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ABSTRACT

We carefully analyze the supersymmetry algebra of closed strings and open strings in a

type IIB plane wave background. We use eight component chiral spinors, SO(8) Majorana-

Weyl spinors, in light-cone gauge to provide a useful basis of string field theory calculation in

the plane wave. We consider the two classes of D-branes, D±-branes, and give a worldsheet

derivation of conserved supercurrents for all half BPS D-branes preserving 16 supersymmetries

in the type IIB plane wave background. We exhaustively provide the supersymmetry algebra of

the half BPS branes as well. We also point out that the supersymmetry algebra distinguishes

the two SO(4) directions with relative sign which is consistent with the Z2 symmetry of the

string action.
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1 Introduction

The Penrose limit of the AdS5×S5 background in type IIB supergravity corresponds to a plane

wave solution [1],

ds2 = −2dx+dx− − µ2x2
I(dx+)2 + dxI

2, (1.1)

F+1234 = F+5678 = 2µ.

This implies a correspondence between type IIB string theory in the plane wave background

(1.1) and N = 4 supersymmetric Yang-Mills theory with large R-charge, in a sense as a part

of AdS5/CFT4 correspondence. Since the background (1.1) is one of the very few Ramond-

Ramond backgrounds on which string theory is exactly solvable [2, 3], one may have a genuine

hope to explicitly check the conjectured AdS/CFT correspondence beyond the supergravity

approximation on the string theory side. Indeed Berenstein, Maldacena and Nastase [4] suc-

ceeded in reproducing the string spectrum from perturbative super Yang-Mills theory, thereby

putting the duality on a firm ground at the free theory level. Subsequent developments using

the super Yang-Mills theory [5]-[12] and the light-cone string field theory [13]-[21] showed that

the duality is still valid even after the interactions both on the super Yang-Mills theory side

and on the string theory side are introduced.

D-branes can be described by boundary states of closed string state. The symmetries that

the boundary state preserves are thus the combinations of the closed string symmetries that

leave the boundary state invariant. Recently possible D-branes in the plane wave background

(1.1) were identified and their supersymmetries were classified [22]-[30]. In particular, Skenderis

and Taylor showed in [28, 29] that, although the kinematical supersymmetry descending from

the closed string is totally broken on a D+-brane [27, 30] (see section 2 for the definition of D±-

branes), a different kind of kinematical supersymmetry is nontrivially realized by incorporating

the worldsheet symmetries. We will study this kinematical supersymmetry too.

Since the plane wave background (1.1) allows a light-cone gauge choice and the string theory

in this background takes the simplest form in the light-cone gauge, the most straightforward

method for constructing the superstring interactions is to use the light-cone Green-Schwarz

formalism [2]. Since the original papers [31, 32, 33] on string field theory were using the

8-component spinors, SO(8) Majorana-Weyl spinors, it may be desirable to provide the su-

persymmetry algebra in this basis as a useful reference for string field theory calculation in

the plane wave, although detailed analysis had been done in [2, 3] for the closed string and

in [28, 29] for the open string using 16-component spinors, SO(9, 1) Majorana-Weyl spinors.

Thus we will exhaustively provide the supersymmetry algebras for both closed strings and open

strings in the plane wave background using the 8-component spinors.

As is well known the spectrum of light-cone hamiltonian of plane wave superstring is dis-

crete. As analyzed in [34] recently, the super Yang-Mills theory in a four-dimensional plane
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wave background has also a discrete spectrum of light-cone energy operator, so expected to be

most appropriate for establishing a precise correspondence with plane wave superstring and for

studying the holographic issues of the duality. Since the plane wave super Yang-Mills theory

is the low energy worldvolume action of probe D3-branes in the plane wave background (1.1)

and is the ground-state sector of the open string field theory which also has a discrete energy

spectrum, it is plausible that the plane wave super Yang-Mills theory including interactions

can be captured by the open superstring field theory defined on the probe D3-branes [35].

Furthermore the open-closed string duality [25, 30], being, probably, an underlying principle

of AdS/CFT duality, implies that the open string field theory possibly reproduces the corre-

sponding results of closed string field theory. For this purpose it will be useful to explicitly

construct the supersymmetry algebra for the open string in the plane wave background (1.1)

using 8-component spinors mostly used in the light-cone string field theory [31, 33].

This paper is organized as follows. In Sec. 2, we discuss the canonical quantization of

superstrings in the plane wave background and present the mode expansions of open strings

compatible with boundary conditions. In Sec. 3, we first analyze the supersymmetry algebra of

closed string to provide its explicit expressions in terms of 8-component spinors. We find that

the supersymmetry algebra distinguishes the two SO(4) directions with opposite sign consistent

with the Z2 symmetry of the string action [18]. We derive conserved supercurrents for all half

BPS D-branes preserving 16 supersymmetries in the type IIB plane wave background and

exhaustively provide the mode expansion of symmetry generators and supersymmetry algebra

for half BPS D-branes, including D-branes with worldvolume flux which were not studied in

[28, 29], using 8-component spinors. In Sec. 4, we briefly review our results and address some

other issues. In Appendix A, we explain our notations and definitions and give useful formula

used in this paper. In Appendix B, we provide some technical details on (anti-)commutation

relations for D+-branes. In Appendix C, we present how the kinematical supersymmetry of

D+-brane can be derived from the open string mode expansion.

2 Canonical Quantization of Superstrings in Plane Wave

The Green-Schwarz light-cone action in the plane wave background (1.1) describes eight free

massive bosons and fermions. In the light-cone gauge, X+ = τ , the action is given by

S =
1

2πα′p+

∫
dτ

∫ 2πα′|p+|

0
dσ

[1

2
∂+XI∂−XI −

1

2
µ2X2

I − iS̄(ρA∂A − µΠ)S
]

(2.1)

where ∂± = ∂τ ± ∂σ. Our notations and conventions are summarized in Appendix A. In this

paper we will take α = α′p+ for closed string and α = 2α′p+ for open string. We take the spinor

S as eight two-component Majorana spinors on the worldsheet Σ that transform as positive
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chirality spinors 8s under SO(8)1:

Sa =


 S1a

S2a


 , S̄a = SaT ρτ , (2.2)

where

ρτ =


 0 −1

1 0


 , ρσ =


 0 1

1 0


 . (2.3)

The presence of Π in the fermionic action breaks the symmetry from SO(8) to SO(4)×SO(4)′.

The equations of motion following from the action (2.1) take the form

∂+∂−XI + µ2XI = 0, (2.4)

∂+S1 − µΠS2 = 0, ∂−S2 + µΠS1 = 0. (2.5)

2.1 Closed string

First we analyze the closed string case. Detailed analysis using 16-component spinors had

been done in [2, 3] for the closed string and in [28, 29] for open strings. We will instead use

8-component spinors as in the original papers [31, 32, 33] on string field theory. This will be a

useful basis for light-cone string field theory and for open string analysis.

The general solutions to Eqs. (2.4) and (2.5) for the closed string are found to be2

XI(σ, τ) = cos µτxI
0 + sin µτ

pI
0

µ
+ i

∑

n 6=0

1

ωn
(ϕ1

n(σ, τ)α1I
n + ϕ2

n(σ, τ)α2I
n ), (2.6)

S1(σ, τ) = cos µτS1
0 + sin µτΠS2

0 +
∑

n 6=0

cn(ϕ1
n(σ, τ)S1

n + iρnϕ2
n(σ, τ)ΠS2

n),

S2(σ, τ) = cos µτS2
0 − sin µτΠS1

0 +
∑

n 6=0

cn(ϕ2
n(σ, τ)S2

n − iρnϕ1
n(σ, τ)ΠS1

n), (2.7)

where the basis functions ϕ1,2
n (σ, τ) are defined by

ϕ1
n(σ, τ) = e−i(ωnτ− n

|α|
σ), ϕ2

n(σ, τ) = e−i(ωnτ+ n

|α|
σ) (2.8)

and

ωn = sgn(n)
√

µ2 + n2/α2, ρn =
ωn − n/|α|

µ
, cn =

1
√

1 + ρ2
n

. (2.9)

1The spinors SA are two SO(8) Majorana-Weyl spinors satisfying the light-cone gauge. These spinors can

be obtained by the original SO(9, 1) Majorana-Weyl spinors θA satisfying γ̄+θA = 0, fixing the κ-symmetry.

