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Abstract

Much of the work in loop quantum gravity and quantum geometry rests on a mathematically rigor-
ous integration theory on spaces of distributional connections. Most notably, a diffeomorphism invariant
representation of the algebra of basic observables of the theory, the Ashtekar-Isham-Lewandowski repre-
sentation, has been constructed. Recently, several uniqueness results for this representation have been
worked out. In the present article, we contribute to these efforts by showing that the AIL-representation
is irreducible, provided it is viewed as the representation of a certain C∗-algebra which is very similar to
the Weyl algebra used in the canonical quantization of free quantum field theories.

1 Introduction

Canonical, background independent quantum field theories of connections [1] play a fundamental role in the
program of canonical quantization of general relativity (including all types of matter), sometimes called loop
quantum gravity or quantum general relativity (for a review geared to mathematical physicists see [2]). The
classical canonical theory can be formulated in terms of smooth connections A on principal G−bundles over
a D−dimensional spatial manifold Σ for a compact gauge group G and smooth sections of an associated
(under the adjoint representation) vector bundle of Lie(G)−valued vector densities E of weight one. The
pair (A,E) coordinatizes an infinite dimensional symplectic manifold (M, σ) whose (strong) symplectic
structure s is such that A and E are canonically conjugate.

In order to quantize (M, s), it is necessary to smear the fields A,E. This has to be done in such a way
that the smearing interacts well with two fundamental automorphisms of the principal G− bundle, namely
the vertical automorphisms formed by G−gauge transformations and the horizontal automorphisms formed
by Diff(Σ) diffeomorphisms. These requirements naturally lead to holonomies and electric fluxes, that is,
exponentiated (path-ordered) smearings of the connection over 1−dimensional submanifolds e of Σ as well
as smearings of the electric field over (D − 1)−dimensional submanifolds S,

he[A] = P exp i

∫

e

A, ES,n[E] =

∫

S

∗Eini.

These functions on M generate a closed Poisson ∗-algebra P and separate the points of M. They do not
depend on a choice of coordinates nor on a background metric. Therefore, diffeomorphisms and gauge
transformations act on these variables in a remarkably simple way.
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Quantization now means to promote P to an abstract ∗-algebra A and to look for its representations.
Definitions of A have been given in [9, 10, 11], and we will review what we need in the next section. Re-
markably, A admits a simple and mathematically elegant representation, the Ashtekar-Isham-Lewandowski
representation (H0, π0) [6, 7]. An important feature of this representation is that it contains a cyclic vector
that is invariant under the action of both diffeomorphisms and gauge transformations. Therefore it is a good
starting point to tackle the implementation of the Gauss- and the diffeomorphism constraint of gravity [1].

In the present work we will add another item to the list of desirable properties that the AIL representation
possesses: We will show that it is irreducible in a specific sense. The first thing we have to point out in this
context is that A is not an algebra of bounded operators. Consequently, to define a notion of irreducibility
one has to worry about domain questions, and definitions as well as proofs become rather cumbersome.
Maybe it is due to these technical difficulties that up to now, little has been said concerning irreducibility
of the AIL representation. To the best of our knowledge, the only result in this direction is that the algebra
A allows us to map between any two vectors f, f ′ ∈ D where D is a dense subset of H0 [2].

In this situation, it is worthwhile to note that there is a strong analogy between the AIL representa-
tion of A and the Schrödinger representation of the Heisenberg algebra in quantum mechanics. In both
representations, the representation spaces are roughly speaking L2 spaces over the configuration space, the
configuration variables act by multiplication and the momenta by derivations. The Heisenberg algebra is
again an algebra of unbounded operators, which makes the definition of irreducibility difficult. Moreover it
is dubious that its Schrödinger representation can be irreducible in any sense, since for example the sub-
spaces generated by functions which vanish on fixed open sets are invariant under action with multiplication
operators and differentiation (if defined). However, the Schrödinger representation of the Heisenberg alge-
bra can be obtained from the Schrödinger representation of the corresponding Weyl algebra, and it is this
representation that is irreducible. In fact, von Neumann’s famous uniqueness result states that it is the only
irreducible, strongly continuous representation of the Weyl algebra.

In the light of this analogy, it seems worthwhile to investigate whether the AIL representation derives
from a representation of an algebra of bounded operators which is irreducible. In fact, in [10] we introduced
an algebra W that contains the unitary one-parameter groups generated by the fluxes ES,f instead of the
fluxes themselves. This algebra of bounded operators turns out to be closely analogous to the Weyl algebra
used in the quantization of free fields, and the AIL representation of A can be recovered from a strongly
continuous representation of W (which, in the following, will also be called “AIL representation”). The
main result of [10] was that requiring diffeomorphism invariance, strong continuity, and certain technical
conditions uniquely singles out the AIL-representation, very much in analogy to von Neumann’s theorem.
In the present article, we will carry this analogy further by showing that the AIL representation of W is
indeed irreducible.

