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Abstract

I review aspects of string theory on plane wave backgrounds emphasising the connection to

gauge theory given by the BMN correspondence. Topics covered include the Penrose limit

and its role in deriving the BMN duality from AdS/CFT, light-cone string field theory in

the maximally supersymmetric plane wave and extensions of the correspondence to less

supersymmetric backgrounds.
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1 Introduction

1.1 Motivation

The intimate connection between string and gauge theories has been one of the dominant themes

in theoretical high energy physics over the last years. A famous example is the equivalence

(duality) of string theory on Anti-de Sitter (AdS) spaces with conformal field theories, the

AdS/CFT correspondence [1, 2, 3], see e.g. [4] for a review.

Several arguments support the expectation of a duality between string and gauge theories

or, even more generally, gravitational and non-gravitational theories. For example, a qualitative

one comes from the fact that QCD, the SU(3) gauge theory of strong interactions, confines

chromoelectric flux to flux tubes – the QCD string – at low energies. After all, string theory

was originally discovered in attempts to describe the spectrum of hadronic resonances. A

quantitative argument is ’t Hooft’s analysis of the large N limit of SU(N) gauge theories [5]:

for large N and fixed ’t Hooft coupling λ = g2
YMN , the Feynman diagram expansion can be

rearranged according to the genus g of the Riemann surface which the diagram can be drawn

on and every amplitude can be written in an expansion of the form
∑∞

g=0N
2−2gfg(λ), i.e. 1/N2

is the effective genus counting parameter. This is like the perturbation series of a string theory,

where the string coupling gs is identified with 1/N and λ corresponds to the loop-counting

parameter of the string non-linear σ-model. This a very general argument for the large N

duality between gauge theories and certain string theories, but it does not give an answer to

what kind of string theory one should look for.

Further hints come from the study of black holes. The simplest example is the Schwarzschild

solution of general relativity depending on a single parameter, the mass M of the black hole.

They have a horizon and are black classically, everything crossing the horizon is inevitably pulled

into the black hole singularity. However, semi-classical analysis shows that due to quantum

processes black holes start to emit Hawking radiation: the emission spectrum is roughly that

of a blackbody with temperature T ∼ 1/M ; the deviation of the pure blackbody spectrum

is encoded in the so called ‘greybody factor’. As radiating systems black holes are expected

to obey the laws of thermodynamics. If one defines the black hole entropy, as first proposed

by Bekenstein and Hawking by S = 1
4
A ∼ M2, A the area of the black hole horizon, these

laws are in fact satisfied. A quantum theory of gravity should e.g. provide the framework

for a microscopic derivation of the black hole entropy via a counting of states and predict its

greybody factor. As the Bekenstein-Hawking entropy involves the area instead of the volume,

as is the case for statistical mechanics and local quantum field theories, one may wonder if

one can find a holographic description in terms of local quantum field theories ‘living’ on the

horizon, such that SQFT ∼ A. More generally, the holographic principle [6, 7] asserts that

the number of degrees of freedom of quantum gravity on some manifold scales as the area of

its boundary: this suggests that a field theory on the boundary of space-time might capture

the physics of gravity in the bulk. For reviews of the holographic principle see [8, 9]; for an
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introduction on black holes in string theory see e.g. [10].

The AdS/CFT correspondence explicitly realizes the general principles of large N duality

and holography. The simplest and best understood example is the equivalence of string theory

on AdS5 × S5 and the maximally supersymmetric gauge theory in four dimensions, N = 4

SU(N) super Yang-Mills (SYM). The latter arises as the low-energy (i.e. energies much smaller

than the string scale 1/
√
α′) effective theory on the world-volume of N D3-branes. As these

are charged under the R-R four-form potential [11], their presence generates a five-form flux

in the (flat) transverse six-dimensional space. This flux contributes to the energy-momentum

tensor, so the geometry backreacts and curves. The backreaction is negligible if the effective

gravitational coupling is small, which is the case if gsN ∼ g2
YMN � 1. In this regime the

gauge theory is weakly coupled. In the regime of strong coupling, the large N limit, the

backreaction is no longer small and the geometry will change significantly. To be more precise,

for 1 � gsN < N we can use the dual description of D3-branes in terms of extremal three-

branes in type IIB supergravity [11]: in this picture, considering low-energy excitations on

the D3-brane, translates to going to the near-horizon region of the three-brane since energies

are red-shifted for an asymptotic observer [1]. The near-horizon region has the geometry of

AdS5×S5 with radii R4/α′2 = g2
YMN and the five-form flux on the S5 equals N , the number of

colors in the gauge theory. Strongly coupled N = 4 SYM is identified with supergravity (since

the curvature α′/R2 � 1) on AdS5 × S5. It is believed that this duality is true for all values

of parameters and extends to the full string theory; this however is difficult to verify with the

present technology, though there are some exceptions, see [4]. For reviews of attempts to use

AdS/CFT as a starting point to obtain a string description of QCD or at least of pure N = 1

SYM, see e.g. [12, 13].

It was realized by Berenstein, Maldacena and Nastase (BMN) [14] that plane (or pp) wave

backgrounds provide an interesting example where the string/gauge correspondence can be

studied beyond the supergravity approximation. As will be explained in detail in what follows,

on the geometric side this involves the Penrose limit [15] applied for example to AdS5 × S5;

roughly speaking, one focuses on the neighborhood of the geodesic of a massless particle, in the

center of AdS5 and rotating on the S5. String theory in the resulting plane wave background

can be exactly quantized in light-cone gauge [16]. On the other hand, in the gauge theory this

limit singles out composite operators carrying a large charge [14]. Though I will not discuss

this here, let me mention that one can also consider macroscopic rotating strings vs. large spin

operators [17].

1.2 Outline

This work is organized as follows: section 2 starts with a fairly general introduction to pp-

wave backgrounds in ten/eleven-dimensional supergravities. I discuss various basic aspects of

these backgrounds, in particular their (super)symmetries, emphasizing the emergence of special
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maximally supersymmetric solutions that will play a major role in the rest of this work. Then

I introduce the notion and properties of the Penrose limit of a space-time and show that this

connects maximally supersymmetric pp-waves to the AdS × S spaces. Having introduced the

necessary background material, the correspondence between IIB string theory on the maximally

supersymmetric plane wave and a double scaling limit ofN = 4 SU(N) super Yang-Mills will be

derived from the AdS/CFT correspondence. Several features of this novel BMN correspondence,

for example symmetries, the comparison of states and spectra, and holography, will be discussed

in detail both from the (free) string theory and the gauge theory point of view.

Section 3 presents extensions of the BMN duality. First an overview over various possible

approaches is given to provide a feeling for the general picture that emerges. The ingredients

are then used to describe in detail the specific example of the duality between strings on

supersymmetric orbifolds of the plane wave background and N = 2 quiver gauge theories. In

addition to these generalizations, further issues to be discussed include D-branes on the plane

wave and more complicated pp-wave backgrounds leading to interacting world-sheet theories.

We return to string theory on the plane wave background in section 4, where string inter-

actions are introduced. These correspond to non-planar corrections in the (interacting) dual

gauge theory. I explain why it is natural to describe string interactions in the setup of light-cone

string field theory and discuss its principles, in particular additional complications arising in the

superstring as compared to its bosonic version. To make the presentation self-contained a re-

view of the free string is included. In the following, the full construction of the cubic interaction

vertex as well as the dynamical supercharges is presented; the focus is mostly on the general

methods and technical details are relegated to two appendices. The results thus obtained are

applied to compute the mass shift of certain string states induced by interactions. In an ap-

proximation to be specified, the leading non-planar corrections to the anomalous dimension of

the dual gauge theory operators are exactly recovered within string theory.

Finally, I conclude in section 5 and discuss some open problems.

2 Strings on the plane wave from gauge theory

2.1 pp-waves in supergravity

It is known that maximally supersymmetric backgrounds of 11-dimensional supergravity include

flat Minkowski space, AdS4 × S7 and AdS7 × S4 [18]. In addition to these three spaces there

is another maximally supersymmetric solution discovered by Kowalski-Glikman [19]. This

solution – which will be referred to as the KG space – arises as a special case of the more
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general pp-wave1 solutions [20] of the form

ds2 = 2dx+dx− +H(xI , x+)
(
dx+

)2
+ dxIdxI ,

F4 = dx+ ∧ ϕ(xI , x+) ,
(2.1)

where I labels the transverse nine-dimensional space, F4 is the four-form field strength of 11d

supergravity and H obeys

∆H = −ϕ2 , ϕ2 ≡ 1

3!
ϕIJKϕ

IJK . (2.2)

∆ is the Laplacian in the transverse space E9 and ϕ is closed and co-closed in E9. ∂/∂x− is

a covariantly constant null vector. For constant ϕ this solution preserves at least 16 super-

charges [20, 21]. An important subclass of solutions are the homogeneous plane wave space-

times, where the field strength is constant and H is independent of x+ and quadratic in the

xI

H(xI) = AIJx
IxJ , (2.3)

with A a constant, symmetric matrix. In this case the metric describes a Lorentzian symmetric

space G/K with K = R9 and G a (solvable) Lie group depending on A [22, 21]. Solutions

of this kind are space-times with a null (F 2
4 = 0) homogeneous flux and were referred to as

Hpp-waves in [21]. Up to the overall scale and permutations these solutions are parameterized

by the eigenvalues of A. Modulo diffeomorphisms, there is precisely one choice for A for which

the solution is maximally supersymmetric. This is the KG solution

AIJ =

{
−1

9
δIJ , I, J = 1, 2, 3

− 1
36
δIJ , I, J = 4, . . . , 9

ϕ = dx1 ∧ dx2 ∧ dx3 . (2.4)

Let me briefly sketch the derivation of some of the statements that I made above. It is pos-

sible to verify that the pp-wave geometry in equation (2.1) is a solution of the supergravity

equations of motion provided the conditions on ϕ and H are satisfied. To analyze the number

of preserved supersymmetries one has to consider the Killing spinor equation. A solution to

the supergravity equations of motion is supersymmetric if it is left invariant under some non-

trivial supersymmetry transformation. If the fermions have been put to zero in the solution

non-trivial conditions following from the requirement of unbroken supersymmetry only arise in

the transformation of the fermions themselves. The gravitino transformation law gives rise to

the Killing spinor equation

δεψM = DMε = 0 , (2.5)

where the supercovariant derivative is

DMε = ∇Mε−
1

288

(
ΓPQRSM + 8ΓPQRδSM

)
FPQRSε . (2.6)

1pp-wave geometries are space-times admitting a covariantly constant null vector field.
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Iterating the first order Killing equation implies the second order supergravity equations of

motion. In other supergravities containing additional bosonic and fermionic fields the number

of unbroken supersymmetries may be further constrained by algebraic equations arising from

the variations of other fermions, such as for example the dilatino in type IIB supergravity.

Computing the supercovariant derivative in the background equation (2.1) and solving the

Killing equation leads to [20]

∂+ε =
1

24
ϕIJKΓIJKε , Γ−ε = 0 , (2.7)

where ε = ε(x+) is only a function of x+ and ϕ is assumed to be constant. This is a first order

ordinary differential equation, which has a unique solution for each initial value. Hence, for

constant field strength, the background in equation (2.1) generically preserves 16 supersymme-

tries. If one chooses the three-form ϕ and the matrix A to be of the form given in equation (2.4)

spinors satisfying Γ+ε = 0 solve the Killing equation as well [23, 21] and hence the KG solution

is maximally supersymmetric. The fact that the Hpp-wave geometry is a Lorentzian symmetric

space can be seen as follows [21]: consider the 20-dimensional Lie algebra

[e+, eI ] = e∗I , [e+, e
∗
I ] = AIJeJ , [e∗I , eJ ] = AIJe− , (2.8)

which is isomorphic to h(9) o R, h(9) the Heisenberg algebra generated by {eI , e∗I , e−}, e−
being the central element, and e+ an outer automorphism which rotates coordinates {eI} and

momenta {e∗I}. The Hpp-wave space-time can then be constructed as the coset G/K, where G

is the Lie group with the algebra in (2.8) and K is generated by {e∗I} [21]. To verify this one

proceeds in the standard way by choosing a representative of the coset and solving the Cartan-

Maurer equations. Notice that the inclusion of the form flux respects these symmetries as F4

is parallel. For a generic Hpp-wave background these are all the isometries, in special cases

however, the number of isometries is enlarged due to symmetries of A and F4. For example,

for the KG solution the isometry is enhanced to a semi-direct product

h(9) o
(
so(3)⊕ so(6)⊕R

)
, (2.9)

due to the degeneracy of the eigenvalues of A. Notice that the dimension of the isometry algebra

of the KG solution is 38, which equals the dimension of the isometry algebras of the two other

non-trivial maximally supersymmetric solutions AdS4×S7 and AdS7×S4 (so(3, 2)⊕so(8) and

so(6, 2)⊕ so(5), respectively). One suspects that this is not merely a coincidence. Recall that

flat space and AdS4×S7 (AdS7×S4) play the role of asymptotic and near-horizon limits of the

M2-brane (M5-brane) and as such are related to each other. Is there a connection to the KG

solution as well? I will say more about this in the next section. The full superalgebra can be

obtained by utilizing the fact that for ε1, ε2 Killing spinors, ε̄1Γ
Mε2 is a Killing vector and by

analyzing the transformations of Killing spinors induced by the action of the Killing vectors.

This has been done in [21] to which I refer for details.

7



The story is similar for type IIB supergravity [24]. The analogue of equation (2.1) is

ds2 = 2dx+dx− +H(xI , x+)
(
dx+

)2
+ dxIdxI ,

F5 = dx+ ∧ ϕ(xI , x+) ,
(2.10)

with the dilaton being constant and all other supergravity fields set to zero. The equations of

motion for F5 require that the four-form ϕ is self-dual and closed in E8 and hence also co-closed.

Again, H has to satisfy the Poisson equation in transverse space

∆H = −1

2
ϕ2 , ϕ2 ≡ 1

4!
ϕIJKLϕ

IJKL . (2.11)

For ϕ constant, this solution preserves as least 16 supersymmetries [24]. In analogy with the

11d case, the subclass of solutions in which H is of the form (2.3), describe Lorentzian symmet-

ric space-times with homogeneous five-form flux. There is again one exceptional, maximally

supersymmetric solution [24]

AIJ = −µ2δIJ , ϕ = 4µ
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
. (2.12)

Here µ is a parameter with dimension of mass, which by a rescaling of x+ and x− can be set

to any non-zero value. It has become common in the literature to refer to this solution as the

plane wave background. The isometry algebra of the plane wave solution is

h(8) o
(
so(4)⊕ so(4)⊕R

)
. (2.13)

Notice that the metric by itself has an so(8) symmetry, which however, is broken by the R-R

field strength to so(4)⊕ so(4). The isometry group also contains a discrete Z2 exchanging the

two transverse R
4’s. The dimension of the isometry algebra is 30 – again the same as of the

so(4, 2)⊕ so(6) of AdS5 × S5. Let me be more explicit about the Killing vectors of the plane

wave solution generating the algebra h(8) o R. A convenient parametrization is [24] 2

P− = −i∂+ , P+ = −i∂− ,
P I = −i cos(µx+)∂I − iµ sin(µx+)xI∂− ,

J+I = −iµ−1 sin(µx+)∂I + i cos(µx+)xI∂− .

(2.14)

They obey the algebra

[P−, P I ] = iµ2J+I , [P I , J+J ] = iδIJP
+ , [P−, J+I ] = −iP I , (2.15)

and transform in the obvious way under the transverse so(4)⊕ so(4). The generators {P I , J+I ,

P+, P−} are hermitian and related to {eI , e∗I , e−, e+} by trivial rescaling. It is convenient to

2Strictly speaking one should write P+ instead of P− since indices are raised and lowered with the plane

wave metric and g++ is non-zero. So P− ≡ P+ by definition.
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work with the former to make the flat space limit µ → 0 manifest. I will present some of the

remaining (anti)commutation relations of the plane wave superalgebra in section 4 when I need

them, see [24] for the full algebra.

One might wonder if there are any further maximally supersymmetric solutions of ten/eleven-

dimensional supergravities, however, as was proved in [25] by careful analysis of the constraints

arising from the supersymmetry variations, this is not the case. It is instructive to discuss the

issue of supersymmetry in Hpp-wave backgrounds in more detail, in particular the dependence

of the Killing spinors on the coordinate x+. For ϕ constant and hence H independent of x+,

the Killing spinors of the background (2.10) are independent of x− and can be expressed as [24]

ε =

(
1 +

i

2
xIΓ−[ΓI ,W ]

)
χ , W ≡ 1

4!
ϕIJKLΓ

IJKL , (2.16)

where χ has only x+ dependence determined by

(
∂+ + iW

)
χ = 0 . (2.17)

Additionally one has the requirement that

(
xIW 2 + 32∂IH

)
ΓIΓ−χ = 0 . (2.18)

This equation determines the number of Killing spinors. As χ = Γ−χ0 is a solution for

any H satisfying equation (2.11), the generic Hpp-wave background has 16 standard Killing

spinors [26]. By equation (2.16) these are also independent of the xI . Generically the standard

spinors depend on the coordinate x+ but they are independent of it if Wχ = 0. This equation

may or may not have solutions depending on the explicit form of the four-form ϕ. If H is

quadratic in xI the above equation may admit additional Killing spinors χ that are annihilated

by Γ+. These supernumerary spinors are always independent of x+ [26] but depend on the xI via

equation (2.16). Performing a T-duality along x+, those Killing spinors which are independent

of x+ will survive at the level of the low-energy effective field theory and the resulting type IIA

solution will also be supersymmetric.3 So in the generic case (only standard Killing spinors, all

depending on x+), performing a T-duality along x+ results in a non-supersymmetric solution

of type IIA supergravity. In special cases like the plane wave background (16 supernumerary

spinors), the IIA solution will be supersymmetric. Lifting this solution to 11 dimensions gives

rise to a supersymmetric deformed M2-brane with additional four-form flux [26]. One can

also revert this logic [27] and analyze the Killing spinors of the 11d Hpp-waves. In this case

the supernumerary Killing spinors generically also depend on x+. Dimensionally reducing the

Hpp-wave on x+ or xI (provided the latter is a Killing direction) one gets a D0-brane or IIA

pp-wave, respectively and the number of preserved supersymmetries is again determined by the

coordinate dependence of the Killing spinors in 11 dimensions.
3In the full string theory including winding states, all supersymmetries must survive as T-duality is an exact

symmetry.
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2.2 The Penrose-Güven limit

We have seen in the previous subsection that ten/eleven-dimensional supergravities admit max-

imally supersymmetric solutions of the pp-wave type, the plane-wave background and the KG

solution, respectively. These are on equal footing with the other more standard maximally

supersymmetric backgrounds, that is flat space and the AdS × S solutions. But whereas the

latter are connected being the asymptotic and near-horizon regions respectively of fundamental

branes, no such connection was known for the pp-waves. I have already mentioned that the di-

mensions of the superalgebras of the KG and plane wave solutions agree with those of AdS×S,

so one might expect that there exists a connection between the two. In fact it does [28] and

the connection is the Penrose-Güven limit as defined originally by Penrose [15] and extended

to supergravity by Güven [29]. I review this limit below.

Consider a Lorentzian space-time and a null geodesic γ in it. According to [15, 29] for a

sufficiently well-behaved geodesic one can introduce local coordinates U , V and Y I such that

the metric in the neighborhood of γ takes the form

ds2 = dV
(
dU + αdV + βIdY

I
)

+ CIJdY
IdY J , (2.19)

where α, βI and CIJ are functions of the coordinates. The coordinate U is the affine parameter

of γ and for γ to be well-behaved C must be invertible, otherwise the coordinate system breaks

down. Supergravities contain additional fields besides the metric, such as the dilaton Φ and

p-form potentials Ap. In particular the p-forms have a gauge symmetry and this gauge freedom

can be used to eliminate some of the components of Ap. Indeed, one can choose locally [29]

AUV I1···Ip−2 = 0 = AUI1···Ip−1 . (2.20)

This is the starting point of the Penrose-Güven limit: a null geodesic γ which locally is described

by the metric in equation (2.19) plus (possibly) additional background fields which are gauge

fixed to have the local form in equation (2.20). The next step consists in introducing a real,

positive constant Ω and rescaling the coordinates as

U = u , V = Ω2v , Y I = ΩyI . (2.21)

This diffeomorphism results in a Ω-dependent family of fields g(Ω), Ap(Ω) and Φ(Ω) and the

coordinate choices in equations (2.19) and (2.20) ensure that the following Penrose limit [15],

extended by Güven [29] to fields other than the metric, is well-defined:

ḡ = lim
Ω→0

Ω−2g(Ω) , Āp = lim
Ω→0

Ω−pAp(Ω) , Φ̄ = lim
Ω→0

Φ(Ω) . (2.22)

Due to the rescaling of coordinates in (2.21) the limiting fields only depend on u and the

background takes the form

ds2 = dudv + C̄IJ(u)dy
IdyJ ,

F̄p+1 = du ∧ Ā′
p(u) .

(2.23)
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Here F̄p+1 is the (p+1)-form field strength of Āp and ′ denotes d/du. This background describes

a pp-wave with null flux in Rosen coordinates [28]. It is possible to change to Brinkmann

coordinates, where the resulting metric takes the form

ds2 = 2dx+dx− + AIJ(x
+)xIxJ

(
dx+

)2
+ dxIdxI , (2.24)

considered in the previous subsection. For more details, see [28]. Before I explicitly show that

this mechanism connects the KG and plane wave solutions with the AdS ones, it is instructive

to discuss some important hereditary properties of the Penrose limit [30]. As we have seen,

the Penrose limit basically consists of two steps, performing a diffeomorphism and gauge-fixing

with a subsequent rescaling of the supergravity fields. It is a general property of supergravity

actions that they transform homogeneously under the rescaling of fields in equation (2.22).

Hence, if the original background is a solution to the supergravity equations of motion, so is

the new Ω-dependent one for any Ω > 0 and by continuity the limiting configuration (2.22) is

a valid supergravity background [15, 29]. The Penrose limit inherits further properties of its

parent solution, involving for example the curvature tensor; the Penrose limit of a conformally

flat space-time is conformally flat, that of an Einstein space is Ricci-flat and another hereditary

property is that of being locally symmetric, see for example [30]. One may also wonder about

the fate of isometries and supersymmetries; these are hereditary in the sense that the resulting

background has at least as many isometries and supersymmetries as the parent background [30].

