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Abstract. We extend previous work on 3D black hole excision to the case of distorted
black holes, with a variety of dynamic gauge conditions that are able to respond natu-
rally to the spacetime dynamics. We show that the combination of excision and gauge
conditions we use is able to drive highly distorted, rotating black holes to an almost
static state at late times, with well behaved metric functions, without the need for
any special initial conditions or analytically prescribed gauge functions. Further, we
show for the first time that one can extract accurate waveforms from these simulations,
with the full machinery of excision or no excision and dynamic gauge conditions. The
evolutions can be carried out for long times, far exceeding the longevity and accuracy
of even better resolved 2D codes. While traditional 2D codes show errors in quantities
such as apparent horizon mass of over 100% by t ≈ 100M , and crash by t ≈ 150M ,
with our new techniques the same systems can be evolved for more than hundreds of
M ’s in full 3D with errors of only a few percent.

1 Introduction

The long term numerical evolution of black hole systems is one of the most
challenging and important problems in numerical relativity. For black holes, the
difficulties of accuracy and stability in solving Einstein’s equations numerically
are exacerbated by the special problems posed by spacetimes containing sin-
gularities. At a singularity, geometric quantities become infinite and cannot be
handled easily by a computer.

Traditionally, in the 3+1 approach the freedom in choosing the slicing is used
to slow down the approach of the time slices towards the singularity (“singularity
avoidance”), while allowing them to proceed outside the black hole. Singularity
avoiding slicings are able to provide accurate evolutions, allowing one to study
black hole collisions and extract waveforms [1], but only for limited cases and
evolution times. Combining short full numerical evolutions with perturbation
methods, one can even study the plunge from the last stable orbit of two black
holes [2]. But a dramatic breakthrough is required to push numerical simulations
far enough to study orbiting black holes, requiring accurate evolutions exceeding
time scales of t ≈ 100M . In 3D, traditional approaches have not been able to
reach such time scales, even in the case of Schwarzschild black holes.
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A more promising approach involves cutting away the singularity from the
calculation (“singularity excision”), assuming it is hidden inside an apparent
horizon (AH) [3,4]. Although this work has been progressing, from early spherical
proof of principle in [4] to recent 3D developments [5–8], beyond a few spherical
test cases [9,10] it has yet to be used in conjunction with appropriate live gauge
conditions designed to respond to both the dynamics of the black hole and the
coordinate motion through the spacetime.

In this paper we extend recent excision work [7] to the case of distorted,
dynamic black holes in 3D, using a new class of gauge conditions. These gauge
conditions, which not only respond naturally to the true spacetime dynamics,
but also drive the system towards an almost static state at late times, allow us to
handle black holes without considering special initial coordinate systems, such
as the Kerr-Schild type, which may be difficult or impossible to find during a
generic black hole evolution. We show that not only are the evolutions accurate
as indicated by the mass associated with the apparent horizon, but also that
very accurate waveforms can be extracted with excision or without excision, even
when the waves carry only a tiny fraction of the energy of the spacetime. We also
show that the 3D evolutions of dynamic black holes we are now able to perform,
are superior, in terms of accuracy, stability, and longevity, to previous dynamic
3+1 black hole simulations, whether they were carried out in full 3D or even
when restricted to 2D. These results indicate that black hole evolution with new
gauge conditions can be made to work under rather general circumstances, and
can dramatically improve both the length of the evolutions, and the accuracy of
the waveforms extracted, which will be crucial for gravitational wave astronomy.

2 Initial Data

For this paper we consider a series of single distorted black hole spacetimes [11,12]
that have been used to model the late stages of black hole coalescence [13,14].
Following [11,12], the initial three-metric γab is chosen to be

ds2 = ψ4
[
e2q
(
dη2 + dθ2

)
+ sin2 θ dφ2

]
, (1)