The article is organized as follows:

In section 2 we recall from [1, 6, 7, 8] the essentials of the classical formulation of canonical, background inde-
pendent theories of connections, that is, the symplectic manifold (M, σ) and the classical Poisson ∗-algebra
generated by holonomies and electric fluxes. We then recall from [9, 10] the definition of the corresponding
abstract algebra A and its companion W.
In section 3 we prove irreducibility of the AIL representation of W.
In section 4 we finish with some conclusions.

2 Preliminaries

This section serves to review the definitions of the algebras A and W. As most of this has been treated in
detail elsewhere, we will just give an overview and refer to the appropriate literature for details.
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Let G be a a compact, connected Lie group. For convenience, fix a basis τi of the corresponding Lie
algebra. The resulting indices are dragged with the Cartan-Killing metric on G, although for simplicity
we will not write this explicitely. Let Σ be an analytic, connected and orientable D−dimensional and P
a principal G-bundle over Σ. The smooth connections in P form the classical configuration space A, the
corresponding momenta can be identified with sections in a vector bundle EP associated to P under the
adjoint representation, whose typical fiber is a Lie(G)−valued (D− 1)−form on P . In a local trivialization,
the Poisson brackets read

{Aia(x), Ai
′

a′(x
′)} = {Eai (x), Ea

′

i′ (x′)} = 0, {Aia(x), Ea
′

i′ (x′)} = δa
′

a δ
i
i′δ(x, x

′). (2.1)

In a concrete gauge field theory the right hand side of the last equation will be multiplied by a constant
which depends on the coupling constant of the theory. In order not to clutter our formulae we will assume
that A and E respectively have dimension cm−1 and cm−(D−1) respectively.

As pointed out in the introduction, it turned out to be very fruitful to go over to certain functionals of
A and E. For the connection, the functionals are chosen to be the parallel transports along analytical paths
e in Σ,

he[A] = P exp

[

i

∫

e

Aads
a

]

.

In fact, it turns out to be convenient to consider functions of A which are slightly more general.

Definition 2.1. A graph in Σ is a collection of analytic, oriented curves in Σ which intersect each other
at most in their endpoints. Given a graph γ, the set of its constituting curves (“edges”) will be denoted by
E(γ).

A function f depending on connections A on Σ just in terms of their holonomies along the edges of a
graph, i.e.

f [A] ≡ f(he1 [A], he2 [A], . . . , hen [A]), e1, e2, . . . , en edges of some γ,

where f(g1, . . . , en) viewed as a function on SU(2)n is continuous, will be called cylindrical.

It turns out that the set of cylindrical functions can be equipped with a norm (essentially the sup-norm
for functions on SU(2)n) such that its closure (denoted by Cyl) with respect to that norm is a commutative
C∗-algebra. We will not spell out the details of this construction but refer the reader to the presentations
[7, 8]. We note furthermore that by changing the word “continuous” in the above definition to “n times
differentiable”, we can define subsets Cyln of Cyl and, most importantly for us,

Cyl∞ :=
⋂

n

Cyln,

the space of smooth cylindrical functions.
By Gelfand’s theory, Cyl can be identified with the continuous function on a compact Hausdorff space A.

The inclusion of the functions on A defined in Definition 2.1 into the continuous functions on A is afforded
by the fact that A is a projective limit: Each graph γ defines a projection pγ : A −→ Aγ , where Aγ is
diffeomorphic to GN , N being the number of edges of γ.1

The density weight of E on the other hand is such that, using an additional real (co-)vector field ni, it
can be naturally integrated over oriented surfaces D − 1 dimensional submanifolds S to form a quantity

ES,n =

∫

S

Eai n
iεabc dx

b dxc

analogous to the electric flux through S. In the following we will only consider analytic submanifolds S to
avoid certain pathologies in the algebra relations to be defined below.

1The diffeomorphism is not unique but roughly speaking depends on the choice of a gauge. But we can ignore this fact since
the algebraic structures one obtains in the end are not affected by this choice.
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It has been shown in [17] that the algebra generated by Cyl and the fluxes {ES,n} can be given the
structure of a Lie algebra which derives in a precise sense from the Poisson relations (2.1). To spell out this
structure, we will first define the action of certain derivations YS,n on Cyl, where again S is an analytical
surface and n a vectorfield in EP |S . Let f be a smooth function cylindrical on γ and assume without loss
of generality that all transversal intersections of γ and S are in vertices of γ. Then one defines

YS,n[f ] :=
1

2

∑

p∈S∩γ

∑

ep

σ(ep, S)ni(p)Y
i
ep

[f ],

where the second sum is over the edges of γ adjacent to p,

σ(ep, S) =











1 if ep lies above S

0 if ep ∩ S = ∅ or ep ∩ S = ep

−1 if ep lies below S

,

and Y i
ep

is the ith left-invariant (right-invariant) vector field on SU(2) acting on the argument of f corre-
sponding to the holonomy hep if ep is pointing away from (towards) S.

A Lie product between elements of Cyl∞ and fluxes {ES,n} can now be defined as

{f,ES,n} = YS,n[f ]. (2.2)

A bit surprisingly at first sight, it turns out that Lie products between elements of {ES,n} can not, in general
vanish. However, their Lie products with cylindrical functions are completely determined by (2.2) together
with the requirement that the Jacobi identity has to hold.2 For example one finds

{f, {ES,n, ES′,n′}} =
[

XS′,n′ , XS,n

]

[f ].

