentioned, inall cases the scalar sector is governed by a non-linear
o -model. There is thus some internal n-dimensional Riemannian manifold (M, G)
with metric G, which is locally coordinatized by the fields o' (withi, j=1,...,n),
which are themselves functions of the space-time coordinates. The space M is usually
called the “target space” of the o-model. Thus, we have a map

oM — M. (6)
The Lagrangian reads
L£=-1Gij(pg" a0 00 %)

Remember that g, is the metric of the space-time manifold M. The equation of
motion following from this Lagrangian requires ¢’ to be harmonic.

In physics the above model first appeared as an effective description of pion self-
interactions: here the internal manifolds is just the three-sphere M = §3, with G the
standard metric on S? (as a function of the three pion fields), and the symmetry of the
system is

Isom(5%) = SO(4) = SUR) x SUQ2)g. (8)

This model actually does work rather well, even though it is only an approximation.
From the point of view of QCD (which is now generally accepted as the correct
theory of strong interactions), this success is explained by the fact that the symmetry
SU(2)L x SU(2)Rg survives as an (approximate) chiral symmetry acting on the quark
doublets ¢ = (u, d) for approximately massless quarks.

We now want to make this model supersymmetric. For this purpose, we intro-
duce a set of fermionic partners x' to the bosonic fields ¢'. This is always the first
step in supersymmetric model building: we must ensure that the number of physical
(propagating) bosonic and fermionic degrees of freedom is the same. The (N = 1)
supersymmetric extension of the Lagrangian (7) is

L=-1Gij(@8g" 3,000 — §Gij@X v* Dux’ o
— L Riu(G@) X' v x! X vux'.

Here R;jk is the Riemann tensor of (M, G) and the covanant derivative is defined by

Dux' = dux' + Tip(G)aue’ x* (10)

with the affine connection I‘} ; computed from the internal metric G;; in the usual
fashion. The Lagrangian (9) is invariant (i.e. varies into a total derivative) under the
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N = | supersymmetry variations
i

st = Ly (In
Sx' = zy“a#(p’é—I“j’:,((G)tS(pj)(k. (12)

— N

We conclude that in three dimensions a o-model can be made N = 1 supersymmetric
for any Riemannian manifold (M, G) in this way.

As we increase the number of supersymmetries to N = 2, the possibilities become
more restricted. Let us denote by n the second supersymmetry parameter, and proceed
from the ansatz

5<pi =

i

dx' =

Ex'+ 3 1yax (13)
yHB,0! (e + I'jn) + T (G)de x*. (14)

A calculation completely analogous to the one presented in [2] then shows that super-
symmetry requires the tensor /*; to satisfy the following relations:

S S

G,’klkj+ij1ki=O (15)
I'v 1% = -8 (16)

Dil/y =0 (17)
Ika,‘ijZR,‘jkam[- (18)

But these are precisely the conditions stating that the tensor /* j 1s a complex struc-
ture on (M, G), and therefore that (M, G) is a Kdhler manifold! The conclusion is
therefore that N = 2 supersymmetry is no longer compatible with any Riemannian
manifold. Rather, only those models for which (M, G) is a Kihler manifold can be
made N = 2 supersymmetric.

If one wants yet more supersymmetry, one gets further restrictions [2]. Replacing
the second supersymmetry parameter n by several parameters ¢P and generalizing
(13)to

s¢' =Sex' + 4 fpE" 1’ (19)
Sx' = §v* 0,0’ Bie + fp;e”) + Tj(Gs¢ x* (20)

with summation over the labels P, one finds that the tensors f ;, ; must satisfy analogous
properties as the complex structure for N = 2. In fact, it turns out that N = 4 is the
only possibility, such that P = 1,2, 3, and the space (M, G) must now be hyper-
Kahler {2]. For rigid supersymmetry this exhausts all the possibilities.

