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Abstract

We present an exact analytical solution of the Einstein equations

with cosmological constant in a spatially flat Robertson-Walker met-

ric. This is interpreted as an isotropic Lemaitre-type version of the

cosmological Friedmann model. Implications in the recent discovered

cosmic acceleration of the universe and in the theory of an inflationary

model of the universe are in view. Some properties of this solution are

pointed out as a result of numerical investigations of the model.

Pacs 04.62.+v

∗E-mail: cota@physics.uvt.ro
†E-mail: vulcan@physics.uvt.ro

1



1 Introduction

Recent astrophysical investigations [2, 3] demonstrate that the expansion of
the universe is accelerating rather than slowing down. This may change our
picture of the universe suggesting that we live in an accelerating and flat uni-
verse. However, from the theoretical point of view intensive efforts are done
[4] in order to accommodate the relativistic cosmology with an accelerating
universe. One of the major results of this situation is the fact that the most
popular solution (inspired by what is happening in the theory of inflationary
cosmology) is to consider models which satisfy Einstein equations with cos-
mological constant in order to induce cosmic acceleration. Actually, several
models until now not being in the main stream of the modern cosmology, are
again in view of cosmologists. We believe that it is necessary to more care-
fully investigate new possible versions of the the Friedman-Robertson-Walker
(FRW) model [5, 6] in order to see how may we implement here cosmic ac-
celeration without loosing the well-known results of the model in describing
early stages of the universe.

Another important problem is to try to find simple analytically solvable
models which may be easily interpreted from the physical point of view.
Moreover, it is clear that many further developments of the more complicated
models have to be done using algebraic or numerical methods on computers.
Then it is important to have at least one simple analytically solvable model
for testing the computational methods and verify their degree of confidence.

This article is dedicated to the revealing of an analytical solution of the
Einstein equations with cosmological constant in a version of the FRW model
with flat space metric [5]. We present some properties of this solutions and
the possible implications to the more accurate description of the inflationary
and accelerated universe.

We must specify that the model with cosmological constant and k = 1
is known in literature as Lemaitre-FRW model but, unfortunately, this does
not have analytical solution. In other respects, we believe that the solution
for k = 0 we present here is ignored by the investigators of this cosmology
since they are forced to find solutions of the Einstein equations in terms of
the measurable quantities (as the Hubble constant/parameter, the redshift
or the deceleration parameter) and searching for an approximate solution
for the scale factor of the universe as a Taylor expansion in terms of these
quantities. Thus the existence of an analytical solution is hidden by the large
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number of solutions available only for restricted periods from the history of
universe.

2 The model and its solution

Let us consider the Lemaitre-type version of the FRW model with flat space
(i.e., k = 0) [5], positively defined cosmological constant, Λ, and linear depen-
dence between the density of energy, ǫ, and the pressure, p. In general, in an
arbitrary local chart (or natural frame) of coordinates xµ (µ, ν, .. = 0, 1, 2, 3),
the Einstein equations of this model (written in natural units with c = 1),

Rν
µ − 1

2
Rδν

µ − Λδν
µ = 8πGT ν

µ , (1)

involve the usual classical stress-energy tensor

T ν
µ = (ǫ + p)uνuµ − pδν

µ , (2)

which depends on the covariant four-velocity uµ = dxµ/ds.
In the preferred frame with Cartesian coordinates x0 = t, ~x which has

the usual FRW line element with k = 0,

ds2 = dt2 − a(t)2d~x2 , (3)

we have u0 = u0 = 1 and ui = 0 (i = 1, 2, 3) such that the Einstein equations
reduce to the simple system

3
(

ȧ

a

)2

= Λ + 8πG ǫ (4)

2
ä

a
+

(

ȧ

a

)2

= Λ − 8πG p (5)

where we denoted ˙ = d/dt. Assuming that ǫ and p are functions only on t
and satisfy a linear equation of state, namely

p = κǫ , (6)

one can integrate this system with the conditions

ǫ(0) = ǫ0 , a(0) = 1 , (7)
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at the present time t = 0. Indeed, (4), (5) and (6) are equivalent with the
equation

d

dt

(

ȧ

a

)

=
κ + 1

2

[

Λ − 3
(

ȧ

a

)2
]

(8)

which, after a little calculation and exploiting (7), leads to the final solution

a(t) =

[

cosh

√
3Λ

2
(κ + 1) t

+

√

1 +
8πG ǫ0

Λ
sinh

√
3Λ

2
(κ + 1) t





2/3(κ+1)

(9)

while the density of energy reads

ǫ(t) = ǫ0 a(t)−3(κ+1) . (10)

Finally, we calculate the Bang time, −t0, from the initial condition a(−t0) =
0 as

t0 =
2√

3Λ (κ + 1)
argcoth

√

1 +
8πG ǫ0

Λ
, (11)

completing thus the solution of this simple model.
Let us observe that the conservation law T µ

ν;µ = 0 is implicitly fulfilled
since (10) is simultaneously the solution of this conservation equation which
takes the form