We are now in a position to define the algebra A:

Definition 2.2. Let A be the algebra generated by Cyl together with symbols {ES,n}, divided by the commu-
tation relations

[ES,n , f ] =
1

i
YS,n[f ].

Equip A with an involution by defining

f∗ := f , E∗
S,n := ES,n.

The general representation theory of the algebra A gets complicated due to the fact that the {ES,n}
will be represented by unbounded operators, so that domain questions will arise. In [10] we proposed to
circumvent these difficulties by passing to exponentials of i times the fluxes, thereby obtaining an algebra
W analogous to the Weyl algebra used in the quantization of free field theories:

Definition 2.3.

Let W be the algebra generated by Cyl together with symbols W f
t (S), t ∈ R, divided by the relations

W n
t1+t2(S) = W n

t1
(S)W n

t2
(S), W n

0 (S) = 1,

W n
t (S) f(hee∈E(γ))W

n
−t(S) = f({etσ(S,e)nj (b(e))τjhe}e∈E(γ))

where f ∈ Cyl is supposed to be cylindrical on γ, and b(e) denotes the starting point of e. Equip W with an
involution by defining

f∗ := f, (W n
t (S))∗ := W n

−t(S).

2The fact that the fluxes among themselves do not commute can be traced back to the fact that going over from (2.1) to
(2.2) involves a nontrivial limiting procedure. For more information on this point see [17].
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We note that these relations follow from formally identifying W n
t (S) with exp(itES,n) and using the

relations (2.2).
Finally, we want to describe the AIL representation of A, show that it defines a representation of W as

well, and notice that it can consequently be used to define a C∗-norm on W.
The representation space of the AIL representation is given by H0 = L2(A, dµ0) where A is the spectrum

of the C∗−subalgebra of A (and W) given by Cyl and µ0 is a regular Borel probability measure on A
consistently defined by

µ0(p
∗
γfγ) =

∫

G|E(γ)|

∏

e∈E(γ)

dµH(he)fγ({he}e∈E(γ)) (2.3)

for measurable fγ and extended by σ−additivity. Then

π0(f)ψ[A] = f [A]ψ[A], π0(ES,n)f =
1

i
YS,n[f ] (2.4)

(where ψ ∈ H0, f ∈ Cyl∞ ↪→ H0), define a representation of A. Note especially that the π0(ES,n) as defined
above can be closed to selfadjoint operators. This representation of A also defines a representation of W,
which, in abuse of notation, we will also denote by π0, via

π0(W
n
t (S)) = eitπ0(ES,n) = etYS,n .

It follows from the left invariance of the Haar measure that π0(W
f
t (S)) are unitary operators as they should

be.
Note also that the continuous functions C0(A)(' Cyl) are dense in H0 because H0 is the GNS Hilbert

space induced by the positive linear functional ω0 on Cyl defined by ω0(f) = µ0(f) where Ω0 = 1 is the
cyclic GNS vector.

Finally we equip the algebra Wwith a C∗ structure. Recall [18] that if a Banach algebra admits a C∗

norm at all then it is unique and determined purely algebraically by ||a|| =
√
a∗a where ρ denotes the

spectral radius of a ∈ W. Since the operator norm in a representation π of W on a Hilbert space H does
define a C∗− norm through ||a|| := ||π(a)||H we just need to find a representation of W (and complete it in
the corresponding operator norm). However, the Ashtekar-Lewandowski Hilbert space H0 is a representation
space for a representation π0, hence a C∗−norm exists. Let us compute it explicitely: As remarked earlier,
the π0(W

n
t (S) are unitary operators, thus

||f ||W = ||π0(f)||B(H0) = sup
||ψ||=1

||fψ||H0 = sup
a∈A

|f(A)|

||W n
t (S)||W = ||π0(W

n
t (S))||B(H0) = sup

||ψ||=1
||W n

t (S)ψ||H0 = 1 (2.5)

where B denotes the bounded operators on a Hilbert space. The C∗−norm of any other element of W can
be computed by using the commutation relations and the inner product on H0.

Certainly other completions of W might exist, but this is of no concern here as we will not make essential
use of the C∗−norm in the present paper.

Finally, let us recall that the Hilbert space H0 has an orthonormal basis given by spin network functions
[19]. These are particular cylindrical functions labeled by a spin network s = (γ, {πe}, {me}, {ne})e∈E(γ)

defined by

Ts(A) =
∏

e∈E(γ)

{
√

dπe [πe(he)]mene} (2.6)

where γ denotes a graph, π denotes an irreducible representation of G (one fixed representative from each
equivalence class), dπ its dimension and [π(h)]mn, m, n = 1, .., dπ denote the matrix elements of π(h) for
h ∈ G. We write γ(s) when s = (γ, ., ., .).

This concludes our exposition about the C∗−algebra W and its representation π0 on H0 = L2(A, dµ0).
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3 Irreducibility Proof

Theorem 3.1.

The Ashtekar – Isham – Lewandowski representation π0 of the algebra W on H0 is irreducible.