where the “Brill wave” function q is a general function of the spatial coordi-
nates, subject to certain regularity and fall off restrictions, that can be tailored
to produce very distorted 3D black holes interacting with nonlinear waves. The
radial coordinate η is logarithmic in the cartesian radius r. There are two classes
of data sets used here corresponding to even- and odd-parity distortions. The
even-parity data have vanishing extrinsic curvature, while the cases contain-
ing an odd-parity component have nontrivial extrinsic curvature Kij . As shown
in [15,16], these distorted black hole data sets can include rotation as well, cor-
responding to spinning, distorted black holes that mimic the early merger of two
orbiting black holes. Hence they make an ideal test case for the development
of our techniques. We leave the details of the construction of these black hole
initial data sets to [15,16].
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An important point that we wish to emphasize is that such data are not of the
Kerr-Schild form with ingoing coordinates at the horizon. That particular form
of black hole initial data sets has been recently advocated as providing a more
natural treatment for black hole excision since the coordinate system is adapted
to inward propagation of quantities at the horizon [17]. However, it is not obvious
that the physically desired initial data can always be written in the Kerr-Schild
form (or, for that matter, in any other particular form). Furthermore, during
an evolution, even if similar such coordinates are somehow actively enforced, it
is probably not possible to have such a coordinate system in place at all times,
when a new black hole forms. Hence, we prefer to be able to handle black hole
data in any coordinate system, and apply coordinate conditions that naturally
drive the system into a static state as the black hole system settles down to Kerr,
from any starting point.

3 Evolution and Excision Procedures

Our simulations have been performed using what we refer to as the “BSSN”
version of the 3+1 evolution equations [18–21], which we have found to have
superior stability properties when compared to standard formulations.

The standard variables in the 3+1 formulation of ADM (Arnowitt-Deser-
Misner, see [22]) are the 3-metric γij and its extrinsic curvature Kij . The gauge
is determined by the lapse function α and the shift vector βi. We will only
consider the vacuum case. The evolution equations are

(∂t − Lβ) γij = −2αKij , (2)
(∂t − Lβ) Kij = −DiDjα+ α(Rij +KKij − 2KikK

k
j) , (3)

and the constraints are

H ≡ R+K2 −KijK
ij = 0 , (4)

Di ≡ Dj(Kij − γijK) = 0 . (5)

Here Lβ is the Lie derivative with respect to the shift vector βi, Di is the
covariant derivative associated with the 3-metric γij , Rij is the three-dimensional
Ricci Tensor, R the Ricci scalar, and K is the trace of Kij .

We will use the BSSN form of these equations (Baumgarte, Shapiro [19], and
Shibata, Nakamura [18]). One introduces new variables based on a trace decom-
position of the extrinsic curvature and a conformal rescaling of both the metric
and the extrinsic curvature. The trace-free part Aij of the extrinsic curvature is
defined by

Aij = Kij − 1
3
γijK . (6)

Assuming that the metric γij is obtained from a conformal metric γ̃ij by a
conformal transformation,

γij = ψ4γ̃ij , (7)
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we can choose a conformal factor ψ such that the determinant of γ̃ij is 1:

ψ = γ1/12 , (8)
γ̃ij = ψ−4γij = γ−1/3γij , (9)
γ̃ = 1 , (10)

where γ is the determinant of γij and γ̃ is the determinant of γ̃ij . Instead of γij
and Kij we can therefore use the variables

φ = lnψ =
1
12

ln γ , (11)

K = γijK
ij , (12)

γ̃ij = e−4φγij , (13)

Ãij = e−4φAij , (14)

where γ̃ij has determinant 1 and Ãij has vanishing trace. Furthermore, we in-
troduce the conformal connection functions

Γ̃ i = γ̃jkΓ̃ i
jk = −∂j γ̃ij , (15)

where Γ̃ i
jk is the Christoffel symbol of the conformal metric. The second equality

holds if the determinant of the conformal 3-metric γ̃ is actually unity (which is
true analytically but may not be numerically). We call φ, K, γ̃ij , Ãij , and Γ̃ i

the BSSN variables.
In terms of the BSSN variables the evolution equation (2) becomes

(∂t − Lβ) γ̃ij = −2αÃij , (16)

(∂t − Lβ) φ = −1
6
αK , (17)

while (3) leads to

(∂t − Lβ) Ãij = e−4φ[−DiDjα+ αRij ]TF + α(KÃij − 2ÃikÃ
k
j) , (18)

(∂t − Lβ) K = −DiDjα+ α(ÃijÃ
ij +

1
3
K2) , (19)

where TF denotes the trace-free part of the expression in brackets. On the right-
hand side of (19) we have used the Hamiltonian constraint (4) to eliminate the
Ricci scalar,