Let me show that this is the case. Consider a Killing vector ξ of the metric g. Performing the

rescaling of coordinates and fields in equations (2.21) and (2.22), ξ → ξ(Ω) and ξ(Ω) is a Killing

vector for the transformed metric Ω−2g(Ω) for non-zero Ω. The question is if a weight ∆ξ exists

such that the limit

ξ̄ = lim
Ω→0

Ω∆ξξ(Ω) , (2.25)

is both non-singular and non-zero. In the local coordinates adapted to the null geodesic ξ can

be written as

ξ = α(U, V, Y I)∂U + β(U, V, Y I)∂V + γI(U, V, Y I)∂Y I . (2.26)

Performing the rescaling of coordinates one can expand ξ(Ω) around Ω = 0 as

Ω2ξ(Ω) = β̄(u)∂v + Ω
(
γ̄I(u)∂yI + yI∂yI β̄(u)∂v

)
+ · · · (2.27)

Then for Ωkξ being the coefficient of the first non-vanishing term in this expansion

ξ̄ = lim
Ω→0

Ω2−kξξ(Ω) (2.28)

is finite and non-zero. Now suppose we have two linearly independent Killing vectors ξ1 and

ξ2. Then it might happen that their leading order terms in a small-Ω expansion are linearly

dependent, for definiteness assume they are equal. Do we loose a Killing vector here? Consider

the difference

ξ−(Ω) = ξ1(Ω)− ξ2(Ω) . (2.29)

11



By construction the leading order term is zero. The next to leading term defines a new Killing

vector ξ̄−. If ξ̄− and ξ̄1 are linearly independent we are done, if not one has to iterate the

procedure. One can show [30] that eventually one ends up with two linearly independent

Killing vectors of the limiting space-time. Hence the number of Killing vectors never decreases

in the Penrose-Güven limit. Notice however that it may very well happen that it increases.

This is because we have seen that the resulting space-time is of the Hpp-wave form and as we

know from the previous section this space-time has always an isometry algebra isomorphic to

a (2D − 3)-dimensional Heisenberg algebra plus outer automorphism (in D dimensions). So

some isometries need not have a counterpart in the original space-time and can arise only in

the limit Ω → 0. It is also important to realize that because different Killing vectors ξ may

have to be rescaled with different weights ∆ξ the original isometry algebra may get contracted

in the limit. The discussion of the hereditary properties of Killing spinors is similar. Again,

no supersymmetries are lost in the limit, though the number of Killing spinors may increase

(as we have seen Hpp-waves preserve at least 16 supersymmetries). For a more detailed and

rigorous discussion see [30].

The information acquired above is already quite powerful. Consider for example the Penrose

limit of AdS. Anti de-Sitter is a conformally flat, locally symmetric, Einstein space. The

limiting space-time is Ricci-flat, conformally flat and locally symmetric and hence isometric to

flat Minkowski space. We are primarily interested in the maximally supersymmetric AdS × S
backgrounds. Now the result depends on the geodesic: if it lies purely in AdS we get Minkowski

space (the sphere is blown up to flat space in the limit as well); if not it follows from the

hereditary properties that we have to get the KG solution and the plane wave background as

limiting space-times [28, 30]. I will also show this explicitly below for the case of AdS5 × S5.

For AdS4×S7 and AdS7×S4 the Penrose-Güven limits are isomorphic to each other and result

in the KG solution [28].

The spaces AdSp+2 × SD−p−2 with radii of curvature related by RAdS/RS = ρ provide an

example which illustrates the above behavior of isometries [30]. The original isometry algebra

is so(2, p + 1) ⊕ so(D − p − 1). The so(2, p + 1) factor is contracted to h(p + 1) o so(p + 1).

The p + 1 creation- and p + 1 annihilation operators transform as vectors under so(p + 1).

Similarly so(D− p− 1) contracts to h(D− p− 3) o so(D− p− 3). The central elements of the

two Heisenberg algebras coincide; this is due to the fact that two Killing vectors of the parent

space-time agree to leading order in small Ω. Thus the two Heisenberg algebras combine into

h(D − 2). The remaining Killing vector ξ̄− becomes an outer automorphism and the resulting

contracted algebra is [30]

h(D − 2) o
(
so(p+ 1)⊕ so(D − p− 3)⊕ R

)
. (2.30)

If the radii of curvature are equal (as is the case for p = 3) the subalgebra so(p+ 1)⊕so(D−p−3)

is enlarged to the full so(D − 2). This has no counterpart in the original background.

Finally, consider the Penrose-Güven limit of AdS5 × S5 explicitly. The dilaton is constant
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and in global coordinates the metric and five-form flux is

ds2 = R2
[
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

3 + cos2 θdψ2 + dθ2 + sin2 θdΩ′2
3

]
,

F5 = 4R4
[
cosh ρ sinh3 ρdt ∧ dρ ∧ dΩ3 + cos θ sin3 θdψ ∧ dθ ∧ dΩ′

3

]
,

(2.31)

where R4 ≡ 4πgsα
′2N and ρ ≥ 0, t ∈ R, ψ ∈ [0, 2π] and θ ∈ [0, π

2
]. As alluded to above,

in order that the limiting space-time will be non-trivial the null geodesic must not lie purely

within AdS5; so consider a massless particle sitting at the origin of AdS5 (ρ = 0) and rotating

around the circle of the S5 parameterized by ψ and θ = 0 [28, 14]. To focus on the geometry

in the neighborhood of this geodesic the coordinates are rescaled such that a tube around the

geodesic is blown up. Explicitly, introduce light-cone coordinates x± and perform a rescaling

x+ =
1

2µ
(t+ ψ) , x− = −µR2(t− ψ) , ρ =

r

R
, θ =

y

R
, (2.32)

where µ is an arbitrary (non-zero) mass parameter. Blowing up the neighborhood of the

geodesic is equivalent to taking R→∞ and the metric and five-form flux become

ds2 = 2dx+dx− − µ2~x2
(
dx+

)2
+ d~x2 ,

F5 = 4µdx+ ∧
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
.

(2.33)

This is the plane wave solution of type IIB supergravity [28].

2.3 The BMN correspondence

In the previous subsection I reviewed the connection of AdS5 × S5 and the plane wave back-

ground via the Penrose-Güven limit. As IIB string theory on AdS5 × S5 is dual to N = 4

SU(N) super Yang-Mills by the AdS/CFT correspondence [1, 2, 3, 4] the implications of the

Penrose-Güven limit on the dual CFT can be studied.

It has been known for some time that strings on pp-wave NS-NS backgrounds are exactly

solvable, see e.g. [31, 32, 33, 34, 35, 36]. In light-cone gauge this is also true for a large class of

pp-wave R-R backgrounds, in particular the maximally supersymmetric plane wave, in spite of

the presence of the constant R-R flux [16]. So one may hope that this simpler setup allows to

extend our understanding of the AdS/CFT duality beyond the supergravity approximation by

the inclusion of string states on the plane wave. This is indeed the case as was demonstrated

by Berenstein, Maldacena and Nastase in [14]. The formulation of the BMN correspondence is

the subject of this subsection.

Following the construction of the type IIB superstring action on AdS5×S5 using superspace

coset methods [37], the action on the plane wave background was constructed by Metsaev in [16].

Let me briefly sketch this construction. The action has to obey the following conditions: its

bosonic part is the σ-model with the plane wave geometry being the target space; it is globally

supersymmetric with respect to the plane wave superalgebra and locally κ-symmetric; it reduces
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to the standard Green-Schwarz action in the flat space limit. As shown in [16] this conditions

uniquely specify the action, which as in flat space can be written as a sum of a ‘kinetic’ σ-

model term and a Wess-Zumino term. The latter is needed to obey the condition of κ-symmetry.

To find the explicit form of the superstring action in terms of the coordinate (super)fields a

parametrization of the coset representative has to be specified and the Cartan-Maurer equations

have to solved. Not surprisingly, the resulting covariant action is non-polynomial [16]. The

simplest way to proceed is to study the action in light-cone gauge. As in flat space the light-cone

gauge-fixing procedure consists of two steps, first κ-symmetry is fixed by the fermionic light-

cone gauge choice Γ+S = 0, then the diffeomorphism and Weyl-symmetry on the world-sheet

is fixed by the bosonic light-cone gauge
√−ggab = ηab and x+(σ, τ) = τ . The resulting action

is quadratic in both bosonic and fermionic superstring 2d fields, and hence can be quantized

explicitly [16]. In fact, from the form of the metric in equation (2.33), it is obvious that the

action for the eight transverse directions in light-cone gauge is just that for eight bosons of

mass µ. Similarly the fermions acquire masses due to the coupling to the R-R background [38].

Masses of bosons and fermions are equal due to world-sheet supersymmetry: after imposing

the light-cone gauge conditions the world-sheet κ-symmetry and space-time supersymmetries

transmute into rigid world-sheet supersymmetries. As in flat space 16 of the 32 supersymmetries

are linearly realized in light-cone gauge and commute with the Hamiltonian [16]. It was shown

in [39] that the linearly realized supersymmetries correspond to the supernumerary Killing

spinors of the pp-wave backgrounds. This is in agreement with their independence of x+ [26]

(cf. section 2.1).

After gauge-fixing the light-cone action becomes [16, 38]

Sl.c. =
1

2πα′

∫
dτ

∫ 2πα′p+

0

dσ

[
1

2
ẋ2 − 1

2
x′ 2 − 1

2
µ2x2 + iS̄

(
∂/+ µΠ

)
S

]
, (2.34)

where Π = Γ1Γ2Γ3Γ4 and S is a Majorana spinor on the world-sheet and a positive chirality

SO(8) spinor under rotations in the eight transverse directions. It is not difficult to quantize

this action and the resulting light-cone Hamiltonian is [16, 38]

H = µ
∑

n∈Z

Nn

√
1 +

n2

(
µα′p+

)2 . (2.35)

Here n is a label for the Fourier mode and Nn is the occupation number of that mode including

bosons and fermions. The ground state energy is cancelled between bosons and fermions. In

contrast to flat space, modes with n = 0 are also harmonic oscillators due to the mass terms

on the world-sheet and string theory on the plane wave has a unique ground state |v, p+〉, p+

the light-cone momentum. The single string Hilbert space is built by acting with the bosonic

and fermionic creation oscillators (for all n) on |v, p+〉 subject to the level-matching condition

for physical states ∑

n∈Z

nNn = 0 . (2.36)
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Truncation to the zero-mode sector gives rise to the spectrum of IIB supergravity on the plane

wave [38]. I will provide more details on the quantization of strings on the plane wave in

section 4.1, where I need them.

To understand the effect of the Penrose-Güven limit on the dual CFT, consider the scaling

behavior of the energy E = i∂t and angular momentum J = −i∂ψ of a state in AdS5 × S5.

Recall that the AdS/CFT correspondence relates the energy of a string state in AdS5 × S5

to the energy of a state in N = 4 SYM living on R × S3 [2, 3], which is the (conformal)

boundary of AdS5 × S5 in global coordinates. By the operator-state map, the energy of a

state on R× S3, where the S3 has unit radius, translates to the conformal dimension ∆ of an

operator on R
4. Likewise, the angular momentum J on the S5 translates to the R-charge under

a U(1)R subgroup of the full SU(4)R ' SO(6)R R-symmetry of N = 4 SYM. Then we have

the following relations

H = −p+ = i∂+ = iµ(∂t + ∂ψ) = µ(∆− J) ,

p+ = p− = −i∂− =
i

2µR2
(∂t − ∂ψ) =

∆ + J

2µR2
.

(2.37)

Now what happens if we apply the limit R → ∞? Firstly, R → ∞ means N →∞, the string

coupling gs and hence also g2
YM = 4πgs should be kept fixed. Then a configuration with fixed,

non-zero p+ requires to scale ∆, J ∼
√
N . In fact, the plane wave superalgebra implies that

H and p+ are non-negative or equivalently ∆ ≥ |J |; this also follows from the representation

theory of the 4d superconformal algebra. So the Penrose-Güven limit induces the following

double-scaling or BMN limit in N = 4 SU(N) SYM [14]

N →∞ and J →∞ with
J2

N
fixed , gYM fixed . (2.38)

As a first check consider how the bosonic part of the plane wave superalgebra h(8) o (so(4)⊕
so(4)⊕R) is realized in the gauge theory on R×S3. The conformal group SO(4, 2) is generated

by the seven Killing vectors of R× SO(4) and eight additional conformal Killing vectors. By

singling out a U(1)R subgroup with generator J the SO(6)R symmetry is broken to SO(4)R ×
U(1)R. So we see that the transverse symmetry corresponds to SO(4)R and the isometry group

of the S3 [14, 40]. In the BMN limit, the eight conformal Killing vectors together with the eight

broken generators of R-symmetry give rise to a Heisenberg algebra h(8) with central element J

and outer automorphism E−J , see for example [41, 42]. In other words theN = 4 superalgebra

contracts to the plane wave superalgebra in the Penrose-Güven limit. In the previous subsection

I have argued that this is the case, see also [43] for an explicit demonstration. It is an important

question how the unitary irreducible representations – e.g. composite operators in N = 4 SYM

– behave under the contraction [44]. In the limit they should form representations of the plane

wave superalgebra. In particular, as the conformal dimension diverges in the BMN limit, the

space-time dependence of their correlation functions is ill-defined and hence requires special
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treatment. One way to achieve this was proposed in [44] and requires to combine space-time

with an auxiliary R-symmetry space much in the same way that ∆ and J combine into the

finite quantity ∆− J . The manifestation of the discrete Z2 exchanging the two transverse R
4’s

in the gauge theory is somewhat mysterious.

The BMN limit is different from the ’t Hooft limit of SU(N) gauge theories and at first

sight puzzling. To see why this is so, recall that the ’t Hooft limit takes N → ∞, gYM → 0,

such that the ’t Hooft coupling λ ≡ g2
YMN is fixed. Away from the strict N → ∞ limit all

Feynman diagrams of a given order in 1/N can be drawn on a Riemann surface whose Euler

number is precisely the power of N to which these diagrams contribute [5]. So 1/N2 is identified

with the genus counting parameter and the perturbation series of the gauge theory may then

be organized in a double series expansion in the effective coupling λ and the genus counting

parameter 1/N2. This is the standard lore why large N gauge theories are expected to be

dual to some weakly coupled string theory with coupling 1/N . The AdS/CFT correspondence

provides a concrete example where this is realized. The above reasoning breaks down because

operators in the field theory are not held fixed in the limit but acquire an infinite charge as

N →∞. Indeed, using equation (2.37) and (∆− J)� J , in the BMN limit

1
(
µα′p+

)2 =
g2
YMN

J2
≡ λ′ , 4πgs

(
µα′p+

)2
=
J2

N
≡ g2 . (2.39)

These relations are quite suggestive. It looks like a new effective coupling λ′ and a new effective

genus counting parameter g2
2 might develop as a consequence of the simultaneous infinite scaling

of N and J . This is in some sense correct as I will explain in more detail below.

While most of the (unprotected) operators acquire infinite anomalous dimension and decou-

ple in the BMN limit, it is conceivable that some (BMN) operators with a suitable scaling of

charge survive and be dual to string states in the plane wave background (for a general discus-

sion, see [45]). At the planar level this class of operators has been identified in [14]. Recall that

N = 4 SYM contains six scalar fields φr of conformal dimension one transforming in the 6 of

SO(6)R. Take J to be the U(1)R generator rotating the 5-6-plane and define Z = 1√
2

(
φ5 + iφ6

)
.

Z carries unit J-charge and the remaining four scalars φi, i = 1, . . . , 4 are invariant under

U(1)R. For simplicity, consider only single-trace operators for the moment. The operator cor-

responding to the string ground state should carry large J charge and have ∆−J = 0. There is

a unique single-trace operator satisfying this requirement which subsequently is identified with

|v, p+〉 [14]
1√
JNJ

Tr
[
ZJ
]
←→ |v, p+〉 , (2.40)

where the trace is over color indices. At weak coupling the dimension of this operator is J

since each Z field has dimension one. As the operator is a chiral primary [14] it is protected

by supersymmetry and ∆ − J = 0 for all values of the coupling. The normalization is chosen

such that the operator has normalized two-point function when we restrict ourselves to planar
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diagrams. However, non-planar diagrams do give a non-vanishing contribution in the BMN limit

and the two-point function of Tr
[
ZJ
]

can be computed exactly for all genera [46, 47]. This can

be understood by noting that at genus h diagrams are weighted by 1/N2h as expected, but at

the same time the number of diagrams grows as J4h, see also [40, 48]. So we see the quantity g2
2

emerging as the effective genus counting parameter for the above operator. This will also be true

for more general BMN operators, to be described below. There is an additional complication:

at finite g2 single-trace operators are no longer orthogonal to multi-trace operators and it is

therefore no longer justified to restrict attention to single-trace operators only. To simplify

matters let me assume g2 = 0 in what follows; then equation (2.40) is a precise identification.

I will return to the issue of operator mixing below.

Next consider the supergravity states obtained by acting with the eight bosonic and fermionic

zero-mode oscillators aI †0 and Sa †0 on the plane wave vacuum. Each oscillator raises the energy

by µ. In the gauge theory these are obtained by the action of the broken symmetries on the

trace of Z’s [14]. For example we can rotate Z into φi by a broken SO(6)R transformation.

Applying this to Tr
[
ZJ+1

]
one obtains [14]

1√
NJ+1

Tr
[
φiZJ

]
←→ ai †0 |v, p+〉 , (2.41)

where the cyclicity of the trace was used. Acting a second time with such a transformation

changes another Z to φj or, if i = j, φi to Z̄. For i 6= j

1√
JNJ+2

J∑

l=0

Tr
[
φiZ lφjZJ−l]←→ ai †0 a

j †
0 |v, p+〉 . (2.42)

Similarly the action of broken superconformal symmetries give rise to insertions of DiZ =

∂iZ + [Ai, Z] and the components of the gaugino with J = 1/2, χaJ=1/2, in the trace of Z’s [14].

In this way one obtains a precise correspondence between supergravity states on the plane

wave and (at the planar level) single-trace chiral primary operators. This is already known

from the AdS/CFT correspondence [2, 3]. One of the crucial insights of [14] was to extend this

identification to ‘massive’ string states. These are constructed similarly to the above but now

each insertion is accompanied with a phase. For example, the operator

J∑

l=0

e
2πinl
J+1 Tr

[
Z lφiZJ−l] (2.43)

reduces to the supergravity state considered above for n = 0, but it vanishes for nonzero n

due to the cyclicity of the trace. This is precisely how it should be: a single non-zero-mode

acting on the vacuum does not satisfy the level-matching condition (2.36). So the next-simplest

possibility is to consider [14]

1√
JNJ+2

J∑

l=0

e
2πinl

J Tr
[
φiZ lφjZJ−l]←→ ai †n a

j †
−n|v, p+〉 , (2.44)
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where i 6= j, the cyclicity of the trace was used to put one operator at the first position and

1/J contributions have been neglected in the power of the phase factor. The general rule is

quite simple, each insertion of an ‘impurity’ is accompanied with a phase depending on the

world-sheet momentum; those operators where the momenta do not sum to zero vanish due to

cyclicity of the trace, in this way implementing the level matching condition; the dictionary

between impurity insertions and string oscillators is thus roughly (cf. the discussion below) as

follows [14]

ai † ←→ φi , i = 1, 2, 3, 4 ,

ai
′ † ←→ Di′−4Z , i′ = 5, 6, 7, 8 ,

Sa † ←→ χa
J= 1

2
.

(2.45)

To check this identification it is useful to expand the string theory Hamiltonian (2.35) for large

µα′p+ or equivalently for small λ′ (cf. equation (2.39))

1

µ
H '

∑

n∈Z

Nn

(
1 +

1

2

n2

(
µα′p+

)2

)
=
∑

n∈Z

Nn

(
1 +

1

2

λ

J2
n2

)
. (2.46)

We see that for µα′p+ � 1 all string states have approximately the same energy; this is

reproduced by the construction of the BMN operators: in free field theory the inclusion of the

phases does not make a difference, it is only in the interacting theory that this gets important

because these operators are no longer protected. Notice however, that the BMN operators

proposed to be dual to string states are built by sewing together protected operators with

varying phases. One might imagine that these operators are nearly BPS in the sense that

a delicate cancellation of renormalization and large J effects protects them from leaving the

spectrum in the BMN limit. This is exactly what happens [14]. Remarkably it turns out that

the anomalous dimensions of these operators are not just finite in the BMN limit, but as has

been argued in [14], they are perturbatively computable with λ′ playing the role of the effective

coupling. Indeed, notice that the first correction in (2.46) involves the ’t Hooft coupling λ so

it seems one might reproduce this from a perturbative (in g2
YM or λ) field theory computation.

Consider for example the operator in (2.44). Taking into account interactions the relevant

diagrams arise from the quartic vertex

∼ g2
YMTr

(
[Z, φi][Z̄, φi]

)
. (2.47)

The effect of this vertex can be analyzed as follows. The above interaction can be split into two

parts, depending on whether the position of the operator φ in the ‘string’ of Z’s is effectively

moved to a neighboring position or not. Since at the planar level operators with φ’s sitting at

different positions are orthogonal to each other, contracting all the fields gives a result which,

for the first class, does not depend on the insertion of the phases, whereas for the second class it

does. Combining the relevant contributions, utilizing the fact that other interactions involving
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gauge bosons and scalar loops cancel due to supersymmetry and taking the large N and J limit

one precisely reproduces the first non-trivial correction in (2.46) [14]. For a careful treatment

see for example [46]. Notice that the computation was done perturbatively in λ, but to take

the BMN limit requires to send λ → ∞. But the result for small λ equals the one for large

λ obtained from the string Hamiltonian and it is tempting to assume that it is correct for all

λ at the planar level. Further support to this conjecture comes from [49] which extended the

above computation to two loops and presented arguments for higher loops, again matching the

expectation coming from the expansion of the square root in (2.46). In [50] superconformal

representation theory was used to argue that the full square root is reproduced; alternatively

this was seen to be the case in [14] by exponentiating the quartic vertex; let me sketch how this

works. SYM on R×S3 can be expanded in spherical harmonics on the S3. In particular the zero-

modes of scalar fields on the S3 have unit energy and the ‘string’ of oscillators corresponding to

the zero-mode of Z carries ∆−J = 0. To raise the energy we insert for example the zero-mode

of φ ∼ b+ b† at some position along the string of Z oscillators. In the free theory the position

of φ is unchanged and operators with φ inserted at different positions are orthogonal in the

planar approximation. So we can think of the J Z’s as defining a lattice with J + 1 sites and

an insertion of φ at different positions corresponds to the excitations b†l at the l-th site of the

lattice. As alluded to above, the interaction in (2.47) can move an operator φ to a neighboring

position, so when acting on the string of Z oscillators the effective Hamiltonian for φ consisting

of the free and interacting parts is [14]

H ∼
∑

l

(
b†l bl +

λ

4π2

[
(bl+1 + b†l+1)− (bl + b†l )

]2
)
. (2.48)

In the large N and J continuum limit the discretized Hamiltonian reduces to

H ∼
∫ L

0

dσ
[
φ̇2 + φ′2 + µ2φ2

]
, L =

2π√
λ

J

µ
= 2πα′p+ . (2.49)

This is the bosonic part of the string light-cone Hamiltonian on the plane wave. Consequently

the full square root is reproduced from planar gauge theory in the BMN limit and the ‘string’

of Z’s plus insertion of impurities becomes equivalent to the physical string [14]. So there is

evidence that λ′ emerges as a new effective coupling in the BMN limit and one might think

that the perturbation series of SYM in the BMN limit can be reorganized as a double series

expansion in the effective coupling λ′ and the effective genus counting parameter g2
2. If true,

the BMN duality has the interesting property that regimes in string theory on the plane wave

and SYM in the BMN limit are simultaneously perturbatively accessible. This is in contrast to

the usual AdS/CFT correspondence, where due to our limited ability to perform calculations

for finite λ in SYM – or equivalently in the full string theory on AdS5 × S5 – the relation is

a strong/weak coupling duality. Note however, while perturbative calculations in λ of BMN

operator two- and three-point functions can be reorganized in λ′ [14, 46, 47, 49, 50] – and hence
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an extrapolation to large λ seems viable – this is no longer the case for higher point functions:

computing for example the 4-point function of tr
[
ZJ
]

perturbatively in λ, a naive extrapolation

to large λ leads to divergences [51].