Before we prove the theorem, we first need two preparational results. Let γ be a graph. Split each edge
e ∈ E(γ) into two halves e = e′1 ◦(e′2)

−1 and replace the e’s by the e′1, e
′
2. This leaves the range of γ invariant

but changes the set of edges in such a way that each edge is outgoing from the vertex b(e′) = v ∈ V (γ)
(notice that by a vertex we mean a point in γ which is not the interior point of an analytic curve so that
the break points e′1 ∩ e′2 do not count as vertices). We call a graph refined in this way a standard graph.
Every cylindrical function over a graph is also cylindrical over its associated standard graph so there is no
loss of generality in sticking with standard graphs in what follows.

With this understanding, the following statement holds.

Lemma 3.1.

Let γ be a standard graph. Assign to each e ∈ E(γ) a vector te = (tje)
dim(G)
j=1 and collect them into a label

tγ = (te)e∈E(γ).
Then there exists a vector field Y (tγ , γ) in the Lie algebra of the flux vector fields YS,f such that for any

cylindrical function f = p∗γfγ over γ we have

Yγ(tγ)p
∗
γfγ = p∗γ

∑

e∈E(γ)

tjeR
e
jfγ (3.1)

Proof of lemma 3.1:
Any compact connected Lie group G has the structure G/Z = A×S where Z is a discrete central subgroup,
A is an Abelean Lie group group and S is a semisimple Lie group.
We will first construct an appropriate vector field Y j

e for each j and each e ∈ E(γ). The construction is
somewhat different for the Abelean and non-Abelean generators respectively so that we distinguish the two
cases.
Abelean Factor
Let j label only Abelean generators for this paragraph. Consider any e ∈ E(γ) and take any surface Se
which intersects γ only in an interior point of e and such that the orientation of Se agrees with that of e2
where e = e1 ◦ e2, e1 ∩ e2 = Se ∩ γ. Then for any cylindrical function f = p∗γfγ we have

Yj(Se)p
∗
γfγ = p∗γ [R

j
e2

−Rje1 ]fγ (3.2)

Due to gauge invariance [Rje1 +Rje2]fγ = 0, thus

Y j
e p

∗
γfγ =

1

2
Yj(Se)p

∗
γfγ (3.3)

is an appropriate choice.

Non-Abelean Factor
Let j label only non-Abelean generators for this paragraph. Given γ select a vertex v and one e ∈ E(γ)
with b(e) = v. We claim that there exists an analytic surface Sv,e through v such that se ⊂ Sv,e = γ ∩ Sv,e
for some beginning segment se of e but such that any other e′ ∈ E(γ) is transversal to Sv,e. The analytic
surface S is completely determined by its germ [S]v , that is, the Taylor coefficients in the expansion of its
parameterization

S(u, v) =

∞
∑

m,n=0

um vn

m! n!
S(m,n)(0, 0) (3.4)
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Likewise, consider the germ [e]v of e

e(t) =

∞
∑

n=0

tn

n!
e(n)(0) (3.5)

In order that see ⊂ Sv,e we just need to choose a parametrization of S such that, say, S(t, 0) = e(t) which
fixes the Taylor coefficients

S(m,0)(0, 0) = e(m)(0) (3.6)

for any m. By choosing the range of t, u, v sufficiently small we can arrange that se ⊂ S.
We now choose the freedom in the remaining coefficients to satisfy the additional requirements. We

must avoid that for finitely many, say N , edges e′1, .., e
′
n that there is any beginning segment sk of e′k

with sk ⊂ S. If sk would be contained in S then there would exist an analytic function t 7→ vk(t), such
that sk(t) = S(t, vk(t)). Notice that vk must be different from the zero function in a sufficiently small
neighborhood around t = 0 as otherwise we would have sk = se which is not the case. For each k let nk > 0

be the first derivative such that v
(nk)
k (0) 6= 0. By relabeling the edges we may arrange that n1 ≤ n2 ≤ .. ≤ nN .

Consider k = 1 and take the n1−th derivative at t = 0. We find

s
(n1)
1 (0) = S(n1,0)(0, 0) + S(0,1)(0, 0)v

(n1)
1 (0) (3.7)

Since v
(n1)
1 (0) 6= 0 we can use the freedom in S(0,1)(0, 0) in order to violate this equation. Now consider

k = 2 and take the (n2 + 1)−th derivative. We find

s
(n2+1)
2 (0) = S(n2+1,0)(0, 0) + 2S(1,1)(0, 0)v

(n2)
2 (0) + S(0,1)(0, 0)v

(n2+1)
2 (0) (3.8)

Since v
(n2)
2 (0) 6= 0 we can use the freedom in S(1,1) in order to violate this equation. Proceeding this way

we see that we can use the coefficients S(k−1,1)(0, 0) in order to violate sk(t) = S(t, vk(t)) for k = 1, .., N .
Having constructed the surfaces Sv,e we can compute the associated vector field applied to a cylindrical

function over γ

Yj(Sv,e)p
∗
γfγ = p∗γ

∑

e′∈E(γ)−{e},b(e′)=v

σ(Sv,e, e
′)Rje′fγ (3.9)

where by construction |σ(Sv,e, e
′)| = 1 for any e′ 6= e, b(e) = v. Taking the commutator