R = KijK
ij −K2 = ÃijÃ

ij − 2
3
K2 . (20)

An evolution equation for Γ̃ i can be obtained from (15) and (16),

∂tΓ̃
i = −2(α∂jÃij + Ãij∂jα)− ∂jLβ γ̃

ij . (21)

In this equation we use the momentum constraint (5) to substitute for the di-
vergence of Ãij ,

∂jÃ
ij = −Γ̃ i

jkÃ
jk − 6Ãij∂jφ+

2
3
γ̃ij∂jK . (22)
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One subtlety in obtaining numerically stable evolutions with the BSSN vari-
ables is precisely the question of how the constraints are used in the evolution
equations. Several choices are possible and have been studied, see [23].

Note that in the preceding equations we are computing Lie derivatives of
tensor densities. If the weight of a tensor density T is w, that is if T is a tensor
times γw/2, then

LβT = [LβT ]w=0∂ + wT∂kβ
k , (23)

where the first term denotes the tensor formula for Lie derivatives with the
derivative operator ∂ and the second is the additional contribution due to the
density factor. The density weight of ψ = eφ is 1/6, so the weight of γ̃ij and Ãij

is −2/3 and the weight of γ̃ij is 2/3. To be explicit,

Lβφ = βk∂kφ+
1
6
∂kβ

k , (24)

Lβ γ̃ij = βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2
3
γ̃ij∂kβ

k , (25)

Lβ γ̃
ij = βk∂kγ̃

ij − γ̃ik∂kβ
j − γ̃jk∂kβ

i +
2
3
γ̃ij∂kβ

k . (26)

The evolution equation (21) for Γ̃ i therefore becomes

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1
3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃ j∂jβ

i +
2
3
Γ̃ i∂jβ

j

−2Ãij∂jα+ 2α(Γ̃ i
jkÃ

jk + 6Ãij∂jφ− 2
3
γ̃ij∂jK) . (27)

In the second line we see the formula for a vector density of weight 2/3, but
since Γ̃ i is derived from the Christoffel symbols we obtain extra terms involving
second derivatives of the shift (the first line in the equation above).

On the right-hand sides of the evolution equations for Ãij and K, (18) and
(19), there occur covariant derivatives of the lapse function, and the Ricci tensor
of the non-conformal metric. Since

Γ k
ij = Γ̃ k

ij + 2(δki ∂jφ+ δkj ∂iφ− γ̃ij γ̃
kl∂lφ) , (28)

where Γ̃ k
ij is the Christoffel symbol of the conformal metric, we have for example

DiDiα = e−4φ(γ̃ij∂i∂jα− Γ̃ k∂kα+ 2γ̃ij∂iφ∂jα) . (29)

The Ricci tensor can be separated in two parts,

Rij = R̃ij +Rφ
ij , (30)

where R̃ij is the Ricci tensor of the conformal metric and Rφ
ij denotes additional

terms depending on φ:

Rφ
ij = −2D̃iD̃jφ− 2γ̃ijD̃kD̃kφ

+4D̃iφ D̃jφ− 4γ̃ijD̃kφ D̃kφ , (31)
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where D̃i is the covariant derivative associated with the conformal metric. The
conformal Ricci tensor can be written in terms of the conformal connection
functions as

R̃ij = −1
2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃ kΓ̃(ij)k

+γ̃lm
(
2Γ̃ k

l(iΓ̃j)km + Γ̃ k
imΓ̃klj

)
. (32)

A key observation here is that if one introduces the Γ̃ i as independent vari-
ables, then the principal part of the right-hand side of (18) contains the wave
operator γ̃lm∂l∂mγ̃ij but no other second derivatives of the conformal metric.
This brings the evolution system one step closer to being hyperbolic.

One of the reasons why we have written out the BSSN system in such detail
is to point out a subtlety that arises in the actual implementation if one wants to
achieve numerical stability. In the computer code we do not use the numerically
evolved Γ̃ i in all places, but follow this rule:

• Partial derivatives ∂jΓ̃ i are computed as finite differences of the independent
variables Γ̃ i that are evolved using (27).

• In expressions that require Γ̃ i, not its derivative, we substitute γ̃jkΓ̃ i
jk(γ̃),

that is we do not use the independently evolved variable Γ̃ i but recompute
Γ̃ i according to its definition (15) from the current values of γ̃ij .

