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ABSTRACT

We consider warp compactifications of M-theory on 7-manifolds in the presence of

4-form fluxes and investigate the constraints imposed by supersymmetry. As long as the

7-manifold supports only one Killing spinor we infer from the Killing spinor equations

that non-trivial 4-form fluxes will necessarily curve the external 4-dimensional space. On

the other hand, if the 7-manifold has at least two Killing spinors, there is a non-trivial

Killing vector yielding a reduction of the 7-manifold to a 6-manifold and we confirm

that 4-form fluxes can be incorporated if one includes non-trivial SU(3) structures.



1 Introduction

One way to describe phenomenological interesting models in 4 dimensions with N=1

supersymmetry is to consider M-theory on a 7-manifold with G2 holonomy. In this

case the 4-form field is trivial, but one may ask whether one can turn on a non-trivial

4-form flux in the internal space while still keeping the flat 4-d Minkowski space with

four unbroken supercharges. Over the past years this question has been explored in

different directions with more or less restrictive assumptions. In a number of papers the

existence of BPS solutions with non-trivial fluxes are excluded, see e.g. [1, 2, 3, 4, 5],

or a non-trivial superpotential appears see e.g. [6, 7]. Other no-go theorems base on

discussions of the equations of motion [8]. But most of the no-theorem statements have

restrictive assumptions, as e.g. a compact internal space without sources or a semi-

definite potential. In many models this is not the case and in fact, in the literature one

can find examples of M-theory compactifications in the presence of fluxes [9, 10, 11, 12,

13] as well as examples of 10-d string theory with fluxes that yield a flat 4-dimensional

vacuum [14, 15, 16, 17]. The essential ingredient of these string theory compactifications

are non-trivial SU(3) structures (i.e. torsion) as well as a warped geometry, see also [18,

19]. Moreover, it is well-known that one can compactify M-theory in presence of 4-form

fluxes to a D=4, N=1 anti de Sitter vacuum [20], i.e. the corresponding superpotential

has a non-vanishing extremum. Similar to the string theory compactifications, this

solution involves non-trivial G structures, where the torsion 3-form, that parallelizes

the 7-manifold (deformed S7), is the dual of the 4-form on the 7-manifold [21].

In this note we attempt to clarify different aspects. We will especially relax the

assumption, made in a number of papers, that the 11-dimensional spinor is a direct

product of the 4-spinor and 7-spinor, see also [20, 5]. With this in mind, we can summa-

rize our assumptions as follows. We are looking for M-theory configurations that allow

upon (warp) compactifications a flat Minkowski space with four unbroken supercharges.

In order to keep Lorentz symmetry, we assume that all Kaluza-Klein vector fields are

trivial yielding a block-diagonal form of the metric and allowing only for internal com-

ponents of the 4-form field. Our ansatz for the 11-d metric and 4-form field strength

reads therefore

ds2 = e2A ηµνdx
µdxν + e−2B hmndy

mdyn

F = Fmnpq dy
m ∧ dyn ∧ dyp ∧ dyq

(1)

where A = A(y) and B = B(y) are functions of the coordinates of the 7-manifold with

the metric hmn. We omitted Lorentz-invariant 4-form field components like Fµνρλ ∼

εµνρλ, which cannot be embedded into a flat Minkowski space and yield an anti de Sitter

vacuum. As we will see the 11-d Killing spinor equations can be solved only, if the

7-manifold described by the metric hmn: (i) has G2-holonomy with trivial fluxes and
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warp factors or (ii) allows for more than one Killing spinors, which implies that the 7-

manifold has to have a Killing vector and yields effectively a reduction to a 6-manifold. It

is important to realize that supersymmetry requires non-trivial SU(3) structures on this

6-manifold which are related to a non-trivial antisymmetric tensor field; otherwise warp

compactifications1 of 10-dimensional string models are known to break supersymmetry

or yield a non-flat 4-dimensional vacuum [2]. But before we come to the discussion of

this issue, we will start with general remarks about Killing spinors and the resulting

holonomy.