[Yj(Sv,e), Yk(Sv,e)]p
∗
γfγ = fjklp

∗
γ

∑

e′∈E(γ)−{e},b(e′)=v

Rje′fγ (3.10)

Using the Cartan Killing metric normalization for the totally skew structure constants fjklflmj = −δkm and
writing

Rjv :=
∑

e′∈E(γ), b(e′)=v

Rje′ (3.11)

we get
fjkl[Yk(Sv,e), Yl(Sv,e)]p

∗
γfγ = p∗γ [R

j
v −Rje]fγ (3.12)

Thus, if nv = |{e ∈ E(γ); b(e) = v}| denotes the valence of v

Y j
e p

∗
γfγ := {−fjkl[Yk(Sv,e), Yl(Sv,e)] +

1

nv − 1

∑

e∈E(γ)

(fjkl[Yk(Sv,e), Yl(Sv,e)])}p∗γfγ

= p∗γR
j
efγ (3.13)

Collecting the vector fields Y j
e for the Abelean and non-Abelean labels j respectively and contracting them

with tje and summing over e ∈ E(γ) yields an appropriate vector field

Yγ(tγ) =
∑

e∈E(γ)

tejY
j
e (3.14)

7



2

Lemma 3.1 has the following important implication: The algebra A also contains the vector field Yγ(tγ)
and therefore W contains the corresponding Weyl elementWγ(tγ). Also, let us write Iγ = ({πe}, {me}, {ne})e∈E(γ)

for a spin network s = (γ, Iγ) over γ. Denoting by Ts = Tγ,Iγ the corresponding spin network function (where
we also allow trivial πe for any e) we define for any two ψ,ψ′ ∈ H0 the function

(tγ , Iγ) 7→Mψ,ψ′(tγ , Iγ) :=
〈

ψ , Tγ,Iγ Wγ(tγ)ψ
′
〉

H0
(3.15)

We now exploit that for a compact connected Lie group the exponential map is onto. Thus, there exists
a region DG ⊂ Rdim(G) such that exp : DG → G; t 7→ exp(tjτj) is a bijection. Consider the measure µ on
DG defined by dµ(t) = dµH(exp(tjτj)) where µH is the Haar measure on G. Finally, let Dγ =

∏

e∈E(γ)DG

and let Lγ be the space of the Iγ . We now define an inner product on the functions of the type (3.15) by

(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ :=

∫

Dγ

dµ(tγ)
∑

Iγ

Mψ1,ψ
′
1
(tγ , Iγ) Mψ2,ψ

′
2
(tγ , Iγ) (3.16)

where dµ(tγ) =
∏

e∈E(γ) dµ(te).
The inner product of the type (3.16) is a crucial ingredient in an elementary irreducibility proof of the

Schrödinger representation of ordinary quantum mechanics (see for example [20]) and we can essentially
copy the corresponding argument. Of course, we must extend the proof somewhat in order to be able to
deal with an infinite number of degrees of freedom. The following result prepares for that.

Lemma 3.2.

i) For any ψ1, ψ
′
1, ψ2, ψ

′
2 ∈ H0 we have

|(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ | ≤ ||ψ1|| ||ψ′

1|| ||ψ2|| ||ψ′
2||. (3.17)

ii) For any ψ1, ψ
′
1, ψ2, ψ

′
2 ∈ H0,γ we have

(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ = 〈ψ2 , ψ1〉H0

〈

ψ′
1 , ψ

′
2

〉

H0
(3.18)

where H0,γ denotes the closure of the cylindrical functions over γ.

Proof of lemma 3.2:
We simply compute

(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ

=

∫

Dγ

dµ(tγ)
∑

Iγ

∫

A
dµ0(A)

∫

A
dµ0(A

′)Tγ,Iγ (A)Tγ,Iγ(A′)ψ1(A)[Wγ(tγ)ψ′
1](A)ψ2(A′)[Wγ(tγ)ψ

′
2](A

′)

=

∫

Dγ

dµ(tγ)

∫

A
dµ0(A)

∫

A
dµ0(A

′)[
∑

Iγ

Tγ,Iγ (A)Tγ,Iγ(A′)]ψ1(A)[Wγ(tγ)ψ′
1](A)ψ2(A′)[Wγ(tγ)ψ

′
2](A

′)

=

∫

A
dµ0(A)

∫

A
dµ0(A

′)

∫

Dγ

dµ(tγ)δγ(A,A
′)ψ1(A)[Wγ(tγ)ψ′

1](A)ψ2(A′)[Wγ(tγ)ψ
′
2](A

′) (3.19)

where we have defined the cylindrical δ−distribution

δγ(A,A
′) =

∏

e∈E(γ)