The above heuristic discussion is in fact oversimplifying. Consider for example the BMN

operators with ∆ − J = 2, that is a defect charge of two. Instead of inserting two impurities

(defects) into the trace of Z’s we could also insert one Z̄, Dφi, D2Z etc., that is fields carrying

multiple defect charge. Indeed, all of these are present, even at the planar level [52]. However,

they do not give rise to additional string states (there are none) but are hidden within the

ordinary operators with single charge defects by operator mixing [52]. One example where this

happens is the SO(4) singlet [51, 52]

OJn ∼
J∑

l=0

cos
πn(2l + 3)

J + 3
Tr
[
φiZ lφiZJ−l]− 4 cos

πn

J + 3
Tr
[
Z̄ZJ+1

]
. (2.50)

Written like this it is in fact an exact one-loop eigenstate of ∆ even for finite J [52]. Roughly

speaking the above mixing is needed to cancel singularities that occur when the two φ impurities

collide [51]. For non-zero n the above operator is the primary of a long N = 4 superconformal

multiplet and all the other defect charge two operators dual to string states in the BMN limit

are contained in this multiplet as descendants [52]. All fields with defect charge two do appear

in these generalized BMN operators. Analogously, for n = 0 the operator in equation (2.50) is

the primary of a half BPS multiplet; all operators dual to supergravity states with up to two

oscillators are descendants. One might conjecture that this pattern generalizes to higher defect

charge [52].

At finite g2 mixing of single-trace with multi-trace operators has to be taken into account [46,

47]. For example, to compute the anomalous dimension on the torus single- and double-trace

operators have to be redefined (mixed) in order to normalize and diagonalize their two-point

functions. For the (redefined) operator in (2.50) one finds at order O(g2
2λ

′) [51, 53]

(
∆− J

)
n

= 2 + λ′
[
n2 +

g2
2

4π2

(
1

12
+

35

32π2n2

)]
. (2.51)

In fact, the above result holds for all BMN operators with defect charge two transforming in the

various irreducible representations of SO(4)× SO(4); this is a consequence of superconformal

symmetry [52]. For the explicit form of some of the redefined operators at this order see [51, 53].

It is actually simpler to consider directly the dilatation operator, work with the ‘bare’ operators

and diagonalize the resulting anomalous dimension matrix. This approach was followed in [54,

55] and results in a simple derivation of equation (2.51). Further results on higher genus

correlators include [56, 57], scalar/vector, vector/vector and multi-trace BMN operators have

also been considered in [58, 59, 60, 54]. For an extension of equation (2.51) to order O(g4
2λ

′)

see [54]. The contribution of higher genus corrections to the anomalous dimension is related to

a mass-shift of the dual string states due to interactions. A detailed study of string interactions
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will be deferred to section 4. Let me however mention a route – which will not be pursued

in what follows – to study interacting strings on the plane wave, the string-bit formalism [61].

Inspired by the emergence of the free string, discretized into J bits along the string coordinate

σ as in (2.48) and from matrix string theory [62, 63, 64], one interprets the J small strings as

describing the quantization of the J-th symmetric product of the plane wave target space. This

leads to a quantum-mechanical orbifold model. In a spirit reminding of the matrix string, string

splitting and joining is then realized by an operator that roughly speaking exchanges two string

bits; see [61] for details. This approach was further studied in [65, 66, 67] and led to results in

agreement with field theory. Very recently, doubts on the consistency of this model have been

voiced in [68]. The reason for this is the so-called fermion doubling problem, which leads to the

loss of supersymmetry – inevitably broken by the discretization – even in the continuum limit.

For a posible resolution of this puzzle, see [69]. Moreover, repeating the above derivation of the

string Hamiltonian (2.49) by truncation to the lowest modes corresponding to the operators

DZ and the fermions, apparently does not lead to the correct string Hamiltonian [41].

Finally, let me briefly discuss the issue of holography on the plane wave. As already men-

tioned, the conformal boundary of AdS5×S5 in global coordinates is R×S3 on which the dual

SYM theory lives. However, in the Penrose-Güven limit one focuses on the neighborhood of a

null geodesic located at the origin of AdS5 and rotating around a great circle of the S5. It was

shown in [40] that the conformal boundary of the plane wave is a one-dimensional null line.

This can be seen by a conformal mapping of the plane wave to the Einstein static universe

R × S9. Since the Einstein static universe is regular, the boundary consists of the space-time

region for which the Weyl factor is divergent. This is the case for a null line, a S7 inside the

S9 shrinks to zero size and the spatial projection of the null line is a circle on the S9 [40]. One

can picture this as a line winding in time on the Einstein cylinder, see [40]. For a thorough dis-

cussion of the causal structure of more general pp-wave geometries, which are not conformally

flat and hence the above trick of identifying the boundary by a conformal mapping does not

work, see [70, 71]. For a large class of pp-waves satisfying certain conditions, the boundary is

again one-dimensional. The conformal boundaries and geodesics of AdS5 × S5 and the plane

wave and how the former approach the latter in the Penrose limit have been analyzed in [72].

So the boundary of the plane wave is a null line, whereas SYM lives on R × S3 before

the limit is taken. Here one should recall again that the geodesic is rotating on the S5, so

when projected on the boundary it is time-like and can be identified with t. As the S3 has

disappeared in the process this supports the expectation [40] (see also [73]) that the holographic

dual of string theory on the plane wave is a quantum mechanical matrix model obtained by a

truncation of SYM on the S3. It would be nice to gain a precise understanding in which sense

such a truncation can be consistently performed, see also [74]. An alternative approach, the

construction of a holographic screen consisting of a four-dimensional hypersurface in the plane

wave, was followed in [75, 76]. It would be interesting to understand if this has some connection

to [77], where supersymmetric D3-branes and N = 4 SYM on a four-dimensional plane wave,
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arising from a Penrose limit of R× S3, was studied. For further remarks on holography in the

plane wave see [78]. One would also like to go beyond the comparison of masses vs. anomalous

dimensions in both theories. Some ideas in this respect have been formulated in [40] (see

however, also [79, 80]), a consistent truncation of SYM in the BMN limit would suggest to

compare finite time transition amplitudes in this model to string amplitudes on the plane wave.

3 Extensions of the BMN duality

3.1 Various approaches

It is an interesting question whether the BMN proposal is applicable to other less trivial back-

grounds. Can the string spectrum in less supersymmetric situations again be deduced from a

subsector of a dual gauge theory with reduced, possibly even no supersymmetry? This question

was addressed in several publications [81, 82, 83, 84, 85] appearing shortly after [14]. Recall

that orbifolds of type IIB string theory on AdS5 × S5 [86] provide a simple way to reduce the

amount of supersymmetry in the AdS/CFT correspondence. For example, the world-volume

theory of kN D3-branes located at the Zk orbifold singularity of an ALE space is a N = 2

[U(N)]k quiver gauge theory [87] which is dual to string theory on AdS5× (S5/Zk) [86]. N = 1

field theories can arise from D3-branes on orbifold singularities of the form C3/Γ, with Γ a

discrete proper subgroup of SU(3). These are dual to strings on AdS5 × (S5/Γ) [86]. One

can also consider N D3-branes located at a conifold singularity of a Calabi-Yau three-fold. In

this case the world-volume theory is a N = 1 SU(N)× SU(N) field theory coupled to four bi-

fundamental chiral multiplets with a IR fixed point and an exactly marginal superpotential [88].

This theory is dual to string theory on AdS5 × T 1,1, T 1,1 being the base of the conifold.

What happens if we apply the Penrose-Güven limit to these situations?4 Let me sketch

the case of AdS5 × T 1,1 which was studied in [81, 82, 83]. Topologically T 1,1 is a U(1) bundle

over S2×S2 and its SU(2)×SU(2)×U(1) isometry is identified with a SU(2)×SU(2) global

symmetry and U(1)R symmetry of the dual superconformal field theory [88]. The surprising

result found in [81, 82, 83] is that blowing up the neighborhood of a null geodesic rotating

around the U(1) fiber one ends up with the maximally supersymmetric plane wave background

again. Consequently a subsector of the gauge theory with enhancement from N = 1 to N = 4

supersymmetry should emerge in the BMN limit. Indeed, one finds that the string Hamiltonian

in this case is related to that of the plane wave by a twisting [81, 82, 83]

HT 1,1 = HS5 + J1 + J2 , (3.1)

where J1 and J2 are rotation generators of a R2 × R2 subspace of the plane wave transverse

geometry. From the gauge theory perspective HT 1,1 is identified with ∆ − 3
2
R, where R is the

4In general there exist distinct classes of geodesics which give rise to different space-times in the limit. The

statements I make usually refer to the generic case if not stated otherwise.
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generator of the U(1)R symmetry and Ja = Qa − 1
2
R, where Qa are the Cartan generators of

the SU(2)×SU(2) global symmetry. All these combinations remain fixed in the limit, similarly

to ∆− J in the N = 4 case. In particular the sector in the N = 1 theory with supersymmetry

enhancement is specified by [81, 82, 83]

HS5 = ∆− 1

2
R−Q1 −Q2 . (3.2)

One can explicitly identify these operators in the gauge theory. The matter content consists

of chiral multiplets Ai and Bi with R-charge 1/2 and conformal dimension 3/4 transforming

as (2, 1) and (1, 2) under the global symmetry. Then the unique operator corresponding to

the string ground state is tr(A1B1)
R, analogous to trZJ in N = 4. Oscillators in the R2 × R2

direction are roughly speaking identified with the action of the raising operators of SU(2) ×
SU(2) on the ground state and a possible addition of phases. For more details, see [81, 82, 83].

Another example where N = 1 is enhanced toN = 4 arises from the Penrose-Güven limit of the

dual pair obtained from N D3 branes on a C3/Z3 orbifold singularity [82]. Further discussion

of supersymmetry enhancement in N = 1 theories arising from various orbifolds of S5 and T 1,1

can be found in [89].

However, supersymmetry enhancement is not a generic feature, as can be seen from the

examples involving N = 2 [U(N)]k quiver gauge theory [84, 85, 90] (the case k = 2 has also

been discussed in [81]). The reason for this is that in the generic case the Penrose-Güven limit

of AdS5 × (S5/Zk) yields the Zk orbifold of the plane wave background and hence breaks half

of the supersymmetry. This example will be discussed in more detail in the next subsection.

Penrose-Güven limits of various orbifolds and orientifolds of AdS × S spaces have also been

considered in [91]. I have said above that generically supersymmetry is not enhanced in the

Penrose limit of AdS5 × (S5/Zk). A precise statement is the following: if the null geodesic

is fixed by the group action, the resulting space-time will be an orbifold of the plane wave; if

this is not the case one recovers the pure plane wave again [84]. Following the logic above this

means that strings on plane waves can also arise in a sector of N = 2 theory with enhancement

to N = 4. This observation leads to a further interesting development. Suppose we have N1

D3-branes placed on a C2/ZN2 singularity. Blowing up the region around a null geodesic not

fixed by the group action one can also take N1, N2 →∞ and keep the R charge finite [92, 93].

How does this affect the resulting geometry? Again, introduce light-cone coordinates

x+ =
1

2µ
(t+ ψ) , x− = −µR2(t− ψ) , R4 ≡ 4πgsα

′2N1N2 , (3.3)

however, this time ψ ∼ ψ + 2π
N2

since the geodesic is not fixed by ZN2 . Taking N1 ∼ N2 → ∞
yields the standard plane wave geometry with the difference that due to (3.3) the light-like

coordinate x− becomes compact with period

x− ∼ x− + 2πR− , R− ≡ µα′
√

4πgs
N1

N2
. (3.4)
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Consequently the light-cone momentum p+ is quantized in units of 1/R− and we have a de-

scription of discrete light-cone quantization of strings on the plane wave in terms of a quiver

gauge theory [92, 93]. An interesting new feature is for example the appearance of momen-

tum and winding states along the compact direction. These are also realized in the gauge

theory [92, 93]: the dual gauge theory is a [U(N1)]
N2 quiver gauge theory, in particular it con-

tains N2 bi-fundamental hypermultiplets [87] or, in N = 1 language, 2N2 chiral multiplets in

the bi-fundamental. Denote their scalar components by (AI , BI). The operator tr(A1 · · ·AN2)

has precisely the correct quantum numbers to describe a state with one unit of light-cone mo-

mentum and zero winding. This looks like a ‘string’ winding once around the quiver diagram

(which is a circle). Similarly an operator with k units of momentum winds k times around

the quiver. Winding states are shown to be dual to operators with insertions of adjoint scalars

from the vector multiplet together with a phase. The picture that emerges is quite suggestive:

strings carrying momentum are described by operators winding around a large quiver circle,

whereas strings with non-zero winding are dual to operators which carry ‘momentum’ (the

phase). Indeed it was argued in [92, 93], using T-duality, that the ‘strings’ winding the quiver

circle are so called non-relativistic winding strings in the T-dual description. I refer the reader

to [92, 93] for more details. One can also study compactifications of string theory on the plane

wave along space-like circles [94]. The plane wave with a manifest space-like isometry is related

to the standard one by a coordinate transformation, resulting in a shift of the Hamiltonian by

a rotation generator. For a classification of the preserved supersymmetry under toroidal com-

pactifications see [94]. Plane waves with space-like isometries can also arise from non-standard

Penrose limits of AdS5 × S5 and AdS5 × S5/Zk and are dual to triple scaling limits of N = 4

or N = 2 gauge theories [95]. The identification of momentum and winding states along the

space-like circle with operators in the dual gauge theory is similar in spirit to [92, 93], see [95]

for the details.

A further interesting direction is the generalization of the BMN correspondence to non-

conformal backgrounds [83]. In particular one can consider examples known to be dual to RG

flows from N = 4 in the UV to N = 1 IR fixed points and take the Penrose-Güven limit ‘along

the flow’ [96, 97]. Non-conformal backgrounds do, however, not lead to solvable string theories,

rather they share the generic feature that the Penrose limit leads to time-dependent mass terms

for the world-sheet theory in light-cone gauge [83]. Despite of this fact it has been argued in [96]

that some features of the RG flow, such as the branching of a given operator in the UV into

operators of the IR, can be captured by studying the corresponding problem of a point particle

propagating in this time dependent background. This system is exactly solvable [96]. One may

also focus on the geometry in the IR [97, 98, 99] and the resulting background will be one of

a deformed Hpp-wave containing additional constant three-form fluxes. This leads again to a

solvable string theory, see also [100]. By choosing a non-standard geodesic, one can use the

resulting string theory to study heavy hadrons with mass proportional to a large global charge

in the confining dual IR gauge theory [99]. An interesting solvable example of a time-dependent
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plane wave background supported by a non-constant dilaton was considered in [101]. Finally,

a non-supersymmetrix example has been discussed in [102]. In many models the light-cone

zero-point energy turns out to be negative; this raises the question about their stability which

was addressed (and, at least classically, answered affirmatively) in [103].

3.2 Strings on orbifolded plane waves from quiver gauge theory

In the previous subsection I tried to give a flavor of the possible extensions of the BMN duality.

In this subsection the case of the plane wave orbifold [84, 85, 90] will be discussed in more

detail. Specifically, I will consider a Zk orbifold of one of the two R4 subspaces transverse

to the propagation null vector and show that first-quantized free string theory is described

correctly by the large N , fixed gauge coupling limit of N = 2 [U(N)]k quiver gauge theory.

Apart from being an interesting example with less supersymmetry, a further motivation comes

from the fact that, as shown in [14, 16, 38], the plane wave background acts as a harmonic

oscillator potential to the string, and hence the dynamical distinction between untwisted and

twisted states is less clear. It is thus of intrinsic interest to see if one can find a precise map

between type IIB string oscillation modes and quiver gauge theory operators, both for untwisted

and twisted sectors. Indeed, we will see that operators dual to untwisted and twisted sector

states are quite similar.

3.2.1 IIB superstring on plane wave orbifold

As explained in the previous section, the dynamics of superstrings on the maximally supersym-

metric plane wave geometry supported by homogeneous R-R 5-form flux and constant dilaton

ds2 = 2dx+dx− − µ2(~x2 + ~y2)(dx+)2 + d~x2 + d~y2 ,

F+1234 = F+5678 = 4µ ,
(3.5)

(~x, ~y) ∈ R4×R4, is governed by an exactly solvable light-cone world-sheet theory of free, albeit

massive fields [16]. The isometry group of the eight-dimensional space transverse to the null

propagation direction is SO(4)1 × SO(4)2: while the space-time geometry is invariant under

SO(8), the 5-form field strength breaks it to SO(4)1 × SO(4)2. In the Green-Schwarz action

on the plane wave background, the reduction of the isometry is due to the coupling of spinor

fields to the background R-R 5-form field strength.

One is interested in reducing the number of supersymmetries preserved by the background.

As alluded to above, one can break one half of the 32 supersymmetries by taking a Zk orbifold

of the R
4 subspace parameterized by ~y. The orbifold action is defined by

g : (z1, z2) −→ ω(z1, z2) , ω = e
2πi
k , (3.6)

where

z1 ≡ 1√
2
(y6 + iy7) , z2 ≡ 1√

2
(y8 − iy9) , (3.7)
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and g acts on space-time fields as

g = exp

(
2πi

k
(J67 − J89)

)
. (3.8)

J67 and J89 are the rotation generators in the 6-7 and 8-9 planes, respectively. Defined so,

the orbifold of the plane wave background is actually derivable from the Penrose limit of

AdS5 × S5/Zk taken along the great circle of the S5 that is fixed by the Zk action.

In the light-cone gauge, the superstring on the background (3.5) is described by eight world-

sheet scalars xI and eight world-sheet fermions Sa, all of which are free but massive. The masses

of scalars and fermions are equal by world-sheet supersymmetry (which descends from the light-

cone gauge fixing of the Green-Schwarz action, cf. the remark above equation (2.34)) and equal

the R-R 5-form field strength µ. S is a positive chirality Majorana-Weyl spinor of SO(9, 1),

obeying the light-cone gauge condition Γ+S = 0 and hence transforming as a positive chirality

spinor of SO(8) under rotations in the transverse directions. Decompose the world-sheet fields

into representations of SO(4)1 × SO(4)2

xI = (~x, ~y)→ (~x, z1, z2) , Sa → (χα, ξα̇) , (3.9)

where α and α̇ are spinor indices of SO(4)2, ranging over 1, 2 and I have suppressed the spinor

indices of SO(4)1 under which χα and ξα̇ carry positive and negative chirality, respectively.

Then the fields ~x and χα transform trivially under g whereas

g : zm −→ ωzm , ξα̇ −→ Ωα̇
β̇ξ

β̇ , (3.10)

and Ω = diag(ω, ω−1), that is ξ 1̇ and ξ 2̇ transform oppositely under the Zk action. It is

convenient to combine ξ 1̇, ξ̄ 2̇ into a Dirac spinor ξ, and ξ̄ 1̇ and ξ 2̇ into its conjugate ξ̄ and

analogously for χ and χ̄. As the world-sheet theory is free, it is straightforward to quantize the

string in each twisted sector, the only difference among various sectors being the monodromy

of the world-sheet fields sensitive to the orbifolding, that is zm and ξ. The other world-sheet

fields remain periodic. The monodromy conditions in the q-th twisted sector, q = 0, . . . , k − 1,

are

zm(σ + 2πα′p+, τ) = ωqzm(σ, τ) , ξ(σ + 2πα′p+, τ) = ωqξ(σ, τ) , (3.11)

and the corresponding oscillator modes depend on n(q) = n+ q
k

(n ∈ Z).

Physical states are obtained by applying the bosonic and fermionic creation operators to the

light-cone vacuum |v, p+〉q of each twisted sector. They should satisfy additional constraints

ensuring the level-matching condition:
∑

n∈Z

nNn = 0 ,
∑

n∈Z

n(q)
(
Nn(q) − N̄−n(q)

)
= 0 , (3.12)

and Zk invariance. The bosonic creation operators are

~a†n , and α†m
n(q) , ᾱ†m

n(−q) , (n ∈ Z) . (3.13)
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Here, ~an are the ~x oscillators, whereas αmn(q) and ᾱmn(−q) are zm and z̄m oscillators, respectively.

The fermionic creation operators consist, in obvious notation, of

χ†
n , χ̄†

n and ξ†n(q) , ξ̄†n(−q) . (3.14)

Acting with the fermionic zero-mode oscillators on the light-cone vacua and projecting onto

Zk invariant states, one fills out N = 2 gravity and tensor supermultiplets of the plane wave

background. The action of the bosonic zero-mode oscillators on these gives rise to a whole

tower of multiplets [38], much as in the AdS5×S5 case. As an example, we have four invariant

states with a single bosonic oscillator

~a †
0 |v, p+〉q , (3.15)

and states with two bosonic oscillators are

a†µn a
† ν
−n|v, p+〉q , α† l

n(q)ᾱ
†m
−n(q)|v, p+〉q . (3.16)

In the Z2 case there are additional invariant states built from two zm or two z̄m oscillators.

However, they do not satisfy the level matching condition (3.12). The light-cone Hamiltonian

in the q-th twisted sector is

Hq =
∑

n∈Z

Nn

√
µ2 +

n2

(α′p+)2
+
∑

n∈Z

(
Nn(q) + N̄−n(q)

)
√
µ2 +

n(q)2

(α′p+)2
. (3.17)

The first sum is over those oscillators which are not sensitive to the orbifold and Nn (Nn(q) and

N̄−n(q)) is the total occupation number of bosons and fermions. The ground state energy is

cancelled between bosons and fermions. This corresponds to a choice of fermionic zero-mode

vacuum that explicitly breaks the SO(8) symmetry, which is respected by the metric but not

the field strength background, to SO(4)1 × SO(4)2 [38].

3.2.2 Operator analysis in N = 2 quiver gauge theory

It is known [86] that type IIB string theory on AdS5× (S5/Zk) is dual to N = 2 [U(N)]k quiver

gauge theory, the world-volume theory of kN D3-branes placed at the orbifold singularity. In

light of the discussion in the previous section, one can anticipate that string theory on the

plane wave orbifold is dual to a new perturbative expansion of the quiver gauge theory at large

N and fixed gauge coupling g2
YM = 4πgsk. The factor of k in the relation between the string

and the gauge coupling is standard and can be deduced by moving the D3-branes off the tip of

the orbifold into the Higgs branch, see also [104]. In the new expansion, one focuses primarily

on states with conformal weight ∆ and U(1)R charge J which scale as ∆, J ∼
√
N , whose

difference (∆ − J) remains finite in the large N limit. U(1)R is the subgroup of the original

SU(4)R symmetry of N = 4 super Yang-Mills theory, which on the gravity side corresponds

to the S1 fixed under the orbifolding; this U(1)R together with the SU(2)1 subgroup of the

27



remaining SO(4) ' SU(2)1×SU(2)2 that commutes with Zk ⊂ SU(2)2 forms the R-symmetry

group of N = 2 supersymmetric gauge theory.