ǫ̇ + 3ǫ(κ + 1)
ȧ

a
= 0 (12)

when the equation of state (6) is accomplished. Moreover, it is important
that the equation (10) is independent on Λ since then it holds even in the
particular case of Λ → 0 when we recover the usual solution of the FRW
model with k = 0 [5, 6],

a(t) =
[

1 +
√

6πGǫ0(κ + 1) t
]2/3(κ+1)

. (13)

The interesting new features of our model are due to the cosmological
constant which gives an hyperbolic character to the general model or to its
asymptotic behavior. It is clear that the universe devoid of matter becomes
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a de Sitter one but it is remarkable that in the far future the time behavior
of a(t) is also of the de Sitter type since for very large t we have

a(t) ∼ α e
√

Λ

3
t , α =





1

2
+

1

2

√

1 +
8πGǫ0

Λ





2/3(κ+1)

. (14)

In other words if we rescale the Cartesian space coordinates with the factor
α then the line element (3) becomes just the de Sitter one in the limit of
t → ∞. Thus we can conclude that our solution is compatible with the
well-known models describing the Big-Bang scenario and for late behavior it
shows off characteristics of a de Sitter spacetime.

Many physical effects depend on the form of the Hubble function that in
our model reads

H(t) =
ȧ

a
=

1
√

3(Λ + 8πGǫ0)



Λ +
8πGǫ0

1 +
√

1 + 8πGǫ0
Λ

tanh
√

3Λ
2

(κ + 1) t



 . (15)

Obviously, in the late time limit we have

lim
t→∞

H(t) =

√

Λ

3

while the actual value of the Hubble function (i.e., the Hubble constant),

H0 = H(t) |t=0=

√

Λ + 8πGǫ0

3
, (16)

depends on the actual value of the density of energy, ǫ0, and Λ.

3 Numerical investigations

This section is dedicated to several numerical results we obtained using our
analytical solution which reveals some interesting features of the model. First
we have plotted the behavior of the scale factor in time for a constant value
of the cosmological constant Λ. In this purpose we considered an accepted
value of the actual mass-density of the universe as ρ0 = 3 · 10−28Kg/m3

(in IS units where ǫ0 = ρ0 c2) and of the actual Hubble constant as H0 =

5



Scale factor

0

2

4

6

8

10

12

14

16

–1.5e+18 –1e+18 –5e+17 5e+17 1e+18 1.5e+18

t

Scale factor

0

2e+36

4e+36

6e+36

8e+36

1e+37

1.2e+37

1.4e+37

1e+19 2e+19 3e+19 4e+19 5e+19

t

Figure 1: Evolution of the scale factor a(t) from the Big-Bang (left panel)
and the fast growing of the scale factor at late time t = 1018...5 1019 s (right
panel)

(1.8 1010 years)−1 [8]. Then, using (16) we can estimate the cosmological
constant as being Λ ≈ 0.977 10−52 m−2 which will be the value used in the
next numerical investigations. We also choose κ = −1/2. Two first graphs
are showed in Figure 1 for different intervals of time, one before the actual
time t = 0 and the other one for late behavior of the universe. It is obvious,
especially from the second picture (right panel) the fast growing of the scale
factor for late time, showing the accelerated stage of the universe described
by this model. We have to mention that we estimated the Big-Bang time t0
using the above numerical values and formula (11). Thus we have used in our
figures the resulting value t0 ≈ 0.1665 1019s (≈ 52.7 billion years). This value
is larger than the recognized one and appears here due to the small value
of the mass-density we used. A greater value for ρ, including dark matter
and other unknown components,(for example one ten times larger) gives a
Big-Bang time t0 ≈ 29 billion years. .

Figure 2 presents the time behavior of the Hubble constant (the left panel)
as defined in (15) for the same parameters as for the above graphs. As we
pointed out in the comments ending the last section, the Hubble function

is evolving to a constant value
√

Λ/3 specific for the de Sitter model. This

conclusion is coupled to the late time behavior of the scale factor (see above)
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Figure 2: Evolution of the Hubble function (left panel) and of the redshift
defined as 1/a(t) (right panel)

which is also specific to a de Sitter metric. In the right panel of the same
Figure 2 we plotted the redshift defined as 1/a(t).

Next plots, Figure 3, are dedicated to the time behavior of the acceleration
defined here as the second time derivative of the scale factor, ä(t). Before the
actual time t = 0 (presented in the left panel) shows the decreasing of the
acceleration after the Big-Bang at t ≥ −t0. In the right panel we observe the
increasing of the acceleration at later time in the universe evolution. Thus
we can conclude that it will be possible to use our solution for modeling the
so-called “cosmic-acceleration” in discussion in the modern astrophysics.

Last of this type of plots, Figure 4, represent the time behavior of the
density function ǫ(t) given by equation (10) and of the deceleration defined
as ä(t)/[a(t) H(t)2] [5, 8].
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Figure 3: Evolution of the acceleration, ä(t), before the present time (left
panel) and after t = 0 (right panel)
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Figure 4: Evolution of the density before the actual time t = 0 (left panel)
and of the deceleration, ä(t)/[a(t) H(t)2], after the actual time (right panel)
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