δµH
(he[A], he[A

′]) (3.20)

which arises due to the Plancherel formula

δµH
(g, g′) =

∑

π,m,n

Tπ,m,n(g) Tπ,m,n(g
′) (3.21)
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The interchange of integrals over A×A and the sum over Lγ in (3.21) is justified by the Plancherel theorem.
i)
In order to evaluate the cylindrical δ−distribution in (3.19) we subdivide the degrees of freedom A ∈ A
into the set Aγ = A|γ and the complement Aγ̄ = A − Aγ in the following sense: Each of the functions
f1, f

′
1, f2, f

′
2 is a countable linear combination of spin network functions Ts, each of which is cylindrical over

some graph γ(s). We may consider those functions as cylindrical over the graph γ∪γ(s) and since the edges
e ∈ E(γ) are holonomically independent, we can express each edge ẽ ∈ E(γ(s)) as a finite composition of
the edges of E(γ) and some other edges e′ of γ(s) ∪ γ such that no segment of any of the e′ is a beginning
segment of one of the e. Thus, each Ts(A) depends on the he, e ∈ E(γ) and some other he′ which are not
finite compositions of the he. We can thus write symbolically for any f ∈ H0

f(A) = F (A|γ̄ , A|γ) (3.22)

where the separation of the degrees of freedom is to be understood in the sense just discussed, that is,
A|γ ∈ Aγ , Aγ̄ ∈ Aγ̄ . It just means that when expanding out inner products of L2 functions into those of

spin network functions, that one can perform the integrals over the degrees of freedom in Aγ and in Aγ̄
independently. Given a function of the type (3.22) we define the measure on Aγ by µ0γ = µ0 ◦ p−1

γ and the

(effective) measure on Aγ̄ by
∫

Aγ̄

dµ0γ̄(A|γ̄)[

∫

Aγ

dµ0γ(A|γ)F (A|γ̄ , A|γ)] ·
∫

Aγ

dµ0γ(A|γ)[

∫

Aγ̄

dµ0γ̄(A|γ̄)F (A|γ̄ , A|γ)]

:=

∫

A
dµ0(A)f(A)

(3.23)

In order to perform concrete integrals of f ∈ L1(A, dµ0) over either Aγ or Aγ̄ we notice that all our
occurring f are countable linear combinations of spin network functions. Thus either integral can be written
as a countable linear combination of integrals over spin-network functions Ts and then the prescription is
to integrate only either over the degrees of freedom A(e), e ∈ E(γ) or A(e′), e′ ∈ E(γ(s) ∪ γ) − E(γ) for
each individual integral with the corresponding product Haar measure. It follows that µ0 = µ0γ̄ ⊗ µ0γ is a
product measure.

We may therefore neatly split (3.19) as

(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ =

∫

Dγ

dµ(tγ)

∫

Aγ̄

dµ0γ̄(A|γ̄)

∫

Aγ̄

dµ0γ̄(A
′
|γ̄)

∫

Aγ

dµ0γ(A|γ)×

× Ψ1(A|γ̄ , Aγ)[Wγ(tγ)Ψ′
1](A|γ̄ , Aγ)Ψ2(A′

|γ̄ , Aγ)[Wγ(tγ)Ψ
′
2](A

′
|γ̄ , Aγ)

(3.24)

In order to evaluate the Weyl operators, consider a spin network function Ts cylindrical over γ(s) which we
write in the form

Ts(A) = F ({he′}e′∈E(γ∪γ(s))−E(γ), {he}e∈E(γ)) (3.25)

Our concrete vector field Yγ(tγ) involves a finite collection of surfaces to which the edges e ∈ E(γ) are
already adapted in the sense that they are all of a definite type (“in”, “out”, “up” or “down”) and we may
w.l.g. assume that the same is true for the e′. Then it is easy to see that the action of Yγ(tγ) on Ts is given
by

Yγ(tγ)Ts = p∗γ(s)∪γ [
∑

e′∈E(γ∪γ(s))−E(γ)

te
′

j (tγ)R
j
e′ +

∑

e∈E(γ)

tejR
j
e]F (3.26)

where te
′

j (tγ) is a certain linear combination of the tej depending on e′ and the concrete surfaces Se, Sv,e
used in the construction of Yγ(tγ). Since the beginning segments of the e′, e are mutually independent, the
corresponding vector fields commute and it follows that

(Wγ(tγ)Ts)(A) = F ({ete
′

j (tγ )τjhe′}e′∈E(γ∪γ(s))−E(γ), {et
e
j τjhe}e∈E(γ))

= F ({Wγ(tγ)he′Wγ(tγ)
−1}e′∈E(γ∪γ(s))−E(γ), {Wγ(tγ)heWγ(tγ)

−1}e∈E(γ)) (3.27)
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Consider now any L2 function ψ. Since it is a countable linear combination of spin network functions
we can generalize (3.27) to

(Wγ(tγ)ψ)(A) = ψ(Wγ(tγ)A|γ̄Wγ(tγ)
−1,Wγ(tγ)A|γWγ(tγ)

−1) (3.28)

where the crucial point is that for each tγ ∈ Dγ the map αtγ : A → A; A 7→ Wγ(tγ)AWγ(tγ) is just some
right or left translation. We can thus estimate (notice that we can interchange the sequence of integration
w.r.t. the factors of a product measure)

|(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ | ≤

∫

Dγ

dµ(tγ)