The reason for the above scaling behavior is that (∆ − J) is identified with the light-

cone Hamiltonian on the string theory side, whereas5 J√
kN
∼ p+, p+ being the longitudinal

momentum carried by the string. When (∆ − J) � J , the light-cone Hamiltonian in (3.17)

implies that on the gauge theory side there are operators obeying the following relation between

the dimension ∆ and the U(1)R charge J

(∆− J)n =
√

1 + λ′n2 and (∆− J)n(q) =

√
1 + λ′ (n(q))2 . (3.18)

In the gauge theory, before orbifolding we have N × N matrix valued fields, that is the gauge

field and three complex scalars

Aµ , Z =
1√
2
(φ4 + iφ5) , ϕm = (ϕ1, ϕ2) ≡ 1√

2
(φ6 + iφ7, φ8 − iφ9) , (3.19)

and in addition their superpartners, fermions χ and ξ. The fields χ and ξ are spinors of

SO(5, 1), transforming as 4 and 4′, respectively. To define the Zk orbifolding in the gauge

theory, we promote these fields to kN × kN matrices Aµ, Z, Φm, X and Ξ and project onto

the Zk invariant components. The projection is ensured by the conditions

SAµS−1 = Aµ , SZS−1 = Z , SXS−1 = X (3.20)

and

SΦmS−1 = ωΦm , SΞS−1 = ωΞ . (3.21)

where S = diag(1, ω−1, ω−2, . . . , ω−k+1), each block being proportional to the N × N unit

matrix.

The resulting spectrum is that of a four-dimensional N = 2 quiver gauge theory [87]

with [U(N)]k gauge group, containing hypermultiplets in the bi-fundamental representations

of U(N)i × U(N)i+1, i ∈ Z mod(k). More precisely, Aµ, Z and X fill out k N = 2 vector

multiplets with the fermions transforming as doublets under SU(2)R (as its Cartan generator

is proportional to (J67 + J89)). The Z field has the block-diagonal form

Z =




Z1

Z2

Z3

·
·
Zk




(3.22)

5Since
∫

S5/Zk

F5 = N , the radius of AdS5 is proportional to (kN)1/4.
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with zeros on the off-diagonal and the diagonal blocks being N×N matrices of U(N)i’s. The Aµ
and X fields take an analogous form. Likewise, the Φm and Ξ fields fill out k hypermultiplets,

in which the scalars are doublets under SU(2)R, whereas the fermions are neutral. The Φm

fields take the form

Φm =




0 ϕm12
0 ϕm23

0 ·
· ·
· ·

ϕmk1 · ·




(3.23)

and analogously for Ξ.

The light-cone vacua of string theory on the plane wave orbifold ought to be described by

Hq = 0 and in the quiver gauge theory this translates to operators with ∆ − J = 0. One can

build k mutually orthogonal, Zk invariant single-trace operators Tr[SqZJ ] and associate these

operators to the vacuum in the q-th twisted sector

1√
kJNJ

Tr[SqZJ ]←→ |v, p+〉q , (q = 0, . . . , k − 1) . (3.24)

In what sense is this identification unique? After all, in the quiver gauge theory it appears

that the operators Tr[SqZJ ] for any q stand on equal footing. However, the orbifold action

renders an additional ‘quantum’ Zk symmetry (see for example [105]) that acts on fields in the

quiver gauge theory.6 Specifically, one can take an element g in this quantum Zk to act on

an arbitrary field Tij , i, j ∈ Z mod(k), as g : Tij −→ Ti+1,j+1. In particular, one notes that

g : Tr[SqZJ ] −→ ωqTr[SqZJ ]. So one can indeed distinguish classes of operators on the quiver

gauge theory side by their eigenvalues under the quantum Zk symmetry.

Next, consider the eight twist invariant operators with ∆− J = 1. They are

1

k
√
NJ+1

Tr[SqZJDµZ]←→ a†µ0 |v, p+〉q , (3.25)

1

k
√
NJ+1

Tr[SqZJXJ=1/2]←→ χ†
0|v, p+〉q , (3.26)

1

k
√
NJ+1

Tr[SqZJ X̄J=1/2]←→ χ̄†
0|v, p+〉q . (3.27)

These are identified with IIB supergravity modes built out of a single zero-mode oscillator acting

on the q-th vacuum. Here, DµZ = ∂µZ + [Aµ,Z] . Operators corresponding to higher string

states on the plane wave orbifold arise as follows. Oscillators of non-zero level n corresponding

to the fields not sensitive to the orbifold are identified with insertions of the operators DµZ,

6This Zk should not to be confused with the space-time Zk used for constructing the orbifold. By construc-

tion, under the orbifold action all the fields are invariant.
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XJ=1/2 and X̄J=1/2 with a position dependent phase factor in the trace Tr[SqZJ ]. For instance,

for ∆− J = 2, µ 6= ν,

1√
kJNJ+2

J∑

l=0

e
2πiln

J Tr[SqZ lDµZZJ−lDνZ]←→ aµ †
n a

ν †
−n|v, p+〉q . (3.28)

This is exactly the same as in the unorbifolded case – the insertion of the position-dependent

phase factor ensures that the level-matching condition is satisfied and that the light-cone energy

of the string states is reproduced correctly [14].

The remaining string states involving oscillators with a fractional moding n(q) in the twisted

sectors, should be identified with insertions of the operators Φm and ΞJ=1/2 together with

position-dependent phase factors of the form e2πiln(q)/J . Similarly, insertions of Φ̄m and Ξ̄J=1/2

are accompanied with the phase factor e2πiln(−q)/J . Again, the prescription implements the

level-matching condition and yields the correct energy of the corresponding string states. For

r 6= s

1√
kJNJ+2

J∑

l=0

e
2πiln(q)

J Tr[SqZ lΦrZJ−lΦ̄s]←→ αr †n(q)ᾱ
s †
−n(q)|v, p+〉q . (3.29)

For the Z2 orbifold, the operator corresponding to αr †n(q)α
s †
m(q)|v, p+〉1, though being Z2 invariant,

vanishes for all m, n due to the cyclicity of the trace, as it should, cf. the remark below

equation (3.16).

Finally, operators with insertions such as D2Z, Z̄ or XJ=−1/2 are expected to be hidden

by operator mixing, much in the same way as discussed in the previous section 2.3. One can

compute the leading order anomalous dimensions of the ∆−J = 2 operators in equation (3.29),

perturbatively inN = 2 quiver gauge theory and confirm that the proposal for the twisted sector

operators reproduces the correct light-cone string energy spectrum. In fact, in the setup I have

outlined above one can proceed with the computations essentially parallel to those of [14], see

for example [85] for more details.

3.3 Further directions

So far I mainly considered closed strings in IIB string theory on the plane wave background,

their duality to N = 4 SYM in the BMN limit and generalizations thereof. In this subsection

I would like to discuss two further interesting issues: D-branes on the plane wave and string

theory on more general pp-wave backgrounds.

3.3.1 D-branes on the plane wave

Since D-branes capture non-perturbative effects in string theory, their understanding in the

plane wave background is important. They can be studied by various means: in perturbative

string theory they are defined as hypersurfaces on which open strings end and hence can be
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analyzed by finding consistent boundary conditions for open strings; alternatively they can be

described using boundary states, that is coherent states in closed string theory. The boundary

state imposes certain gluing conditions on the closed string fields that arise through the presence

of the D-brane. Interactions between two static D-branes through the exchange of closed strings

at tree level can then be computed by sandwiching the closed string propagator between two

boundary states. The same process can be re-interpreted as an open string one-loop diagram,

i.e. the open string partition function. This is open-closed duality, which has to be satisfied

for a D-brane to be consistent. Yet another way to describe D-branes is by considering their

world-volume theory, consisting of a Dirac-Born-Infeld and a Wess-Zumino term. Solutions

to the resulting field equations describe the embedding of the D-brane into the target space.

Finally, at low energies D-branes arise as solitonic solutions to the supergravity equations of

motion.

All of these different approaches have been used to obtain a rather detailed picture of su-

persymmetric D-branes in the plane wave background via open strings in light-cone gauge [106,

107, 108], covariant open strings [109], boundary states [110, 111, 112, 108] and the open-closed

consistency conditions [111, 112], D-brane embeddings [113] and supergravity solutions [114]

(for a supergravity analysis of branes in the pp-wave space-time originating from the Penrose

limit of AdS3 × S3, see e.g. [115, 116, 117]). I will summarize these results below, overviews

over many aspects on D-branes on the plane wave can be found in [118, 119]. For a discussion

of open strings in the plane wave with a constant B-field turned on, see [120].

Let me start with the open string analysis. The covariant action for strings in the plane

wave [16] is invariant under local κ-symmetry. For open strings additional boundary terms arise

under κ-variations and for supersymmetry preserving configurations these have to be cancelled

by imposing suitable boundary conditions. In [109] this analysis was performed for longitudinal

Dp-branes (+,−, m, n), i.e. branes whose world-volume is along x+, x− and m and n denote the

number of coordinates along the two transverse R4’s. Branes with p = 3, 5, 7 and |m− n| = 2

are half-supersymmetric7 if they are located ‘at the origin’, whereas ‘outside the origin’ only

one quarter of the supercharges, namely half of the kinematical ones, are preserved [109]; these

results agree with the analysis of open strings in light-cone gauge performed previously in [106],

as well as the supergravity analysis [114] and D-brane embeddings [113]. Moreover, the D1-

brane (+,−, 0, 0) at any position only preserves half of the dynamical supercharges [109]. As

the plane wave is a homogeneous space it is rather counterintuitive that the number of preserved

supersymmetries may depend on the position of the brane. In fact, a more precise statement

is that these branes are flat in Brinkmann coordinates. As the P I are time dependent in these

coordinates and do not simply generate translations along the xI (cf. equation (2.14)), a half-

supersymmetric brane related to a flat brane at the origin by a translation is curved [114].

7This means that half of the kinematical as well as half of the dynamical supercharges are preserved. Kine-

matical (non-linearly realized) supercharges square to P+, whereas dynamical (linearly realized) supercharges

square to the Hamiltonian plus additional generators.
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Hence flat branes at different transverse positions do not fall in the same equivalence class with

respect to translations generated by the P I , see also [107].

In light-cone gauge boundary states can only describe instantonic D(p + 1)-branes [121].

These are formally related to the longitudinal branes discussed above by a double Wick rotation

and will be denoted by (m,n). Boundary states in the plane wave preserving half of both

kinematical and dynamical supercharges were first constructed in [110] closely following the

flat space description of [121]. Assume as in flat space that the D-brane preserves half of the

dynamical supersymmetries, i.e.
(
Q+ iηMQ̃

)
ȧ
|| (m,n),yt, η〉〉 = 0 , (3.30)

where η = ±1 distinguishes a brane from an anti-brane, yt is the transverse position and

Mȧḃ =

(
∏

I∈N
γI

)

ȧḃ

. (3.31)

Here γI are the gamma-matrices of SO(8) and the product is over the Neumann directions.

Together with standard Neumann and Dirichlet boundary conditions on the transverse bosons

this implies that half of the kinematical supersymmetries are preserved (see e.g. [118])
(
Q+ iηMQ̃

)

a
|| (m,n),yt, η〉〉 = 0 . (3.32)

Here Mab is analogous to Mȧḃ. The structure of the boundary state and consistency of the cor-

responding brane is crucially dependent on the choice of M . It is useful to distinguish the cases

ΠMΠM = ∓1, the resulting branes will be sometimes called D−- and D+-branes, respectively.

Boundary states for D− were constructed in [110, 111]. The condition on M is equivalent to

|m − n| = 2 and thus leads to an analogous splitting of transverse coordinates as found from

the open string analysis [106]. The allowed values for p are p = 1, 3, 5 and moreover, the

condition (3.30) is only satisfied if yt = 0, otherwise only half of the kinematical supercharges

are preserved. A detailed analysis and proof of the open-closed consistency conditions was

given in [111]. In flat space the cylinder diagram can be expressed in terms of certain standard

ϑ-functions and open-closed duality arises as a consequence of the properties of ϑ-functions

under modular transformations. In the plane wave the cylinder diagram involves deformed

ϑ-functions, where the deformation depends on the mass parameter [111]. It has been proven

in [111] that these deformed ϑ-functions satisfy certain transformation properties that assure

that the open-closed consistency conditions are precisely satisfied for the half-supersymmetric

branes. On the other hand, branes away from the origin, i.e. those preserving only half of the

kinematical supercharges, appeared to violate open-closed duality and hence be inconsistent. It

is also worthwhile to note, that the kinematical conditions (3.32) are not preserved as a function

of time x+ [111]. Indeed, the open string kinematical supercharge does not commute with the

Hamiltonian and hence is spectrum generating as is the case for closed strings. The open string
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ground state is an unmatched boson [106] and it follows that the open string partition function

does not vanish [111].

Boundary states for D+ and the analysis of open-closed duality was considered in [112];

independently this class was studied in detail in [107] from the open string side. As mentioned

above, these branes also arose in the supergravity analysis [113, 114] and from the covariant

open string [109]. In this case the condition on M is equivalent to |m− n| = 0, 4, however the

coupling of (0, 4) and (4, 0)-branes to the background R-R flux induces a flux on the world-

volume [113] and correspondingly the boundary conditions for bosons have to be modified.

From the analysis of [112] it seems that the only consistent boundary state with standard

bosonic boundary conditions is the (0, 0) at any position, i.e. the D-instanton. Again, this is in

agreement with the open string analysis of [113, 114, 109] where the corresponding object, the

D1-brane, is found to preserve half of the dynamical supersymmetries at any position. In this

case the kinematical conditions (3.32) are preserved as a function of time x+ [111], corresponding

to a vanishing mass term for the open string zero-modes. Hence in this case the ground states

form a degenerate supermultiplet and the open string partition function vanishes [112].

However, this might not be the full story yet [107, 108]. The reason for this is that the

world-sheet theory being free, it possesses an countably infinite set of world-sheet symmetries.

These simply correspond to transformations shifting the fields by a parameter satisfying the free

field equations. For the open string such a shift changes the action by a boundary term, so it

is a symmetry if it satisfies appropriate boundary conditions. As shown in [107] the dynamical

supercharges broken by D−-branes located outside the origin and the kinematical supercharges

broken by the D1-brane can be combined with world-sheet transformations that generate a non-

vanishing boundary term in such a way that the combined transformation is a symmetry of the

open string. Together with open string symmetries originating from closed string symmetries

compatible with the boundary conditions they generate a superalgebra similar to that of the

other half-supersymmetric branes [108]. An analysis of the boundary states for D−-branes

located outside the origin showed that these do preserve a combination of eight dynamical and

kinematical closed string supercharges in addition to the eight standard kinematical ones. It

would be interesting to see whether these D−-branes turn out to be consistent with open-closed

duality.

The BMN correspondence can be extended to open strings [122, 123, 113, 124]. It was

shown in [113] that the D−-branes located at the origin, descend from supersymmetric AdS

embeddings in AdS5×S5 through the Penrose limit; these originate from the near-horizon limit

of supersymmetric intersections of the Dp-branes with a stack of D3-branes. For example, in the

near-horizon limit, a suitable D3-D5 system leads to a D5 wrapping a AdS4×S2 submanifold in

AdS5 × S5. AdS/CFT is then supposed to act twice and the holographic dual is SYM coupled

to a three-dimensional defect. The defect theory lives on the boundary of AdS4 and as such is a

CFT. The physics of closed strings and 5-5 open strings is described by the bulk theory, whereas

the boundary theory captures 3-3, 3-5 and 5-3 strings [125, 126, 127]. In particular, the 3-5 and
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5-3 strings give rise to hypermultiplets in the fundamental of the gauge group. Applying the

Penrose limit results in the D5 (+,−, 3, 1) brane at the origin. The dual description is through

the BMN limit of SYM coupled to the three-dimensional defect. The closed string vacuum is

dual to the trace of Z’s and intuitively one expects the open string vacuum also to be dual to

a large number of Z’s, but instead of the trace with ‘quarks’ at the end of the ‘string’. This

is indeed the case, the ‘quarks’ are scalars in the hypermultiplet originating from 3-5 and 5-3

strings and q̄ZJq represents the open string vacuum [123]. Open string excitations are then

dual to insertions of defect fields and, for non-zero-modes, in analogy with the insertion of

phases for the closed string, cosines and sines for Neumann and Dirichlet boundary conditions,

respectively [123]. The D7 (+,−, 4, 2) was discussed in [122], this is more involved as orientifold

planes have to be added to have a consistent theory, but the basic idea remains the same. A

further interesting example is the giant graviton, i.e. a D3-brane wrapped on a S3 in the S5,

which in the Penrose limit gives rise to the (+,−, 0, 2) brane. Here the open string fluctuations

arise from subdeterminant operators in SYM with large R-charge, see [124] for details.

3.3.2 Strings on pp-waves and interacting field theories

So far we have seen that we can get solvable string theories in light-cone gauge turning on

null, constant R-R field-strengths in a plane wave geometry. As first discussed in [128], a large

class of interacting string models with world-sheet supersymmetry, can be engineered in more

general pp-wave geometries with non-constant fluxes and possibly transverse spaces with special

holonomy; for example

ds2 = −2dx+dx− +H(xi)
(
dx+

)2
+ ds2

8 ,

F5 = dx+ ∧ ϕ(xi) ,
(3.33)

and all other background fields set to zero. It is convenient to split the candidate Killing

spinor ε into two parts of opposite SO(8) chiralities, ε = ε+ + ε−. Analyzing the gravitino

variation, one finds that ε+ is independent of all the coordinates; at lowest order in ϕ this is the

supernumerary spinor we encountered before and gives rise to linearly realized supersymmetry

on the world-sheet in light-cone gauge. On the other hand, it is useful to split ε− into two parts

as well: one, independent of x+ (and x−) is determined through ε+ by the Killing equation,

see [128] for the explicit solution. This completes the supernumerary Killing spinor for non-

constant ϕ, however, as it is annihilated by Γ+ it does not survive as part of the linearly

realized supersymmetry in light-cone gauge. Depending on ϕ one might also have a number

of kinematical supersymmetries; these correspond to the part of ε− depending only on x+ and

solving the Killing equation with ε+ = 0; they imply that an even number of fermions (and

hence also bosons) are free on the world-sheet and decouple from the remaining interacting

fields. Generically there will be no kinematical supersymmetries. If the transverse space is

curved, space-time supersymmetry requires it to have special holonomy. For example, for
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solutions with at least N = (2, 2) world-sheet supersymmetry the most general possibility is a

Calabi-Yau four-fold. The Killing spinor equation determines the bosonic potential H in terms

of ϕ and imposes additional constraints on the allowed four-forms. For N = (2, 2) the solution

is parameterized in terms of a holomorphic function W and a real, harmonic Killing potential

U . Moreover, the Lie-derivative of W along the holomorphic Killing vector Vµ = i∇µU has

to vanish [128]. Explicitly, the general solution leading to N = (2, 2) world-sheet theories in

light-cone gauge is [128]

ds2 = −2dx+dx− − 32
(
|dW |2 + |V |2

)(
dx+

)2
+ 2gµν̄dz

µdz̄ν̄ , (3.34)

ϕµν ≡
1

3!
ϕµρστε

ρστ
ν = ∇µ∇νW , ϕµν = ϕ∗

µν , (3.35)

ϕµν̄ ≡
1

2
ϕµν̄ρ

ρ = ∇µ∇ν̄U . (3.36)

Holomorphicity of W follows because the (1, 3) forms in the 10 of SU(4) are co-closed, whereas

U is harmonic due to tracelessness of the (2, 2) forms in the 15. To get interesting interacting

world-sheet theories the transverse space needs to be non-compact [128]. As the geometry is

that of a pp-wave, one can still choose the light-cone gauge; the form of the resulting world-sheet

theory is dictated by supersymmetry [129]. Notice that, pp-wave string theories do not lead to

the most general 2d supersymmetric field theories: the target space is always eight-dimensional

of special holonomy and the Killing potential U has to be harmonic due to the self-duality of

F5. Turning on an additional null R-R three-form leads to a second Killing vector (commuting

with the first one), and again the corresponding potential is harmonic as a consequence of

the variation of the dilatino [130]. In the case of N = (1, 1) the transverse space has Spin(7)

holonomy, one gets a real harmonic superpotential [128] and, if the R-R three-form is non-zero,

one harmonic Killing potential [130].

This general class of pp-wave solutions of type IIB supergravity is interesting for several

reasons. They are exact string solutions, i.e. they do not receive α′ corrections. In particular

this is true for the plane wave background, see [131] for a proof based on the pure spinor

approach for a covariant description of strings in R-R backgrounds. In semi-light-cone gauge,

conformal invariance of the GS superstring on the plane wave has also been studied in [132]. As

shown in [133], for the pp-wave space-times it is more advantageous to use the U(4) formalism,

where strings are governed by exact interacting N = 2 superconformal world-sheet theories.

This proves the exactness of this general class of solutions, see also [134] for an extension to a

larger class of R-R backgrounds, some of which cannot be studied in light-cone gauge. For an

alternative argument, based on space-time properties, essentially the existence of a covariantly

constant null vector, see [135].

Another interesting feature is the possibility to choose the superpotential such that the

world-sheet theory becomes integrable [128]; in that case one may hope to use known properties

of integrable models to learn about strings propagating in these backgrounds, see also [135, 136]

for further discussions and examples.
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D-branes in these backgrounds have been analyzed in [137], for example for N = (2, 2)

branes are supersymmetric if they wrap complex manifolds and the superpotential (and Killing

potential) are constant on the world-volume; one can also have supersymmetric D5-branes

wrapped on special Lagrangian submanifolds and appropriate conditions on the potentials.

These results were derived in [137] in two ways, in the same spirit I described in the previous

section: by analyzing supersymmetry preserving boundary conditions in the world-sheet theory

and by finding supersymmetric embeddings in target space. Interestingly, for the special case

of the plane wave, the branes found in [137] are ‘oblique’, that is they are oriented in directions

that couple the two transverse R4’s; these however, generically preserve less supersymmetry

than the branes considered in the previous section. Recently ‘oblique’ branes in the plane wave

background have been analysed in detail in [138].

4 String interactions in the plane wave background

In the previous two sections I have among other things discussed and explained how free strings

on the plane wave background and its orbifold arise in a double-scaling limit of N = 4 SYM

and N = 2 quiver gauge theory, respectively. A computation of the anomalous dimensions

of BMN single-trace operators in interacting planar N = 4 SYM [14, 49, 50] reproduces the

mass spectrum of free string theory [16, 38]. It is obviously an interesting question how string

interactions and the non-planar sector of (interacting) gauge theory will fit into this picture.