In practice we have found that the evolutions are far less stable if either Γ̃ i

is treated as an independent variable everywhere, or if Γ̃ i is recomputed from
γ̃ij before each time step. The rule just stated helps to maintain the constraint
Γ̃ i = −∂j γ̃ij well behaved without removing the advantage of reformulating the
principal part of the Ricci tensor.

In summary, we evolve the BSSN variables γ̃ij , φ, Ãij , K, and Γ̃ i according
to (16), (17), (18), (19), and (27), respectively. The Ricci tensor is separated as
shown in (30) with each part computed according to (31) and (32) respectively.
The Hamiltonian and momentum constraints have been used to write the equa-
tions in a particular way. The evolved variables Γ̃ i are only used when their
partial derivatives are needed (the one term in the conformal Ricci tensor (32)
and the advection term βk∂kΓ̃

i in the evolution equation for the Γ̃ i themselves,
(27)).

We use the simple excision approach described in [7]. Our excision algorithm
is based on the following ideas: (a) Excise a cube contained inside the AH that
is well adapted to cartesian coordinates; (b) Use a simple but stable boundary
condition at the sides of the excised cube: copying of time derivatives from
their values one grid point out along the normal directions; (c) Use standard
centered (non-causal) differences in all terms except for advection terms on the
shift (those that look like βi∂i ). For these terms we use second order upwind
along the shift direction. These simplifications in excision reduce the complexity
in the algorithm, avoid delicate interpolation issues near the excision boundary,
and have allowed us to make rapid progress.
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4 Numerics

The numerical time integration in our code uses an iterative Crank-Nicholson
scheme with 3 iterations, see e.g. [23]. Derivatives are represented by second
order finite differences on a Cartesian grid. We use standard centered difference
stencils for all terms, except in the advection terms involving the shift vector
(terms that look like βi∂i). For these terms we use second order upwind along the
shift direction. We have found the use of an upwind scheme in such advection-
type terms crucial for the stability of our code. Notice that this is the only place
in our implementation where any information about causality is used (i.e. the
direction of the tilt in the light cones).

At the outer boundary we use a radiation (Sommerfeld) boundary condi-
tion. We start from the assumption that near the boundary all fields behave as
spherical waves, namely we impose the condition

f = f0 +
u(r − vt)

r
. (33)

Where f0 is the asymptotic value of a given dynamical variable (typically 1 for
the lapse and diagonal metric components, and zero for everything else), and
v is some wave speed. If our boundary is sufficiently far away one can safely
assume that the speed of light is 1, so v = 1 for most fields. However, the gauge
variables can easily propagate with a different speed implying a different value
of v (see below where we discuss the gauge conditions).

In practice, we do not use the boundary condition (33) as it stands, but
rather we use it in differential form:

∂tf + v∂rf − v
(f − f0)

r
= 0 . (34)

Since our code is written in Cartesian coordinates, we transform the last condi-
tion to

xi
r
∂tf + v∂if +

vxi
r2

(f − f0) = 0 . (35)

We finite difference this condition consistently to second order in both space and
time and apply it to all dynamic variables (with possible different values of f0
and v) at all boundaries.

There is a final subtlety in our boundary treatment. Wave propagation is not
the only reason why fields evolve near a boundary. Simple infall of the coordinate
observers will cause some small evolution as well, and such evolution is poorly
modeled by a propagating wave. This is particularly important at early times,
when the above boundary condition introduces a bad transient effect. In order to
minimize the error at our boundaries introduced by such non-wavelike evolution,
we allow for boundary behavior of the form:

f = f0 +
u(r − vt)

r
+
h(t)
rn

, (36)
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with h a function of t alone and n some unknown power. This leads to the
differential equation

∂tf + v∂rf − v

r
(f − f0) =

vh(t)
rn+1

(1− nv) +
h′(t)
rn

� h′(t)
rn

for large r , (37)

or in Cartesian coordinates

xi
r
∂tf + v∂if +

vxi
r2

(f − f0) � xih
′(t)

rn+1
. (38)

This expression still contains the unknown function h′(t). Having chosen
a value of n, one can evaluate the above expression one point away from the
boundary to solve for h′(t), and then use this value at the boundary itself.
Empirically, we have found that taking n = 3 almost completely eliminates the
bad transient caused by the radiative boundary condition on its own.