∫

Aγ

dµ0γ(A|γ)×

× [

∫

Aγ̄

dµ0γ̄(A|γ̄)|Ψ1(A|γ̄ , Aγ)| |Ψ′
1(αtγ (A|γ̄), αtγ (Aγ))|×

× [

∫

Aγ̄

dµ0γ̄(A
′
|γ̄)|Ψ2(A

′
|γ̄ , Aγ)| |Ψ′

2(αtγ (A′
|γ̄), αtγ (Aγ))|

≤
∫

Dγ

dµ(tγ)

∫

Aγ

dµ0γ(A|γ)||Ψ1(Aγ)|||γ̄ ||Ψ′
1(αtγ (Aγ))||γ̄ ||Ψ2(Aγ)||γ̄ ||Ψ′

2(αtγ (Aγ))||γ̄

where we have used the Cauchy Schwarz inequality applied to functions such as Ψ1(Aγ) on L2(Aγ̄ , dµ0γ̄)
defined by [Ψ1(Aγ)](A|γ̄) = Ψ1(A|γ̄ , Aγ). Here it was crucial to note that due to the bi-invariance of the
measure µ0γ̄ we have e.g.

∫

Aγ̄

dµ0γ̄(A|γ̄)|Ψ′
1(αtγ (A|γ̄), αtγ (Aγ))|2 =

∫

Aγ̄

dµ0γ̄(A|γ̄)|Ψ′
1(A|γ̄ , αtγ (Aγ))|2 = ||Ψ′

1(αtγ (Aγ))||2γ̄

To see this, expand ψ′
1 into spin-network functions. Then the integral is of the form

∞
∑

m,n=1

z̄mzn

∫

Aγ̄

dµ0γ̄(A|γ̄)Tsm(αtγ (A)) Tsn(αtγ (A))

=
∞
∑

m,n=1

z̄mzn

∫

G|E(γ(sm)∪γ(sn)∪γ)−E(γ)|

[
∏

e′∈E(γ(sm)∪γ(sn)∪γ)−E(γ)

dµH(he′)] ×

× Tsm({ete
′

j (tγ)τjhe′}, {et
e
j τjhe}) Tsn({ete

′

j (tγ )τjhe′}, {et
e
j τjhe})

=

∞
∑

m,n=1

z̄mzn

∫

G|E(γ(sm)∪γ(sn)∪γ)−E(γ)|

[
∏

e′∈E(γ(sm)∪γ(sn)∪γ)−E(γ)

dµH(he′)]×

× Tsm({he′}, {et
e
j
τjhe}) Tsn({he′}, {et

e
j τjhe})

=
∞
∑

m,n=1

z̄mzn

∫

Aγ̄

dµ0γ̄(A|γ̄)Tsm(A|γ̄ , αtγ (A|γ)) Tsm(A|γ̄ , αtγ (A|γ))

=

∫

Aγ̄

dµ0γ̄(A|γ̄)|Ψ′
1(A|γ̄ , αtγ (A|γ))|2

We now exploit that
αtγ (A|γ) = {etejτjhe}e∈E(γ) (3.29)

and introduce new integration variables h′e := g(te)he where g(te) = exp(tejτj). Since by definition

dµ(tγ) =
∏

e∈E(γ)

dµ(te) =
∏

e∈E(γ)

dµH(g(te)) (3.30)
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we can estimate further

|(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ | ≤

∫

G|E(γ)|

∏

e∈E(γ)

dµH(ge)

∫

Aγ

dµ0γ(A|γ)×

× ||Ψ1(A|γ)|||γ̄ ||Ψ′
1({geA(e)}e∈E(γ))||γ̄ ||Ψ2(A|γ)||γ̄ ||Ψ′

2({geA(e)}e∈E(γ))||γ̄

= [

∫

Aγ

dµ0γ(A|γ)||Ψ1(A|γ)|||γ̄ ||Ψ2(A|γ)||γ̄ ][
∫

Aγ

dµ0γ(A
′
|γ)||Ψ′

1(A
′
|γ)||γ̄ ||Ψ′

2(A
′
|γ)||γ̄ ]

≤ || ||Ψ1||γ̄ ||γ || ||Ψ′
1||γ̄ ||γ || ||Ψ2||γ̄ ||γ || ||Ψ′

2||γ̄ ||γ

where we have used the Fubini theorem and have again applied the Cauchy Schwarz inequality to functions
in L2(Aγ , dµ0γ). But

|| ||Ψ1||γ̄ ||2γ =

∫

Aγ

dµ0γ(A|γ)| ||Ψ1(A|γ)||γ̄ |2

=

∫

Aγ

dµ0γ(A|γ)

∫

Aγ̄

dµ0γ̄(A|γ̄)|Ψ1(A|γ̄ , A|γ)|2 =

∫

A
dµ0(A)|ψ1(A)|2 = ||ψ1||2H0

so we get (3.17).

ii)
If all functions in question are cylindrical L2−functions over γ then the integrals over A|γ̄ are trivial and
(3.24) simplifies to