As in (A.12), the fermionic light-cone gauge can be solved by taking SA = − 1

2
γ+γ̄−θA.

2In our following analysis the mode expansion of string fields will be performed for real fields. Thus the

reality of the field requires that ξ†n = ξ−n for any bosonic or fermionic n-th mode ξn.
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For canonical quantization let us introduce the canonical momenta

P I(σ, τ) =
1

2π|α|Ẋ
I(σ, τ), P Aa(σ, τ) =

i

2π|α|S
Aa(σ, τ), (2.10)

where ẊI = ∂xI

∂τ
. After removing the second class constraint in the fermionic part by introducing

the Dirac bracket, we get the following equal-time quantum (anti-)commutation relations

[XI(σ, τ), ẊJ(σ′, τ)] = i2π|α|δIJδ(σ − σ′), (2.11)

{SAa(σ, τ), SBb(σ′, τ)} = π|α|δabδABδ(σ − σ′). (2.12)

The above quantization gives the (anti-)commutation relations for the modes in (2.6) and (2.7):

[xI
0, p

J
0 ] = iδIJ , [αIA

n , αJB
m ] =

1

2
ωnδm+n,0δ

IJδAB, (2.13)

{SAa
n , SBb

m } =
1

2
δn+m,0δ

abδAB. (2.14)

2.2 Open string

Now we will discuss open strings living on a D-brane in the plane wave background (1.1).

Here we consider only static D-branes for simplicity. To describe a Dp-brane, we impose the

Neumann boundary conditions on (p − 1) coordinates and Dirichlet boundary conditions on

the remaining transverse coordinates:

∂σXr|∂Σ = 0, (2.15)

∂τX
r′|∂Σ = 0. (2.16)

For the fermionic coordinates, the appropriate boundary condition [36] is

S1|∂Σ = ΩS2|∂Σ. (2.17)

It turns out [28, 29, 30] that in the plane wave background there are two classes of maximally

supersymmetric Dp-branes, depending on the choice of Ω:

D− : ΠΩΠΩ = −1, D+ : ΠΩΠΩ = 1. (2.18)

The boundary conditions, D±, in (2.18) together with the fermionic equations of motion, (2.5),

imply [28] that

D− : ∂σS1|∂Σ = −Ω∂σS2|∂Σ, (2.19)

D+ : ∂σS1|∂Σ = (−Ω∂σS2 + 2µΠS2)|∂Σ. (2.20)
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The boundary condition for X− is determined by the Virasoro constraint

∂σX− = ∂τX
I∂σXI − i

2
(S1∂+S1 − S2∂−S2), (2.21)

from which one can see that the X− coordinate must satisfy the Neumann boundary condition

for both classes in (2.18).

Here we list the allowed choices for Ω consistent with each constraint in Eq. (2.18). For

D−-branes, there are the following possibilities [23, 24, 28, 30] (for the notation used below, see

Appendix A):

D3 : (m, n) = (2, 0), (0, 2),

D5 : (m, n) = (3, 1), (1, 3), (2.22)

D7 : (m, n) = (4, 2), (2, 4).

For D+-branes, there are the following possibilities [24, 28, 30]:

D1 : (m, n) = (0, 0),

D3 : (m, n) = (1, 1),

D5 : (m, n) = (4, 0), (2, 2), (0, 4), (2.23)

D7 : (m, n) = (3, 3),

D9 : (m, n) = (4, 4).

The quantization of open strings on D− and D+ branes is defined by the following equal-time

quantum (anti-)commutation relations

[XI(σ, τ), ẊJ(σ′, τ)] = iπ|α|δIJδ(σ − σ′), (2.24)

{SAa(σ, τ), SBb(σ′, τ)} =
1

2
π|α|δabδABδ(σ − σ′). (2.25)

For an open string, we have the boundary conditions on the fields, Eqs. (2.15)-(2.17). These

boundary conditions will be incorporated in the mode expansion of the fields.

2.2.1 D−-brane

We first discuss the quantization of open strings on D−-brane. The mode expansion of the

bosonic coordinates satisfying the boundary condition and the equation of motion is given by

Xr(σ, τ) = cos µτxr
0 + sin µτ

pr
0

µ
+ i

∑

n 6=0

1

ωn
αr

ne−iωnτ cos
nσ

|α| ,

Xr′(σ, τ) = xr′

0 (σ) +
∑

n 6=0

1

ωn
αr′

n e−iωnτ sin
nσ

|α| , (2.26)
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where the zero mode part, xr′

0 (σ), represents a D-brane position located either at the origin or

away from the origin and is given by

xr′

0 (σ) =
xr′

0

1 + eµ|α|π
(eµσ + eµ(|α|π−σ)). (2.27)

Similarly the mode expansion of the fermion is found to be

S1(σ, τ) = cos µτS0 − sin µτΩΠS0 +
∑

n 6=0

cn(ϕ1
n(σ, τ)ΩSn + iρnϕ2

n(σ, τ)ΠSn),

S2(σ, τ) = cos µτΩT S0 − sin µτΠS0 +
∑

n 6=0

cn(ϕ2
n(σ, τ)Sn − iρnϕ1

n(σ, τ)ΠΩSn). (2.28)

One can check that the mode expansion (2.28) satisfies the boundary condition (2.17) and

(2.19) as well as the equation of motion (2.5).

The commutation relations for the modes in Eqs. (2.26) and (2.28) are determined by the

field quantization in (2.24) and (2.25) to be respectively

[xr
0, p

s
0] = iδrs, [αI

n, αJ
m] = ωnδm+n,0δ

IJ , (2.29)

{Sa
n, Sb

m} =
1

4
δn+m,0δ

ab, (n, m ∈ Z). (2.30)

2.2.2 D+-brane

The mode expansion of the bosons is exactly the same as the D−-branes, Eq. (2.26), and for

the fermions we find that

S1(σ, τ) = cosh µσS0 + sinh µσΩΠS0 +
∑

n 6=0

cn(ϕ
1
n(σ, τ)S̃n + iρnϕ2

n(σ, τ)ΠSn),

S2(σ, τ) = cosh µσΩT S0 + sinh µσΠS0 +
∑

n 6=0

cn(ϕ
2
n(σ, τ)Sn − iρnϕ1

n(σ, τ)ΠS̃n), (2.31)

where

S̃n =
1

ωn

( n

|α|Ω − iµΠ
)
Sn. (2.32)

One can check that the mode expansion (2.31) satisfies the boundary conditions, Eqs. (2.17)

and (2.20), as well as the equation of motion, Eq. (2.5). For the D+-branes, the zero modes

of the fermions depend on the worldsheet space coordinate σ, and so there is no direct relation

with the zero modes of the closed string [28].