2 Covariantly constant spinors and holonomy

We use the convention {ΓA,ΓB} = 2ηAB with η = diag(−,+,+ . . .+) and we decompose

the 11-d Γ-matrices as (see also [1])

Γµ = γ̂µ ⊗ I , Γm+3 = γ̂5 ⊗ γm (2)

with µ = 0, 1, 2, 3, m = 1, 2, . . . , 7. Moreover, in our conventions we have

γ̂5 = iγ̂0γ̂1γ̂2γ̂3 , γ1γ2γ3γ4γ5γ6γ7 = −i (3)

yielding
i

3!
εmnpqabcγabc = γmnpq ≡ γ[mγnγpγq] . (4)

In addition to the Γ-matrices we have to decompose the 11-d spinor into an anti-

commuting 4-spinor and a commuting 7-spinor. The spinor on the Euclidean 7-manifold

has to be (pseudo) Majorana, where the identity can be chosen as charge conjugation

matrix and the γ-matrices become up to an overall factor of “i” real and antisymmetric.

If this 7-manifold allows for commuting spinors θk, one can construct differential forms

in the usual way

Ωkl
a1···an

= (i)nθkγa1···an
θl . (5)

Obviously these forms are covariantly constant if the spinor is covariantly constant, but

let us stress that this does not need to be the case! Since (γa1···an
)T = (−)

n
2+n

2 γa1···an

it follows that this form is antisymmetric in [k, l] for n = 1, 2, 5, 6 and symmetric for

n = 0, 3, 4, 7. Thus, if there is more than one covariantly constant Killing spinor, one

can always construct at least one covariantly constant vector and if the Killing spinor is

globally well-defined, one can always find a coordinate system so that the corresponding

U(1) fiber in the metric is trivial; or in other words the 7-manifold factorizes into R×X6.

1From the 4- or 5-dimensional point of view it is interesting to note the close relationship of flux or
warp compactifications, gauged supergravity and the attractor mechanism, which gives an explaination
of the fixing of (vector) moduli in these compactifications [22, 23, 24, 25, 26, 27].

3



For the case with just two Killing spinors (k, l = 1, 2) we obtain one covariantly constant

vector and X6 should not be factorisable. In addition there is one 2-form and three 3-

forms, for which (5) is symmetric in (k, l). By doing Fierz re-arrangements one can show,

see [28], that the 2-form lives only on X6 whereas the 3-forms combine into one complex

3-form on X6 and one 3-form extending along R. This identifies X6 as a complex-3-

dimensional space with SU(3) holonomy. If there are four covariantly constant spinors

(i, j = 1..4) the situation becomes even more involved. Now, one can construct six

1-forms and six 2-forms, which are consistent with the splitting R3 × CY2. In fact,

regarding the 7-space as a fibration of a 3-space over a 4-space, three of the covariantly

constant vectors make the fibration trivial yielding a product space and the remaining

three 1-forms ensure that the 3-space is R3. The six 2-forms split now in three 2-forms

supported by R3 and the remaining 2-forms identify the 4-space as a hyper Kaehler

space which has SU(2) holonomy. We do not need to discuss here the case of maximal

supersymmetry related to eight covariantly constant spinors, because the space becomes

trivial.

Let us come back to the case of just one Killing spinor and consider first the case

where this spinor is covariantly constant with respect to a metric hmn, i.e.