(Mψ1,ψ
′
1
,Mψ2,ψ

′
2
)γ =

∫

Dγ

dµ(tγ)

∫

Aγ

dµ0γ(A|γ)Ψ1(Aγ)[Wγ(tγ)Ψ
′
1](Aγ)Ψ2(Aγ)[Wγ(tγ)Ψ

′
2](Aγ)

=

∫

Aγ

dµ0γ(A|γ)

∫

Aγ

dµ0γ(A
′
|γ)Ψ1(Aγ)Ψ′

1(A
′
γ)Ψ2(Aγ)Ψ

′
2(A

′
γ)

= [

∫

A
dµ0(A)ψ2(A)ψ1(A)] [

∫

A
dµ0(A

′)ψ′
1(A

′)ψ′
2(A

′)]

= 〈ψ2 , ψ1〉H0

〈

ψ′
1 , ψ

′
2

〉

H0

that is, (3.18).
2

Proof of theorem 3.1:
Suppose that the representation π0 of W is not irreducible, that is, not every vector iscyclic. Thus, we find
non zero vectors ψ,ψ′ ∈ H0 such that

〈

ψ , aψ′
〉

= 0 ∀ a ∈ W (3.31)

Since the cylindrical functions lie dense in H0, for any ε > 0 we find a graph γ and functions f, f ′ cylindrical
over γ such that

||ψ − f || < ε, ||ψ′ − f ′|| < ε (3.32)

From (3.31) we have in particular that Mψ,ψ′(tγ , Iγ) = 0 for all tγ ∈ Dγ , Iγ ∈ Lγ , hence

0 = (Mψ,ψ′ ,Mψ,ψ′)γ (3.33)

= (Mψ−f,ψ′ ,Mψ,ψ′)γ + (Mf,ψ′−f ′ ,Mψ,ψ′)γ + (Mf,f ′ ,Mψ−f,ψ′)γ + (Mf,f ′ ,Mf,ψ′−f ′)γ + (Mf,f ′ ,Mf,f ′)γ

= (Mψ−f,ψ′ ,Mψ,ψ′)γ + (Mf,ψ′−f ′ ,Mψ,ψ′)γ + (Mf,f ′ ,Mψ−f,ψ′)γ + (Mf,f ′ ,Mf,ψ′−f ′)γ + ||f ||2 ||f ′||2
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where (3.18) has been used. Exploiting ψ,ψ′ 6= 0 we may choose ε < ||ψ||, ||ψ′|| and using (3.32) and (3.17)
we have

(||ψ|| − ε)2 (||ψ′|| − ε)2 (3.34)

≤ ||f ||2 ||f ′||2
≤ ||ψ − f || ||ψ′|| ||ψ|| ||ψ′|| + ||f || ||ψ′ − f ′|| ||ψ|| ||ψ′||

+||f || ||f ′|| ||ψ − f || ||ψ′|| + ||f || ||f ′|| ||f || ||ψ′ − f ′||
≤ ε{||ψ′||2 ||ψ|| + (||ψ|| + ε) ||ψ|| ||ψ′|| + (||ψ|| + ε) (||ψ′|| + ε) ||ψ′|| + (||ψ|| + ε)2 (||ψ′|| + ε)}

Since this inequality holds for all ε we can take ε→ 0 and find

||ψ||2 ||ψ′||2 = 0 (3.35)

that is, either ψ = 0 or ψ′ = 0 in contradiction to our assumption. Hence π0 is irreducible. 2

4 Conclusions

In this paper we have shown that the Ashtekar – Isham – Lewandowski representation π0 of the Weyl
algebra W underlying diffeomorphism invariant quantum gauge field theories for compact gauge groups is
irreducible. While this has been common belief, this is, to the best of our knowledge, the first time that
this has been shown rigorously.

From a mathematical point of view it can be considered as an extension of the known irreducibility
proofs for the Weyl algebras of quantum scalar field theories to the non-Abelean context.

From a physical point of view, irreducibility is an important concept because it makes the superselection
structure of the theory trivial: There are no distinguished sectors in the Hilbert space that are left invariant
and one does not need to worry about the charges that distinguishes those sectors. It has been known that
the vector 1 ∈ H0 is cyclic already for the subalgebra Cyl of W consisting of cylindrical functions. However,
that does not imply that the representation is irreducible because if there would be a non-trivial, closed,
invariant subspace V then, since W is closed under involution, its orthogonal complement V ⊥ is also closed
and invariant and all we knew is that 1 could be uniquely decomposed as 1 = PV ·1⊕PV ⊥ ·1 where PV , PV ⊥

are the associated orthogonal projections.
If a theory has non-trivial closed invariant subspaces then this is typically a sign for the fact that either

the algebra W is too small (it has no elements that map between the sectors) or that the representation
space H0 is too large because interesting physics can already be captured by one of its invariant subspaces
[21]. In this paper we have shown that this is not the case for π0, thus giving yet one more piece of evidence
for the physical assumption that it is a suitable kinematical starting point for the quantization of diffeomor-
phism invariant gauge field theories, which seems to be suitable in order to define the quantum (constraint)
dynamics of Quantum General Relativity (coupled to all known matter) [22].
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