The anti-commutation relation of the modes for D+-branes is not trivial and some technical

details are given in Appendix B:

{Sa
0 , Sb

0} =
πµ|α|

4 sinh πµ|α|
(
δab cosh πµ|α| − (ΩΠ)ab sinh πµ|α|

)
, (2.33)

{Sa
n, Sb

m} =
1

4
δn+m,0δ

ab, (n, m 6= 0). (2.34)
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Note that the result (2.33) has the correct flat space limit, µ → 0, including coefficient. Using

the relation (2.32) for the nonzero mode S̃n, the following anti-commutation relations can be

derived from Eq. (2.34):

{S̃a
n, S̃b

m} =
1

4
δn+m,0δ

ab, (n, m 6= 0), (2.35)

{S̃a
n, Sb

m} =
1

4ωn

( n

|α|Ωab − iµΠab

)
δn+m,0. (2.36)

As shown in next section, for the D5-branes of type (4, 0) or (0, 4) to be supersymmetric, a

nontrivial flux of gauge field is necessarily turned on in the worldvolume. The inclusion of the

gauge field corresponds to the addition of the following boundary term

SB =
1

2πα′p+

∫
dτ

∫ 2πα′|p+|

0
dσF−r∂σXr =

µ

4πα′p+

∫

∂Σ
dτXrXr, (2.37)

where the Born-Infeld flux F−r is given by

F−r = µXr. (2.38)

This affects the Neumann boundary condition and the appropriate boundary condition turns

out to be [30]

∂σXr|∂Σ = µXr|∂Σ. (2.39)

The boundary coupling in Eq. (2.37) is indeed generated by the superpotential in the N = (2, 2)

worldsheet supersymmetric theory [27]. The mode expansion of the Neumann coordinates

Xr(σ, τ) is then given by

Xr(σ, τ) =

√
2πµ|α|

e2πµ|α| − 1
(xr

0 + pr
0τ)eµσ + i

∑

n 6=0

n

ωn(n − iµ|α|)α
r
ne−iωnτ cos

nσ

|α|

+i
∑

n 6=0

µ|α|
ωn(n − iµ|α|)α

r
ne−iωnτ sin

nσ

|α| . (2.40)

The commutation relation between the modes is given by Eq. (2.29) as usual. See Appendix

B for the derivation.

3 Supersymmetry Algebra in Plane Wave

We now study the basic symmetry algebra of the light-cone superstring in the plane wave de-

scribed by the action (2.1). The thirty bosonic symmetries are generated by the ten translation

generators, P− = H, P+, P I , the eight boost generators, J+I , the six SO(4) rotation gener-

ators, J ij , and the six SO(4)′ rotation generators, J i′j′. There are also 32 supersymmetries.

In the light-cone gauge the 32 components of the supersymmetries decompose into ‘dynamical’
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and ‘kinematical’ components. The dynamical supercharges, Q−A
ȧ , commutes with the light-

cone hamiltonian, but the kinematical supercharges, Q+A
a , for closed strings and D−-branes do

not due to a fermionic mass term. However we will show that all supersymmetries commute

with the hamiltonian for D+-branes since the fermionic mass term identically vanishes.

Using the Nöther method, the symmetry generating charges can be obtained from conserved

currents. For the superstring in the plane wave background described by the action (2.1), the

super-Nöther charges were obtained by Metsaev [2]:

P+ = p+, P I =
1

2πα′p+

∫ 2πα′|p+|

0
dσ

(
ẊI cos µτ + µXI sin µτ

)
, (3.1)

2p+H =
1

2πα′p+

∫ 2πα′|p+|

0
dσ

[1

2
(Ẋ2

I + X ′
I
2
+ µ2X2

I ) + iSAṠA
]
, (3.2)

J+I =
1

2πα′

∫ 2πα′|p+|

0
dσ

(ẊI

µ
sin µτ − XI cos µτ

)
, (3.3)

J ij =
1

2πα′p+

∫ 2πα′|p+|

0
dσ

[
(X iẊj − XjẊ i) − i

2
SAγijSA

]
, (3.4)

J i′j′ =
1

2πα′p+

∫ 2πα′|p+|

0
dσ

[
(X i′Ẋj′ − Xj′Ẋ i′) − i

2
SAγi′j′SA

]
, (3.5)

Q+ =

√
2p+

2πα′p+

∫ 2πα′|p+|

0
dσeiµτΠ(S1 + iS2), (3.6)

Q̄+ =

√
2p+

2πα′p+

∫ 2πα′|p+|

0
dσe−iµτΠ(S1 − iS2), (3.7)

√
2p+Q−1 =

1

2πα′p+

∫ 2πα′|p+|

0
dσ

(
∂−XIγIS1 − µXIγ

IΠS2
)
, (3.8)

√
2p+Q−2 =

1

2πα′p+

∫ 2πα′|p+|

0
dσ

(
∂+XIγIS2 + µXIγ

IΠS1
)
, (3.9)

where X ′
I = ∂XI

∂σ
.

In the light-cone formalism, the generators of the basic superalgebra can be split into the

kinematical generators

P+, P I , J+I , J ij, J i′j′, Q+
a , Q̄+

a , (3.10)

and the dynamical generators

H, Q−1
ȧ , Q−2

ȧ . (3.11)

Note that the kinematical supersymmetry generators have SO(8) positive chirality while the

dynamical supersymmetry generators have SO(8) negative chirality. The kinematical genera-

tors P+, P I , J+I , Q+
a , Q̄+

a depend only on the zero modes since they are effectively linear

in fields. Now we will study the supersymmetry algebra of the symmetry generating charges,

(3.1)-(3.9), for the closed and the open strings, using the mode expansion given in the previous

section.
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3.1 Closed string

Using the mode expansion in Eqs. (2.6) and (2.7), we get

P+ = p+, P I = pI
0, J+I = −xI

0p
+, (3.12)

Q+ =
√

2p+(S1
0 + iS2

0) =
√

2p+S+
0 , Q̄+ =

√
2p+(S1

0 − iS2
0) =

√
2p+S−

0 . (3.13)

The rotation generators JIJ = (J ij ∈ SO(4), J i′j′ ∈ SO(4)′) are given by

JIJ = xI
0p

J
0 − xJ

0pI
0 −

i

2
SA

0 γIJSA
0 − i

∑

n 6=0

{ 1

ωn

(αAI
−nαAJ

n − αAJ
−nαAI

n ) +
1

2
SA
−nγ

IJSA
n

}
. (3.14)

For the dynamical generators, we have

2p+H =
1

2
(p2

0I + µ2x2
0I) + 2iµS1

0ΠS2
0 +

∑

n 6=0

{
αAI
−nαAI

n + ωnS
A
−nSA

n

}
, (3.15)

√
2p+Q−1 = p0Iγ

IS1
0 − µx0Iγ

IΠS2
0 + 2

∑

n 6=0

{
cnα1I

−nγIS1
n +

iµ

2cnωn
α2I
−nγ

IΠS2
n

}
, (3.16)

√
2p+Q−2 = p0Iγ

IS2
0 + µx0Iγ

IΠS1
0 + 2

∑

n 6=0

{
cnα2I

−nγIS2
n − iµ

2cnωn

α1I
−nγ

IΠS1
n

}
. (3.17)

Now, from Eqs. (3.12)-(3.17), it is straightforward to derive the supersymmetry algebra

of the closed string in the plane wave background [3] using the (anti-)commutation relations,

(2.13) and (2.14). (Or one can directly calculate it from the super-Nöther charges, Eqs. (3.1)-

(3.9), using the (anti-)commutation relations, (2.11) and (2.12).) Here we will present only the

non-vanishing (anti-)commutation relations involved with odd generators, Q± and Q̄± = (Q±)†,

where Q−
ȧ = Q−1

ȧ + iQ−2
ȧ and Q̄−

ȧ = Q−1
ȧ − iQ−2

ȧ : 3

[J ij , Q±] =
i

2
γijQ±, [J i′j′, Q±] =

i

2
γi′j′Q±, (3.18)

[J+I , Q−] = − i

2
γIQ+, (3.19)

[P I , Q−] =
µ

2p+
γIΠQ+, [H, Q+] = − µ

2p+
ΠQ+, (3.20)

together with the commutators that follow from these by complex conjugation and

{Q+
a , Q̄+

b } = δab2P
+, (3.21)