Before going into details let me first make a few general remarks. The proposed duality between

free string theory and planar, interacting N = 4 SYM in the BMN limit

1

µ
H ∼= ∆− J (4.1)

should encompass interactions and non-planar effects, respectively. This follows from the fact

that the global symmetries of both sides of the duality are not expected to be broken by

quantum effects and hence the relation (4.1) should hold to all orders in the string coupling

as a consequence of the AdS/CFT correspondence [48]. As the two operators act on different

Hilbert spaces, this identity should be interpreted with some care. One information encoded

in (4.1) is the identification of eigenvalues of the two operators. This is a basis-independent

statement, on both sides of the duality we can choose any suitable basis, compute the matrix

elements of the operator and obtain the eigenvalues by diagonalization. Subsequently the

corresponding eigenstates can be identified (up to degeneracy ambiguities). Recall once more

the relations
1

(µα′p+)2
= λ′ , 4πgs(µα

′p+)2 = g2 . (4.2)

As already stated, considering planar (g2 = 0) gauge theory for small λ′ is equivalent to free

(gs = 0) string theory for large µα′p+. Now what happens if we take g2 to be non-zero in
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the free gauge theory? We see from (4.2) that this means to take µα′p+ → ∞, gs → 0,

such that gs(µα
′p+)2 is finite. As single- and multi-string states are orthogonal to each other,

whereas single-trace BMN operators start to mix with multi-trace ones at finite g2 in the free

gauge theory [46, 47, 51, 48, 53], the identification of states with operators is modified for

finite g2. The fact that the required transformation is not unique [51, 48, 53, 66, 139] can be

intuitively understood from string theory, because string states become highly degenerate for

µα′p+ = ∞. Taking into account string interactions is equivalent to considering non-planar,

interacting gauge theory. Then the freedom of mixing is getting more constrained because the

dual operators now have to be eigenstates of the interacting dilatation operator. The ambiguity

is still present for protected operators or ones where the interaction does not lift degeneracies

present in the free theory.

As we are only able to obtain the free string spectrum in light-cone gauge, we should ask

how interactions can be studied in this picture. In flat space, the usual strategy is the vertex

operator approach and the difficulties associated with the fact that x− is quadratic in the

transverse coordinates are circumvented by using the ten-dimensional Lorentz invariance to set

p+ = 0 in general scattering amplitudes. However, in the plane wave background transverse

momentum is not a good quantum number due to the harmonic oscillator potential confining

the string to the origin of transverse space. Moreover ten-dimensional Lorentz invariance is

broken by the non-zero R-R flux, in particular there is no J+− generator. This obstruction

significantly hinders the vertex operator approach to string interactions. There is only one other

known way of studying string interactions in light-cone gauge, namely light-cone string field

theory pioneered by Mandelstam [140, 141] for the bosonic string, see also [142, 143, 144, 145],

and extended to the superstring in [146, 147, 148, 149]. The construction of light-cone string

field theory in the plane wave geometry [150, 151, 152, 153] and the derivation of the leading

non-planar correction to the anomalous dimension of BMN operators with two defects (cf.

equation (2.51)) from string theory [154, 155] is the main subject of this section and will be

discussed in detail in the following subsections. For a qualitative discussion of closed and open

string interactions from the gauge theory point of view see [40].

Further studies of string interactions and their comparison with gauge theory in the BMN

limit include [156, 157, 158, 159], where an alternative construction of the string field theory

vertex is pursued. Recently two inequivalent supersymmetric completions have been put for-

ward in [160] and [161], respectively. I will discuss this issue in more detail in section 4.3.

In [162, 163] cubic interactions of IIB supergravity scalars arising from the dilaton-axion sec-

tor and the chiral primary sector – corresponding to mixtures of the metric and the five-form

– were analyzed, the role of the bosonic prefactor in string field theory on the plane wave

was studied in [164, 165]. For an investigation of the S-matrix for strings in the plane wave

see [166]. In [167, 168] interactions of supergravity and string states were computed to leading

and subleading order in µα′p+ and agreement with the planar three-point functions of BMN

operators was established. For an extension to non-planar corrections and higher string inter-
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actions see [169, 170]. Here the comparison was based on the earlier proposal of [47] that the

coefficient of the three-point function of BMN operators is proportional to the matrix element

of the cubic interaction in the plane wave. With the work of [48] (see also [171]) this proposal

has been replaced by the more rigorous expression in equation (4.1). Indeed, see also [79] for

a derivation of a vertex-correlator duality slightly different from [47]. By identifying single

string states with mixtures of single and multi-trace BMN operators – defined such that the

redefined single/multi-trace operators are orthogonal in the non-planar, free gauge theory –

general matrix elements of the two sides in (4.1) have been compared in [48, 66, 67, 139, 172].

In [173, 174] methods of collective field theory have been employed to derive the string field

theory vertex for supergravity and (certain) string states from the matrix model truncation of

SYM in the BMN limit.

The algebraic structure of the cubic interaction vertex, in particular its expansion in powers

of µα′p+ was first examined in [151, 175] and subsequently studied in [176, 152]. For comments

on a non-trivial dependence of the string coupling on µα′p+ see [177]. Most notably, closed

expressions for all the quantities appearing in the interaction vertex as functions of µα′p+ were

provided in [178].

This section is organized as follows. To make the presentation self-contained and to intro-

duce necessary notation I briefly review the free string on the plane wave in section 4.1. In

section 4.2 I discuss the general features of light-cone string field theory. The construction of

the kinematical and dynamical parts of the vertex and the (dynamical) supercharges in the

number basis is described in detail in sections 4.3 and 4.4. The functional expressions for the

dynamical generators are given in section 4.5. The results are applied in section 4.6 to recover

in light-cone string field theory the leading non-planar correction to the anomalous dimension .

Several technical details that are not included in this section are given in appendices A and B.

4.1 Review of free string theory on the plane wave

In this subsection I briefly review some basic properties of free string theory on the plane wave

background [16] and introduce some notation. After fixing fermionic κ-symmetry and world-

sheet diffeomorphism and Weyl-symmetry in light-cone gauge, the r-th free string propagating

on the plane wave is described by xIr(σr) and ϑar(σr)
8 in position space or by pIr(σr) and λar(σr)

in momentum space, where I = 1, . . . , 8 is a transverse SO(8) vector index, a = 1, . . . , 8 is a

SO(8) spinor index. I will often suppress these indices in what follows. The bosonic part of the

light-cone action is [16]

SB(r) =
e(αr)

4πα′

∫
dτ

∫ 2π|αr |

0

dσr
[
ẋ2
r − x′ 2r − µ2x2

r

]
, (4.3)

8ϑr are the non-vanishing components of the SO(9, 1) spinor S satisfying the light-cone gauge Γ+S = 0.
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where

ẋr ≡ ∂τxr , x′r ≡ ∂σr
xr , αr ≡ α′p+

r , e(αr) ≡
αr
|αr|

. (4.4)

In a collision process p+
r will be negative for an incoming string and positive for an outgoing

one. The mode expansions of the fields xIr(σr, τ) and pIr(σr, τ) at τ = 0 are

xIr(σr) = xI0(r) +
√

2

∞∑

n=1

(
xIn(r) cos

nσr
|αr|

+ xI−n(r) sin
nσr
|αr|

)
,

pIr(σr) =
1

2π|αr|
[
pI0(r) +

√
2

∞∑

n=1

(
pIn(r) cos

nσr
|αr|

+ pI−n(r) sin
nσr
|αr|

)]
.

(4.5)

The Fourier modes can be re-expressed in terms of creation and annihilation operators as

xIn(r) = i

√
α′

2ωn(r)

(
aIn(r) − aI †n(r)

)
, pIn(r) =

√
ωn(r)

2α′
(
aIn(r) + aI †n(r)

)
, (4.6)

where

ωn(r) =

√
n2 +

(
µαr

)2
. (4.7)

Canonical quantization of the bosonic coordinates

[xIr(σr), p
J
s (σs)] = iδIJδrsδ(σr − σs) (4.8)

yields the usual commutation relations

[aIn(r), a
J †
m(s)] = δIJδnmδrs . (4.9)

The fermionic part of the light-cone action in the plane wave is [16]

SF(r) =
1

8π

∫
dτ

∫ 2π|αr|

0

dσr[i(ϑ̄rϑ̇r + ϑr
˙̄ϑr)− ϑrϑ′r + ϑ̄rϑ̄

′
r − 2µϑ̄rΠϑr] , (4.10)

where ϑar is a complex, positive chirality SO(8) spinor and

Πab ≡ (γ1γ2γ3γ4)ab (4.11)

is symmetric, traceless and squares to one.9 The matrix Π breaks the transverse SO(8) symme-

try of the metric to SO(4)× SO(4) and induces a projection of SO(8) spinors to subspaces of

positive (negative) chirality under both SO(4)’s. The mode expansion of ϑar and its conjugate

momentum iλar ≡ i 1
4π
ϑ̄ar at τ = 0 is

ϑar(σr) = ϑa0(r) +
√

2
∞∑

n=1

(
ϑan(r) cos

nσr
|αr|

+ ϑa−n(r) sin
nσr
|αr|

)
,

λar(σr) =
1

2π|αr|
[
λa0(r) +

√
2

∞∑

n=1

(
λan(r) cos

nσr
|αr|

+ λa−n(r) sin
nσr
|αr|

)]
.

(4.12)

9In comparison with section 2, here γI are the gamma-matrices of SO(8). Throughout this chapter I use the

gamma matrix conventions of [148].
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The Fourier modes satisfy

λan(r) =
|αr|
2
ϑ̄an(r) , (4.13)

and, due to the canonical anti-commutation relations for the fermionic coordinates

{ϑar(σr), λbs(σs)} = δabδrsδ(σr − σs) , (4.14)

they obey the following anti-commutation rules

{ϑan(r), λ
b
m(s)} = δabδnmδrs . (4.15)

It is convenient to define a new set of fermionic operators [150]

ϑn(r) =
cn(r)√
|αr|

[
(1 + ρn(r)Π)bn(r) + e(αr)e(n)(1− ρn(r)Π)b†−n(r)

]
, (4.16)

which explicitly break the SO(8) symmetry to SO(4)× SO(4). Here

ρn(r) = ρ−n(r) =
ωn(r) − |n|

µαr
, cn(r) = c−n(r) =

1√
1 + ρ2

n(r)

. (4.17)

These modes satisfy

{ban(r), b
b †
m(s)} = δabδnmδrs . (4.18)

The free string light-cone Hamiltonian is

H2(r) =
1

αr

∑

n∈ZZ

ωn(r)

(
a†n(r)an(r) + b†n(r)bn(r)

)
. (4.19)

In the above the zero-point energies cancel between bosons and fermions. Since the Hamiltonian

only depends on two dimensionful quantities µ and αr, α
′ and p+

r should not be thought of as

separate parameters.

The single string Hilbert space is built out of creation operators acting on the vacuum |v〉r
defined by

an(r)|v〉r = 0 , bn(r)|v〉r = 0 , n ∈ Z . (4.20)

Physical states have to satisfy the level-matching constraint

∑

n∈Z

n
(
a†n(r)an(r) + b†n(r)bn(r)

)
= 0 , (4.21)

which expresses the fact that there is no physical significance to the choice of origin for σr.

The isometries of the plane wave background are generated by H , P+, P I , J+I , J ij and

J i
′j′. The latter two are angular momentum generators of the transverse SO(4) × SO(4)

symmetry of the plane wave. The 32 supersymmetries are generated by Q+, Q̄+ and Q−,
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Q̄−. The former correspond to inhomogeneous shift symmetries on the world-sheet (’non-

linearly realized’ supersymmetries), whereas the latter generate the linearly realized world-sheet

supersymmetries. In sigma models the isometries of the target space-time result in conserved

currents on the world-sheet. These have been obtained in [16] by the standard Noether method.

I will need the following expressions (at τ = 0)

P I
(r) =

∫ 2π|αr |

0

dσr p
I
r , JI+(r) =

e(αr)

2πα′

∫ 2π|αr |

0

dσr x
I
r . (4.22)

Conservation of (angular) momentum at the time of interaction (τ = 0) will then be achieved by

local conservation of
∑
pIr(σr) and

∑
e(αr)x

I
r(σr), see equation (4.47) below. The supercharges

are

Q+
(r) =

√
2

α′

∫ 2π|αr |

0

dσr
√

2λr , (4.23)

Q−
(r) =

√
2

α′

∫ 2π|αr |

0

dσr
[
2πα′e(αr)prγλr − ix′rγλ̄r − iµxrγΠλr

]
, (4.24)

and Q̄±
(r) = e(αr)

[
Q±

(r)

]†
. Conservation of the non-linearly realized supercharges by the inter-

action is established by local conservation of
∑
λr(σr) and

∑
e(αr)ϑr(σr), cf. equation (4.62).

Expanding Q− in modes one finds

Q−
(r) =

e(αr)√
|αr|

γ
(√

µ
[
a0(r)(1 + e(αr)Π) + a†0(r)(1− e(αr)Π)

]
λ0(r)

+
∑

n 6=0

√
|n|
[
an(r)P

−1
n(r)b

†
n(r) + e(αr)e(n)a†n(r)Pn(r)b−n(r)

])
,

(4.25)

where

Pn(r) =
1√

1− ρ2
n(r)

(1− ρn(r)Π) . (4.26)

4.2 Principles of light-cone string field theory

The basic object in string field theory is an operator Ψ that, roughly speaking, creates or

annihilates strings and is acting on a Hilbert space H.10 In light-cone string field theory Ψ is

a functional of the light-cone time x+, the string length |α| and the momentum densities pI(σ)

and λa(σ) specifying the configuration of the created/annihilated string. Observables of the

free theory are expressed in terms of Ψ, for example for the free light-cone Hamiltonian

H2 =
1

2

∫
d|α|D8p(σ)D8λ(σ)Ψ†

(
α′2

4
p2 − µ2α2

4

δ2

δp2
+ µ|α|α

′

2
λΠ

δ

δλ

)
Ψ . (4.27)

10H is the direct sum of m-string Hilbert spaces Hm, the latter being the direct product of the single-string

Hilbert space H1.

41



To add interactions to the theory we have to ask the following question: what are the guiding

principles in the construction of the interaction? For the bosonic string the answer is very

intuitive and geometric [140, 141], the interaction should couple the string world-sheets in a

continuous way. For example, the interaction vertex for the scattering of three strings depicted

in Figure 1 is constructed with a Delta-functional enforcing world-sheet continuity. The func-

3

1

2

Figure 1: The world-sheet of the three string interaction vertex.

tional approach [140, 141, 144, 145] can be extended to the superstring [146, 147, 148, 149].

Here the situation is slightly more complicated, but the basic principle governing the construc-

tion of interactions is very simple: the superalgebra has to be realized in the full interacting

theory. It is easy to understand why this complicates matters, as the supercharges that square

to the Hamiltonian have to receive corrections as well when adding interactions. This is the

essential difference to the bosonic string and modifies the form of the vertex [146, 147]. In a

way the picture remains quite geometric, but in addition to a Delta-functional enforcing conti-

nuity in superspace, one has to insert local operators at the interaction point [146, 147]. These

operators represent functional generalizations of derivative couplings.

To be more precise, consider the plane wave geometry and the behavior of the various

generators of its superalgebra [24] when interactions are taken into account. In fact, one can

distinguish two different sets of generators. The first set consists of the kinematical generators

P+ , P I , J+I , J ij , J i
′j′ , Q+ , Q̄+ , (4.28)

which are not corrected by interactions, in other words the symmetries they generate are not

affected by adding higher order terms to the action. Hence these generators remain quadratic

in the string field Ψ in the interacting field theory and act diagonally on H. On the other hand,

as alluded to above, the dynamical generators

H , Q− , Q̄− , (4.29)

do receive corrections in the presence of interactions and couple different numbers of strings.

The requirement that the superalgebra is satisfied in the interacting theory, now gives rise
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to two kinds of constraints: kinematical constraints arising from the (anti)commutation re-

lations of kinematical with dynamical generators and dynamical constraints arising from the

(anti)commutation relations of dynamical generators alone. As I will explain below, the former

will lead to the continuity conditions in superspace, whereas the latter require the insertion

of the interaction point operators. In practice these constraints will be solved in perturbation

theory, for example H , the full Hamiltonian of the interacting theory, has an expansion in the

string coupling

H = H2 + gsH3 + · · · , (4.30)

and H3 leads to the three-string interaction depicted in Figure 1. To illustrate the procedure,

consider the commutator

[H,P I ] = −iµ2J+I , (4.31)

which is of course different from the one in flat space. In the plane wave geometry transverse

momentum is not a good quantum number due to the confining harmonic oscillator potential.

However, expansion in gs implies the same kinematical constraint as in flat space

[H3, P
I ] = 0 , (4.32)

and, therefore, the interaction is translationally invariant. In fact, the relation (4.32) is also

valid for all higher order interactions and as it is identical to the one in flat space many of the

techniques developed in [147, 148] may be used in the plane wave case as well. In momentum

space the conservation of transverse momentum by the interaction will be implemented by a

Delta-functional (cf. (4.22))

∆8

[
3∑

r=1

pr(σ)

]
, (4.33)

for a precise definition of this functional see Appendix A, equation (A.1). Here the coordinate

σ of the three-string world-sheet is related to the coordinates σr of the r-th string as

σ1 = σ − πα1 ≤ σ ≤ πα1 ,

σ2 =

{
σ − πα1 πα1 ≤ σ ≤ π(α1 + α2) ,

σ + πα1 −π(α1 + α2) ≤ σ ≤ −πα1 ,

σ3 = −σ − π(α1 + α2) ≤ σ ≤ π(α1 + α2)

(4.34)

and α1 +α2 +α3 = 0, α3 < 0, i.e. the process where the incoming string splits into two strings.

The joining of two strings into one is the adjoint of this process, see also section 4.6. In general,

when I write an expression like pr(σ) it is understood that the function has support only for

σ within the range that coincides with that of the r-th string. So, for example pr(σ) actually

denotes pr(σ) = pr(σr)Θr(σ), where

Θ1(σ) = θ(πα1 − |σ|) , Θ2(σ) = θ(|σ| − πα1) , Θ3(σ) = 1 . (4.35)
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Analogously from

[H,Q+] = −µΠQ+ =⇒ [H3, Q
+] = 0 , (4.36)

and, since light-cone momentum is a good quantum number, [H,P+] = 0, one concludes that

the cubic interaction contains (cf. (4.23))

∆8

[
3∑

r=1

λr(σ)

]
δ

(
3∑

r=1

αr

)
. (4.37)

Most interesting is the supersymmetry algebra

{Q−
ȧ , Q̄

−
ḃ
} = 2δȧḃH − iµ

(
γijΠ

)
ȧḃ
J ij + iµ

(
γi′j′Π

)
ȧḃ
J i

′j′ , (4.38)

which also differs from the one in flat space. Expanding the supercharges Q−
ȧ = Q−

2 ȧ + gsQ
−
3 ȧ +

· · · , and analogously for Q̄−, the dynamical constraint following from (4.38) at O(gs)

{Q−
2 ȧ, Q̄

−
3 ḃ
}+ {Q−

3 ȧ, Q̄
−
2 ḃ
} = 2δȧḃH3 , (4.39)

is again the same as in flat space. This constraint will be solved by inserting a prefactor

h3(αr, pr(σ), λr(σ)) into the ansatz for H3 and analogously for Q−
3 and Q̄−

3 . As I have already

mentioned, the prefactors are operators inserted at the interaction point as required by locality,

see also section 4.5. In summary, the structure of the superalgebra implies that the cubic

interaction can formally be written in the form

H3 =

∫
dµ3 h3(αr, pr(σ), λr(σ))Ψ(1)Ψ(2)Ψ(3) , (4.40)

where Ψ(r) is the string field for the r-th string, h3 is the prefactor determined by the dynamical

constraints and the measure is

dµ3 ≡
3∏

r=1

dαrD
8λr(σ)D8pr(σ)δ

(∑

s

αs
)
∆8
[∑

s

λs(σ)
]
∆8
[∑

s

ps(σ)
]
. (4.41)

The expressions for Q−
3 and Q̄−

3 are similar with different prefactors but the same measure dµ3.

To give a precise meaning to the above functional expressions and in particular, to solve

the dynamical constraints, it is essential to do computations in the number basis [142, 143].

For simplicity consider the bosonic part, also the dependence on (and integration over) αr will

be suppressed in what follows. The bosonic part of the string field Ψ can be expanded in the

number basis as

Ψ =
∑

{mk}
φmk

∏

k∈Z

ψmk
(pk) , (4.42)

where φmk
is an operator that creates/annihilates a number basis state |mk〉 and ψmk

(pk) is

the mk-th oscillator wave function in momentum space. Substituting this into (4.40) yields the
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cubic coupling C(mk(1), mk(2), mk(3)) of three fields φmk(r)
. It is convenient to express H3 not as

an operator mapping H1 → H2 (or the adjoint process) but as a state in the 3-string Hilbert

space via

C(mk(1), mk(2), mk(3)) = 〈mk(1)|〈mk(2)|〈mk(3)|H3〉 . (4.43)

Analogously the operators Q−
3 and Q̄−

3 will be identified with states |Q−
3 〉 and |Q̄−

3 〉 in H3. Then

we can write

|H3〉 ≡ ĥ3|V 〉 , (4.44)

where ĥ3 is the prefactor (operator) and the kinematical part of the vertex |V 〉, common to all

the dynamical generators, is

|V 〉 ≡ |Ea〉|Eb〉δ
(

3∑

r=1

αr

)
, |Ea〉 ≡

3∏

r=1

∫
Dpr ∆8

[ 3∑

s=1

ps(σ)
]
|pr〉 , (4.45)

and a similar expression for the fermionic contribution |Eb〉. Here |p〉 is the momentum eigen-

state

|p〉 =
∏

k∈Z

|pk〉 =
∑

{mk}

∏

k∈Z

ψmk
(pk)|mk〉

=
∏

k∈Z

(ωkπ
α′

)−1/4

exp

(
− α′

2ωk
p2
k +

√
2α′

ωk
a†kpk −

1

2
a†ka

†
k

)
|0〉 ,

(4.46)

and |0〉 is annihilated by an. Using (4.6) one can check that this is indeed a momentum eigen-

state. It is not too difficult to derive the analogous expression for the fermionic contribution,

but I will not need it in what follows.

4.3 The kinematical part of the vertex

In the previous subsection I have explained the general ideas underlying light-cone string field

theory and presented formal expressions for the cubic corrections to the dynamical generators

of the plane wave superalgebra. In particular we have seen that the solution to the kinematical

constraints can be constructed as a functional integral, which is common to all the dynamical

generators, cf. (4.45). To obtain the full solution we still need to determine the explicit form

of the prefactors and for this it is necessary to explicitly compute the functional integral in the

number basis.

The bosonic contribution |Ea〉 to the exponential part of the three-string interaction vertex

has to satisfy the kinematic constraints [147, 148]

3∑

r=1

pr(σ)|Ea〉 = 0 ,
3∑

r=1

e(αr)xr(σ)|Ea〉 = 0 . (4.47)
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These are the same as in flat space and arise from the commutation relations of H with P I

and J+I . They guarantee momentum conservation and continuity of the string world-sheet in

the interaction. The solution of the constraints in (4.47) can be constructed as the functional

integral (cf. (4.45))

|Ea〉 =
3∏

r=1

∫
Dpr ∆8

[ 3∑

s=1

ps(σ)
]
|pr〉

=
3∏

r=1

∏

n∈Z

∫
dpn(r)δ

8
[ 3∑

s=1

(
X(s)ps

)
n

]
|pn(r)〉 .