There are more possibilities for local supersymmetry, for which we can go up to
N = 16, but also more restrictions. The associated models have more complicated
Lagrangians since in addition to the matter fields ¢' and x*, we need also the dreibein
field (the ““square root” of the metric g, introduced earlier), and as many gravitino
fields 1//,’1 as there are supersymmetries. The latter fields carry no local (propagat-
ing) degrees of freedom, but are nonetheless indispensable for formulating the theory.
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The locally supersymmetric Lagrangians then consist of a combination of the above
o -model Lagrangians, the Einstein and Rarita Schwinger Lagrangians in three dimen-
sions and several quartic fermionic terms (usually the most tedious to calculate). The
supersymmetry of the model is then entirely encoded into the restrictions that must
be imposed on the internal manifold (M, G). The complete table of matter-coupled
supergravities in three space-time dimensions is given below, with N the number of
local supersymmetries, and k the number of matter supermultiplets that can be coupled
to the basic supergravity multiplet.

Table 1. o-model target manifolds in three space-time dimensions.

N | k M

1 k € N | Riemannian

2 | k e N | Kihler

3 | k e N | quaternionic
4 | k € N | (quaternionic)?
5

6

8

keN | Sp(2,k)/Sp(2) ® Sp(k)
keN | SU@ k)/S(UM@) @ Uk))
ke N | SO(8, k)/SO(8) ® SO(k)
9 k=11 Fa—20/S0()

10 | k=1 | Eg-14)/S0(10) ® SO(2)
12 | k=1 | E7-5/50(12) ® SO(3)
16 | k=1 | Egs)/SO(16)

In conclusion the requirement of local supersymmetry goes hand in hand with
the restrictions on the geometry of the internal manifold. For N = 1, 2, 3 the target
manifolds (M, G) must be general Riemannian, Kihler, or quaternionic, respectively,
but are otherwise arbitrary; in particular, the number of matter fields (or, more pre-
cisely, of matter supermultiplets) can be freely chosen. For N = 4 .M must be a
product of two quaternionic manifolds. Beyond N = 4 the target manifolds are com-
pletely determined by supersymmetry, with the number of matter supermultiplets still
arbitrary for N < 8. For the values N =9, 10, 12, 16 we obtain unique theories; re-
markably, there are no matter coupled supergravities at all for the intermediate values
N = 7,11, 13, 14, 15! There have been several attempts to associate the higher N
theories with some kind of octonionic geometry (recall that the octonions Q are the last
of the division algebras and are both non-commutative as well as non-associative), but
so far the only link that has emerged is the fact that the exceptional groups appearing
in the coset spaces are themselves linked to the octonions in an as yet not completely
understood way. For N > 16, only Chern Simons-type theories can be constructed
[1], but no theories with propagating matter degrees of freedom (and hence nontrivial
internal manifold M) exist any more.
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In view of the intimate links between supersymmetry and differential geometry
it is perhaps not surprising that many results of complex or quaternionic differential
geometry have neat, though sometimes only heuristic, derivations based on supersym-
metry (this applies in particular to recent developments in quaternionic geometry, see
e.g. [15] for further details). The reason is that many arguments that are somewhat in-
volved when phrased in terms of the metric G,; simplify considerably when analyzed
in terms of supersymmetry variations involving only first order derivatives.

Unfortunately, however, we have no indication so far from experimental physics
that any of these beautiful structures are actually realized in nature. At least at our
present level of understanding, the most sophisticated models with maximal super-
symmetry are too restrictive to match real physics, whereas the models with “little”
(in practise N = 1) supersymmetry may not be restrictive enough to make falsifiable
predictions. Kihler geometry is associated with low supersymmetry, and thus leaves
enough room for (semi-)realistic model building. In fact, a glance at any paper deal-
ing with supersymmetric phenomenology (just have a look at the pertinent papers that
you can find on the shelves this week) immediately reveals the ubiquity of Kihler
potentials in modern elementary particle physics. Indeed, it is quite likely that the
real world is not maximally supersymmetric at the energy scales accessible to present
day experimental physics, but may still admit some residual supersymmetry at energy
scales of @(1 TeV) which could show up via the production of supersymmetric part-
ners of the known elementary particles in upcoming accelerator experiments. If this
were the case, Kihler geometry would have found a beautiful match in the world of
elementary particle physics.

Acknowledgments. [ would like to thank the Mathematisches Seminar of Hamburg
University for the invitation to give this lecture, and the Erwin-Schrodinger Institut
in Vienna, the Theory Department of the University of Graz, where this lecture was
written up, and especially C. B. Lang, for hospitality.
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