{Q+
a , Q̄−

ȧ } = γI
aȧP

I + i
µ

p+
(ΠγI)aȧJ

+I , (3.22)

{Q−
ȧ , Q̄−

ḃ
} = δȧḃ2H − i

µ

2p+
(γijΠ)ȧḃJ

ij + i
µ

2p+
(γi′j′Π)ȧḃJ

i′j′. (3.23)

3For the commutation relations between even generators, see [2, 3].
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The supersymmetry algebra (3.23) is particularly of importance in describing string interactions

in light-cone string field theory formalism [13]. Note that the supersymmetry algebra in (3.23)

distinguishes the two SO(4) directions with opposite sign.4 This sign flip may be read off from

Eq. (2.13) in [2] or Eq. (2.59) in [3] since Πȧḃ = −Π′
ȧḃ

in the space with SO(8) negative chirality

as explained in Appendix A. The dynamical supersymmetry algebra in Eq. (3.23) is consistent

with the Z2 symmetry which interchanges simultaneously the two SO(4) directions [18]

Z2 : (x1, x2, x3, x4) ↔ (x5, x6, x7, x8). (3.24)

This should be the case since the worldsheet string action (2.1) and the hamiltonian H are

Z2 invariant. Indeed the plane wave supergravity spectrums in [3] explicitly respect this Z2

symmetry (see also footnote 2 in [18]). The presence of the relative sign in Eq. (3.23) is different

from [13, 20] although these parts are not corrected by the interaction, so do not affect their

results.

3.2 Open string

In the presence of D-brane of type (m, n) in the plane wave background (1.1), the symmetries of

open string on the D-branes are further broken by the boundary conditions of the open string.

First of all, the translation and the boost to the transverse directions of D-brane, generated by

P r′ and J+r′, are no longer the symmetries of open string modes. Furthermore the rotational

symmetry SO(4)×SO(4)′ is more broken to SO(m)×SO(4−m)×SO(n)×SO(4−n). Thus

we will get Jrs′ = 0 as expected.5

The supersymmetry breaking is more complicated depending on a specific boundary con-

dition, that is, D± boundary conditions. It was shown in [28, 29] that D−-branes preserve 8

kinematical and 8 dynamical supersymmetries and D+-branes preserve 8 kinematical super-

symmetries regardless of location. However, it was conjectured in [30] that, among D+-branes,

D1-branes and D5-branes of type (4, 0) or (0, 4) only preserve 8 dynamical supersymmetries.

Here we will give a worldsheet derivation for this conjecture.

Since the open string action is just defined by the closed string action imposed the open

string boundary conditions (2.15) and (2.17), the super-Nöther charges of an open string will

be given by a subset of the symmetries of the closed string action which are compatible with

the open string boundary conditions. Due to the boundary condition (2.17), it turns out that

4In order to derive Eq. (3.23), one may use the formula, (A.14), (A.17), and (A.19). The relative sign is

indeed due to Eqs. (A.17) and (A.19).
5However, the translation and the boost generated by P r

′

and J+r
′

are still the symmetries of the action (2.1)

and the isometry of the target spacetime. Thus the symmetry transformation by the broken generators, P r
′

and

J+r
′

as well as Jrs
′

, results in new D-branes, symmetry related D-branes, which are in general time-dependent

branes. See [28, 29] for a detailed discussion on the symmetry related D-branes.
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the conserved dynamical supercharge is given by the combination

q− = Q−2 − ΩT Q−1, (3.25)

or equivalently,

q− = Q−1 − ΩQ−2. (3.26)

Using the equations of motion, Eqs. (2.4) and (2.5), it is not difficult to show that the dynamical

supercharge density q−τ in Eq. (3.25) satisfies the following conservation law

∂q−τ
∂τ

= −∂q−σ
∂σ

, (3.27)

where

q−σ =

√
1

2p+

(
(∂τX

rγrΩT + µXrγrΠ)(S1 − ΩS2) − (∂τX
r′γr′ΩT − µXr′γr′Π)(S1 + ΩS2)

−∂σXrγrΩT (S1 + ΩS2) + ∂σXr′γr′ΩT (S1 − ΩS2)
)

(3.28)

for D−-branes and

q−σ =

√
1

2p+

(
−(∂σXrγrΩT − µXrγrΠ)(S1 + ΩS2) + (∂σXr′γr′ΩT + µXr′γr′Π)(S1 − ΩS2)

+∂τX
rγrΩT (S1 − ΩS2) − ∂τX

r′γr′ΩT (S1 + ΩS2)
)

(3.29)

for D+-branes. The open string boundary conditions, (2.15) and (2.17), imply that, in the case

of D−-branes,

q−σ |∂Σ =

√
2

p+
µ(Xr′γr′ΠS1)|∂Σ, (3.30)

while, for D+-branes,

q−σ |∂Σ =

√
2

p+
(∂σXrγrΩT S1 − µXrγrΠS1)|∂Σ. (3.31)

Thus, in order for the dynamical supercharge q− = 1
π|α|

∫
dσq−τ in Eq. (3.25) or Eq. (3.26) to

be conserved, the Dirichlet coordinates of D−-branes should satisfy

Xr′|∂Σ = 0, ∀ r′ (3.32)

and the Neumann coordinates of D+-branes should satisfy

(∂σXrΩT S1 − µXrΠS1)|∂Σ = 0, ∀ r. (3.33)

One can see from Eq. (3.32) that D−-branes located at a constant transverse position xr′

0

superficially appear to break all dynamical supersymmetries, and the violating terms vanish

11



when the transverse position is set to zero, xr′

0 = 0. However it can be shown [28] that the

broken dynamical supersymmetries can be restored by incorporating a worldsheet symmetry

realized in the action (2.1). We will explain along the line given in [28] how to use the worldsheet

symmetry to restore the dynamical supersymmetry.

The superstring action (2.1) in light-cone gauge is quadratic in the fields. This peculiar

property implies that it is invariant up to boundary terms under a shift of the field by a

parameter that satisfies the free field equation. For definiteness, let us consider an arbitrary

shift of the fields

δXI(σ, τ) = ηI(σ, τ), δSA(σ, τ) = εA(σ, τ). (3.34)

Under the transformation, the action (2.1) changes as follows

δS = − 1

2πα′p+

∫
dτ

∫ 2πα′|p+|

0
dσ

(
XI(∂+∂−ηI + µ2ηI) + 2iS̄(ρA∂A − µΠ)ε

)

− 1

2πα′p+

∫

∂Σ
dτ

(
XI∂σηI + iS1(ε1 − Ωε2)

)
. (3.35)

For open strings, we can get a new symmetry corresponding to the shift of the fields, Eq. (3.34),

if the parameters ηI and εA satisfy the free field equations

∂+∂−ηI + µ2ηI = 0, (3.36)

(ρA∂A − µΠ)ε = 0, (3.37)

as well as the following boundary conditions 6

∂σηr|∂Σ = 0, (3.38)

∂τη
r′|∂Σ = 0, (3.39)

ε1|∂Σ = Ωε2|∂Σ. (3.40)

Note that both the equations of motion and the above boundary conditions are identical to

those satisfied by the original fields. For closed strings, the transformation (3.34) is just a

trivial field redefinition.

This mechanism can be used to restore the broken dynamical supersymmetry of D−-branes

located away from the origin. In this case one can combine a closed string transformation with

a transformation of the form (3.34) to obtain a good symmetry of the open string. In this way

one can find modified transformation rules by the use of worldsheet symmetries that lead to

a conserved charge [28, 29]. Taking into account the extra worldsheet symmetry, the on-shell

conserved current is actually the same as the current for the brane at origin, but with Xr′(σ, τ)

6For D5-brane case with the boundary term (2.37), the boundary variation for Nuemann coordinates is

shifted as ∂σηr → ∂σηr − µηr and the boundary condition is instead ∂σηr|∂Σ = µηr|∂Σ.