5 Gauge Conditions

We will consider families of gauge conditions that can be used in principle with
any 3+1 form of the Einstein’s equations that allows a general gauge. However,
the specific family we test in this paper is best motivated by considering the
BSSN system introduced above. For the present purposes, of special importance
are the following two properties of this formulation:

• The trace of the extrinsic curvature K is treated as an independent variable.
For a long time it has been known that the evolution of K is directly related
to the choice of a lapse function α. Thus, having K as an independent field
allows one to impose slicing conditions in a much cleaner way.

• The appearance of the “conformal connection functions” Γ̃ i as independent
quantities. As already noted by Baumgarte and Shapiro [19], the evolution
equation for these quantities can be turned into an elliptic condition on the
shift which is related to the minimal distortion condition. More generally,
one can relate the shift choice to the evolution of these quantities, again
allowing for a clean treatment of the shift condition.

Our aim is to look for gauge conditions that at late times, once the physical
system under consideration has settled to a final stationary state, will be able
to drive the coordinate system to a frame where this stationarity is evident. In
effect, we are looking for “symmetry seeking” coordinates of the type discussed
by Gundlach and Garfinkle [24] that will be able to find the approximate Killing
field that the system has at late times. In order to achieve this we believe that
the natural approach is to relate the gauge choice to the evolution of certain
combinations of dynamic quantities in such a way that the gauge will either
freeze completely the evolution of those quantities (typically by solving some
elliptic equations), or will attempt to do so with some time delay (by solving
instead parabolic or hyperbolic equations).
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We will consider the lapse and shift conditions in turn. Special cases of the
gauge conditions that we will introduce here were recently used together with
black hole excision with remarkable results in [7], but as we will show below,
the gauge conditions are so powerful that in the cases tested, they work even
without excision.

5.1 Slicing Conditions

The starting point for our slicing conditions is the “K-freezing” condition ∂tK
=0, which in the particular case when K=0 reduces to the well known “maxi-
mal slicing” condition. The K-freezing condition leads to the following elliptic
equation for the lapse

∇2α = βi∂iK + αKijK
ij , (39)

with ∇2 the Laplacian operator for the spatial metric γij . In the BSSN formu-
lation, once we have solved the elliptic equation for the lapse, the K-freezing
condition can be imposed at the analytic level by simply not evolving K.

One can construct parabolic or hyperbolic slicing conditions by making either
∂tα or ∂2t α proportional to ∂tK. We call such conditions “K-driver” conditions
(see [25]). The hyperbolic K-driver condition has the form [7]

∂2t α = −α2f(α) ∂tK = α2f(α)
[∇2α− βi∂iK − αKijK

ij
]
, (40)

where f(α) is an arbitrary positive function of α. From the above equation it
is clear the lapse obeys a wave equation with a source term. The corresponding
wave speed can be easily seen to be vα = α

√
f(α), which explains the need

for f(α) to be positive. Notice that, depending on the value of f(α), this wave
speed can be larger or smaller than the physical speed of light. This represents no
problem, as it only indicates the speed of propagation of the coordinate system,
i.e. it is only a “gauge speed”. The hyperbolic K-driver condition is closely related
to the Bona-Massó family of slicing conditions [26]: ∂tα = α2f(α)K. Our new
condition has the advantage of allowing for static solutions for which K itself is
non-zero.

In our evolutions, we normally take f = 2/α, since empirically we have found
that such a choice has excellent singularity avoiding properties. Notice that inside
a black hole, where the lapse typically collapses to very small values, this choice
of f implies that the gauge speed vα will be very large, much larger than the
physical speed of light.

5.2 Shift Conditions

In the BSSN formulation, an elliptic shift condition is easily obtained by imposing
the “Gamma-freezing” condition ∂tΓ̃

k=0, or

γ̃jk∂j∂kβ
i +

1
3
γ̃ij∂j∂kβ

k − Γ̃ j∂jβ
i +

2
3
Γ̃ i∂jβ

j + βj∂jΓ̃
i

−2Ãij∂jα− 2α
(
2
3
γ̃ij∂jtrK − 6Ãij∂jφ− Γ̃ i

jkÃ
jk

)
= 0 . (41)
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Notice that, just as with the K-freezing condition for the lapse, once we have
solved the previous elliptic equations for the shift, the Gamma-freezing condition
can be enforced at an analytic level by simply not evolving the Γ̃ k.