0 = ∇(h)θ ≡
[

d+
1

4
ωmnγmn

]

θ (6)

where ωmn is the spin-connection 1-form. If this equation has only one solution the

holonomy group of the space must be equal to G2 and since the spinor is covariantly

constant, its holonomy is trivial and hence is a G2 singlet. The unrestricted holonomy of

an orientable 7-manifold is SO(7) and in order to decompose the adjoint representation

of SO(7): 21 → 14 + 7 under its maximal compact subgroup G2 one introduces two

projectors P7/14 [21](corresponding to the 3-form ϕ defined in (8))

P
pq
14 mn ≡

2

3
(Ipq

mn −
1

4
ψpq

mn) , P
pq
7 mn ≡

1

3
(Ipq

mn +
1

2
ψpq

mn) . (7)

where Ipq
mn = δ

p
[mδ

q
n] and ψmnpq is the G2-invariant 4-index object, which is defined in

the tangent space and coincides with the covariantly constant 4-form as introduced in

(5). This 4-form is dual to a 3-form and the requirement that both forms are closed gives

equations for the vielbeine. For a given set of vielbeine em the 3-form can be written as

ϕ = 1
3!
ϕabc e

a ∧ eb ∧ ec = e1 ∧ e2 ∧ e7 + e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6

−e2 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e5 + e3 ∧ e4 ∧ e7 + e5 ∧ e6 ∧ e7
(8)

Both G2-invariant forms fulfill a number of useful relations [13] and for later convenience

we will note, that

ψmnpqϕ
qkl = −6ϕ

[k
[mn δ

l]
p] , ϕkmnϕ

mnl = 6δ l
k . (9)
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The spin connection transforms as a product of a vector- and tensor-representation of

SO(7), where the tensor part is just the adjoint representation. One decomposes now

this tensor (21 → 7 + 14) by inserting the identity I = P14 + P7, i.e.

[1

4
ωmn γmn

]

θ =
[1

4
ωmn

I
pq

mn γpq

]

θ

where P7 projects onto the 7 and P14 onto the 14, which is the adjoint of G2. One

solves now equation (6) for a constant spinor θ by requiring that the projection of the

spin connection onto the 7 vanishes (so that it represents a G2 generator) and that the

spinor does not transform under G2, i.e. the spinor is a zero mode of the G2 generators

(i.e. the 14), see also [21, 13] for more details. So, one obtains the equations

P
pq
7 mn ω

mn = 0 , (10)

P
pq
14 mn γpqθ = 0 . (11)

Note, the first equation gives first order differential equations for the metric hmn and

the second equation projects out seven of the eight spinor components. In a number of

papers explicit examples have been discussed over the past years, see e.g. [29, 30, 31, 32].

We will not discuss the first order differential equations for the metric, but we want to

bring the projector constraint on θ in another form by multiplying it with γmn which

gives

γmn
P

pq
14 mn γpqθ =

[

I +
1

7 4!
ψmnpqγmnpq

]

θ =
[

I + i
1

7 3!
ϕmnpγ

mnp
]

θ = 0 (12)

where we used the relation (4) and ψ = ?ϕ.

Up to now we were assuming that the spinors are covariantly constant with respect

to the Levi-Civita connection, but this is highly restrictive. In general the 7-spinor

does not need to be covariantly constant and neither are the differential forms in (5).

This is the case if one takes into account non-trivial G2-structures, where the deviation

from the covariantly constance can be absorbed into non-trivial torsion terms entering

a generalized connection. Let us summarize some basic features, for more details see

e.g. [33, 34, 18, 35]. The 3- and 4-form should still be G2 invariant and coincide in the

tangent space with the expressions that we discussed so far. Also the decomposition of

the SO(7) tensor representation under G2 in terms of the projectors P7/14 is unchanged

so that one gets the same projector acting on the spinor θ in (11), that again projects

out seven of the eight spinor components. The inclusion of torsion means however, that

the projection of the Levi-Civita connection onto the 7 is now non-vanishing and given

by the different torsion classes. This means that the equation (10) does not vanish

anymore. The torsion is given by a 3-form H ab
m which under G2 decomposes into a 7

of the antisymmetric indices [ab] as well as for the vector index m. One gets in total
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four torsion classes related to the decomposition: 7 ⊗ 7 = 1 + 7 + 14 + 27. In string-

and M-theory the presence of RR-fluxes yields typically non-trivial G-structures for the

forms defined in (5), see [28, 18], and we will comment more on it in the last section.