12



replaced by (Xr′(σ, τ) − xr′

0 (σ)) where xr′

0 (σ) is given by Eq. (2.27). Thus the corresponding

charge expressed in terms of oscillators is exactly the same as that for the brane at the origin.

This immediately implies that the supersymmetry algebras are also the same.

On the other hand, one can not use the worldsheet symmetry to restore some apparently

broken dynamical supersymmetry of D+-branes since the symmetry breaking terms are now

involved with Neumann coordinates as seen in Eq. (3.33).7 Only special classes of D+-branes

allow the condition (3.33). These are D1-branes in which, by definition, Xr = 0 for all r and D5-

branes of type (4, 0) or (0, 4) with the Born-Infeld flux (2.38) where ΩT S1 = ΠS1. Remaining

D+-branes can not satisfy the condition (3.33) and thus the dynamical supersymmetry is not

conserved.

Let us decompose a generic field Ψ(σ, τ) into a zero mode part Ψ0(σ, τ) and a non-zero mode

part Ψ̃(σ, τ). As one can see from the explicit mode expansions in Sec. 2, the zero mode part

Ψ0(σ, τ) separately satisfies the field equations, Eqs. (2.4)-(2.5), and the boundary conditions,

Eqs. (2.15)-(2.17). Similar consideration applied to Eq. (3.35) thus leads to

S[Ψ(σ, τ)] = S[Ψ̃(σ, τ)]. (3.41)

Since we are interested only in the on-shell values of super-Nöther charges, Eq. (3.41) implies

that a Nöther charge JG can also be decomposed into a zero mode part JG
0 and a non-zero mode

part J̃G, that is JG = JG
0 + J̃G. In particular the super Nöther charges J̃G can be obtained

by applying the same Nöther method to S[Ψ̃(σ, τ)], which just gives the same expressions with

replacement, Ψ(σ, τ) → Ψ̃(σ, τ). After we isolate zero mode parts in this way which possibly

contain non-periodic functions, we can apply a periodic doubling of open strings [37] for the

remaining non-zero mode parts since they contain only periodic functions. The doubling trick

will be useful in the actual calculation.

3.2.1 D−-brane

In order to derive the super-Nöther charges in terms of open string modes, we will use a proper

doubling of the interval [0, π|α|] to [0, 2π|α|], as done in [23], such that all the classical solutions

satisfy the open string boundary conditions for the interval [0, π|α|] and periodic boundary

conditions for [0, 2π|α|]. The hamiltonian H for a D-brane located away from the origin does

depend on the Dirichlet zero modes xr′

0 (σ), so we first isolate the part, denoted as ∆H , for the

reason explained above and directly calculate it:

2p+∆H =
1

2πα

∫ π|α|

0
dσ(x′ 2

0r′ + µ2x2
0r′),

=
µ

πα

eπµ|α| − 1

eπµ|α| + 1
x2

0r′ . (3.42)

7An essential difference between a Dirichlet coordinate Xr
′

(σ, τ) and a Neumann coordinate Xr(σ, τ) is that

Xr
′|∂Σ at boundary depends only on zero modes xr

′

0 , but Xr|∂Σ does on all modes, as proved by Eq. (2.26).

13



For remaining parts, we will use the doubling trick.

It is then straightforward to get the expressions of the super-Nöther charges in terms of the

mode expansions in Eqs. (2.26) and (2.28). The result is [23]

P+ = p+, P r = pr
0, J+r = −xr

0p
+, (3.43)

Q+ =
√

2p+(1 + iΩT )S0, Q̄+ =
√

2p+(1 − iΩT )S0, (3.44)

Jrs = xr
0p

s
0 − xs

0p
r
0 − iS0γ

rsS0 − i
∑

n 6=0

{ 1

2ωn
(αr

−nαs
n − αs

−nαr
n) + S−nγrsSn

}
, (3.45)

Jr′s′ = −iS0γ
r′s′S0 − i

∑

n 6=0

{ 1

2ωn
(αr′

−nα
s′

n − αs′

−nαr′

n ) + S−nγr′s′Sn

}
, (3.46)

2p+H = 2p+∆H +
1

2
(p2

0r + µ2x2
0r) − 2µiS0ΩΠS0 +

∑

n 6=0

{1

2
αI
−nαI

n + 2ωnS−nSn

}
, (3.47)

√
2p+Q−1 = pr

0γ
rS0 + µxr

0γ
rΩΠS0 −

∑

n 6=0

{
cnαI

−nΩγISn − iµ

2cnωn
αI
−nγIΠSn

}
, (3.48)

√
2p+Q−2 = pr

0γ
rΩT S0 + µxr

0γ
rΠS0 +

∑

n 6=0

{
cnαI

−nγISn − iµ

2cnωn
αI
−nΩT γIΠSn

}
, (3.49)

where Jrs ∈ SO(m) or SO(n) and Jr′s′ ∈ SO(4 − m) or SO(4 − n). Note that Q+ and Q̄+ as

well as Q−1 and Q−2 are not independent of but are related to each other since

Q+ + Q̄+ + iΩ(Q+ − Q̄+) = 0, Q−1 + ΩQ−2 = 0. (3.50)

Thus we take the following independent supercharges, which are preserved supersymmetries for

D−-branes as shown before,

q+ =
1

2

(
Q+ + Q̄+ − iΩ(Q+ − Q̄+)

)
= 2

√
2p+S0, (3.51)

q− = Q−2 − ΩT Q−1 = 2Q−2. (3.52)

Similarly we present only the non-vanishing (anti-)commutation relations involved with the

odd generators, q±:

[Jrs, q±] =
i

2
γrsq±, [Jr′s′ , q±] =

i

2
γr′s′q±, (3.53)

[J+r, q−] =
i

2
ΩT γrq+, (3.54)

[P r, q−] = −i
µ

2p+
γrΠq+, [H, q+] = i

µ

2p+
ΩΠq+, (3.55)

{q+
a , q+

b } = δab2P
+, (3.56)

{q+
a , q−ȧ } = (Ωγr)aȧP

r − µ

p+
(Πγr)aȧJ

+r, (3.57)
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{q−ȧ , q−
ḃ
} = δȧḃ2(H − ∆H) +

µ

2p+

(
(γrs

I ΠΩ)ȧḃJ
rs
I + (γr′s′

I ΠΩ)ȧḃJ
r′s′

I

)

− µ

2p+

(
(γrs

IIΠΩ)ȧḃJ
rs
II + (γr′s′

II ΠΩ)ȧḃJ
r′s′

II

)
, (3.58)

where Jrs
I ∈ SO(m), Jr′s′

I ∈ SO(4 − m), Jrs
II ∈ SO(n), and Jr′s′

II ∈ SO(4 − n). Note that the

open string supersymmetry algebra in (3.58) also distinguishes the two SO(4) directions with

relative sign. The supersymmetry algebra (3.58) shows that the BPS bound is saturated by

the states with energy ∆H . This implies that the brane located away from the origin does not

tend to move towards the origin [29].

3.2.2 D+-brane

As identified by Skenderis and Taylor [28, 29], the open strings on D+-brane preserve a different

kind of kinematical supersymmetries not descending from the closed string. 8 The conserved

Nöther current is

q+
τ =

√
2p+

√√√√ πµ|α|
sinh πµ|α| e

µ(σ− 1

2
π|α|)ΩΠ(S1 + ΩS2), (3.59)

q+
σ =

√
2p+

√√√√ πµ|α|
sinh πµ|α| e

µ(σ− 1

2
π|α|)ΩΠ(S1 − ΩS2). (3.60)

It is simple to check that
∂q+

τ

∂τ
+

∂q+
σ

∂σ
= 0, (3.61)

using the equations of motion (2.5) and that

q+
σ |∂Σ = 0. (3.62)

This together with the current conservation implies that the charge

q+ =
1

π|α|
∫ π|α|

0
dσ q+

τ (3.63)

is conserved and in particular all non-zero modes cancel against each other. In Appendix C, we

will directly derive the kinematical supercurrent (3.59) from the open string mode expansion.