The Gamma-freezing condition is closely related to the well known mini-
mal distortion shift condition [27]. In order to see exactly how these two shift
conditions are related, we write here the minimal distortion condition

∇jΣ
ij = 0 , (42)

where Σij is the so-called “distortion tensor” defined as

Σij :=
1
2
γ1/3∂tγ̃ij , (43)

with γ̃ij the same as before. A little algebra shows that the evolution equation
for the conformal connection functions (27) can be written in terms of Σij as

∂tΓ̃
i = 2∂j

(
γ1/3Σij

)
. (44)

More explicitly, we have

∂tΓ̃
i = 2e4φ

[
∇jΣ

ij − Γ̃ i
jkΣ

jk − 6Σij∂jφ
]
. (45)

We then see that the minimal distortion condition ∇jΣij = 0, and the
Gamma-freezing condition ∂tΓ̃

i = 0 are equivalent up to terms involving first
spatial derivatives of the spatial metric multiplied with the distortion tensor it-
self. In particular, all terms involving second derivatives of the shift are identical
in both cases (but not so terms with first derivatives of the shift).

Just as it was the case with the lapse, we obtain parabolic and hyperbolic shift
prescriptions by making either ∂tβi or ∂2t β

i proportional to ∂tΓ̃
i. We call such

conditions “Gamma-driver” conditions. The parabolic Gamma driver condition
has the form

∂tβ
i = kp ∂tΓ̃

i , (kp > 0) , (46)

and the hyperbolic one

∂2t β
i = kh ∂tΓ̃

i − η ∂tβ
i , (kh, η > 0) , (47)

where kp, kh and η are positive functions of space and time. In the case of the
hyperbolic Gamma-driver we have found it useful to add a dissipation term with
coefficient η. Experience has shown that by tuning the value of this dissipation
coefficient we can manage to almost freeze the evolution of the system at late
times.

An important point that needs to be considered when using the hyperbolic
Gamma-driver condition is that of the gauge speeds. Just as it happened with
the lapse, the use of a hyperbolic equation for the shift introduces new “gauge
speeds” associated with the propagation of the shift. In order to get an idea of
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how these gauge speeds behave, we will consider for a moment the shift con-
dition (47) for small perturbations of flat space (and taking η=0). From the
form of ∂tΓ̃ i given by (27) we see that in such a limit the principal part of the
evolution equation for the shift reduces to

∂2t β
i = kh

(
δjk∂j∂kβ

i +
1
3
δij∂j∂kβ

k

)
. (48)

Consider now only derivatives in a given direction, say x. We find

∂2t β
i = kh

(
∂2xβ

i +
1
3
δix∂x∂xβ

x

)
, (49)

which implies

∂2t β
x =

4
3
kh∂

2
xβ

x , (50)

∂2t β
q = kh∂

2
xβ

q q �= x . (51)

We can then see that in regions where spacetime is almost flat, the longitudinal
part of the shift propagates with speed vlong = 2

√
kh/3 while the transverse part

propagates with speed vtrans =
√
kh. In all the simulations presented below, we

have chosen:
kh =

3
4
αn1

ψn2
, (52)

with ψ the conformal factor coming from the initial data. The division by ψn2

(in this paper, all simulations are done by n1 = 0 and n2 = 4) helps to keep the
shift small near the vicinity of the horizon. Since far from the black hole both
α and ψ are close to 1, our choice implies that the longitudinal part of the shift
will propagate with a speed of 1 (the speed of light), and the transverse part
will propagate with a speed equal to

√
3/2. At the boundaries, we simply use

the speed of light for all shift components. This will introduce an error for the
transverse components, but in all our simulations those components are typically
very small close to the boundaries.

6 Results

The first example we show is Schwarzschild, written in the standard isotropic
coordinates used in many black hole evolutions. Note that with this initial data
and our starting gauge conditions, the black hole should evolve rapidly. If α and
βi were held fixed at their initial values, the slice would hit the singularity at
t = πM and crash. Instead, α and βi work together with the excision to rapidly
drive the system towards a static state, without any special choice of initial
conditions.