(4.48)

In the second equality the precise definition of the Delta-functional in terms of an infinite

product of delta-functions for the individual Fourier modes of its argument was used, see

appendix A, equations (A.1)–(A.7) for details and the explicit expressions of the X(r). As the

resulting integrals are Gaussian (cf. (4.46)) the evaluation is straightforward and the result

is [150]

|Ea〉 ∼ exp

(
1

2

3∑

r,s=1

∑

m,n∈Z

a†m(r)N̄
rs
mna

†
n(s)

)
|0〉123 , (4.49)

where |0〉123 = |0〉1⊗ |0〉2⊗ |0〉3 is annihilated by an(r), n ∈ Z. Apart from the zero-mode part,

the determinant factor coming from the functional integral will be cancelled by the fermionic

determinant. In (4.49) the non-vanishing elements of the so called bosonic Neumann matrices

N̄ rs
mn for m, n > 0 are [150]

N̄ rs
mn = δrsδmn − 2

√
ωm(r)ωn(s)

mn

(
A(r)TΓ−1A(s)

)
mn

, (4.50)

N̄ rs
m0 = −

√
2µαsωm(r)ε

stαtN̄
r
m , s ∈ {1, 2} , (4.51)

N̄ rs
00 = (1− 4µαK)

(
δrs +

√
αrαs
α3

)
, r, s ∈ {1, 2} , (4.52)

N̄ r3
00 = −

√
−αr
α3

, r ∈ {1, 2} . (4.53)

Here

α ≡ α1α2α3 , Γ ≡
3∑

r=1

A(r)U(r)A
(r) T , (4.54)

where

U(r) ≡ C−1
(
C(r) − µαr

)
, Cmn ≡ mδmn ,

(
C(r)

)
mn
≡ ωm(r)δmn . (4.55)

The matrices A(r) are related to the X(r) in a simple way, see equation (A.8). The terms in N̄ rs
00

and N̄ r3
00 that are not proportional to µ give the pure supergravity contribution to the Neumann
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matrices. The part of N̄ rs
00 that is proportional to µ is induced by positive string modes of p3.

I also defined

N̄ r ≡ −C−1/2A(r) TΓ−1B , K ≡ −1

4
BTΓ−1B . (4.56)

An explicit expression for the vector B is given in (A.9). The quantities Γ, N̄ r and K manifestly

reduce to their flat space counterparts, defined in [147, 148], as µ→ 0. The only non-vanishing

matrix elements with negative indices are N̄ rs
−m,−n. They are related to N̄ rs

mn via [150]

N̄ rs
−m,−n = −

(
U(r)N̄

rsU(s)

)
mn

, m, n > 0 . (4.57)

As such the above expressions are already quite useful, though still formal in the sense that I

did not present their explicit expressions as functions of µ, αr. As the inverse of the infinite-

dimensional matrix Γ appears in the expressions for the Neumann matrices this is a formidable

problem. In flat space the results were known [140, 141] due to the identity11

N̄ rs
mn = −α (mn)3/2

αrn+ αsm
N̄ r
mN̄

s
n , (4.58)

and the explicit expressions

N̄ r
m =

1

αr
fm

(
−αr+1

αr

)
emτ0/αr , K = − τo

2α
, (4.59)

where α4 ≡ α1 is understood and

fm(γ) =
Γ(mγ)

m!Γ
(
m(γ − 1) + 1

) , τ0 =
3∑

r=1

αr ln |αr| . (4.60)

The generalization of equation (4.58) to the plane wave background is [176, 152]

N̄ rs
mn = −(1− 4µαK)−1 α

αrωn(s) + αsωm(r)
×

×
[
U−1

(r)C
1/2
(r) CN̄

r
]

m

[
U−1

(s)C
1/2
(s) CN̄

s
]

n
,

(4.61)

and reduces to equation (4.58) as µ → 0. This factorization theorem can also be used to

verify directly [152] that |Ea〉 satisfies the kinematic constraints in equation (4.47), see also

appendix A.3. It will also prove essential throughout the next section. The remaining problem

of deriving explicit expressions for K and N̄ r as in equation (4.59) has been solved in [178],

however as I will not need these results in the remainder of this section I shall not give them

here and refer the reader to [178].

11Notice that in comparison with [147] we have N̄ rs
here = C1/2N̄ rs

thereC
1/2.
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Analogously to the bosonic case, the fermionic exponential part of the interaction vertex

has to satisfy [147, 148]

3∑

r=1

λr(σ)|Eb〉 = 0 ,
3∑

r=1

e(αr)ϑr(σ)|Eb〉 = 0 . (4.62)

These constraints arise from the commutation relations of H with Q+ and Q̄+, cf. equa-

tion (4.36). As in the bosonic case its solution could be obtained by constructing the fermionic

analogue of the wavefunction (4.46) and then performing the resulting integrals over the non-

zero-modes. The pure zero-mode contribution has to be treated separately. Instead of using

the functional integral the exponential can be obtained (up to the normalization) by making

a suitable ansatz and imposing the constraints (4.62) [147, 148]. The solution is [152] (cf.

appendix A.3 for the details; the notation is defined below)

|Eb〉 ∼ exp

[
3∑

r,s=1

∞∑

m,n=1

b†−m(r)Q
rs
mnb

†
n(s) −

√
2Λ

3∑

r=1

∞∑

m=1

Qr
mb

†
−m(r)

]
|E0

b 〉 , (4.63)

where

Λ ≡ α1λ0(2) − α2λ0(1) (4.64)

and |E0
b 〉 is the pure zero-mode part of the fermionic vertex

|E0
b 〉 =

8∏

a=1

[
3∑

r=1

λa0(r)

]
|0〉123 (4.65)

and satisfies
∑3

r=1 λ0(r)|E0
b 〉 = 0 and

∑3
r=1 αrϑ0(r)|E0

b 〉 = 0. Notice that |0〉r is not the plane

wave vacuum defined to be annihilated by the b0(r). Rather, it satisfies ϑ0(r)|0〉r = 0 and

H2(r)|0〉r = 4µe(αr)|0〉r. In the limit µ → 0 it coincides with the SO(8) invariant flat space

state that generates the massless multiplet by acting with λa0(r) on it. The fermionic Neumann

matrices can be expressed in terms of the bosonic ones as [152]

Qrs
mn = e(αr)

√∣∣∣∣
αs
αr

∣∣∣∣
[
P−1

(r)U(r)C
1/2N̄ rsC−1/2U(s)P

−1
(s)

]
mn
, (4.66)

Qr
n =

e(αr)√
|αr|

(1− 4µαK)−1(1− 2µαK(1 + Π))
[
P(r)C

1/2
(r) C

1/2N̄ r
]
n
. (4.67)

Let me comment on the choice of zero-mode vertex in equation (4.65). Instead of constructing

the vertex on |0〉r (‘the SO(8) formulation’), it was proposed in [156] to use a different zero-mode

vertex built on the plane wave vacuum |v〉r which is SO(4)× SO(4) invariant and annihilated

by all the b0(r) (‘the SO(4) × SO(4) formulation’). This also modifies the non-zero-mode

part of |Eb〉, a complete solution to the kinematic constraints was given in [157, 152]. The
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motivation for this proposal originally was twofold. First, it was shown in [58] that the torus

anomalous dimension of BMN operators with mixed scalar/vector impurities is the same as

that for scalar/scalar impurities. This was in disagreement with the proposal of [47] that the

coefficient of the three-point function of BMN operators is proportional to the matrix element

of the cubic interaction in the plane wave, which due to the structure of the string field theory

vertex would predict vanishing anomalous dimension for these class of operators at the torus

level. One possible resolution of this discrepancy was to think about a modification of the

string vertex. Another possibility is of course to abandon the proposal of [47] which was not

derived from first principles. In fact, I will show in section 4.6 that using the identification

in equation (4.1), the anomalous dimension of BMN operators transforming as (4, 4) under

SO(4)× SO(4) is reproduced in string theory using the vertex with fermionic zero-mode part

as in (4.65). A second (related) reason was based on the fact that the plane wave has a

discrete Z2 symmetry that exchanges the two transverse R4’s. This discrete symmetry should

be preserved by the interaction. It was shown in [156] that the Z2 parity of |v〉 is opposite to

the one of |0〉. Then it followed that we have to assign positive parity to |0〉 in order to preserve

the full transverse symmetry in the SO(8) formulation. This seems strange, as |v〉 has negative

parity although it is the ground state of the theory. However, the spectrum of type IIB string

theory on the plane wave was analyzed in detail in [38], in particular the precise correspondence

between the lowest lying string states and the fluctuation modes of supergravity on the plane

wave was established. It turns out that the state |0〉 corresponds to the complex scalar arising

from the dilaton-axion system, whereas the state |v〉 corresponds to a complex scalar being a

mixture of the trace of the graviton and the R-R potential on one of the R
4’s, that is the chiral

primary sector. As dilaton and axion are scalars under SO(8) and the discrete Z2 is just a

particular SO(8) transformation, we see that the assignment of positive parity to |0〉 appears

to be correct. Moreover, analysis of the interaction Hamiltonian for the chiral primary sector

shows that invariance of the Hamiltonian under the Z2 requires the chiral primaries to have

negative parity [163]. Finally, the implications of this assignment on matrix elements of the

cubic vertex were successfully tested from the gauge theory side in [172].

In [161] the solution of the kinematical constraints in the SO(4)× SO(4) formulation was

extended to include the required prefactors for the three-string interaction vertex and dynamical

supercharges. In particular, contrary to previous expectations, evidence was presented that the

two vertices constructed on |v〉 and on |0〉, respectively, are in fact one and the same, see [161]

for details. In what follows, I will keep on working with the SO(8) formulation, though for

computations involving fermionic oscillators the SO(4)×SO(4) one is better suited. Finally, let

me remark that if the plane wave ground state |v〉 is odd under the Z2, then the supersymmetric

extension proposed in [160] which is of the form ∂τ |V 〉SO(4)×SO(4) is not Z2 invariant.
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4.4 The complete O(gs) superstring vertex

In the previous subsection I reviewed the exponential part of the vertex, which solves the

kinematic constraints. The remaining dynamic constraints are much more restrictive and are

solved by introducing prefactors [147, 148], polynomial in creation operators, in front of |V 〉
(cf. (4.44)). Within the functional formalism, the prefactors can be re-interpreted as insertions

of local operators at the interaction point [146, 147]. In this section I present expressions for

the dynamical generators in the number basis and prove that they satisfy the superalgebra at

order O(gs) [150, 153]. The functional form of the leading order corrections to the dynamical

generators [150, 152, 153] will be discussed in section 4.5.

Define the linear combinations of the free supercharges (η = eiπ/4)

√
2η Q ≡ Q− + iQ̄− ,

√
2η̄ Q̃ = Q− − iQ̄− (4.68)

which, on the subspace of physical states satisfying the level-matching condition, satisfy

{Qȧ, Qḃ} = {Q̃ȧ, Q̃ḃ} = 2δȧḃH ,

{Qȧ, Q̃ḃ} = −µ
(
γijΠ

)
ȧḃ
J ij + µ

(
γi′j′Π

)
ȧḃ
J i

′j′ .
(4.69)

Since J ij and J i
′j′ are not corrected by the interaction, it follows that at order O(gs) the

dynamical generators have to satisfy

3∑

r=1

Qȧ(r)|Q3 ḃ〉+
3∑

r=1

Qḃ(r)|Q3 ȧ〉 = 2δȧḃ|H3〉 , (4.70)

3∑

r=1

Q̃ȧ(r)|Q̃3 ḃ〉+
3∑

r=1

Q̃ḃ(r)|Q̃3 ȧ〉 = 2δȧḃ|H3〉 , (4.71)

3∑

r=1

Qȧ(r)|Q̃3 ḃ〉+
3∑

r=1

Q̃ḃ(r)|Q3 ȧ〉 = 0 . (4.72)

In order to derive equations that determine the full expressions for the dynamical generators

one has to compute (anti)commutators of the free supercharges Qȧ(r) and Q̃ȧ(r) with the pref-

actors appearing in |Q3 ȧ〉 and |Q̃3 ȧ〉. Moreover, the action of the supercharges on |V 〉 has

to be known. Here the factorization theorem (4.61) for the bosonic Neumann matrices and

the relation between the bosonic and fermionic Neumann matrices given in equations (4.66)

and (4.67) prove to be essential.

4.4.1 The bosonic constituents of the prefactors

An important constraint on the prefactors (that I will collectively denote by P) is that they

must respect the local conservation laws ensured by |Ea〉 and |Eb〉. For the bosonic part this
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means that it must commute with [147, 148]

[ 3∑

r=1

pr(σ),P
]

= 0 =
[ 3∑

r=1

e(αr)xr(σ),P
]
. (4.73)

Consider first an expression of the form

K0 +K+ =
3∑

r=1

∞∑

m=0

Fm(r)a
†
m(r) . (4.74)

The Fourier transform of (4.73) leads to the equations [151]

3∑

r=1

[
X(r)C

1/2
(r) F(r)

]
m

= 0 =

3∑

r=1

αr
[
X(r)C

−1/2
(r) F(r)

]
m
. (4.75)

Here the components m = 0 and m > 0 decouple from each other. It is convenient to write the

solution for m = 0 in a form which makes the flat space limit manifest [152]

K0 = (1− 4µαK)1/2
(

P− iµ α
α′R

)
. (4.76)

Here

P ≡ α1p0(2) − α2p0(1) , α3R ≡ x0(1) − x0(2) , [R,P] = i , (4.77)

that is (no sum on r)

F0(r) = −(1− 4µαK)1/2

√
2

α′ ε
rs√µαrαs , F0(3) = 0 . (4.78)

The overall normalization of K0 is of course not determined by (4.75). The inclusion of the

overall factor (1− 4µαK)1/2 will be convenient in what follows. For m > 0 we have

3∑

r=1

[
A(r)C−1/2C

1/2
(r) F(r)

]
m

=
1√
α′
µαBm =

3∑

r=1

µαr
[
A(r)C−1/2C

−1/2
(r) F(r)

]
. (4.79)

These equations can be solved using the identities (A.12) and (A.19) given in appendix A. One

finds [151, 152]

Fm(r) = − α√
α′αr

(1− 4µαK)−1/2
[
U−1

(r)C
1/2
(r) CN̄

r
]
m
. (4.80)

In the limit µ→ 0

lim
µ→0

(
K0 +K+

)
= P− α√

α′

3∑

r=1

∞∑

m=1

1

αr

[
CN̄ r

]
m

√
ma†m(r) (4.81)
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coincides with the flat space result of [148]. Now take into account the negatively moded

creation oscillators, i.e. consider

K− =

3∑

r=1

∞∑

m=1

F−m(r)a
†
−m(r) . (4.82)

This leads to the equations

3∑

r=1

1

αr

[
A(r)C1/2C

1/2
(r) F(r)

]
−m = 0 =

3∑

r=1

[
A(r)C1/2C

−1/2
(r) F(r)

]
−m . (4.83)

Comparing the second equation with the difference of the two equations in (4.79) it follows

F−m(r) ∼ Um(r)Fm(r) . (4.84)

However, if one substitutes this into the first equation one actually sees that the sum is diver-

gent [147, 148, 151]. This phenomenon already appears in flat space and it is known [147] that

the function of σ responsible for the divergence is δ(σ − πα1) − δ(σ + πα1). However, since

±πα1 are actually identified this divergence is merely an artifact of our parametrization. I will

argue in section 4.4.3 that the appropriate relative normalization is [152]

F−m(r) = iUm(r)Fm(r) . (4.85)

4.4.2 The fermionic constituents of the prefactors

The fermionic constituents of the prefactors have to satisfy the conditions

{ 3∑

r=1

λr(σ),P
}

= 0 =
{ 3∑

r=1

e(αr)ϑr(σ),P
}
. (4.86)

Consider

Y =
2∑

r=1

G0(r)λ0(r) +
3∑

r=1

∞∑

m=1

Gm(r)b
†
m(r) . (4.87)

For the zero-modes we can set the coefficient of, say, λ0(3) to zero due to the property of the

fermionic supergravity vertex that
∑3

r=1 λ0(r)|E0
b 〉 = 0 . The Fourier transform of (4.86) leads

to the equations

3∑

r=1

1√
|αr|

[
A(r)CC

−1/2
(r) P(r)G(r)

]
m

= 0 , (4.88)

3∑

r=1

e(αr)
√
|αr|
[
C1/2A(r)C

−1/2
(r) P−1

(r)G(r)

]
m

=
3∑

r=1

αrX
(r)
m0G0(r) . (4.89)

52



The components m = 0 and m > 0 decouple from each other. For m = 0 the solution is

Y = (1− 4µαK)−1/2(1− 2µαK(1 + Π))

√
2

α′Λ + · · · (4.90)

As in the previous subsection the normalization is not determined and is chosen for further

convenience. For m > 0 we can rewrite the second equation as

3∑

r=1

e(αr)
√
|αr|
[
A(r)C

−1/2
(r) P−1

(r)G(r)

]
m

=
α√
α′
Bm . (4.91)

Then the solution can be expressed in terms of F(r) as [152]

G(r) =
√
|αr|P−1

(r)U(r)C
−1/2F(r) . (4.92)

As µ→ 0 we have

lim
µ→0

Y =

√
2

α′Λ +

3∑

r=1

∞∑

m=1

Fm(r)√
m

√
|αr|b†m(r) . (4.93)

Taking into account that
√
|αr|b†m(r) ←→ QI

−m(r) in the notation of [148] this is exactly the

flat space expression. We will see below that as in flat space [147, 148], it turns out that the

prefactors do not involve negatively moded fermionic creation oscillators.

4.4.3 The dynamical generators at order O(gs)

Below I present the results [153] necessary to verify the dynamical constraints in equations (4.70)

and (4.71), given the ansatz (4.98)-(4.100) for the cubic vertex and dynamical supercharges.

Computational details are relegated to appendix B. We need

√
2η

3∑

r=1

[Q(r), K̃
I ] |V 〉 =

√
2η̄

3∑

r=1

[Q̃(r), K
I ] |V 〉 = µγI(1 + Π)Y |V 〉 , (4.94)

where

KI ≡ KI
0 +KI

+ +KI
− , K̃I ≡ KI

0 +KI
+ −KI

− (4.95)

and

√
2η

3∑

r=1

{Q(r), Y }K̃I |V 〉 = iγJKJK̃I |V 〉 − iµ α
α′ (1− 4µαK)γI(1− Π)|V 〉 ,

√
2η̄

3∑

r=1

{Q̃(r), Y }KI |V 〉 = −iγJK̃JKI |V 〉+ iµ
α

α′ (1− 4µαK)γI(1− Π)|V 〉 .
(4.96)
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Notice that the above identities are only valid when both sides of the equation act on |V 〉. The

action of the supercharges on |V 〉 is

√
2η

3∑

r=1

Q(r)|V 〉 = −α
′

α
KIγIY |V 〉 ,

√
2η̄

3∑

r=1

Q̃(r)|V 〉 = −α
′

α
K̃IγIY |V 〉 .

(4.97)

The latter two equations actually lead to the insight that one has to consider the combinations

KI and K̃I , as they are solely determined by the kinematical part of the vertex and the

quadratic pieces of the dynamical supercharges. In this way it is then possible to fix the

relative normalization as has been done in equation (4.85) [152]. The results summarized in

equations (4.94)-(4.97) motivate the following ansatz for the explicit form of the dynamical

supercharges and the three-string interaction vertex [153, 150]

|H3〉 =
(
K̃IKJ − µ α

α′ δ
IJ
)
vIJ(Y )|V 〉 , (4.98)

|Q3 ȧ〉 = K̃IsIȧ(Y )|V 〉 , (4.99)

|Q̃3 ȧ〉 = KI s̃Iȧ(Y )|V 〉 . (4.100)

Substituting the above ansatz into (4.70) and (4.71) and using (4.94)-(4.97), one gets the

following equations for vIJ , sIȧ and s̃Iȧ
12

δȧḃv
IJ =

i√
2

α′

α
γJa(ȧD

asI
ḃ)
, δȧḃv

IJ = − i√
2

α′

α
γIa(ȧD̄

as̃J
ḃ)
, (4.101)

which originate from terms proportional to K̃IKJ and KIK̃J and are identical to the flat space

equations of [148]. Two additional equations, arising from terms proportional to µδIJ , are

−δȧḃvII =
i√
2

α′

α
γIa(ȧ

(
Da + i

[
ΠD̄
]a)

sI
ḃ)
,

−δȧḃvII = − i√
2

α′

α
γIa(ȧ

(
D̄a − i

[
ΠD
]a)

s̃I
ḃ)
.

(4.102)

As in flat space [148] one defines

Da ≡ ηY a + η̄
α

α′
∂

∂Ya
, D̄a ≡ η̄Y a + η

α

α′
∂

∂Ya
. (4.103)

12Here (ȧḃ) denotes symmetrization in ȧ, ḃ.
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Recall first the solution of the flat space equations (4.101) [148]. One introduces the following

functions of Y a

wIJ = δIJ +

(
α′

α

)2
1

4!
tIJabcdY

aY bY cY d +

(
α′

α

)4
1

8!
δIJεabcdefghY

a · · ·Y h , (4.104)

iyIJ =
α′

α

1

2!
γIJab Y

aY b +

(
α′

α

)3
1

2 · 6!
γIJab ε

ab
cdefghY

c · · ·Y h , (4.105)

sI1 ȧ = 2γIaȧY
a +

(
α′

α

)2
2

6!
uIabcȧε

abc
defghY

d · · ·Y h , (4.106)

sI2 ȧ = −α
′

α

2

3!
uIabcȧY

aY bY c +

(
α′

α

)3
2

7!
γIaȧε

a
bcdefghY

b · · ·Y h . (4.107)

Here

tIJabcd ≡ γIK[ab γ
JK
cd] , uIabcȧ ≡ −γIJ[abγ

J
c]ȧ . (4.108)

tIJabcd is traceless and symmetric in I, J , hence wIJ is a symmetric tensor of SO(8), whereas

yIJ is antisymmetric. Apart from the coefficients, in flat space the structure of the individual

terms is completely fixed by the SO(8) symmetry. The solution of equations (4.101) is [148]

vIJ ≡ wIJ + yIJ , sIȧ ≡ −
2

α′
i√
2

(
ηsI1 ȧ + η̄sI2 ȧ

)
, s̃Iȧ ≡

2

α′
i√
2

(
η̄sI1 ȧ + ηsI2 ȧ

)
. (4.109)

Next consider the additional equations (4.102). Using the flat space solution, these can be

rewritten as

0 = γIa(ȧ
[
ΠD̄
]a
sI
ḃ)

0 = γIa(ȧ
[
ΠD
]a
s̃I
ḃ)
. (4.110)

The proof that these equations are also satisfied by (4.109) is given in appendix B.

The proof [153] of equation (4.72) is more involved and provides an important consistency

check of the ansatz (4.98)-(4.100). It leads to the equations (cf. appendix B.3)

δIJmȧḃ −
1√
2

α′

α
γ

(I
aȧD

as̃
J)

ḃ
= 0 , (4.111)

δIJmȧḃ −
1√
2

α′

α
γ

(I

aḃ
D̄as

J)
ȧ = 0 , (4.112)

√
2
(
γIaȧηs̃

I
ḃ
− γI

aḃ
η̄sIȧ
)
− 4imȧḃYa = 0 , (4.113)

(
γIaȧD̄bs̃

I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1− Π)ab = 0 . (4.114)

Here

mȧḃ = δȧḃ +
i

4

α′

2α
γIJ
ȧḃ
γIJab Y

aY b − 1

4 · 4!