Using the expression for the supercharges of closed string, Eqs. (3.8)-(3.9), we showed

that half of the dynamical supersymmetries are preserved by D1-branes and D5-branes of type

(4, 0) or (0, 4) only. For the supersymmetric D+-branes, the Ω matrices in Eq. (A.16) are the

following:

D1-brane of type (0,0) : Ωab = δab, Ωȧḃ = δȧḃ, (3.64)

D5-brane of type (4,0) : Ωab = Πab = Π′
ab, Ωȧḃ = Πȧḃ = −Π′

ȧḃ
, (3.65)

D5-brane of type (0,4) : Ωab = Π′
ab = Πab, Ωȧḃ = Π′

ȧḃ
= −Πȧḃ. (3.66)

8We thank K. Skenderis and M. Taylor for related discussions.
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Since the nature of the mode expansion depends sensitively on the particular branes on

which the open string terminates, we will discuss the supersymmetry algebra case by case. First

we will discuss D1-brane. Since the mode expansion of bosonic fields in this case is exactly

the same as that of D−-branes except for Xr(σ, τ) = 0, it is sufficient to newly calculate the

fermionic parts only. Using the methodology mentioned in Eq. (3.41), it is straightforward to

calculate the hamiltonian for D1-brane and the result is

2p+H = 2p+∆H +
∑

n 6=0

{1

2
αI
−nαI

n + 2ωnS−nSn

}
, (3.67)

Note that the open string mass term, S0ΩΠS0, is absent, so the ground states form a degenerate

supermultiplet while the ground state of the open string for D−-brane is an unmatched boson

due to the mass term. Similarly, one can obtain the mode expansion for the rotation generators:

Jr′s′ = −iŜ0γ
r′s′Ŝ0 − i

∑

n 6=0

{ 1

2ωn
(αr′

−nαs′

n − αs′

−nαr′

n ) + S−nγr′s′Sn

}
, (3.68)

where Ŝ0 is defined by Eq. (C.3) and their anti-commutation relation is given by Eq. (C.4).

The conserved dynamical supersymmetry is given by (3.25) and, in the case of D1-brane, it

is of the form
√

2p+q− =
√

2p+(Q−2 − Q−1)

=
1

π|α|
∫ π|α|

0
dσ

(
ẊIγ

I(S2 − S1) + X ′
Iγ

I(S1 + S2) + µXIγ
IΠ(S1 + S2)

)
.(3.69)

This expression coincides with [28, 29, 30]. The explicit mode expansion of the supercharge

(3.69) is then found to be

√
2p+q− = 2µ

√√√√2 tanh π
2
µ|α|

πµ|α| xr′

0 γr′Ŝ0

+
∑

n 6=0

(
cnαr′

−nγr′(Sn + S̃n) − iµ

2cnωn
αr′

−nγr′Π(Sn − S̃n)
)
. (3.70)

Note that the dynamical supersymmetries in this case are preserved regardless of transverse

location [28].

The supersymmetry algebra for D1-brane is closed where P r = J+r = 0 identically:

[Jr′s′, q±] =
i

2
γr′s′q±, (3.71)

[H, q±] = 0, (3.72)

{q+
a , q+

b } = δab2P
+, (3.73)

{q+
a , q−ȧ } =

√
2p+

√√√√2µ tanh π
2
µ|α|

π|α| xr′

0 γr′

aȧ, (3.74)

{q−ȧ , q−
ḃ
} = δȧḃ2H. (3.75)
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Now we will consider the D5-brane of type (0,4) for definiteness which presumably represents

the Penrose limit of a baryon vertex (the (4,0) brane can be treated similarly). In this case the

boundary term (2.37) contributes to the hamiltonian which is now given by

2p+H =
1

π|α|
∫ π|α|

0
dσ

[1

2
Ẋ2

r +
1

2
(∂σXr − µXr)

2 +
1

2
(Ẋ2

r′ + X ′
r′

2
+ µ2X2

r′) + iSAṠA
]
. (3.76)

Since the mode expansion in this case is essentially the same as the case of D1-brane except for

the Neumann coordinates, Xr(σ, τ) in Eq. (2.40), it is sufficient to newly calculate the parts

involved with the Neumann coordinates. The result for the hamiltonian is

2p+H = 2p+∆H +
1

2
p2

0r +
∑

n 6=0

{1

2
αI
−nαI

n + 2ωnS−nSn

}
. (3.77)

Similarly, for the rotation generators, we get

Jrs = xr
0p

s
0 − xs

0p
r
0 − iŜ0γ

rsŜ0 − i
∑

n 6=0

{ 1

2ωn

(αr
−nαs

n − αs
−nαr

n) + S−nγrsSn

}
, (3.78)

Jr′s′ = −iŜ0γ
r′s′Ŝ0 − i

∑

n 6=0

{ 1

2ωn
(αr′

−nαs′

n − αs′

−nαr′

n ) + S−nγr′s′Sn

}
. (3.79)

For open strings on D5-brane with the Born-Infeld flux (2.38), the preserved dynamical

supersymmetry is q− = (Q−2 − ΩT Q−1). For the (0, 4) brane, for example, the dynamical

supercharge is given by

√
2p+q− =

√
2p+(Q−2 + ΠQ−1)

= 2pr
0γ

rΠŜ0 + 2µ

√√√√2 tanh π
2
µ|α|

πµ|α| xr′

0 γr′ΠŜ0

+2
∑

n 6=0

{
cnαI

−nγISn +
iµ

2cnωn
αI
−nΠγIΠSn

}
. (3.80)

The supersymmetry algebra is closed as in D1-brane:

[Jrs, q±] =
i

2
γrsq±, [Jr′s′, q±] =

i

2
γr′s′q±, (3.81)

[J+r, q−] = − i

2
γrΠq+, (3.82)

[P r, q±] = [H, q±] = 0, (3.83)

{q+
a , q+

b } = δab2P
+, (3.84)

{q+
a , q−ȧ } = (Πγr)aȧP

r +
√

2p+

√√√√2µ tanh π
2
µ|α|

π|α| xr′

0 (Πγr′)aȧ, (3.85)

{q−ȧ , q−
ḃ
} = δȧḃ2H. (3.86)
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Note that the supersymmetry algebra for q− of D+-branes does not contain the angular mo-

mentum parts and all the supersymmetries commute with the light-cone hamiltonian unlike

D−-branes. Consequently the vacuum for D+-branes is degenerate, containing eight bosons

and eight fermions as in flat space, and forms a supermultiplet. The vacuum for D−-branes is,

however, a singlet under the q− supersymmetry and q+ is a spectrum generating operator.

4 Discussion

In this paper we carefully analyzed the supersymmetry algebra of plane wave superstrings. We

found that the supersymmetry algebra of closed string respects the SO(4)× SO(4)′ ×Z2 sym-

metry where the Z2 exchanges the first SO(4) with the second SO(4)′. We gave a worldsheet

derivation for conserved supersymmetries, from which we showed that half of the dynamical

supersymmetries are preserved by D1-branes and D5-branes of type (4, 0) or (0, 4) only among

D+-branes. In addition we exhaustively analyzed the supersymmetry algebra of open strings

on half BPS D-branes, both D−-branes and D+-branes. We showed that the algebra is closed

including a new kind of kinematical supersymmetry restored by incorporating worldsheet sym-

metry suggested by Skenderis and Taylor [28, 29] and all the supersymmetries for D+-branes

commute with the light-cone hamiltonian unlike D−-branes. Throughout this paper we used

the 8-component spinors, SO(8) Majorana-Weyl spinors, so we hope the supersymmetry al-

gebras presented here will be useful for some string field theory calculation in the plane wave

background.