3 Solving the Killing spinor equation

Unbroken supersymmetry is equivalent to the existence of (at least) one Killing spinor

η yielding a vanishing gravitino variation of 11-dimensional supergravity

0 = δΨM =
[

∂M +
1

4
ω̂RS

M ΓRS +
1

144

(

Γ NPQR
M − 8 δN

M ΓPQR
)

FNPQR

]

η . (13)

Later on, we will decompose the 11-d Killing spinor into a 4- and 7-spinor and because

they parameterize supersymmetry transformations we also call them Killing spinors.

With our ansatz from eq. (1) and the conventions introduced in the last section we

write the gravitino variation covariantly in the metric hmn and obtain two equations

0 = δΨµ = ∂µη +
1

2
eA+B

[

γ̂µγ̂
5 ⊗ γm∂mA +

1

72
e3B γ̂µ ⊗ F

]

η , (14)

0 = δΨm = ∇(h)
m η +

1

2

[

− I ⊗ γ n
m ∂nB +

1

72
e3B (γ̂5 ⊗ γmF − 12γ̂5 ⊗ Fm)

]

η (15)

where we introduced the abbreviations

F ≡ Fmnpqγ
mnpq , Fm ≡ Fmnpqγ

npq . (16)

and used

γ npqr
m Fnpqr = γmF − 4Fm . (17)

This relation is a consequence of the general formula for products of γ-matrices

γaγb1···bn
= n δa

[b1
γb2···bn] + γa

b1···bn
. (18)

We should put a warning at this point. To make the notation as simple as possible, we

will not make a clear distinction between curved and flat indices. Of course the γ-matrix

algebra and the spinor projection is defined in the tangent space, but the 4-form field

as well as derivatives are always with respect to curved indices. Having this in mind we

will avoid any underlined indices and hope that it is clear from the context.

We will start with equation (14), which yields as integrability condition

0 =
[

∂mA∂
mA (I ⊗ I) − 1

9
e6B(I ⊗ F 2) + 1

9
e3B∂mA(γ̂5 ⊗ Fm)

]

η

=
[

I ⊗ γpq∂qA− 1
12
e3B γ̂5 ⊗ F p

]

γpγm

[

I ⊗ γmn∂nA + 1
12
e3B γ̂5 ⊗ Fm

]

η .
(19)
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This equation is solved if

[

I ⊗ γmn∂nA+
1

12
e3B γ̂5 ⊗ Fm

]

η = 0 . (20)

Multiplying this equation with γm and inserting it back into (14) yields ∂µη = 0, which

is consistent, since we are interested in a flat Minkowski vacuum. Following [5] we will

use this equation to replace the terms containing the 4-form field in equation (15) and

find

I ⊗ (∇(h)
m −

1

2
∂mA) η −

1

2
∂n(A+ B)(I ⊗ γ n

m ) η = 0 . (21)

To solve this equation, we take now the freedom to choose the warp factor B appropri-

ately and rescale the spinor as

A = −B , η = e
A

2 η̂ (22)

yielding for η̂

(I ⊗∇(h)
m ) η̂ = 0 . (23)

So we have two equations, (20) and (23), that have to be satisfied simultaneously. Note,

in both equations η̂ is still a spinor of 11-d supergravity and we have now to decompose

it into a 4-spinor ε and a 7-spinor θ. Note also, equation (23) does not mean that the

7-spinor is covariantly constant! Only if we choose η̂ = ε ⊗ ξ, which is often used in

the literature, we could infer on a covariantly constant spinor θ, but this choice seems

to be consistent only for trivial fluxes and warp factors. For non-vanishing fluxes and

non-trivial warping, equation (20) would yield for η̂ = ε ⊗ ξ a Weyl constraint on ε

(γ̂5ε ∼ ε), but the 4-spinor should be a Majorana since the 11- as well as the 7-spinor

are both Majorana spinors. Therefore, we do not consider the direct product ansatz,

but instead decompose η̂ in a more general way (see also [20, 5])

η̂ =
[

∑

n

cn

n!
Ωa1···an

Γa1···an

]