(
α′

2α

)2

γIJKL
ȧḃ

tIJKLabcd Y aY bY cY d

− i

6!

(
α′

2α

)3

γIJ
ȧḃ
γIJab ε

ab
cdefghY

c · · ·Y h − 2

7!

(
α′

2α

)4

δȧḃεabcdefghY
a · · ·Y h (4.115)
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and

tIJKLabcd ≡ γ
[IJ
[ab γ

KL]
cd] . (4.116)

The first three equations are identical to those in flat space and have been proven in [148]. The

additional equation (4.114) is proved in appendix B.2.

The dynamical constraints do not fix the overall normalization of the dynamical generators

which can depend on µ and the αr’s. In flat space, the fact that the J−I generator of the Lorentz

algebra is also dynamical imposes further constraints on the other dynamical generators and

apart from trivial rescaling uniquely fixes their normalization [149]. As the J−I generator

is not part of the plane wave superalgebra this procedure cannot be applied to our setup.

A comparison with a supergravity calculation fixes the normalization for small µ to be ∼
(α′µ2)/(α4

3) [162], whereas a comparison with the dual field theory implies that for large µ it is

∼ α′/α2 [66, 139, 153]. It was conjectured in [153] that the normalization valid for all µ is

16πα′µ2α−4
3 (1− 4µαK)2 , (4.117)

which has the correct small- and large-µ behavior [176]. On the other hand, the non-trivial

normalization of Y (cf. equation (4.90)) and the fact that the terms K̃IKJ and µδIJ in equa-

tion (4.98) involve different powers of 1− 4µαK is fixed by requiring the closure of the super-

algebra at O(gs). In order to obtain the supergravity expressions for the dynamical generators

from equations (4.98)-(4.100), one should set K to zero, as it originates from massive string

modes, cf. the remark below equation (4.55).

4.5 Functional expressions

The functional expressions for the cubic corrections to the dynamical generators can be pro-

vided by defining the operator analogues for the constituents of the prefactor. These operators

depend on pr(σ), x′r(σ) and λr(σ) and since pr(σ) and λr(σ) correspond to functional deriva-

tives with respect to xr(σ) and ϑr(σ) the only physically sensible value of σ to choose is the

interaction point σ = ±πα1. As operators at this point are singular the prefactor must be

carefully defined in the limit σ → |πα1| [147]. Rewriting the operators in the number ba-

sis one obtains expressions containing both creation and annihilation operators of the various

oscillators. Eliminating the annihilation operators by (anti)commuting them through the ex-

ponential factors of the vertex one recovers the number basis expressions for the constituents

of the prefactors [147, 148, 152].

As in flat space [147, 148] consider the following operators

P (σ) ≡ −2π
√
−α(πα1 − σ)1/2

(
p1(σ) + p1(−σ)

)
, (4.118)

∂X(σ) ≡ 4π

√−α
α′ (πα1 − σ)1/2

(
x′1(σ) + x′1(−σ)

)
, (4.119)
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Y (σ) ≡ −2π

√
−2α√
α′

(πα1 − σ)1/2
(
λ1(σ) + λ1(−σ)

)
. (4.120)

One also defines P |V 〉 ≡ lim
σ→πα1

P (σ)|V 〉 and analogously for ∂X. Acting on the exponential

part of the vertex and taking the limit σ → πα1 we have [152]

lim
σ→πα1

KI(σ)|V 〉 ≡
(
P I +

1

4π
∂XI

)
|V 〉 = KI |V 〉 , (4.121)

lim
σ→πα1

K̃I(σ)|V 〉 ≡
(
P I − 1

4π
∂XI

)
|V 〉 = K̃I |V 〉 , (4.122)

lim
σ→πα1

Y (σ)|V 〉 = Y |V 〉 . (4.123)

Here I prove only the last equation, for more details see [152]. Substituting the mode expansion

for λ1(σ) into (4.120) one gets

lim
σ→πα1

Y (σ)|V 〉 = −
√

2

α′

√
−2α

α1
lim
ε→0

ε1/2
∞∑

n=1

(−1)n cos(nε/α1)×

×
[
√

2ΛQ1
n +

3∑

r=1

∞∑

m=1

Q1r
nmb

†
m(r)

]
|V 〉 . (4.124)

Now the singular behavior of the sum as ε→ 0 can be traced to the way it diverges as n→∞.

Therefore to take the limit ε→ 0 we can approximate the summand for large n and using the

factorization theorem (4.61) one finds [152]

lim
σ→πα1

Y (σ)|V 〉 = f(µ)(1− 4µαK)−1/2Y |V 〉 , (4.125)

where

f(µ) ≡ −2

√−α
α1

lim
e→0

ε1/2

∞∑

n=1

(−1)nn cos(nε/α1)N̄
1
n . (4.126)

The identity

f(µ) = (1− 4µαK)1/2 (4.127)

was conjectured to hold on general grounds (the closure of the superalgebra) in [153] and shown

to be true in [178]. This concludes the proof of equation (4.120).

So up to the overall normalization one can write the functional equivalent of equations (4.98),

(4.99) and (4.100) as

H3 = lim
σ→πα1

∫
dµ3

(
K̃I(σ)KJ(σ)− µ α

α′ δ
IJ
)
vIJ(Y (σ))Ψ(1)Ψ(2)Ψ(3) , (4.128)

Q3 ȧ = lim
σ→πα1

∫
dµ3K̃

I(σ)sIȧ(Y (σ))Ψ(1)Ψ(2)Ψ(3) , (4.129)

Q̃3 ȧ = lim
σ→πα1

∫
dµ3K

I(σ)s̃Iȧ(Y (σ))Ψ(1)Ψ(2)Ψ(3) , (4.130)
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where dµ3 is the functional expression leading to the kinematical part of the vertex, cf. equa-

tion (4.41).

Finally, I would like to point out the following subtlety. One can check for example that

√
2η̄

3∑

r=1

[Q̃(r), lim
σ→πα1

KI(σ)] |V 〉 = µγIΠY |V 〉 . (4.131)

However, this is not equal to the commutator of
∑

r Q̃(r) with KI . Using equation (4.97) and

[ lim
σ→πα1

KI(σ), K̃J ]|V 〉 = −µα
α′ (1− 4µαK)−1/2δIJ |V 〉 , (4.132)

leads to [153]

√
2η̄

3∑

r=1

[Q̃(r), K
I ]|V 〉 = µγI(1 + Π)Y |V 〉 , (4.133)

which is equivalent to equation (4.94) of section 4.4. It is this appearance of the matrix 1+Π as

opposed to just Π, that is responsible for the term proportional to µδIJ in the cubic interaction

vertex.

4.6 Anomalous dimension from string theory

In this section I discuss how the result for the anomalous dimension in equation (2.51) can be

recovered in string theory. This has been done for the symmetric-traceless 9 and antisymmetric

6 = 3+3̄ of either one of the SO(4)’s in [154] and for the trace 1 in [155]. Here I review this work

and also include the states in (4, 4)±
13 of SO(4)× SO(4) in the analysis. These correspond to

BMN operators with mixed scalar/vector impurities and superconformal symmetry of the gauge

theory implies that they have the same anomalous dimension as the other representations [52].

To compute the mass shift of the single string state due to interactions

|n〉 ≡ αI †n(3)α
J †
−n(3)|v〉3 , (4.134)

non-degenerate perturbation theory was used in [154, 155]. In principle one should use degen-

erate perturbation theory as the single string state can mix with multi-string states having the

same energy. The same caveat holds for the computation in gauge theory and we will ignore

this complication here, see however [179]. At lowest order the eigenvalue correction comes from

two contributions; one-loop diagram and contact term

δE(2)
n 〈n|n〉 = g2

2

∑

1,2

[
1

2

|〈n|H3|1, 2〉|2

E
(0)
n − E(0)

1,2

+
1

8

∑

ȧ

|〈n|Q3 ȧ|1, 2〉|2
]
. (4.135)

13We define the states in (4,4)± as 1
2

(
α

i †
n(3)α

j′ †
−n(3) ± α

i †
−n(3)α

j′ †
n(3)

)
|v〉3. The change of basis αn = 1√

2

(
a|n| +

ie(n)a−|n|
)

for n 6= 0 is convenient and an analogous transformation will be made for the fermions.
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Factors different from g2 in the normalization (cf. (4.117)) are absorbed in the definition of

H3 and Q3, the extra factor of 1/2 in the first term is due to the reflection symmetry of the

one-loop diagram. The sum over 1, 2 is over physical double-string states, that is those obeying

the level-matching condition and for the case at hand Q2
3 is the only relevant contribution

to the quartic coupling. As the generators are hermitian we take the absolute value squared

of the matrix elements. In fact, time-reversal in the plane wave background consists of the

transformation

x+ → −x+ , x− → −x− , µ→ −µ , (4.136)

in particular the reversal of µ is needed due to the presence of the R-R flux. Previously I have

always assumed that µ is non-negative and α3 < 0, α1, α2 > 0. This is, say, the process where a

single string splits into two strings. One can show that for the process in which two strings join

to form a single string, i.e. α1, α2 < 0 and α3 > 0, one should make the additional replacements

µ→ −µ , Π→ −Π (4.137)

in equations (4.98)-(4.100) and (4.117). This is in agreement with equation (4.136). Notice that

the transformation of Π is needed to leave the fermionic mass term invariant, cf. (4.10). From the

formal expressions for the Neumann matrices it is not manifest that the cubic corrections to the

dynamical generators are hermitian as they have to be. However, from the explicit expressions

for the Neumann matrices [178] one can see that all the quantities are in fact invariant under the

time-reversal. The string states obey the delta-function normalization 〈n|n′〉 = N|α3|δ(α3−α4),

where N = 1
2
(1 + δij) for the 9, N = 1

4
for the 1 and N = 1

2
otherwise. The sum over double-

string states includes a double integral over light-cone momenta, one integral is trivial due to

the string-length conservation of the cubic interaction and the factor of |α3|δ(α3 − α4) can be

cancelled on both sides of equation (4.135). The remaining sum is then the usual completeness

relation for harmonic oscillators projected on physical states and we have (β ≡ α1/α3)

N δE(2)
n = −g2

2

∫ 0

−1

dβ

β(β + 1)

∑

modes

[
1

2

|〈n|H3|1, 2〉|2

E
(0)
n − E(0)

1,2

+
1

8

∑

ȧ

|〈n|Q3 ȧ|1, 2〉|2
]
. (4.138)

The measure arises due to the fact that string states are delta-function normalized.

It is important to note that in gauge theory the dilatation operator was diagonalized within

the subspace of two-impurity BMN operators in perturbation theory in the ’t Hooft coupling

λ and then extrapolated to λ, J → ∞. But it is not obvious that the large J limit of the

perturbation series in λ has to agree order by order with the perturbation series in λ′, see for

example [175]. Indeed there is evidence from string theory that this is not the case: for large

µ the denominator of the first term in equation (4.138) is of order O(µ−1) in the impurity

conserving channel, whereas it is of order O(µ) in the impurity non-conserving one. However,

as already noticed in [151], matrix elements where the number of impurities changes by two are

of order O(1) and, therefore potentially can contribute to the mass-shift at leading order, that
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is O(µg2
2λ

′). Notice that impurity non-conserving matrix elements being of order one, means

actually O(µg2

√
λ′) and as the overall factor of µ is simply for dimensional reasons and should

not be counted when translating to gauge theory (cf. equation (4.1)) implies contributions

∼ g2

√
λ′ to matrix elements of the dilatation operator. It was observed in [154] that the

contribution of the impurity non-conserving channel to (4.138) is linearly divergent. This is due

to the fact that the large µ limit does not commute with the infinite sums over mode numbers;

for finite µ the divergence is regularized. So a linear divergence reflects a contribution ∼
µg2

2λ
′(−µα3) = µg2

2

√
λ′ and hence of order g2

2

√
λ′ to the anomalous dimension. This constitutes

a non-perturbative, ‘stringy’ effect. It remains a very interesting challenge to investigate the

contribution of the impurity non-conserving channel in detail. However, to reproduce the

result (2.51) for the anomalous dimensions of two-impurity BMN operators in string theory

one is led to a truncation of equation (4.138) to the impurity conserving channel [154]. This

analysis will be performed below.

4.6.1 Contribution of one-loop diagrams

The matrix element 〈n|H3|1, 2〉 in the impurity conserving channel is non-zero only if the double-

string state contains either two bosonic or two fermionic oscillators. The relevant projection

operator is

∑

K,L

α†K
0(1)α

†L
0(2)|v〉〈v|αL0(2)αK0(1) +

1

2

∑

k∈ZZ

∑

r,K,L

α†K
k(r)α

†L
−k(r)|v〉〈v|αL−k(r)αKk(r)

+
∑

a,b

β†a
0(1)β

† b
0(2)|v〉〈v|βb0(2)βa0(1) +

1

2

∑

k∈ZZ

∑

r,a,b

β†a
k(r)β

† b
−k(r)|v〉〈v|βb−k(r)βak(r) .

For the first case the fermionic contribution to the matrix elements is simple to determine.

Using a γ-matrix representation in which Π = diag(14,−14), the plane wave vacua r〈v| are

related to r〈0| (up to an irrelevant phase) via

r〈v| = r〈0|
(αr

2

)2
8∏

a=5

ϑa0(r) , 3〈v| = −3〈0|
(α3

2

)2
4∏

a=1

ϑa0(r) . (4.139)

Directions 1, . . . , 4 and 5, . . . , 8 correspond to positive and negative chirality under SO(4) ×
SO(4), respectively. Eight of the zero-modes in equation (4.139), namely ϑa0(3), a = 1, . . . , 4 and,

say, ϑa0(2), a = 5, . . . , 8 are saturated by |E0
b 〉, so to give a non-zero contribution the remaining

four zero-modes must be contracted with the O(Y 4) term in vMN(Y ). Hence, the fermionic

contribution is
(
α′

α

)2
1

4!
tMN
abcd123〈v|Y abcd|E0

b 〉 = −
(α3

2

)4

(1− 4µαK)−2tMN
5678 . (4.140)

One can show that tMN
5678 = (δmn,−δm′n′

) in the γ-matrix basis used here. The bosonic part

of the matrix element is not difficult to evaluate and I will not go into details. Using the
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large µ expansions for the bosonic Neumann matrices [176, 178] one finds, for example for

(I, J) = (i, j),

〈n|H3|α†k
0(r)α

† l
0(s)|v〉12 ∼ µλ′

sin2 nπβ

2π2

(
δrs +

√
αrαs
α3

)
Sijkl ,

〈n|H3|α†K
k(r)α

†L
−k(r)|v〉12 ∼ µλ′β(β + 1)

α3

αr

sin2 nπβ

2π2
Sijkl ,

(4.141)

and the analogous expression for (I, J) = (i′, j′) with an (inessential) overall minus sign. Here

Sijkl ≡ T ijkl +
1

4
δijT kl , T ijkl = δikδjl + δjkδil − 1

2
δijδkl , T kl = −2δkl (4.142)

can be split into a symmetric-traceless and a trace part. There is no contribution to the 6 nor

to (4, 4)±. The sum over k and the integral over β can be done and the complete contribution

of the impurity conserving channel with bosonic excitations at one-loop is

µg2
2λ

′

4π2

15

16π2n2

{
1
4

∑
k,l T

ijklT ijkl = 1
2
(1 + 1

2
δij)

1
64

∑
k,l T

klT kl = 1
4

. (4.143)

The factors of 1
2
(1 + 1

2
δij) and 1

4
equal the normalization N of the string states. Thus the

contribution to the 9 and 1 is in both cases [154, 155]

µg2
2λ

′

4π2

15

16π2n2
. (4.144)

The second case with two fermionic oscillators in the double-string was not analyzed in [154,

155]. For example, one has to evaluate the tensor tMN
abcd for spinor indices belonging to different

chiralities of SO(4)×SO(4). Then tMN
abcd is non-zero only if M and N are not in the same SO(4).

The resulting contribution is the same as in equation (4.144) for the representation (4, 4)+.

4.6.2 Contribution of contact terms

To have a non-zero contribution from Q2
3 the intermediate states need to have an odd number of

bosonic oscillators and an odd number of fermionic oscillators. Thus the simplest contribution

comes from the impurity conserving channel. In this case the projector is

∑

K,a

α†K
0(1)β

† a
0(2)|v〉〈v|βa0(2)αK0(1) + (1↔ 2) +

∑

k∈ZZ

∑

r,K,a

α†K
k(r)β

†a
−k(r)|v〉〈v|βa−k(r)αKk(r) .

At leading order in µ one finds that for the bosonic part of the matrix element the zero-modes

contribute only to the antisymmetric representations, whereas the non-zero-modes contribute

to all representations. For the fermionic part of the matrix element a simple counting of zero-

modes shows that only terms of order O(Y 3) and O(Y 5) in vMN(Y ) can contribute. One also
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needs to evaluate the tensor uIabcȧ and the large µ expansion of the fermionic Neumann matrices,

which due to the relation to the bosonic Neumann matrices [152] can be inferred from the latter.

The final result is
1

2

µg2
2λ

′

4π2

(
1

12
+

35

32n2π2

)
, (4.145)

for the antisymmetric 6 and (4, 4)− and

µg2
2λ

′

4π2

(
1

12
+

5

32n2π2

){ 1
2

(
1 + 1

2
δIJ
)

1
4

, (4.146)

for the 1, 9 and (4, 4)+. Summing the contributions of one-loop and contact diagrams we

see that all (bosonic) two-impurity irreducible representations of SO(4)× SO(4) get the same

contribution to the mass-shift from the impurity-conserving channels

δE(2)
n =

µg2
2λ

′

4π2

(
1

12
+

35

32n2π2

)
. (4.147)

This is in exact agreement with the gauge theory result of [51, 53], cf. (2.51).

5 Summary

The realization of BMN that the Penrose limit of AdS5×S5 and the knowledge of the full string

spectrum on the plane wave, allowed to study AdS/CFT – albeit in a special limit – beyond

the supergravity approximation, has ignited a lot of activity. The purpose of this work was to

give an overview over various developments that have taken place.

In section 2 I gave an introduction to the BMN correspondence. Several aspects of this

duality were discussed in some detail both from the string theory as well as the gauge theory

point of view.

Extensions of the BMN duality to less trivial backgrounds have been the topic of section 3.

Having first considered several illustrative examples, we studied supersymmetric Zk orbifolds

of the plane wave space-time and showed that free string theory in the orbifolded plane wave

is dual to a subsector of planar N = 2 [U(N)]k quiver gauge theory. In particular, we gave

an explicit identification of gauge theory operators and string states both in the untwisted and

twisted sectors. As interesting examples of further aspects of string theory on pp-wave space-

times, I discussed D-branes on the plane wave and string theory on pp-waves with non-constant

R-R fluxes and curved transverse spaces.

To investigate the BMN correspondence beyond the free string/planar gauge theory level,

string interactions and the non-planar gauge theory sector have to be taken into account. In

section 4 string interactions in the plane wave background were studied in the framework of

light-cone string field theory. At first order in the string coupling, interactions in this setup are
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encoded in a cubic vertex. We analyzed in detail the construction of this vertex as well as the

dynamical supercharges and presented their complete expressions both in the oscillator as well

as the continuum basis. We proved that these satisfy the plane wave superalgebra to first order

in the string coupling. In the process, several results that had been known in flat space light-

cone string field theory, e.g. a factorization theorem for the bosonic Neumann matrices, were

generalized to the plane wave space-time. We used the vertex and supercharges to compute

the leading order mass shift of certain string states in a truncation to the impurity-conserving

channel. The result exactly agreed with the leading non-planar correction to the anomalous

dimension of the dual operators in N = 4 SYM.

There are a number of interesting problems we have encountered: for example, it would be

nice to extend the computation of the mass shift for the simplest string states in section 4.6

beyond the contribution of the impurity-conserving channel. As I have explained, in the large

µ limit this presumably translates to non-perturbative effects in the dual gauge theory. Indeed,

a non-vanishing contribution of order g2
2

√
λ′ to the anomalous dimension would only constitute

the leading term in a power series in fractional powers of λ′; verifying the presence of such

a contribution could eventually lead to better understanding the nature of the BMN limit in

N = 4 SYM. One should be aware, however, that even a computation of the leading order

‘stringy’ effect along the lines of section 4.6 seems unfeasible, as infinitely many intermediate

states have to be taken into account. So the way out seems to be to perform a full-fledged

one-loop/contact term computation. Again, this is difficult, as one has to compute the inverse

of infinite-dimensional matrices (involving e.g. the product of two Neumann matrices) exactly,

before taking the large µ limit. Nevertheless, some progress might be achieved along the lines

of [178] using the techniques developed there.

It is natural to extend the research on light-cone string field theory to include open strings,

i.e. D-branes on the plane wave. In particular, as explained in section 3.3.1, D−-branes outside

the origin preserve dynamical supercharges which involve certain world-sheet symmetries [107].

One way to understand the consistency of these branes in the presence of interactions is to

construct the corresponding cubic open string interaction vertex: for D− branes at the origin

this has been done in [180, 181]. In fact, recent analysis of the world-volume supersymmetries

of M2-branes in the KG space suggests that these additional dynamical supercharges are not

respected by string interactions, see [182] for details. Of course, open/closed string interactions

are interesting as well given the expected duality to the BMN limit of N = 4 SYM coupled to

defect conformal field theories. Here studies have been initiated in [183].

As we have seen, the light-cone GS action is well-suited to obtain the spectrum of string

theories in simple backgrounds with R-R flux. Although the construction of the cubic inter-

action vertex is technically quite involved, it is a viable possibility to study simple tree- and

– at least in the approximation described in section 4.6 – one-loop interactions. However, as

discussed in [131], even for studying higher point tree-amplitudes in flat space this approach

is not useful, as the vertex explicitly depends on the interaction point. Moreover, it is diffi-
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cult to describe physical states with vanishing p+ in the light-cone formalism. These caveats

become even more problematic for backgrounds without the full Lorentz isometry, such as the

plane wave. It appears to be a worthwhile prospect to use the U(4) formalism as advocated

in [133, 134] to overcome some of these drawbacks. In this approach strings on the plane wave

are described by an exact interacting N = 2 superconformal field theory and standard CFT

techniques may be used for computations. One can also naturally describe strings in the more

general pp-wave geometries of section 3.3.2 in this setup, which makes this approach potentially

even more interesting.
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A The kinematical part of the vertex

A.1 The Delta-functional

The precise definition of the Delta-functional is

∆8
[ 3∑

r=1

pr(σ)] ≡
∏

m≥0

δ8

(∫ π|α3|

−π|α3|
dσ eimσ/|α3|

3∑

r=1

pr(σ)

)
. (A.1)

The pure zero-mode contribution decouples from the Delta-functional, so

∆8
[ 3∑

r=1

pr(σ)
]

= δ8
( 3∑

r=1

p0(r)

) ∞∏

m=1

δ8

(∫ π|α3|

−π|α3|
dσeimσ/|α3|

3∑

r=1

pr(σ)

)
. (A.2)

We need the following integrals for m > 0, n ≥ 0 (β ≡ α1/α3)

1

πα1

∫ πα1

−πα1

dσ cos
mσ

α3
cos

nσ

α1
= (−1)n

2mβ

π

sinmπβ

m2β2 − n2
≡ X(1)

mn ,

1

πα1

∫ πα1

−πα1

dσ sin
mσ

α3

sin
nσ

α1

=
n

mβ
X(1)
mn ,

(A.3)
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and

2

πα2

∫ −πα3

πα1

dσ cos
mσ

α3
cos

n

α2
(σ − πα1) =

2m(β + 1)

π

sinmπβ

m2(β + 1)2 − n2
≡ X(2)

mn,

2

πα2

∫ −πα3

πα1

dσ sin
mσ

α3
sin

n

α2
(σ − πα1) = − n

m(β + 1)
X(2)
mn .