In this paper we considered only open strings whose end points are attached on the same

D-branes. One may consider open strings connecting Dp-Dp′ branes, p-p′ strings, in the plane

wave background. The p-p′ string was analyzed in [25, 30] by the boundary state description

and the computation of cylinder diagrams, mainly for instantonic branes. It will be interesting

to explicitly study the supersymmetry algebra of p-p′ strings as done in this paper, since these

open strings, especially being BPS states, are dual to a defect conformal field theory in a plane

wave background [38, 39, 24]. We will report this result elsewhere [40].
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Appendix

A Notations, Definitions and Useful Formula

The conventions for the indices are:

I, J, K, · · · = 1, · · · , 8: SO(8) vector indices,

a, b, c, · · · = 1, · · · , 8: SO(8) spinor indices with positive chirality,

ȧ, ḃ, ċ, · · · = 1, · · · , 8: SO(8) spinor indices with negative chirality,

i, j, k, · · · = 1, · · · , 4: SO(4) vector indices,

i′, j′, k′, · · · = 5, · · · , 8: SO(4)′ vector indices.

A, B = 1, 2: worldsheet (spinor, vector, etc.) indices.

In this paper we consider a Dp-brane of type (m, n), m + n = p − 1, with m Neumann

directions in SO(4) and n Neumann directions in SO(4)′. Thus we distinguish the Neumann

directions and the Dirichlet directions with indices:

r, s, t, · · · = 1, · · · , m, 5, · · · , 4 + n: vector indices in Neumann directions,

r′, s′, t′, · · · = m + 1, · · · , 4, 5 + n, · · · , 8: vector indices in Dirichlet directions.

The spacetime metric is ηµν = (−1, +1, · · · , +1) where µ, ν are SO(9, 1) vector indices. We

decompose Xµ into the light-cone and transverse coordinates: Xµ = (X+, X−, XI) where

X± =
1√
2
(X0 ± X9). (A.1)

The worldsheet metric is ηAB = (−1, +1) where A, B = τ, σ.

We adopt the chiral representation for SO(9, 1) Dirac matrices Γµ used in [2, 3]

Γµ =
(

0 γµ

γ̄µ 0

)
(A.2)

where the 16 × 16 matrices, γµ = (γµ)αβ = (1, γI , γ9), γ̄µ = (γ̄µ)αβ = (−1, γI , γ9), α, β =

1, · · · , 16, satisfy

γµγ̄ν + γν γ̄µ = 2ηµν = γ̄µγν + γ̄νγµ. (A.3)

The SO(9, 1) chirality matrix Γ11 ≡ Γ0 · · ·Γ9 is given by

Γ11 =
(

116 0
0 −116

)
, (A.4)

γ0γ̄1 · · · γ8γ̄9 = 116,

γ̄0γ1 · · · γ̄8γ9 = −116.

We further assume the following block decomposition for γI

γI =
(

0 γI
aȧ

γ̃I
ȧa 0

)
(A.5)
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where 8 × 8 matrices, γI
aȧ, γ̃I

ȧa = (γIT
)ȧa, satisfy

γI
aȧγ̃

J
ȧb + γJ

aȧγ̃
I
ȧb = 2δIJδab,

γ̃I
ȧaγ

J
aḃ

+ γ̃J
ȧaγ

I
aḃ

= 2δIJδȧḃ. (A.6)

Since we use SO(8) chiral spinors, we take the SO(8) chirality matrix γ ≡ γ1γ̄2 · · · γ7γ̄8 = γ0γ̄9

as

γ =
(

18 0
0 −18

)
. (A.7)

We use the following definitions

Πab = γ1γ̃2γ3γ̃4, Πȧḃ = γ̃1γ2γ̃3γ4, (A.8)

Π′
ab = γ5γ̃6γ7γ̃8, Π′

ȧḃ
= γ̃5γ6γ̃7γ8. (A.9)

Due to the normalization (A.7), Πab = Π′
ab, Πȧḃ = −Π′

ȧḃ
. Note that the matrix Π is symmetric

and traceless and Π2 = 1. We define the antisymmetrized products of gamma matrices, e.g.,

γIJ
ab =

1

2
(γI

aȧγ̃
J
ȧb − γJ

aȧγ̃
I
ȧb),

γIJ
ȧḃ

=
1

2
(γ̃I

ȧaγ
J
aḃ
− γ̃J

ȧaγ
I
aḃ

), (A.10)

γIJK
aḃ

=
1

3!
(γI

aȧγ̃
J
ȧbγ

K
bḃ
± 5 terms),

γIJK
ȧb =

1

3!
(γ̃I

ȧaγ
J
aḃ

γ̃K
ḃb
± 5 terms). (A.11)

γIJ is an antisymmetric matrix, i.e., γIJ
ba = −γIJ

ab while γIJKL
ba = γIJKL

ab . Similarly they are true

with dotted indices.

The 16-component spinor θ is decomposed in terms of the 8-component spinors as

θα =


 Sa

Qȧ


 , (A.12)

where Sa = −1
2
γ+γ̄−θ is a positive chirality spinor and Qȧ = −1

2
γ−γ̄+θ is a negative chirality

spinor. Here γ± is defined by

γ± =
1√
2
(γ0 ± γ9). (A.13)

In computing the supersymmetry algebra we need to use the Fierz identity. For spinors S1 and

S2 with positive chirality,

Sa
1Sb

2 =
1

8
δabS1S2 +

1

16
S1γIJS2γ

IJ
ab +

1

384
S1γ

IJKLS2γ
IJKL
ab . (A.14)
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Also the similar expression is true for negative chirality spinors. Another useful identity [32] is

γI
aȧγ

J
bḃ

=
1

8
(δIJδabδȧḃ + δabγ

IJ
ȧḃ

+ δȧḃγ
IJ
ab )

+
1

16
δIJ(γKL

ab γKL
ȧḃ

+
1

24
γKLMN

ab γKLMN
ȧḃ

)

− 1

8
(γIK

ab γJK
ȧḃ

+ γJK
ab γIK

ȧḃ
)

− 1

48
(γIKLM

ab γJKLM
ȧḃ

+ γJKLM
ab γIKLM

ȧḃ
)

+
1

16
(γIJKL

ab γKL
ȧḃ

+ γKL
ab γIJKL

ȧḃ
). (A.15)

In order to discuss the boundary condition of open strings living on a Dp-brane, it is needed

to introduce the matrix Ω defined by

Ωab =
( ∏

I∈N

γI
)

ab
, Ωȧḃ =

( ∏

I∈N

γI
)

ȧḃ
, (A.16)

where N denotes the set of Neumann directions. Note that ΩT Ω = 1. Thus, for the D−-branes,

ΠΩ is an antisymmetric matrix, i.e., (ΠΩ)T = −ΠΩ, while, for D+-branes, (ΠΩ)T = ΠΩ. The

following commutation relations are useful in the calculation

{γi, Π} = 0, [γi′ , Π] = 0, (A.17)

{γr, Ω} = 0, [γr′, Ω] = 0. (A.18)

We often use the subscripts I ∈ SO(4) and II ∈ SO(4)′ to distinguish the two different SO(4)

directions of Neumann and Dirichlet coordinates, e.g., γr
I , γr

II , γr′

I , etc. Using (A.17) and

(A.18), the following formula can be derived

fIJγKγIJΠγK = fIJγKΠγIJγK = 4(fijγ
ij − fi′j′γ

i′j′)Π, (A.19)

γtγrs
I Πγt = (4 − m + n)γrs

I Π, γt′γr′s′

I Πγt′ = (4 + m − n)γr′s′

I Π, etc. (A.20)

where fIJ is a fermion bilinear.