In Fig. 1 we show the radial metric function grr/ψ4 vs. time. The grid covers
an octant with 1283 points (∆x = 0.1M , M = 2). Notice that the metric begins
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Fig. 1. We show the radial metric function grr/ψ
4 for a Schwarzschild black hole along

the x−axis, constructed from the cartesian metric components, as it evolves with time.
The upper panel shows the grid-stretching in the metric for singularity avoiding slicing
with vanishing shift and no excision, while the lower panel shows the metric for the new
gauge conditions with an excision box inside a sphere of radius 1M . Note the difference
in the vertical scales. Without shift and excision the metric grows out of control, while
with shift and excision a peak begins to form initially as grid stretching starts, but
later freezes in as the shift drives the black hole into a static configuration (note the
time labels)

to grow, as it does without a shift, but as the shift builds up the growth slows
down significantly. At this stage, the system is effectively static, even though
we started in the highly dynamic isotropic coordinates. We also show the time
development of α and βr in Fig. 2, which evolve rapidly at first but then ef-
fectively freeze, bringing the system towards an almost static configuration by
t = 10M . The evolution then proceeds only very slowly until the simulation is
stopped well after t = 200M .

In Fig. 3 we show the AH mass MAH, determined with a 3D AH finder [28].
For comparison, we also show the value of MAH obtained from a highly resolved
2D simulation with zero shift and no excision, and for the 3D run without shift.
While the 3D simulation with shift and excision continues well beyond t =
200M , the 2D result becomes very inaccurate and the code crashes due to axis
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Fig. 2. We show the lapse and shift for the excision evolution of a Schwarzschild black
hole. After around 10M, the lapse and shift freeze in as the system is driven to a static
configuration. The size of the excision box was allowed to grow with the change in the
coordinate location of the AH

instabilities by t = 150M , and the 3D run without shift crashes already by t =
50M . Notice that in the 2D case, after around t = 35M , MAH grows rapidly due
to numerical errors associated with grid stretching, and the AH finder ultimately
fails as the code crashes. With excision and our new gauge conditions, the 3D
run has less than a few percent error by t = 200M , while the 2D case has more
than 100% error before it crashes at t ≈ 150M . For the excision run, notice also
that while there is some initial evolution in the metric and the coordinate size
of the AH (see Figs. 1 and 2) the AH mass changes only very little. With new
gauge conditions, we also find out that the 3D run without excision produces
same results as with excision!

Next, we turn to a truly dynamic, even-parity distorted black hole. This
system contains a strong gravitational wave that distorts the black hole, causing
it to evolve, first nonlinearly, and then oscillating at its quasi-normal frequency,
finally settling down to a static Schwarzschild black hole. This provides a test
case for our techniques with dynamic, evolving black hole spacetimes, and allows
us to test our ability to extract gravitational waves with excision for the first
time. In this case, in the language of [15], we choose the Brill wave parameters
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Fig. 3. The solid and long dashed lines show the development of the AH mass MAH,
determined through a 3D AH finder, for the excision and no no excision simulation of
a Schwarzschild black hole shown above, while the dot-dashed and dot lines show the
AH mass obtained using 2D and 3D codes with zero shift and no excision. The 2D
code crashes at around t = 150M , the 3D run without shift crashes around t = 50M ,
while the 3D runs with shift and excision (or) no excision reach an effectively static
state and the error remains less than a few percent even after t = 200M

to be Q0 = 0.5, η0 = 0, σ = 1, corresponding to a highly distorted black hole
with M = 1.83.

In Fig. 4 we show the AH mass MAH as a function of time for the distorted
black hole simulations carried out in both 2D and 3D. MAH grows initially as a
nonlinear burst of gravitational waves is absorbed by the black hole, distorting
it strongly, but then levels off as the black hole goes into a ring-down phase
towards Schwarzschild.

In the 3D cases, the dynamic gauge conditions and excision or no excision
quickly drive the evolution towards an almost static configuration, as the system
itself evolves towards a static Schwarzschild black hole. The evolution is contin-
ued until terminated at around t = 300M . Even in this highly dynamic system,
no specialized form of initial data or lapse and shift are needed; our gauge choices
naturally drive the system to a static state as desired. To our knowledge, dis-
torted black holes of this type have never been evolved for so long, nor with such
accuracy, in either 2D or 3D. By comparison, in the more highly resolved 2D case
with zero shift and no excision, the familiar grid stretching effects allowed by the
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Fig. 4. We show the AH masses MAH for a black hole with even-parity distortion
for the 2D (no excision, no shift) and 3D (excision and no excision, shift) cases. The
3D result continues well past 300M , while the 2D result becomes very inaccurate and
crashes by t = 100M

gauge choice lead to highly inaccurate evolutions after some time with the error
in MAH again approaching 100% when the code finally crashes at t ≈ 100M .