ε⊗ θ ≡
∑

n

cn Ω(n) ε⊗ θ (24)

where the constants cn will be fixed later. Of course the Killing spinor η̂ parameterize

supersymmetry transformations and hence has to be globally well-defined. Assuming

the same for the reduced 4- and 7-spinor implies that the differential forms Ω(n) have to

be globally well-defined and assuming that we have at least one Killing spinor we can

construct them as in (5). If they are covariantly constant, equation (23) becomes an

equation for the 7-spinor ∇(h)
m θ = 0, which in turn ensures the covariantly constance of

the forms Ω. In this case the space described by the metric hmn has a holonomy group

inside G2. As we discussed in the previous section, the geometry of the space depends

now on the number of spinors restricting more or less the holonomy. It equals G2 if there

is just one spinor fulfilling this equation, otherwise it is SU(3), SU(2) or trivial if there
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are two, four or eight spinors, resp. Recall, the reduction of the holonomy was related to

the appearance of covariantly constant vectors yielding a factorization of the space into

R × X6, R3 × X4 or R7. We are interested in the case with just one Killing spinor and

hence there is no covariantly constant vector and the space does not factorize. Recall,

the 7-d Majorana condition for a commuting spinor θ allowed only for a 0-, 3-, 4- and

a 7-form, where the 4- and 7-form are the Hodge-dual of the 3- and 0-form. Using the

Γ-matrices in (2) we write for η̂ as

η̂ =
[

c0 + c3Ω
(3) + c4Ω

(4) + c7Ω
(7)

]

ε⊗ θ

=
[

(c0 − i c7γ̂
5) ⊗ I + (c3γ̂

5 + i c4) ⊗
1
3!
ϕmnpγ

mnp
]

ε⊗ θ
(25)

where ϕmnp = i θγmnpθ as introduced in (5). Note, this expression is also true if the

7-spinor and hence the 3-form are not covariantly constant with respect ∇(h)
m , we only

assumed the existence of exactly one Killing spinor θ on the 7-manifold. In fact inserting

(24) into (23) one finds that ∇(h)
m θ is proportional to the covariant derivative of the

differential forms. In order to explore the equations further one performs again the G2

decomposition using the projectors P7/14 and finds the single Killing spinor as solution

of equation (11). But equation (10), which was the projection of the spin connection

onto the 7, does not hold anymore and reflects exactly the appearance of non-trivial

G-structures which are also related to covariantly non-constant differential forms. Using

the projector constraint in (12) we find for (25)

η̂ =
[

(c0 − i c7γ̂
5) ⊗ I + i 7 (c3γ̂

5 + i c4) ⊗ I

]

ε⊗ θ

=
[

(c0 − 7c4)(I ⊗ I) − i (c7 − 7c3)(γ̂
5 ⊗ I)

]

ε⊗ θ .
(26)

With this expression, we have finally to look for solutions of (20) without imposing any

Weyl condition on the 4-spinor ε and get two equations: one proportional to I ⊗ I and

the other proportional to γ̂5 ⊗ I. The first one reads

(c0 − 7 c4) γ
n

m ∂nAθ =
1

12
i (c7 − 7 c3) e

3BFmθ (27)

and the other can be treated with the similar arguments which now follows. Contracting

this equation with the Majorana spinor θ and due to the arguments after equation (5)

we find a zero on the lhs and the rhs yields

(c7 − 7 c3)Fmnpqϕ
npq = 0 . (28)

On the other hand, if one multiplies (27) first with γl followed by the contraction with

θ gives after using the relation (18)

(c0 − 7 c4)ϕ
lmn∂nA =

1

12
i (c7 − 7 c3) e

3BFmpqrψ
pqrl
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which becomes after contraction with ϕklm (see eq. (9))

(c0 − 7 c4) ∂nA ∼ (c7 − 7 c3)Fnpqrϕ
pqr . (29)

Thus, this equation can be solved only if c0−7 c4 = 0 by supposing non-trivial fluxes and

warp factor. The second equation which is proportional to γ̂5 ⊗ I leads to the condition

c7−7 c3 = 0. These conditions however mean that the spinor η̂ in (26) is trivial. On the

other hand if ∂nA = 0 it follows that Fmnpqϕ
npq = Fmnpqψ

npqr = 0. Next one decomposes

the 4-form as 35 = 1+7+27 and finds that all components have to vanish identically.