Finally we list useful integral formula which are used in the calculation of D+-branes:

∫ π|α|

0
cosh µσ cos

nσ

|α| dσ = (−)n µα2

µ2α2 + n2
sinh πµ|α|, (A.21)

∫ π|α|

0
sinh µσ sin

nσ

|α| dσ = −(−)n n|α|
µ2α2 + n2

sinh πµ|α|, (A.22)

∫ π|α|

0
cosh µσ sin

nσ

|α| dσ = − n|α|
µ2α2 + n2

(
(−)n cosh πµ|α| − 1

)
, (A.23)

∫ π|α|

0
sinh µσ cos

nσ

|α| dσ =
µα2

µ2α2 + n2

(
(−)n cosh πµ|α| − 1

)
. (A.24)
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B (Anti-)Commutation Relations for D+-branes

To determine the anti-commutation relation of the zero modes, Eq. (2.33), let us calculate the

anti-commutator for the spinor field SA(σ, τ), Eq. (2.25), using the mode expansion (2.31) and

the anti-commutation relations, Eqs. (2.34)-(2.36), for the nonzero modes:

{S1a(σ, τ), S1b(σ′, τ)} = cosh µ(σ + σ′){Sa
0 , S

b
0} + sinh µ(σ + σ′)(ΩΠ)ac{Sc

0, S
b
0}

+
1

4
δab

∑

n∈Z

ei n

|α|
(σ−σ′) − 1

4
δab

∑

n∈Z

µ2

ω2
n

ei n

|α|
(σ+σ′)

− i

4
(ΩΠ)ab

∑

n∈Z

µn/|α|
ω2

n

ei n

|α|
(σ+σ′), (B.1)

where we assumed the form of {Sa
0 , S

b
0} as Aδab + B(ΩΠ)ab. Now we will use the following

integral representation to evaluate the infinite sums in (B.1):

∑

n∈Z

µ2

ω2
n

ei n

|α|
(σ+σ′) = −

∫

C

dz

1 − e2πiz

µ2α2

z2 + µ2α2
ei(σ+σ′)z/|α|

= πµ|α|
( e−µ(σ+σ′)

1 − e−2πµ|α|
− eµ(σ+σ′)

1 − e2πµ|α|

)
, (B.2)

∑

n∈Z

µn/|α|
ω2

n

ei n

|α|
(σ+σ′) = −

∫

C

dz

1 − e2πiz

µ|α|z
z2 + µ2α2

ei(σ+σ′)z/|α|

= iπµ|α|
( e−µ(σ+σ′)

1 − e−2πµ|α|
+

eµ(σ+σ′)

1 − e2πµ|α|

)
, (B.3)

where the contour C consists of two lines passing infinitesimally above and below the real axis.

One can see that the contribution from the zero modes is exactly cancelled by the second and

the third sums in (B.1) provided that the anti-commutator of the zero modes is given as in

(2.33). Thus we have the anti-commutation relation Eq. (2.25). Similarly, one can check that

{S1a(σ, τ), S2b(σ′, τ)} = 0.

Using the commutation relations in Eq. (2.29) and the identities (B.2) and (B.3) together

with

∑

n∈Z

n2/α2

ω2
n

e
i n

|α|
(σ+σ′)

= −
∫

C

dz

1 − e2πiz

z2

z2 + µ2α2
ei(σ+σ′)z/|α|

= −πµ|α|
( e−µ(σ+σ′)

1 − e−2πµ|α|
− eµ(σ+σ′)

1 − e2πµ|α|

)
, (B.4)

one can also check that Xr(σ, τ) in Eq. (2.40) satisfies the quantization rule (2.24).
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C Kinematical Supersymmetry for D+-branes

Here we directly derive the kinematical supercurrent (3.59) for D+-branes from the open string

mode expansion. In section 2, we showed that the fermionic mode expansions (2.31) satisfy the

boundary condition (2.17) as well as the equations of motion (2.5) and the anti-commutation

relations between the modes are given by Eqs. (2.33) and (2.34). Thus the Nöther charge

for the kinematical supersymmetry should be represented by some combination of S1 and S2

fermions in Eq. (2.31). We now examine whether there can be any combination from S1 and S2

fermions which reduces to a kinematical supersymmetry generator q+ satisfying the standard

superalgebra

{q+
a , q+

b } = δab2P
+. (C.1)

To proceed our argument, first note that the anti-commutation relation in Eq. (2.33) can

be rewritten as

{Sa
0 , Sb

0} =
πµ|α|

4 sinhπµ|α|
(
e−πµ|α|ΩΠ

)

ab
(C.2)

and thus a zero mode fermion defined by

Ŝ0 =

√√√√sinh πµ|α|
πµ|α| e

1

2
πµ|α|ΩΠS0 (C.3)

satisfies the standard anti-commutation relation

{Ŝa
0 , Ŝb

0} =
1

4
δab. (C.4)

Thus if the supersymmetry generator q+ would be given by

q+ = 2
√

2p+Ŝ0, (C.5)

q+ in (C.5) then satisfies the superalgebra (C.1). Interestingly it turns out that such a super-

symmetry generator can be constructed from the fermions in Eq. (2.31).

Notice that the zero mode parts, S1
0(σ) and S2

0(σ) of S1(σ, τ) and S2(σ, τ), respectively, are

given by

S1
0(σ) =

√√√√ πµ|α|
sinh πµ|α| eµ(σ− 1

2
π|α|)ΩΠŜ0,

S2
0(σ) =

√√√√ πµ|α|
sinh πµ|α| ΩT eµ(σ− 1

2
π|α|)ΩΠŜ0. (C.6)

Since the zero modes S1
0(σ) and S2

0(σ) satisfy S1
0(σ) = ΩS2

0(σ), as obviously seen in (C.6), we

can deduce the form of the charge density q+
τ for the kinematical supersymmetry whose zero

mode part would be given by (C.5):

q+
τ = Aekµ(σ− 1

2
π|α|)ΩΠ(S1 + ΩS2)(σ, τ), (C.7)
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where k ∈ Z. Note that only k = 0 case is descending from the closed string. Due to the

structure of the integrals, Eqs. (A.21)-(A.24), the most plausible choices are k = −1, 0, 1, or

explicitly,

q+
τ =

√
2p+

√√√√sinh πµ|α|
πµ|α| e−µ(σ− 1

2
π|α|)ΩΠ(S1 + ΩS2), (C.8)

q+
τ =

√√√√ πµ|α|p+

tanh 1
2
πµ|α| (S

1 + ΩS2), (C.9)

q+
τ =

√
2p+

√√√√ πµ|α|
sinh πµ|α| eµ(σ− 1

2
π|α|)ΩΠ(S1 + ΩS2). (C.10)

The first two candidates, however, obtain contributions from the non-zero modes and so none

of them is conserved. For example, the first choice (C.8) gives us

q+ = 2
√

2p+Ŝ0 +
4
√

2p+

π

√√√√sinh πµ|α|
πµ|α| ×

∑

n 6=0

cn

ωn

µn

µ2α2 + n2

(
e

1

2
πµ|α|ΩΠ − (−)ne−

1

2
πµ|α|ΩΠ

)(
ΠSn − iρnΩSn

)
e−iωnτ . (C.11)

Here we used the integral formula (A.21)-(A.24). But the third choice (C.10) precisely gives

the conserved kinematical supercharge

q+ = 2
√

2p+Ŝ0, (C.12)

first identified by Skenderis and Taylor [28, 29].
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