In Fig. 5, we show the results of extracting waves from the evolution of this
highly distorted black hole. Using the standard gauge-invariant waveform extrac-
tion technique, the Zerilli function is shown for both the 2D and 3D simulations
discussed above. There is a slight but physically irrelevant phase difference in the
two results due to differences in the slicing; otherwise the results are remarkably
similar.

This shows conclusively that the excision or no excision and live gauge con-
ditions do not adversely affect the waveforms, even if they carry a small amount
of energy (around 10−3MADM in this case).

We now turn to a rather different type of distorted black hole, including ro-
tation and general even- and odd-parity distortions. In the language of [15,16],
the parameters for this simulation are Q0 = 0.5, η0 = 0, σ = 1, J = 35, cor-
responding to a rotating distorted black hole with M = 7.54 and an effective
rotation parameter J/M2 = 0.62. Previously, such data sets could be evolved
only to about 40M [14]. Again, for the purposes of this paper we have chosen
an axisymmetric case so that we can compare the results to those obtained with
a 2D code. Since this example is much more demanding, we have found it im-
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Fig. 5. The solid and long dashed lines show the result of the � = 2,m = 0 waveform
extraction at a radius 5.45M for the even-parity distorted black hole described on the
text, while the dashed line shows the result of the same simulation carried out in the
2D code. We also show a fit to the two lowest QNM’s of the black hole for 2D and 3D
separately, using numerical data from t = 9M to t = 80M

portant in order to increase the accuracy of our runs to perform a single initial
maximal solve to reduce the initial gauge dynamics. The gauge conditions used
work well even in the presence of rotation: the shift drives the system towards a
static Kerr black hole spacetime after the true dynamics settle down. The metric
functions (not shown) evolve in a similar way to those shown before, essentially
freezing at late times.

In Fig. 6, we show the extracted waveforms, now computed using the imagi-
nary part of the Newman-Penrose quantity Ψ4 (e.g. [2]), which includes contribu-
tions from all P−modes at the same time. The results from the 2D and 3D codes
agree very closely, except for a slight phase shift due to slicing differences, until
the 2D code becomes inaccurate and later crashes. The 3D simulation continues
well beyond this point, and is terminated at t = 140M .

Figure 7 shows the snapshots of the apparent horizon with shift vectors for
rotating 3D distorted. T shows the coordinate time so that the last picture
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Fig. 6. The solid and long dashed lines show the a imaginary part of ψ4 at a radius
3.94M and θ = φ = π/4 for rotating 3D distorted black hole, while the dot-dash line
shows the same initial date by the 2D code which crashes around 60M

shows them at around t = 40M . As the shift drives the system towards a static
Kerr black hole spacetime, horizon grows until certain time and then oscillates
towards a static Kerr black hole.

7 Conclusions

We have extended recently developed 3D black hole excision techniques, using a
new class of live gauge conditions that dynamically drive the black hole system
towards an essentially static state at late times, when the system itself settles
to a stationary Kerr black hole. Our techniques have been tested on highly dis-
torted, rotating black holes, are shown to be very robust, and require no special
coordinate systems or special forms of initial data. For the first time, excision
is tested with wave extraction, and waveforms are presented and verified. The
results are shown to be more accurate, and much longer lived, than previous 3D
simulations and even better resolved 2D simulations of the same initial data.
Such improvements in black hole excision are badly needed for more astrophys-
ically realistic black hole collision simulations, which are in progress and will be
reported elsewhere.

Furthermore, we have found that the new gauge conditions can bring the
evolution to an almost static state even without excision. Although we could
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Fig. 7. We show snapshots of the apparent horizon with shift vectors for rotating 3D
distorted black hole. T shows the coordinate time so that the last picture shows them
at around t = 40M

show some primitive results, we are currently investigating properties of new
gauge conditions [29]. We will also report these results in further publications.
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