(A.4)

Then the delta-functions over the non-zero-modes contribute

∞∏

m=1

δ8

(
1√
2

3∑

r=1

[ ∞∑

n=1

X(r)
mn

(
pn(r) − i

α3

αr

n

m
p−n(r)

)
+

1√
2
X

(r)
m0p0(r)

])
(A.5)

and I have defined X
(3)
mn = δmn. We see that negative and non-negative modes decouple from

each other. We can extend the range of m,n to Z by introducing

X(r)
mn ≡





X
(r)
mn , m , n > 0

α3

αr

n
m
X

(r)
−m,−n , m , n < 0

1√
2
X

(r)
m0 , m > 0 , r ∈ {1, 2}

1 , m = 0 = n

0 , otherwise

(A.6)

Then the Delta-functional takes the form

∆
[ 3∑

r=1

pr(σ)
]
∼
∏

m∈Z

δ

(
3∑

r=1

∑

n∈Z

X(r)
mnpn(r)

)
. (A.7)

Here I ignored factors of
√

2 which can be absorbed in the measure. It is convenient to introduce

the matrices for m, n > 0

Cmn = mδmn ,

A(1)
mn = (−1)n

2
√
mnβ

π

sinmπβ

m2β2 − n2
=
(
C−1/2X(1)C1/2

)
mn
,

A(2)
mn =

2
√
mn(β + 1)

π

sinmπβ

m2(β + 1)2 − n2
=
(
C−1/2X(2)C1/2

)
mn
,

A(3)
mn = δmn

(A.8)

and the vector (m > 0)

Bm = −2

π

α3

α1α2
m−3/2 sinmπβ (A.9)

related to X
(r)
m0 via

X
(r)
m0 = −εrsαs

(
C1/2B

)
m
. (A.10)
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These satisfy the following very useful identities [147]

−α3

αr
CA(r)TC−1A(s) = δrs1 , −αr

α3
C−1A(r)TCA(s) = δrs1 , A(r)TCB = 0 (A.11)

valid for r, s ∈ {1, 2} and

3∑

r=1

1

αr
A(r)CA(r)T = 0 ,

3∑

r=1

αrA
(r)C−1A(r)T =

α

2
BBT . (A.12)

In terms of the big matrices X
(r)
mn, m,n ∈ Z the relations (A.11) and (A.12) can be written in

the compact form

(
X(r)TX(s)

)
mn

= −α3

αr
δrsδmn , r, s ∈ {1, 2} ,

3∑

r=1

αr
(
X(r)X(r)T

)
mn

= 0 . (A.13)

A.2 Structure of the bosonic Neumann matrices

Evaluating the Gaussian integrals in equation (4.48) one finds the following expressions for the

bosonic Neumann matrices [150]

N̄ rs
mn = δrsδmn − 2

(
C

1/2
(r) X

(r)TΓ−1
a X(s)C

1/2
(s)

)
mn
, Γa =

3∑

r=1

X(r)C(r)X
(r)T . (A.14)

From the structure of the X(r) given in equation (A.6) it follows that Γa is block diagonal and

using the identities (A.12) one can write the blocks as [150]

[
Γa
]
mn

=






(
C1/2ΓC1/2

)
mn
, m , n > 0 ,

−2µα3 , m = 0 = n ,
(
C1/2Γ−C

1/2
)
−m,−n , m , n > 0 ,

(A.15)

where

Γ− ≡
3∑

r=1

A
(r)
− U−1

(r)A
(r)T
− , A

(r)
− =

α3

αr
C−1A(r)C . (A.16)

The matrix Γ (which reduces to the flat space Γ of [147, 148] for µ→ 0) exists and is invertible,

whereas Γ− is ill-defined since the above sum is divergent. Nevertheless it is possible to derive

a well-defined identity for Γ−1
− [150]

Γ−1
− = U(3)

(
1− Γ−1U(3)

)
. (A.17)

Since Γ−1
− is related to Γ−1 it is possible to relate the Neumann matrices with positive and

negative indices. This results in equation (4.57). To derive the factorization theorem (4.61) [176,

152] introduce

Υ ≡
3∑

r=1

A(r)U−1
(r)A

(r) T = Γ + µαBBT , (A.18)
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where I have used equation (A.12). Its inverse is related to Γ−1 by

Υ−1 = Γ−1 − µα

1− 4µαK

(
Γ−1B

) (
Γ−1B

)T
. (A.19)

For r, s ∈ {1, 2} one can derive the following relations

A(r) TC−1U(3)Γ
−1 = A(r) TC−1 +

αr
α3

C−1U(r)A
(r) TΓ−1 , (A.20)

Υ−1U−1
(3)C

−1A(r) = C−1A(r) +
αr
α3

Υ−1A(r)U−1
(r)C

−1 , (A.21)

2C−1 = Γ−1U(3)C
−1 + C−1U(3)Γ

−1 + Υ−1U−1
(3)C

−1 + C−1U−1
(3) Υ

−1

− α1α2Υ
−1B

(
Γ−1B

)T
. (A.22)

Using equations (A.19) and (A.11) results in the factorization theorem (4.61).

A.3 The kinematical constraints at O(gs)

A.3.1 The bosonic part

The bosonic constraints the exponential part of the vertex has to satisfy are

3∑

r=1

∑

n∈Z

X(r)
mnpn(r)|V 〉 = 0 ,

3∑

r=1

∑

n∈Z

αrX
(r)
mnxn(r)|V 〉 = 0 . (A.23)

For m = 0 this leads to

3∑

r=1

p0(r)|V 〉 = 0 ,
3∑

r=1

αrx0(r)|V 〉 = 0 . (A.24)

Substituting (4.6) and commuting the annihilation operators through the exponential this re-

quires

3∑

r,s=1

√
|αr|
[(
N̄ rs

00 + δrs
)
a†0(s) +

∞∑

n=1

N̄ rs
0na

†
n(s)

]
|V 〉 = 0 , (A.25)

3∑

r,s=1

e(αr)
√
|αr|
[(
N̄ rs

00 − δrs
)
a†0(s) +

∞∑

n=1

N̄ rs
0na

†
n(s)

]
|V 〉 = 0 . (A.26)

Using the expressions given for N̄ rs
0n and N̄ rs

00 in (4.51), (4.52) and (4.53) one can check that the

above equations are satisfied trivially, i.e. without further use of additional non-trivial identities.
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For m > 0 we find the following constraints

B +

3∑

r=1

A(r)C1/2U(r)N̄
r = 0 , (A.27)

A(s)C
−1/2
(s) U−1

(s) +

3∑

r=1

A(r)C
−1/2
(r) U(r)C

1/2N̄ rsC−1/2 = 0 , (A.28)

−αsA(s)C
−1/2
(s) +

3∑

r=1

αrA
(r)C

−1/2
(r) C−1/2N̄ rsC1/2 = αB

[
C

1/2
(s) C

1/2N̄ s
]T
. (A.29)

Equation (A.27) is satisfied by the definition for N̄ r. Equations (A.28) and (A.29) are proved by

substituting the expression for N̄ rs given in (4.50). For m < 0 there is one additional constraint

A(s)C
−1/2
(s) U−1

(s) − αs
3∑

r=1

1

αr
A(r)C

1/2
(r) U(r)C

1/2N̄ rsC−1/2C−1
(s) = 0 (A.30)

which is verified by subtracting it from equation (A.27) and using (4.61). Here I used the

identity
3∑

r=1

αrA
(r)C−1/2N̄ r = 2αKB . (A.31)

A.3.2 The fermionic part

The fermionic constraints the exponential part of the vertex has to satisfy are

3∑

r=1

∑

n∈Z

X(r)
mnλn(r)|V 〉 = 0 ,

3∑

r=1

∑

n∈Z

αrX
(r)
mnϑn(r)|V 〉 = 0 . (A.32)

For m = 0 this leads to

3∑

r=1

λ0(r)|V 〉 = 0 ,

3∑

r=1

αrϑ0(r)|V 〉 = 0 . (A.33)

These equations are satisfied by construction of the zero-mode part of |V 〉. For m > 0 we get

B +
3∑

r=1

e(αr)
√
|αr|A(r)C

−1/2
(r) P(r)Q

r = 0 , (A.34)

√
|αs|A(s)C

−1/2
(s) P−1

(s) +
3∑

r=1

e(αr)
√
|αr|A(r)C

−1/2
(r) P(r)Q

rs = 0 , (A.35)

−
√
|αs|A(s)C

−1/2
(s) P(s) +

1

αs

3∑

r=1

|αr|3/2A(r)C
−1/2
(r) P−1

(r)C
−1QrsC = αBQs T , (A.36)

68



whereas for m < 0 the constraints are

3∑

r=1

1√
|αr|

A(r)CC
−1/2
(r) P−1

(r)Q
r = 0 , (A.37)

A(s)CC
−1/2
(s) P(s) − e(αs)

√
|αs|

3∑

r=1

1√
|αr|

A(r)CC
−1/2
(r) P−1

(r)Q
rs = 0 . (A.38)

Now equations (A.34) and (A.37) uniquely determine

Qr =
e(αr)√
|αr|

(1− 4µαK)−1(1− 2µαK(1 + Π))P(r)C
1/2
(r) C

1/2N̄ r . (A.39)

Furthermore comparing equations (A.35) and (A.28) we see that

Qrs = e(αr)

√∣∣∣∣
αs
αr

∣∣∣∣P
−1
(r)U(r)C

1/2N̄ rsC−1/2U(s)P
−1
(s) (A.40)

solves (A.35). Using

P−2
(r)U(r)N̄

rsU(s)P
−2
(s) = N̄ rs + µα(1− 4µαK)−1C

1/2
(r) N̄

r
[
C

1/2
(s) N̄

s
]T

(1− Π) (A.41)

establishes (A.36) by virtue of (A.29). Finally, equation (A.38) is satisfied due to the identity

A(s)C
−1/2
(s) − αs

3∑

r=1

1

αr
A(r)C

−1/2
(r) C3/2N̄ rsC−3/2 = 0 (A.42)

which can be proved using the expression for N̄ rs given in (4.50). This concludes the determi-

nation of the fermionic contribution to the kinematical part of the vertex.

B The dynamical constraints

B.1 More detailed computations

Here I give the details leading to equations (4.94), (4.96) and (4.97). The following identities

prove very useful (α3Θ ≡ ϑ0(1) − ϑ0(2))

R|V 〉 = i
√
α′

[
2K
√
α′
(
P− iµα

α′ R

)
+
∑

r,n>0

C
1/2
n(r)N̄

r
na

†
n(r)

]
|V 〉 , (B.1)

Θ|V 〉 = −
√

2
∑

r,n

Qr
nb

†
−n(r)|V 〉 . (B.2)
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Using the mode expansions of Q−
(r), Q̄

−
(r), K0 +K+, K− and Y one finds

3∑

r=1

{Q−
(r), Y } = −γ

3∑

r=1

1√
|αr|

∞∑

n=1

[
P(r)C

1/2G(r)

]
n
a†−n(r) , (B.3)

3∑

r=1

{Q̄−
(r), Y } = (1− 4µαK)−1/2(1− 2µαK(1−Π))

(
Pγ − iµα

α′ RγΠ
)

+ γ
3∑

r=1

1√
|αr|

∞∑

n=1

[
P−1

(r)C
1/2G(r)

]
n
a†n(r) , (B.4)

3∑

r=1

[Q−
(r), K0 +K+] = µγ(1 + Π)(1− 4µαK)1/2

√
2

α′Λ

+ γ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P−1

(r)C
1/2F(r)

]
n
b†n(r) , (B.5)

3∑

r=1

[Q−
(r), K−] = iγ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P−1

(r)C
1/2U(r)F(r)

]
n
b†−n(r) , (B.6)

3∑

r=1

[Q̄−
(r), K0 +K+] = − µα√

2α′
γ(1−Π)(1− 4µαK)1/2Θ

+ γ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P(r)C

1/2F(r)

]
n
b†−n(r) , (B.7)

3∑

r=1

[Q̄−
(r), K−] = −iγ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P(r)C

1/2U(r)F(r)

]
n
b†n(r) . (B.8)

Using (4.92), (B.1) and (B.2) leads to equations (4.94) and (4.96). The action of the super-

charges on |V 〉 given in equation (4.97) can be proven similarly. One needs

N̄ rs
nm + e(αs)

(
m

n

∣∣∣∣
αr
αs

∣∣∣∣
)3/2

Pn(r)Pm(s)Q
rs
nm = − α

αs
(1− 4µαK)−1×

×
[
C

1/2
(r) N̄

r
]
n

[
U−1

(s)C
1/2
(s) CN̄

s
]
m
,

N̄ rs
−n,−m + e(αr)

(
m

n

∣∣∣∣
αr
αs

∣∣∣∣
)1/2

Pn(r)Pm(s)Q
rs
nm = 0 ,

(B.9)
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N̄ rs
nm − e(αr)

(
m

n

∣∣∣∣
αr
αs

∣∣∣∣
)1/2

P−1
n(r)P

−1
m(s)Q

rs
nm = −µα(1− 4µαK)−1×

× (1− Π)
[
C

1/2
(r) N̄

r
]
n

[
C

1/2
(s) N̄

s
]
m
,

N̄ rs
−n,−m − e(αs)

(
m

n

∣∣∣∣
αr
αs

∣∣∣∣
)3/2

P−1
n(r)P

−1
m(s)Q

rs
nm =

α

αs
(1− 4µαK)−1×

×
[
P−2

(r)C
1/2
(r) N̄

r
]
n

[
C

1/2
(s) CN̄

s
]
m

(B.10)

which follow from (4.61) and (4.66).

B.2 Proof of the dynamical constraints

In this appendix I prove that

γIa(ȧ
[
ΠD̄
]a
sI
ḃ)

= 0 , (B.11)

γIa(ȧ
[
ΠD
]a
s̃I
ḃ)

= 0 , (B.12)
(
γIaȧD̄bs̃

I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1−Π)ab = 0 . (B.13)

Equations (B.11) and (B.12) are equivalent to

(
γIa(ȧYbs

I
1 ḃ)

+
α

α′γ
I
a(ȧ

∂

∂Y b
sI
2 ḃ)

)
Πab = 0 , (B.14)

(
γIa(ȧYbs

I
2 ḃ)
− α

α′γ
I
a(ȧ

∂

∂Y b
sI
1 ḃ)

)
Πab = 0 , (B.15)

The first equation has terms of order O(Y 2) and O(Y 6), whereas the second one has terms

of order O(Y 0), O(Y 4) and O(Y 8). There are two contributions to the order O(Y 2) in equa-

tion (B.14) , both vanish separately. The first one is

γIa(ȧYbs
I
1 ḃ)

Πab = 2γIa(ȧγ
I
cḃ)
Y bY cΠab = −2δȧḃΠabY

aY b = 0 , (B.16)

whereas the second one is

α

α′γ
I
a(ȧ

∂

∂Y b
sI
2 ḃ)

Πab = −γIa(ȧuIbcdḃ)Y
cY dΠab =

1

16

(
γIJγKL

)
(ȧḃ)

γIJa[bγ
KL
cd] ΠabY cY d =

1

24

(
γIJγKL

)
(ȧḃ)

(
γIJΠγKL

)
cd
Y cY d = 0 . (B.17)

Here I have used equations (B.29) and (B.32). From the Fourier identities [148]

s1 ȧ(φ) =
( α
α′

)4
∫
d8Y sI2 ȧ(Y )e

α′

α
φY ,

s2 ȧ(φ) =
( α
α′

)4
∫
d8Y sI1 ȧ(Y )e

α′

α
φY ,

(B.18)
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it follows that the terms of order O(Y 6) vanish as well. This proves equation (B.14). The

O(Y 0) term in equation (B.15) is

γIa(ȧγ
I
bḃ)

Πab = δȧḃtr(Π) = 0 , (B.19)

and the order O(Y 8) term vanishes by (B.18). The terms of order O(Y 4) in equation (B.15)

are

Πa
bγ
I
a(ȧu

I
cdeḃ)

(
Y bY cY dY e +

1

24
εcdebghijY

gY hY iY j

)

= − 1

16
Πa

b

(
γIJγKL

)
(ȧḃ)

γIJa[cγ
KL
de]

(
Y bY cY dY e +

1

24
εcdebghijY

gY hY iY j

)

= − 1

16
Πa

b

(
γIJKL
ȧḃ

− 2δȧḃδ
IKδJL

)
γIJa[cγ

KL
de]

(
Y bY cY dY e

+
1

24
εcdebghijY

gY hY iY j

)

= − 1

16
Πa

bγ
IJKL
ȧḃ

tIJKLacde

(
Y bY cY dY e +

1

24
εcdebghijY

gY hY iY j

)
= 0 . (B.20)

In the last step I used that Π is symmetric and traceless and

tIJKLabcd = − 1

24
εabcd

efghtIJKLefgh . (B.21)

This proves equation (B.15). Finally, equation (B.13) is equivalent to
(
γIa(ȧYbs

I
1 ḃ)
− α

α′γ
I
a(ȧ

∂

∂Y b
sI
2 ḃ)

)
(1−Π)ab = 0 , (B.22)

(
γIa[ȧYbs

I
2 ḃ]

+
α

α′γ
I
a[ȧ

∂

∂Y b
sI
1 ḃ]

)
(1−Π)ab = 0 . (B.23)

The first equation is symmetric in ȧ, ḃ and contains terms of order O(Y 2) and O(Y 6). These

vanish for the same reason as those in equation (B.14). The second equation is antisymmetric

in ȧ, ḃ and contains terms of order O(Y 0), O(Y 4) and O(Y 8). The O(Y 0) contribution to

equation (B.23) is

γIa[ȧγ
I
bḃ]

(1− Π)ab =
1

4
γIJ
ȧḃ
γIab(1− Π)ab = 0 . (B.24)

From equation (B.18) it follows that the term of order O(Y 8) vanishes as well. Finally, there

are two contributions to the terms of order O(Y 4), both of them vanish separately. The first

one is

α

α′γ
I
a[ȧYbs

I
2 ḃ]

(1− Π)ab = −1

3
γIa[ȧu

I
cdeḃ]

(1− Π)abY
bY cY dY e =

1

12

(
γIJ
ȧḃ
δa[cγ

IJ
de] +

1

4

(
γIJγKL

)
[ȧḃ]

γIJa[cγ
KL
de]

)
(1−Π)abY

bY cY dY e =

1

12
γIJ
ȧḃ
γIKa[c γ

KJ
de] (1− Π)abY

bY cY dY e =
1

6
γIJ
ȧḃ
γIJbc (1−Π)deY

bY cY dY e = 0 . (B.25)

72



In the last step I have used equation (B.30). The second contribution of order O(Y 4) then

vanishes by equation (B.18). This concludes the proof of equation (B.23).

Apart from symmetry and tracelessness of Π I have used the following identities

γIJab = −γIJba , (B.26)

γIaȧγ
I
bḃ

= δabδȧḃ +
1

4
γIJab γ

IJ
ȧḃ
, (B.27)

(
γIJγKL

)
ab

= γIJKLab + δILγJKab + δJKγILab

− δIKγJLab − δJLγIKab +
(
δJKδIL − δJLδIK

)
δab , (B.28)

γIaȧu
I
bcdḃ

= −1

4
γIJ
ȧḃ
δa[bγ

IJ
cd] −

1

16

(
γIJγKL

)
ȧḃ
γIJa[bγ

KL
cd] , (B.29)

γIKa[b γ
JK
cd] = tIJabcd − 2δa[bγ

IJ
cd] , (B.30)

γIJab γ
IJ
cd = 8

(
δacδbd − δadδbc

)
, (B.31)

γIJKL
ȧḃ

(
γKLΠγIJ

)
[ab]

= 0 . (B.32)

B.3 {Q, Q̃} at order O(gs)

Here I demonstrate that equation (4.72) leads to the constraints (4.111)-(4.114) given in sec-

tion 4.4. To this end, I adopt a trick introduced in [148]. Namely, associate the world-sheet

coordinate dependence with the oscillators as

(
an(r)

a−n(r)

)
−→ e−iωn(r)τ/αr

(
cos nσr

αr
− sin nσr

αr

sin nσr

αr
cos nσr

αr

)(
an(r)

a−n(r)

)
, (B.33)

and analogously for the fermionic oscillators. Then integrate the constraint equation (4.72) over

the σr. In dealing with the resulting expressions one can integrate by parts since the integrand

is periodic. In addition to the identities in equations (4.96),14and (4.97) we have to calculate

the commutator of
∑

rQ(r) with KI and its tilded counterpart. One gets

√
2η

3∑

r=1

[Q(r), K
I ] |V 〉 = −2iγI

[
Ẏ + Y ′ +

i

2
µ(1− Π) (Y − 2Y0)

]
|V 〉 ,

√
2η̄

3∑

r=1

[Q̃(r), K̃
I ] |V 〉 = −2iγI

[
Ẏ − Y ′ +

i

2
µ(1−Π) (Y − 2Y0)

]
|V 〉 .

(B.34)

Here Y0 is the zero-mode part of Y , I suppressed the τ , σr dependence and

Ẏ ≡ ∂τY , Y ′ ≡
3∑

r=1

∂σr
Y . (B.35)

14In fact, here we need the analogue of equation (4.96) with KI ↔ K̃I .
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The fact that the above equations have a term which only depends on the zero-mode Y0 is

important. Combining the various contributions to equation (4.72), removing the σr derivatives

from Y by partial integration and using the further identity [148]

(
γIaȧηs̃

I
ḃ
+ γI

aḃ
η̄sIȧ

)
Y ′a = −23/2α

α′ m′
ȧḃ

(B.36)

and
3∑

r=1

∂σr
|V 〉 = − i

4

α′

α

((
K2 − K̃2

)
+ 4
(
Y Ẏ + iµ(1− Π)Y Y0

))
|V 〉 , (B.37)

we find that equation (4.72) is equivalent to

([√
2
(
γIaȧηs̃

I
ḃ
− γI

aḃ
η̄sIȧ
)
− 4imȧḃYa

](
Ẏ a − Ẏ a

0

)
− µ√

2

(
γIaȧD̄bs̃

I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)

(1−Π)ab − iKIKJ
[
δIJmȧḃ −

α′
√

2α
γJaȧD

as̃I
ḃ

]
+ iK̃IK̃J

[
δIJmȧḃ

− α′
√

2α
γJ
aḃ
D̄asIȧ

])
|V 〉 = 0 . (B.38)

This results in equations (4.111)-(4.114).
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