That for constant warp factor the fluxes have to be trivial has been found also by other

authors, see e.g. [1, 5].

Thus, we come to the conclusion that it is not possible to turn on 4-form fluxes while

allowing for only one 7-spinor θ.

4 Discussion

In this paper we were interested in warp compactifications of M-theory on a 7-manifold

that yields a flat 4-d Minkowski space and preserve four supercharges. In the absence of

4-form fluxes this reduces the holonomy of the 7-manifold to G2 and if there are more

unbroken supercharges the holonomy group is further reduced. An obvious question is:

Starting from a given G2 manifold, can one turn on 4-form fluxes without changing the

topology of the 7-manifold? Our calculation showed that this is not possible. In fact,

the obstruction for 4-form fluxes was related to strong constraints coming from the fact

that the 7-manifolds allows for only one Killing spinor θ yielding only 3- and 4-forms

that are globally well-defined. Concretely, we considered a general decomposition of the

11-d spinor into a 4-spinor ε and 7-spinor θ. We assumed only one 7-spinor and showed

that the 11-d Killing spinor equations can be solved only for a trivial spinor (broken

supersymmetry) or trivial 4-form fluxes. This conclusion was reached under the further

assumption that the 4-d external space is flat, but it is known that 4-form fluxes can

be turned on if the 4-d space is anti de Sitter [20] and therefore our result can also

be interpreted that a non-trivial 4-form flux on a G2-manifold will always curve the

external space or breaks supersymmetry.

As next question one may ask: What happens if there are more 7-spinors, which

cannot be G2 singlets, but are singlets under the decomposition under SU(3) or under

SU(2)? With already two spinors θl one can build a Killing vector V ∼ i(θ1γmθ
2) and

incorporating this vector into the ansatz (24) allows in fact for consistent solutions of

the equations, which can be seen by repeating the calculations. But note, the existence

of a Killing vector means that the 7-manifold is effectively reduced to a 6-manifold and

it is known from 10-d string theory that there are warp compactifications to flat 4-d
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Minkowski space if one takes into account non-trivial SU(3) structures [14, 18, 16, 19]. In

fact, following the procedure done in [28] it is straightforward to the see the appearance

of torsion terms coming from the contraction of the 4-form with Killing vector, which

in fact gives exactly the NS-3-form in string theory. E.g. having two Killing spinors one

obtains in addition to one Killing vector also one 2-form, which is however not exact,

but: ∂[pΩmn] = −FmnpqV
q [28]; similar expression exist also for the other forms. Let

us also mention, that we would not see it as a G2 compactifications, since if one turns

off the fluxes the 7-manifold will have at most SU(3) holonomy, i.e. the geometry is

given by R ⊗ CY3. But let us stress, this case does not mean that the solution has

more supersymmetry in general! In the absence of fluxes one will of course have eight

unbroken supercharges, which correspond to an N=2, D=4 vacuum, but the presence

of fluxes may result into an additional constraint on the two 4-spinors yielding an N=1

vacuum. E.g. the solutions discussed in [9, 10] have exactly four unbroken supercharges

and corresponds to a M-theory warp compactification with non-trivial 4-form fluxes.

It would be interesting to work out in detail the relation of M-theory compactification

with fluxes and possible SU(3) structures, see also [34].

We conclude, in M-theory (warp) compactifications to flat 4-dimensional Minkowski

space, 4-form fluxes can be turned on only, if the 7-manifolds support at least two Killing

spinors θl yielding to a reduction to a 6-manifold with non-trivial SU(3) structures.
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